Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/netinet6/ip6_output.c
39475 views
1
/*-
2
* SPDX-License-Identifier: BSD-3-Clause
3
*
4
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
* 3. Neither the name of the project nor the names of its contributors
16
* may be used to endorse or promote products derived from this software
17
* without specific prior written permission.
18
*
19
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29
* SUCH DAMAGE.
30
*
31
* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
32
*/
33
34
/*-
35
* Copyright (c) 1982, 1986, 1988, 1990, 1993
36
* The Regents of the University of California. All rights reserved.
37
*
38
* Redistribution and use in source and binary forms, with or without
39
* modification, are permitted provided that the following conditions
40
* are met:
41
* 1. Redistributions of source code must retain the above copyright
42
* notice, this list of conditions and the following disclaimer.
43
* 2. Redistributions in binary form must reproduce the above copyright
44
* notice, this list of conditions and the following disclaimer in the
45
* documentation and/or other materials provided with the distribution.
46
* 3. Neither the name of the University nor the names of its contributors
47
* may be used to endorse or promote products derived from this software
48
* without specific prior written permission.
49
*
50
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60
* SUCH DAMAGE.
61
*/
62
63
#include <sys/cdefs.h>
64
#include "opt_inet.h"
65
#include "opt_inet6.h"
66
#include "opt_ipsec.h"
67
#include "opt_kern_tls.h"
68
#include "opt_ratelimit.h"
69
#include "opt_route.h"
70
#include "opt_rss.h"
71
#include "opt_sctp.h"
72
73
#include <sys/param.h>
74
#include <sys/kernel.h>
75
#include <sys/ktls.h>
76
#include <sys/malloc.h>
77
#include <sys/mbuf.h>
78
#include <sys/errno.h>
79
#include <sys/priv.h>
80
#include <sys/proc.h>
81
#include <sys/protosw.h>
82
#include <sys/socket.h>
83
#include <sys/socketvar.h>
84
#include <sys/syslog.h>
85
#include <sys/ucred.h>
86
87
#include <machine/in_cksum.h>
88
89
#include <net/if.h>
90
#include <net/if_var.h>
91
#include <net/if_private.h>
92
#include <net/if_vlan_var.h>
93
#include <net/if_llatbl.h>
94
#include <net/ethernet.h>
95
#include <net/netisr.h>
96
#include <net/route.h>
97
#include <net/route/nhop.h>
98
#include <net/pfil.h>
99
#include <net/rss_config.h>
100
#include <net/vnet.h>
101
102
#include <netinet/in.h>
103
#include <netinet/in_var.h>
104
#include <netinet/ip_var.h>
105
#include <netinet6/in6_fib.h>
106
#include <netinet6/in6_var.h>
107
#include <netinet/ip6.h>
108
#include <netinet/icmp6.h>
109
#include <netinet6/ip6_var.h>
110
#include <netinet/in_pcb.h>
111
#include <netinet/tcp_var.h>
112
#include <netinet6/nd6.h>
113
#include <netinet6/in6_rss.h>
114
115
#include <netipsec/ipsec_support.h>
116
#if defined(SCTP) || defined(SCTP_SUPPORT)
117
#include <netinet/sctp.h>
118
#include <netinet/sctp_crc32.h>
119
#endif
120
121
#include <netinet6/scope6_var.h>
122
123
extern int in6_mcast_loop;
124
125
struct ip6_exthdrs {
126
struct mbuf *ip6e_ip6;
127
struct mbuf *ip6e_hbh;
128
struct mbuf *ip6e_dest1;
129
struct mbuf *ip6e_rthdr;
130
struct mbuf *ip6e_dest2;
131
};
132
133
static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
134
135
static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
136
struct ucred *, int);
137
static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
138
struct socket *, struct sockopt *);
139
static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *);
140
static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *,
141
struct ucred *, int, int, int);
142
143
static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
144
static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
145
struct ip6_frag **);
146
static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
147
static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
148
static void ip6_getpmtu(struct route_in6 *, int,
149
struct ifnet *, const struct in6_addr *, u_long *, u_int, u_int);
150
static void ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long,
151
u_long *, u_int);
152
static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *);
153
static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
154
155
/*
156
* Make an extension header from option data. hp is the source,
157
* mp is the destination, and _ol is the optlen.
158
*/
159
#define MAKE_EXTHDR(hp, mp, _ol) \
160
do { \
161
struct ip6_ext *eh = (struct ip6_ext *)(hp); \
162
error = ip6_copyexthdr((mp), (caddr_t)(hp), \
163
((eh)->ip6e_len + 1) << 3); \
164
if (error) \
165
goto freehdrs; \
166
(_ol) += (*(mp))->m_len; \
167
} while (/*CONSTCOND*/ 0)
168
169
/*
170
* Form a chain of extension headers.
171
* m is the extension header mbuf
172
* mp is the previous mbuf in the chain
173
* p is the next header
174
* i is the type of option.
175
*/
176
#define MAKE_CHAIN(m, mp, p, i)\
177
do {\
178
if (m) {\
179
if (!hdrsplit) \
180
panic("%s:%d: assumption failed: "\
181
"hdr not split: hdrsplit %d exthdrs %p",\
182
__func__, __LINE__, hdrsplit, &exthdrs);\
183
*mtod((m), u_char *) = *(p);\
184
*(p) = (i);\
185
p = mtod((m), u_char *);\
186
(m)->m_next = (mp)->m_next;\
187
(mp)->m_next = (m);\
188
(mp) = (m);\
189
}\
190
} while (/*CONSTCOND*/ 0)
191
192
void
193
in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset)
194
{
195
u_short csum;
196
197
csum = in_cksum_skip(m, offset + plen, offset);
198
if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0)
199
csum = 0xffff;
200
offset += m->m_pkthdr.csum_data; /* checksum offset */
201
202
if (offset + sizeof(csum) > m->m_len)
203
m_copyback(m, offset, sizeof(csum), (caddr_t)&csum);
204
else
205
*(u_short *)mtodo(m, offset) = csum;
206
}
207
208
static void
209
ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags,
210
int plen, int optlen)
211
{
212
213
KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p "
214
"csum_flags %#x",
215
__func__, __LINE__, plen, optlen, m, ifp, csum_flags));
216
217
if (csum_flags & CSUM_DELAY_DATA_IPV6) {
218
in6_delayed_cksum(m, plen - optlen,
219
sizeof(struct ip6_hdr) + optlen);
220
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
221
}
222
#if defined(SCTP) || defined(SCTP_SUPPORT)
223
if (csum_flags & CSUM_SCTP_IPV6) {
224
sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen);
225
m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
226
}
227
#endif
228
}
229
230
int
231
ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto,
232
int fraglen , uint32_t id)
233
{
234
struct mbuf *m, **mnext, *m_frgpart;
235
struct ip6_hdr *ip6, *mhip6;
236
struct ip6_frag *ip6f;
237
int off;
238
int error;
239
int tlen = m0->m_pkthdr.len;
240
241
KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8"));
242
243
m = m0;
244
ip6 = mtod(m, struct ip6_hdr *);
245
mnext = &m->m_nextpkt;
246
247
for (off = hlen; off < tlen; off += fraglen) {
248
m = m_gethdr(M_NOWAIT, MT_DATA);
249
if (!m) {
250
IP6STAT_INC(ip6s_odropped);
251
return (ENOBUFS);
252
}
253
254
/*
255
* Make sure the complete packet header gets copied
256
* from the originating mbuf to the newly created
257
* mbuf. This also ensures that existing firewall
258
* classification(s), VLAN tags and so on get copied
259
* to the resulting fragmented packet(s):
260
*/
261
if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
262
m_free(m);
263
IP6STAT_INC(ip6s_odropped);
264
return (ENOBUFS);
265
}
266
267
*mnext = m;
268
mnext = &m->m_nextpkt;
269
m->m_data += max_linkhdr;
270
mhip6 = mtod(m, struct ip6_hdr *);
271
*mhip6 = *ip6;
272
m->m_len = sizeof(*mhip6);
273
error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
274
if (error) {
275
IP6STAT_INC(ip6s_odropped);
276
return (error);
277
}
278
ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
279
if (off + fraglen >= tlen)
280
fraglen = tlen - off;
281
else
282
ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
283
mhip6->ip6_plen = htons((u_short)(fraglen + hlen +
284
sizeof(*ip6f) - sizeof(struct ip6_hdr)));
285
if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) {
286
IP6STAT_INC(ip6s_odropped);
287
return (ENOBUFS);
288
}
289
m_cat(m, m_frgpart);
290
m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f);
291
ip6f->ip6f_reserved = 0;
292
ip6f->ip6f_ident = id;
293
ip6f->ip6f_nxt = nextproto;
294
IP6STAT_INC(ip6s_ofragments);
295
in6_ifstat_inc(ifp, ifs6_out_fragcreat);
296
}
297
298
return (0);
299
}
300
301
static int
302
ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp,
303
struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro,
304
bool stamp_tag)
305
{
306
#ifdef KERN_TLS
307
struct ktls_session *tls = NULL;
308
#endif
309
struct m_snd_tag *mst;
310
int error;
311
312
MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
313
mst = NULL;
314
315
#ifdef KERN_TLS
316
/*
317
* If this is an unencrypted TLS record, save a reference to
318
* the record. This local reference is used to call
319
* ktls_output_eagain after the mbuf has been freed (thus
320
* dropping the mbuf's reference) in if_output.
321
*/
322
if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) {
323
tls = ktls_hold(m->m_next->m_epg_tls);
324
mst = tls->snd_tag;
325
326
/*
327
* If a TLS session doesn't have a valid tag, it must
328
* have had an earlier ifp mismatch, so drop this
329
* packet.
330
*/
331
if (mst == NULL) {
332
m_freem(m);
333
error = EAGAIN;
334
goto done;
335
}
336
/*
337
* Always stamp tags that include NIC ktls.
338
*/
339
stamp_tag = true;
340
}
341
#endif
342
#ifdef RATELIMIT
343
if (inp != NULL && mst == NULL) {
344
if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 ||
345
(inp->inp_snd_tag != NULL &&
346
inp->inp_snd_tag->ifp != ifp))
347
in_pcboutput_txrtlmt(inp, ifp, m);
348
349
if (inp->inp_snd_tag != NULL)
350
mst = inp->inp_snd_tag;
351
}
352
#endif
353
if (stamp_tag && mst != NULL) {
354
KASSERT(m->m_pkthdr.rcvif == NULL,
355
("trying to add a send tag to a forwarded packet"));
356
if (mst->ifp != ifp) {
357
m_freem(m);
358
error = EAGAIN;
359
goto done;
360
}
361
362
/* stamp send tag on mbuf */
363
m->m_pkthdr.snd_tag = m_snd_tag_ref(mst);
364
m->m_pkthdr.csum_flags |= CSUM_SND_TAG;
365
}
366
367
error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro);
368
369
done:
370
/* Check for route change invalidating send tags. */
371
#ifdef KERN_TLS
372
if (tls != NULL) {
373
if (error == EAGAIN)
374
error = ktls_output_eagain(inp, tls);
375
ktls_free(tls);
376
}
377
#endif
378
#ifdef RATELIMIT
379
if (error == EAGAIN)
380
in_pcboutput_eagain(inp);
381
#endif
382
return (error);
383
}
384
385
/*
386
* IP6 output.
387
* The packet in mbuf chain m contains a skeletal IP6 header (with pri, len,
388
* nxt, hlim, src, dst).
389
* This function may modify ver and hlim only.
390
* The mbuf chain containing the packet will be freed.
391
* The mbuf opt, if present, will not be freed.
392
* If route_in6 ro is present and has ro_nh initialized, route lookup would be
393
* skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL,
394
* then result of route lookup is stored in ro->ro_nh.
395
*
396
* Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu
397
* is uint32_t. So we use u_long to hold largest one, which is rt_mtu.
398
*
399
* ifpp - XXX: just for statistics
400
*/
401
int
402
ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
403
struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
404
struct ifnet **ifpp, struct inpcb *inp)
405
{
406
struct ip6_hdr *ip6;
407
struct ifnet *ifp, *origifp;
408
struct mbuf *m = m0;
409
struct mbuf *mprev;
410
struct route_in6 *ro_pmtu;
411
struct nhop_object *nh;
412
struct sockaddr_in6 *dst, sin6, src_sa, dst_sa;
413
struct in6_addr odst;
414
u_char *nexthdrp;
415
int tlen, len;
416
int error = 0;
417
int vlan_pcp = -1;
418
struct in6_ifaddr *ia = NULL;
419
u_long mtu;
420
int dontfrag;
421
u_int32_t optlen, plen = 0, unfragpartlen;
422
struct ip6_exthdrs exthdrs;
423
struct in6_addr src0, dst0;
424
u_int32_t zone;
425
bool hdrsplit;
426
int sw_csum, tso;
427
int needfiblookup;
428
uint32_t fibnum;
429
struct m_tag *fwd_tag = NULL;
430
uint32_t id;
431
uint32_t optvalid;
432
433
NET_EPOCH_ASSERT();
434
435
if (inp != NULL) {
436
INP_LOCK_ASSERT(inp);
437
M_SETFIB(m, inp->inp_inc.inc_fibnum);
438
if ((flags & IP_NODEFAULTFLOWID) == 0) {
439
/* Unconditionally set flowid. */
440
m->m_pkthdr.flowid = inp->inp_flowid;
441
M_HASHTYPE_SET(m, inp->inp_flowtype);
442
}
443
if ((inp->inp_flags2 & INP_2PCP_SET) != 0)
444
vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >>
445
INP_2PCP_SHIFT;
446
#ifdef NUMA
447
m->m_pkthdr.numa_domain = inp->inp_numa_domain;
448
#endif
449
}
450
451
/* Source address validation. */
452
ip6 = mtod(m, struct ip6_hdr *);
453
if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
454
(flags & IPV6_UNSPECSRC) == 0) {
455
error = EOPNOTSUPP;
456
IP6STAT_INC(ip6s_badscope);
457
goto bad;
458
}
459
if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
460
error = EOPNOTSUPP;
461
IP6STAT_INC(ip6s_badscope);
462
goto bad;
463
}
464
465
/*
466
* If we are given packet options to add extension headers prepare them.
467
* Calculate the total length of the extension header chain.
468
* Keep the length of the unfragmentable part for fragmentation.
469
*/
470
bzero(&exthdrs, sizeof(exthdrs));
471
optlen = optvalid = 0;
472
unfragpartlen = sizeof(struct ip6_hdr);
473
if (opt) {
474
optvalid = opt->ip6po_valid;
475
476
/* Hop-by-Hop options header. */
477
if ((optvalid & IP6PO_VALID_HBH) != 0)
478
MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen);
479
480
/* Destination options header (1st part). */
481
if ((optvalid & IP6PO_VALID_RHINFO) != 0) {
482
#ifndef RTHDR_SUPPORT_IMPLEMENTED
483
/*
484
* If there is a routing header, discard the packet
485
* right away here. RH0/1 are obsolete and we do not
486
* currently support RH2/3/4.
487
* People trying to use RH253/254 may want to disable
488
* this check.
489
* The moment we do support any routing header (again)
490
* this block should check the routing type more
491
* selectively.
492
*/
493
error = EINVAL;
494
goto bad;
495
#endif
496
497
/*
498
* Destination options header (1st part).
499
* This only makes sense with a routing header.
500
* See Section 9.2 of RFC 3542.
501
* Disabling this part just for MIP6 convenience is
502
* a bad idea. We need to think carefully about a
503
* way to make the advanced API coexist with MIP6
504
* options, which might automatically be inserted in
505
* the kernel.
506
*/
507
if ((optvalid & IP6PO_VALID_DEST1) != 0)
508
MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1,
509
optlen);
510
}
511
/* Routing header. */
512
if ((optvalid & IP6PO_VALID_RHINFO) != 0)
513
MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen);
514
515
unfragpartlen += optlen;
516
517
/*
518
* NOTE: we don't add AH/ESP length here (done in
519
* ip6_ipsec_output()).
520
*/
521
522
/* Destination options header (2nd part). */
523
if ((optvalid & IP6PO_VALID_DEST2) != 0)
524
MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen);
525
}
526
527
/*
528
* If there is at least one extension header,
529
* separate IP6 header from the payload.
530
*/
531
hdrsplit = false;
532
if (optlen) {
533
if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
534
m = NULL;
535
goto freehdrs;
536
}
537
m = exthdrs.ip6e_ip6;
538
ip6 = mtod(m, struct ip6_hdr *);
539
hdrsplit = true;
540
}
541
542
/* Adjust mbuf packet header length. */
543
m->m_pkthdr.len += optlen;
544
plen = m->m_pkthdr.len - sizeof(*ip6);
545
546
/* If this is a jumbo payload, insert a jumbo payload option. */
547
if (plen > IPV6_MAXPACKET) {
548
if (!hdrsplit) {
549
if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
550
m = NULL;
551
goto freehdrs;
552
}
553
m = exthdrs.ip6e_ip6;
554
ip6 = mtod(m, struct ip6_hdr *);
555
hdrsplit = true;
556
}
557
if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
558
goto freehdrs;
559
ip6->ip6_plen = 0;
560
} else
561
ip6->ip6_plen = htons(plen);
562
nexthdrp = &ip6->ip6_nxt;
563
564
if (optlen) {
565
/*
566
* Concatenate headers and fill in next header fields.
567
* Here we have, on "m"
568
* IPv6 payload
569
* and we insert headers accordingly.
570
* Finally, we should be getting:
571
* IPv6 hbh dest1 rthdr ah* [esp* dest2 payload].
572
*
573
* During the header composing process "m" points to IPv6
574
* header. "mprev" points to an extension header prior to esp.
575
*/
576
mprev = m;
577
578
/*
579
* We treat dest2 specially. This makes IPsec processing
580
* much easier. The goal here is to make mprev point the
581
* mbuf prior to dest2.
582
*
583
* Result: IPv6 dest2 payload.
584
* m and mprev will point to IPv6 header.
585
*/
586
if (exthdrs.ip6e_dest2) {
587
if (!hdrsplit)
588
panic("%s:%d: assumption failed: "
589
"hdr not split: hdrsplit %d exthdrs %p",
590
__func__, __LINE__, hdrsplit, &exthdrs);
591
exthdrs.ip6e_dest2->m_next = m->m_next;
592
m->m_next = exthdrs.ip6e_dest2;
593
*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
594
ip6->ip6_nxt = IPPROTO_DSTOPTS;
595
}
596
597
/*
598
* Result: IPv6 hbh dest1 rthdr dest2 payload.
599
* m will point to IPv6 header. mprev will point to the
600
* extension header prior to dest2 (rthdr in the above case).
601
*/
602
MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
603
MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
604
IPPROTO_DSTOPTS);
605
MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
606
IPPROTO_ROUTING);
607
}
608
609
IP6STAT_INC(ip6s_localout);
610
611
/* Route packet. */
612
ro_pmtu = ro;
613
if ((optvalid & IP6PO_VALID_RHINFO) != 0)
614
ro = &opt->ip6po_route;
615
if (ro != NULL)
616
dst = (struct sockaddr_in6 *)&ro->ro_dst;
617
else
618
dst = &sin6;
619
fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
620
621
again:
622
/*
623
* If specified, try to fill in the traffic class field.
624
* Do not override if a non-zero value is already set.
625
* We check the diffserv field and the ECN field separately.
626
*/
627
if ((optvalid & IP6PO_VALID_TC) != 0){
628
int mask = 0;
629
630
if (IPV6_DSCP(ip6) == 0)
631
mask |= 0xfc;
632
if (IPV6_ECN(ip6) == 0)
633
mask |= 0x03;
634
if (mask != 0)
635
ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
636
}
637
638
/* Fill in or override the hop limit field, if necessary. */
639
if ((optvalid & IP6PO_VALID_HLIM) != 0)
640
ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
641
else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
642
if (im6o != NULL)
643
ip6->ip6_hlim = im6o->im6o_multicast_hlim;
644
else
645
ip6->ip6_hlim = V_ip6_defmcasthlim;
646
}
647
648
if (ro == NULL || ro->ro_nh == NULL) {
649
bzero(dst, sizeof(*dst));
650
dst->sin6_family = AF_INET6;
651
dst->sin6_len = sizeof(*dst);
652
dst->sin6_addr = ip6->ip6_dst;
653
}
654
/*
655
* Validate route against routing table changes.
656
* Make sure that the address family is set in route.
657
*/
658
nh = NULL;
659
ifp = NULL;
660
mtu = 0;
661
if (ro != NULL) {
662
if (ro->ro_nh != NULL && inp != NULL) {
663
ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */
664
NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie,
665
fibnum);
666
}
667
if (ro->ro_nh != NULL && fwd_tag == NULL &&
668
(!NH_IS_VALID(ro->ro_nh) ||
669
ro->ro_dst.sin6_family != AF_INET6 ||
670
!IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)))
671
RO_INVALIDATE_CACHE(ro);
672
673
if (ro->ro_nh != NULL && fwd_tag == NULL &&
674
ro->ro_dst.sin6_family == AF_INET6 &&
675
IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) {
676
/* Nexthop is valid and contains valid ifp */
677
nh = ro->ro_nh;
678
} else {
679
if (ro->ro_lle)
680
LLE_FREE(ro->ro_lle); /* zeros ro_lle */
681
ro->ro_lle = NULL;
682
if (fwd_tag == NULL) {
683
bzero(&dst_sa, sizeof(dst_sa));
684
dst_sa.sin6_family = AF_INET6;
685
dst_sa.sin6_len = sizeof(dst_sa);
686
dst_sa.sin6_addr = ip6->ip6_dst;
687
}
688
error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp,
689
&nh, fibnum, m->m_pkthdr.flowid);
690
if (error != 0) {
691
IP6STAT_INC(ip6s_noroute);
692
if (ifp != NULL)
693
in6_ifstat_inc(ifp, ifs6_out_discard);
694
goto bad;
695
}
696
/*
697
* At this point at least @ifp is not NULL
698
* Can be the case when dst is multicast, link-local or
699
* interface is explicitly specificed by the caller.
700
*/
701
}
702
if (nh == NULL) {
703
/*
704
* If in6_selectroute() does not return a nexthop
705
* dst may not have been updated.
706
*/
707
*dst = dst_sa; /* XXX */
708
origifp = ifp;
709
mtu = ifp->if_mtu;
710
} else {
711
ifp = nh->nh_ifp;
712
origifp = nh->nh_aifp;
713
ia = (struct in6_ifaddr *)(nh->nh_ifa);
714
counter_u64_add(nh->nh_pksent, 1);
715
}
716
} else {
717
struct nhop_object *nh;
718
struct in6_addr kdst;
719
uint32_t scopeid;
720
721
if (fwd_tag == NULL) {
722
bzero(&dst_sa, sizeof(dst_sa));
723
dst_sa.sin6_family = AF_INET6;
724
dst_sa.sin6_len = sizeof(dst_sa);
725
dst_sa.sin6_addr = ip6->ip6_dst;
726
}
727
728
if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) &&
729
im6o != NULL &&
730
(ifp = im6o->im6o_multicast_ifp) != NULL) {
731
/* We do not need a route lookup. */
732
*dst = dst_sa; /* XXX */
733
origifp = ifp;
734
goto nonh6lookup;
735
}
736
737
in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid);
738
739
if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) ||
740
IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) {
741
if (scopeid > 0) {
742
ifp = in6_getlinkifnet(scopeid);
743
if (ifp == NULL) {
744
error = EHOSTUNREACH;
745
goto bad;
746
}
747
*dst = dst_sa; /* XXX */
748
origifp = ifp;
749
goto nonh6lookup;
750
}
751
}
752
753
nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE,
754
m->m_pkthdr.flowid);
755
if (nh == NULL) {
756
IP6STAT_INC(ip6s_noroute);
757
/* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */
758
error = EHOSTUNREACH;
759
goto bad;
760
}
761
762
ifp = nh->nh_ifp;
763
origifp = nh->nh_aifp;
764
ia = ifatoia6(nh->nh_ifa);
765
if (nh->nh_flags & NHF_GATEWAY)
766
dst->sin6_addr = nh->gw6_sa.sin6_addr;
767
else if (fwd_tag != NULL)
768
dst->sin6_addr = dst_sa.sin6_addr;
769
nonh6lookup:
770
;
771
}
772
/*
773
* At this point ifp MUST be pointing to the valid transmit ifp.
774
* origifp MUST be valid and pointing to either the same ifp or,
775
* in case of loopback output, to the interface which ip6_src
776
* belongs to.
777
* Examples:
778
* fe80::1%em0 -> fe80::2%em0 -> ifp=em0, origifp=em0
779
* fe80::1%em0 -> fe80::1%em0 -> ifp=lo0, origifp=em0
780
* ::1 -> ::1 -> ifp=lo0, origifp=lo0
781
*
782
* mtu can be 0 and will be refined later.
783
*/
784
KASSERT((ifp != NULL), ("output interface must not be NULL"));
785
KASSERT((origifp != NULL), ("output address interface must not be NULL"));
786
787
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
788
/*
789
* IPSec checking which handles several cases.
790
* FAST IPSEC: We re-injected the packet.
791
* XXX: need scope argument.
792
*/
793
if (IPSEC_ENABLED(ipv6)) {
794
if ((error = IPSEC_OUTPUT(ipv6, ifp, m, inp, mtu == 0 ?
795
ifp->if_mtu : mtu)) != 0) {
796
if (error == EINPROGRESS)
797
error = 0;
798
goto done;
799
}
800
}
801
#endif /* IPSEC */
802
803
if ((flags & IPV6_FORWARDING) == 0) {
804
/* XXX: the FORWARDING flag can be set for mrouting. */
805
in6_ifstat_inc(ifp, ifs6_out_request);
806
}
807
808
/* Setup data structures for scope ID checks. */
809
src0 = ip6->ip6_src;
810
bzero(&src_sa, sizeof(src_sa));
811
src_sa.sin6_family = AF_INET6;
812
src_sa.sin6_len = sizeof(src_sa);
813
src_sa.sin6_addr = ip6->ip6_src;
814
815
dst0 = ip6->ip6_dst;
816
/* Re-initialize to be sure. */
817
bzero(&dst_sa, sizeof(dst_sa));
818
dst_sa.sin6_family = AF_INET6;
819
dst_sa.sin6_len = sizeof(dst_sa);
820
dst_sa.sin6_addr = ip6->ip6_dst;
821
822
/* Check for valid scope ID. */
823
if (in6_setscope(&src0, origifp, &zone) == 0 &&
824
sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id &&
825
in6_setscope(&dst0, origifp, &zone) == 0 &&
826
sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) {
827
/*
828
* The outgoing interface is in the zone of the source
829
* and destination addresses.
830
*
831
*/
832
} else if ((origifp->if_flags & IFF_LOOPBACK) == 0 ||
833
sa6_recoverscope(&src_sa) != 0 ||
834
sa6_recoverscope(&dst_sa) != 0 ||
835
dst_sa.sin6_scope_id == 0 ||
836
(src_sa.sin6_scope_id != 0 &&
837
src_sa.sin6_scope_id != dst_sa.sin6_scope_id) ||
838
ifnet_byindex(dst_sa.sin6_scope_id) == NULL) {
839
/*
840
* If the destination network interface is not a
841
* loopback interface, or the destination network
842
* address has no scope ID, or the source address has
843
* a scope ID set which is different from the
844
* destination address one, or there is no network
845
* interface representing this scope ID, the address
846
* pair is considered invalid.
847
*/
848
IP6STAT_INC(ip6s_badscope);
849
in6_ifstat_inc(origifp, ifs6_out_discard);
850
if (error == 0)
851
error = EHOSTUNREACH; /* XXX */
852
goto bad;
853
}
854
/* All scope ID checks are successful. */
855
856
if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
857
if ((optvalid & IP6PO_VALID_NHINFO) != 0) {
858
/*
859
* The nexthop is explicitly specified by the
860
* application. We assume the next hop is an IPv6
861
* address.
862
*/
863
dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
864
}
865
else if ((nh->nh_flags & NHF_GATEWAY))
866
dst = &nh->gw6_sa;
867
}
868
869
if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
870
m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */
871
} else {
872
m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
873
in6_ifstat_inc(ifp, ifs6_out_mcast);
874
875
/* Confirm that the outgoing interface supports multicast. */
876
if (!(ifp->if_flags & IFF_MULTICAST)) {
877
IP6STAT_INC(ip6s_noroute);
878
in6_ifstat_inc(ifp, ifs6_out_discard);
879
error = ENETUNREACH;
880
goto bad;
881
}
882
if ((im6o == NULL && in6_mcast_loop) ||
883
(im6o && im6o->im6o_multicast_loop)) {
884
/*
885
* Loop back multicast datagram if not expressly
886
* forbidden to do so, even if we have not joined
887
* the address; protocols will filter it later,
888
* thus deferring a hash lookup and lock acquisition
889
* at the expense of an m_copym().
890
*/
891
ip6_mloopback(ifp, m);
892
} else {
893
/*
894
* If we are acting as a multicast router, perform
895
* multicast forwarding as if the packet had just
896
* arrived on the interface to which we are about
897
* to send. The multicast forwarding function
898
* recursively calls this function, using the
899
* IPV6_FORWARDING flag to prevent infinite recursion.
900
*
901
* Multicasts that are looped back by ip6_mloopback(),
902
* above, will be forwarded by the ip6_input() routine,
903
* if necessary.
904
*/
905
if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
906
/*
907
* XXX: ip6_mforward expects that rcvif is NULL
908
* when it is called from the originating path.
909
* However, it may not always be the case.
910
*/
911
m->m_pkthdr.rcvif = NULL;
912
if (ip6_mforward(ip6, ifp, m) != 0) {
913
m_freem(m);
914
goto done;
915
}
916
}
917
}
918
/*
919
* Multicasts with a hoplimit of zero may be looped back,
920
* above, but must not be transmitted on a network.
921
* Also, multicasts addressed to the loopback interface
922
* are not sent -- the above call to ip6_mloopback() will
923
* loop back a copy if this host actually belongs to the
924
* destination group on the loopback interface.
925
*/
926
if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
927
IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
928
m_freem(m);
929
goto done;
930
}
931
}
932
933
/*
934
* Fill the outgoing inteface to tell the upper layer
935
* to increment per-interface statistics.
936
*/
937
if (ifpp)
938
*ifpp = ifp;
939
940
/* Determine path MTU. */
941
ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, &mtu, fibnum,
942
*nexthdrp);
943
KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p fibnum %u",
944
__func__, __LINE__, mtu, ro_pmtu, ro, ifp, fibnum));
945
946
/*
947
* The caller of this function may specify to use the minimum MTU
948
* in some cases.
949
* An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
950
* setting. The logic is a bit complicated; by default, unicast
951
* packets will follow path MTU while multicast packets will be sent at
952
* the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
953
* including unicast ones will be sent at the minimum MTU. Multicast
954
* packets will always be sent at the minimum MTU unless
955
* IP6PO_MINMTU_DISABLE is explicitly specified.
956
* See RFC 3542 for more details.
957
*/
958
if (mtu > IPV6_MMTU) {
959
if ((flags & IPV6_MINMTU))
960
mtu = IPV6_MMTU;
961
else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
962
mtu = IPV6_MMTU;
963
else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
964
(opt == NULL ||
965
opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
966
mtu = IPV6_MMTU;
967
}
968
}
969
970
/*
971
* Clear embedded scope identifiers if necessary.
972
* in6_clearscope() will touch the addresses only when necessary.
973
*/
974
in6_clearscope(&ip6->ip6_src);
975
in6_clearscope(&ip6->ip6_dst);
976
977
/*
978
* If the outgoing packet contains a hop-by-hop options header,
979
* it must be examined and processed even by the source node.
980
* (RFC 2460, section 4.)
981
*/
982
if (exthdrs.ip6e_hbh) {
983
struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
984
u_int32_t dummy; /* XXX unused */
985
u_int32_t plen = 0; /* XXX: ip6_process will check the value */
986
987
#ifdef DIAGNOSTIC
988
if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
989
panic("ip6e_hbh is not contiguous");
990
#endif
991
/*
992
* XXX: if we have to send an ICMPv6 error to the sender,
993
* we need the M_LOOP flag since icmp6_error() expects
994
* the IPv6 and the hop-by-hop options header are
995
* contiguous unless the flag is set.
996
*/
997
m->m_flags |= M_LOOP;
998
m->m_pkthdr.rcvif = ifp;
999
if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
1000
((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
1001
&dummy, &plen) < 0) {
1002
/* m was already freed at this point. */
1003
error = EINVAL;/* better error? */
1004
goto done;
1005
}
1006
m->m_flags &= ~M_LOOP; /* XXX */
1007
m->m_pkthdr.rcvif = NULL;
1008
}
1009
1010
/* Jump over all PFIL processing if hooks are not active. */
1011
if (!PFIL_HOOKED_OUT(V_inet6_pfil_head))
1012
goto passout;
1013
1014
odst = ip6->ip6_dst;
1015
/* Run through list of hooks for output packets. */
1016
switch (pfil_mbuf_out(V_inet6_pfil_head, &m, ifp, inp)) {
1017
case PFIL_PASS:
1018
ip6 = mtod(m, struct ip6_hdr *);
1019
break;
1020
case PFIL_DROPPED:
1021
error = EACCES;
1022
/* FALLTHROUGH */
1023
case PFIL_CONSUMED:
1024
goto done;
1025
}
1026
1027
needfiblookup = 0;
1028
/* See if destination IP address was changed by packet filter. */
1029
if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
1030
m->m_flags |= M_SKIP_FIREWALL;
1031
/* If destination is now ourself drop to ip6_input(). */
1032
if (in6_localip(&ip6->ip6_dst)) {
1033
m->m_flags |= M_FASTFWD_OURS;
1034
if (m->m_pkthdr.rcvif == NULL)
1035
m->m_pkthdr.rcvif = V_loif;
1036
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
1037
m->m_pkthdr.csum_flags |=
1038
CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
1039
m->m_pkthdr.csum_data = 0xffff;
1040
}
1041
#if defined(SCTP) || defined(SCTP_SUPPORT)
1042
if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
1043
m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
1044
#endif
1045
error = netisr_queue(NETISR_IPV6, m);
1046
goto done;
1047
} else {
1048
if (ro != NULL)
1049
RO_INVALIDATE_CACHE(ro);
1050
needfiblookup = 1; /* Redo the routing table lookup. */
1051
}
1052
}
1053
/* See if fib was changed by packet filter. */
1054
if (fibnum != M_GETFIB(m)) {
1055
m->m_flags |= M_SKIP_FIREWALL;
1056
fibnum = M_GETFIB(m);
1057
if (ro != NULL)
1058
RO_INVALIDATE_CACHE(ro);
1059
needfiblookup = 1;
1060
}
1061
if (needfiblookup)
1062
goto again;
1063
1064
/* See if local, if yes, send it to netisr. */
1065
if (m->m_flags & M_FASTFWD_OURS) {
1066
if (m->m_pkthdr.rcvif == NULL)
1067
m->m_pkthdr.rcvif = V_loif;
1068
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
1069
m->m_pkthdr.csum_flags |=
1070
CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
1071
m->m_pkthdr.csum_data = 0xffff;
1072
}
1073
#if defined(SCTP) || defined(SCTP_SUPPORT)
1074
if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
1075
m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
1076
#endif
1077
error = netisr_queue(NETISR_IPV6, m);
1078
goto done;
1079
}
1080
/* Or forward to some other address? */
1081
if ((m->m_flags & M_IP6_NEXTHOP) &&
1082
(fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
1083
if (ro != NULL)
1084
dst = (struct sockaddr_in6 *)&ro->ro_dst;
1085
else
1086
dst = &sin6;
1087
bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6));
1088
m->m_flags |= M_SKIP_FIREWALL;
1089
m->m_flags &= ~M_IP6_NEXTHOP;
1090
m_tag_delete(m, fwd_tag);
1091
goto again;
1092
}
1093
1094
passout:
1095
if (vlan_pcp > -1)
1096
EVL_APPLY_PRI(m, vlan_pcp);
1097
1098
/* Ensure the packet data is mapped if the interface requires it. */
1099
if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) {
1100
struct mbuf *m1;
1101
1102
error = mb_unmapped_to_ext(m, &m1);
1103
if (error != 0) {
1104
if (error == EINVAL) {
1105
if_printf(ifp, "TLS packet\n");
1106
/* XXXKIB */
1107
} else if (error == ENOMEM) {
1108
error = ENOBUFS;
1109
}
1110
IP6STAT_INC(ip6s_odropped);
1111
return (error);
1112
} else {
1113
m = m1;
1114
}
1115
}
1116
1117
/*
1118
* Send the packet to the outgoing interface.
1119
* If necessary, do IPv6 fragmentation before sending.
1120
*
1121
* 1: normal case (dontfrag == 0)
1122
* 1-a: send as is if tlen <= path mtu
1123
* 1-b: fragment if tlen > path mtu
1124
*
1125
* 2: if user asks us not to fragment (dontfrag == 1)
1126
* 2-a: send as is if tlen <= interface mtu
1127
* 2-b: error if tlen > interface mtu
1128
*/
1129
sw_csum = m->m_pkthdr.csum_flags;
1130
if (!hdrsplit) {
1131
tso = ((sw_csum & ifp->if_hwassist &
1132
(CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0;
1133
sw_csum &= ~ifp->if_hwassist;
1134
} else
1135
tso = 0;
1136
/*
1137
* If we added extension headers, we will not do TSO and calculate the
1138
* checksums ourselves for now.
1139
* XXX-BZ Need a framework to know when the NIC can handle it, even
1140
* with ext. hdrs.
1141
*/
1142
ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen);
1143
/* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */
1144
tlen = m->m_pkthdr.len;
1145
1146
if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso)
1147
dontfrag = 1;
1148
else
1149
dontfrag = 0;
1150
if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */
1151
/*
1152
* If the DONTFRAG option is specified, we cannot send the
1153
* packet when the data length is larger than the MTU of the
1154
* outgoing interface.
1155
* Notify the error by sending IPV6_PATHMTU ancillary data if
1156
* application wanted to know the MTU value. Also return an
1157
* error code (this is not described in the API spec).
1158
*/
1159
if (inp != NULL)
1160
ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu);
1161
error = EMSGSIZE;
1162
goto bad;
1163
}
1164
1165
/* Transmit packet without fragmentation. */
1166
if (dontfrag || tlen <= mtu) { /* Cases 1-a and 2-a. */
1167
struct in6_ifaddr *ia6;
1168
1169
ip6 = mtod(m, struct ip6_hdr *);
1170
ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1171
if (ia6) {
1172
/* Record statistics for this interface address. */
1173
counter_u64_add(ia6->ia_ifa.ifa_opackets, 1);
1174
counter_u64_add(ia6->ia_ifa.ifa_obytes,
1175
m->m_pkthdr.len);
1176
}
1177
error = ip6_output_send(inp, ifp, origifp, m, dst, ro,
1178
(flags & IP_NO_SND_TAG_RL) ? false : true);
1179
goto done;
1180
}
1181
1182
/* Try to fragment the packet. Case 1-b. */
1183
if (mtu < IPV6_MMTU) {
1184
/* Path MTU cannot be less than IPV6_MMTU. */
1185
error = EMSGSIZE;
1186
in6_ifstat_inc(ifp, ifs6_out_fragfail);
1187
goto bad;
1188
} else if (ip6->ip6_plen == 0) {
1189
/* Jumbo payload cannot be fragmented. */
1190
error = EMSGSIZE;
1191
in6_ifstat_inc(ifp, ifs6_out_fragfail);
1192
goto bad;
1193
} else {
1194
u_char nextproto;
1195
1196
/*
1197
* Too large for the destination or interface;
1198
* fragment if possible.
1199
* Must be able to put at least 8 bytes per fragment.
1200
*/
1201
if (mtu > IPV6_MAXPACKET)
1202
mtu = IPV6_MAXPACKET;
1203
1204
len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7;
1205
if (len < 8) {
1206
error = EMSGSIZE;
1207
in6_ifstat_inc(ifp, ifs6_out_fragfail);
1208
goto bad;
1209
}
1210
1211
/*
1212
* If the interface will not calculate checksums on
1213
* fragmented packets, then do it here.
1214
* XXX-BZ handle the hw offloading case. Need flags.
1215
*/
1216
ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, plen,
1217
optlen);
1218
1219
/*
1220
* Change the next header field of the last header in the
1221
* unfragmentable part.
1222
*/
1223
if (exthdrs.ip6e_rthdr) {
1224
nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1225
*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1226
} else if (exthdrs.ip6e_dest1) {
1227
nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1228
*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1229
} else if (exthdrs.ip6e_hbh) {
1230
nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1231
*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1232
} else {
1233
ip6 = mtod(m, struct ip6_hdr *);
1234
nextproto = ip6->ip6_nxt;
1235
ip6->ip6_nxt = IPPROTO_FRAGMENT;
1236
}
1237
1238
/*
1239
* Loop through length of segment after first fragment,
1240
* make new header and copy data of each part and link onto
1241
* chain.
1242
*/
1243
m0 = m;
1244
id = htonl(ip6_randomid());
1245
error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id);
1246
if (error != 0)
1247
goto sendorfree;
1248
1249
in6_ifstat_inc(ifp, ifs6_out_fragok);
1250
}
1251
1252
/* Remove leading garbage. */
1253
sendorfree:
1254
m = m0->m_nextpkt;
1255
m0->m_nextpkt = 0;
1256
m_freem(m0);
1257
for (; m; m = m0) {
1258
m0 = m->m_nextpkt;
1259
m->m_nextpkt = 0;
1260
if (error == 0) {
1261
/* Record statistics for this interface address. */
1262
if (ia) {
1263
counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
1264
counter_u64_add(ia->ia_ifa.ifa_obytes,
1265
m->m_pkthdr.len);
1266
}
1267
if (vlan_pcp > -1)
1268
EVL_APPLY_PRI(m, vlan_pcp);
1269
error = ip6_output_send(inp, ifp, origifp, m, dst, ro,
1270
true);
1271
} else
1272
m_freem(m);
1273
}
1274
1275
if (error == 0)
1276
IP6STAT_INC(ip6s_fragmented);
1277
1278
done:
1279
return (error);
1280
1281
freehdrs:
1282
m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */
1283
m_freem(exthdrs.ip6e_dest1);
1284
m_freem(exthdrs.ip6e_rthdr);
1285
m_freem(exthdrs.ip6e_dest2);
1286
/* FALLTHROUGH */
1287
bad:
1288
if (m)
1289
m_freem(m);
1290
goto done;
1291
}
1292
1293
static int
1294
ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1295
{
1296
struct mbuf *m;
1297
1298
if (hlen > MCLBYTES)
1299
return (ENOBUFS); /* XXX */
1300
1301
if (hlen > MLEN)
1302
m = m_getcl(M_NOWAIT, MT_DATA, 0);
1303
else
1304
m = m_get(M_NOWAIT, MT_DATA);
1305
if (m == NULL)
1306
return (ENOBUFS);
1307
m->m_len = hlen;
1308
if (hdr)
1309
bcopy(hdr, mtod(m, caddr_t), hlen);
1310
1311
*mp = m;
1312
return (0);
1313
}
1314
1315
/*
1316
* Insert jumbo payload option.
1317
*/
1318
static int
1319
ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1320
{
1321
struct mbuf *mopt;
1322
u_char *optbuf;
1323
u_int32_t v;
1324
1325
#define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1326
1327
/*
1328
* If there is no hop-by-hop options header, allocate new one.
1329
* If there is one but it doesn't have enough space to store the
1330
* jumbo payload option, allocate a cluster to store the whole options.
1331
* Otherwise, use it to store the options.
1332
*/
1333
if (exthdrs->ip6e_hbh == NULL) {
1334
mopt = m_get(M_NOWAIT, MT_DATA);
1335
if (mopt == NULL)
1336
return (ENOBUFS);
1337
mopt->m_len = JUMBOOPTLEN;
1338
optbuf = mtod(mopt, u_char *);
1339
optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1340
exthdrs->ip6e_hbh = mopt;
1341
} else {
1342
struct ip6_hbh *hbh;
1343
1344
mopt = exthdrs->ip6e_hbh;
1345
if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1346
/*
1347
* XXX assumption:
1348
* - exthdrs->ip6e_hbh is not referenced from places
1349
* other than exthdrs.
1350
* - exthdrs->ip6e_hbh is not an mbuf chain.
1351
*/
1352
int oldoptlen = mopt->m_len;
1353
struct mbuf *n;
1354
1355
/*
1356
* XXX: give up if the whole (new) hbh header does
1357
* not fit even in an mbuf cluster.
1358
*/
1359
if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1360
return (ENOBUFS);
1361
1362
/*
1363
* As a consequence, we must always prepare a cluster
1364
* at this point.
1365
*/
1366
n = m_getcl(M_NOWAIT, MT_DATA, 0);
1367
if (n == NULL)
1368
return (ENOBUFS);
1369
n->m_len = oldoptlen + JUMBOOPTLEN;
1370
bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1371
oldoptlen);
1372
optbuf = mtod(n, caddr_t) + oldoptlen;
1373
m_freem(mopt);
1374
mopt = exthdrs->ip6e_hbh = n;
1375
} else {
1376
optbuf = mtod(mopt, u_char *) + mopt->m_len;
1377
mopt->m_len += JUMBOOPTLEN;
1378
}
1379
optbuf[0] = IP6OPT_PADN;
1380
optbuf[1] = 1;
1381
1382
/*
1383
* Adjust the header length according to the pad and
1384
* the jumbo payload option.
1385
*/
1386
hbh = mtod(mopt, struct ip6_hbh *);
1387
hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1388
}
1389
1390
/* fill in the option. */
1391
optbuf[2] = IP6OPT_JUMBO;
1392
optbuf[3] = 4;
1393
v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1394
bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1395
1396
/* finally, adjust the packet header length */
1397
exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1398
1399
return (0);
1400
#undef JUMBOOPTLEN
1401
}
1402
1403
/*
1404
* Insert fragment header and copy unfragmentable header portions.
1405
*/
1406
static int
1407
ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1408
struct ip6_frag **frghdrp)
1409
{
1410
struct mbuf *n, *mlast;
1411
1412
if (hlen > sizeof(struct ip6_hdr)) {
1413
n = m_copym(m0, sizeof(struct ip6_hdr),
1414
hlen - sizeof(struct ip6_hdr), M_NOWAIT);
1415
if (n == NULL)
1416
return (ENOBUFS);
1417
m->m_next = n;
1418
} else
1419
n = m;
1420
1421
/* Search for the last mbuf of unfragmentable part. */
1422
for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1423
;
1424
1425
if (M_WRITABLE(mlast) &&
1426
M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1427
/* use the trailing space of the last mbuf for the fragment hdr */
1428
*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1429
mlast->m_len);
1430
mlast->m_len += sizeof(struct ip6_frag);
1431
m->m_pkthdr.len += sizeof(struct ip6_frag);
1432
} else {
1433
/* allocate a new mbuf for the fragment header */
1434
struct mbuf *mfrg;
1435
1436
mfrg = m_get(M_NOWAIT, MT_DATA);
1437
if (mfrg == NULL)
1438
return (ENOBUFS);
1439
mfrg->m_len = sizeof(struct ip6_frag);
1440
*frghdrp = mtod(mfrg, struct ip6_frag *);
1441
mlast->m_next = mfrg;
1442
}
1443
1444
return (0);
1445
}
1446
1447
/*
1448
* Calculates IPv6 path mtu for destination @dst.
1449
* Resulting MTU is stored in @mtup.
1450
*
1451
* Returns 0 on success.
1452
*/
1453
static int
1454
ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup)
1455
{
1456
struct epoch_tracker et;
1457
struct nhop_object *nh;
1458
struct in6_addr kdst;
1459
uint32_t scopeid;
1460
int error;
1461
1462
in6_splitscope(dst, &kdst, &scopeid);
1463
1464
NET_EPOCH_ENTER(et);
1465
nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0);
1466
if (nh != NULL) {
1467
ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, 0);
1468
error = 0;
1469
} else
1470
error = EHOSTUNREACH;
1471
NET_EPOCH_EXIT(et);
1472
1473
return (error);
1474
}
1475
1476
/*
1477
* Calculates IPv6 path MTU for @dst based on transmit @ifp,
1478
* and cached data in @ro_pmtu.
1479
* MTU from (successful) route lookup is saved (along with dst)
1480
* inside @ro_pmtu to avoid subsequent route lookups after packet
1481
* filter processing.
1482
*
1483
* Stores mtu into @mtup.
1484
*/
1485
static void
1486
ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup,
1487
struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup,
1488
u_int fibnum, u_int proto)
1489
{
1490
struct nhop_object *nh;
1491
struct in6_addr kdst;
1492
uint32_t scopeid;
1493
struct sockaddr_in6 *sa6_dst, sin6;
1494
u_long mtu;
1495
1496
NET_EPOCH_ASSERT();
1497
1498
mtu = 0;
1499
if (ro_pmtu == NULL || do_lookup) {
1500
/*
1501
* Here ro_pmtu has final destination address, while
1502
* ro might represent immediate destination.
1503
* Use ro_pmtu destination since mtu might differ.
1504
*/
1505
if (ro_pmtu != NULL) {
1506
sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1507
if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))
1508
ro_pmtu->ro_mtu = 0;
1509
} else
1510
sa6_dst = &sin6;
1511
1512
if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) {
1513
bzero(sa6_dst, sizeof(*sa6_dst));
1514
sa6_dst->sin6_family = AF_INET6;
1515
sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1516
sa6_dst->sin6_addr = *dst;
1517
1518
in6_splitscope(dst, &kdst, &scopeid);
1519
nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0);
1520
if (nh != NULL) {
1521
mtu = nh->nh_mtu;
1522
if (ro_pmtu != NULL)
1523
ro_pmtu->ro_mtu = mtu;
1524
}
1525
} else
1526
mtu = ro_pmtu->ro_mtu;
1527
}
1528
1529
if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL)
1530
mtu = ro_pmtu->ro_nh->nh_mtu;
1531
1532
ip6_calcmtu(ifp, dst, mtu, mtup, proto);
1533
}
1534
1535
/*
1536
* Calculate MTU based on transmit @ifp, route mtu @rt_mtu and
1537
* hostcache data for @dst.
1538
* Stores mtu into @mtup.
1539
*/
1540
static void
1541
ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu,
1542
u_long *mtup, u_int proto)
1543
{
1544
u_long mtu = 0;
1545
1546
if (rt_mtu > 0) {
1547
/* Skip the hostcache if the protocol handles PMTU changes. */
1548
if (proto != IPPROTO_TCP && proto != IPPROTO_SCTP) {
1549
struct in_conninfo inc = {
1550
.inc_flags = INC_ISIPV6,
1551
.inc6_faddr = *dst,
1552
};
1553
1554
mtu = tcp_hc_getmtu(&inc);
1555
}
1556
1557
if (mtu)
1558
mtu = min(mtu, rt_mtu);
1559
else
1560
mtu = rt_mtu;
1561
}
1562
1563
if (mtu == 0)
1564
mtu = IN6_LINKMTU(ifp);
1565
1566
*mtup = mtu;
1567
}
1568
1569
/*
1570
* IP6 socket option processing.
1571
*/
1572
int
1573
ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1574
{
1575
int optdatalen, uproto;
1576
void *optdata;
1577
struct inpcb *inp = sotoinpcb(so);
1578
int error, optval;
1579
int level, op, optname;
1580
int optlen;
1581
struct thread *td;
1582
#ifdef RSS
1583
uint32_t rss_bucket;
1584
int retval;
1585
#endif
1586
1587
/*
1588
* Don't use more than a quarter of mbuf clusters. N.B.:
1589
* nmbclusters is an int, but nmbclusters * MCLBYTES may overflow
1590
* on LP64 architectures, so cast to u_long to avoid undefined
1591
* behavior. ILP32 architectures cannot have nmbclusters
1592
* large enough to overflow for other reasons.
1593
*/
1594
#define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4)
1595
1596
level = sopt->sopt_level;
1597
op = sopt->sopt_dir;
1598
optname = sopt->sopt_name;
1599
optlen = sopt->sopt_valsize;
1600
td = sopt->sopt_td;
1601
error = 0;
1602
optval = 0;
1603
uproto = (int)so->so_proto->pr_protocol;
1604
1605
if (level != IPPROTO_IPV6) {
1606
error = EINVAL;
1607
1608
if (sopt->sopt_level == SOL_SOCKET &&
1609
sopt->sopt_dir == SOPT_SET) {
1610
switch (sopt->sopt_name) {
1611
case SO_SETFIB:
1612
error = sooptcopyin(sopt, &optval,
1613
sizeof(optval), sizeof(optval));
1614
if (error != 0)
1615
break;
1616
1617
INP_WLOCK(inp);
1618
if ((inp->inp_flags & INP_BOUNDFIB) != 0 &&
1619
optval != so->so_fibnum) {
1620
INP_WUNLOCK(inp);
1621
error = EISCONN;
1622
break;
1623
}
1624
error = sosetfib(inp->inp_socket, optval);
1625
if (error == 0)
1626
inp->inp_inc.inc_fibnum = optval;
1627
INP_WUNLOCK(inp);
1628
break;
1629
case SO_MAX_PACING_RATE:
1630
#ifdef RATELIMIT
1631
INP_WLOCK(inp);
1632
inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
1633
INP_WUNLOCK(inp);
1634
error = 0;
1635
#else
1636
error = EOPNOTSUPP;
1637
#endif
1638
break;
1639
default:
1640
break;
1641
}
1642
}
1643
} else { /* level == IPPROTO_IPV6 */
1644
switch (op) {
1645
case SOPT_SET:
1646
switch (optname) {
1647
case IPV6_2292PKTOPTIONS:
1648
#ifdef IPV6_PKTOPTIONS
1649
case IPV6_PKTOPTIONS:
1650
#endif
1651
{
1652
struct mbuf *m;
1653
1654
if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) {
1655
printf("ip6_ctloutput: mbuf limit hit\n");
1656
error = ENOBUFS;
1657
break;
1658
}
1659
1660
error = soopt_getm(sopt, &m); /* XXX */
1661
if (error != 0)
1662
break;
1663
error = soopt_mcopyin(sopt, m); /* XXX */
1664
if (error != 0)
1665
break;
1666
INP_WLOCK(inp);
1667
error = ip6_pcbopts(&inp->in6p_outputopts, m,
1668
so, sopt);
1669
INP_WUNLOCK(inp);
1670
m_freem(m); /* XXX */
1671
break;
1672
}
1673
1674
/*
1675
* Use of some Hop-by-Hop options or some
1676
* Destination options, might require special
1677
* privilege. That is, normal applications
1678
* (without special privilege) might be forbidden
1679
* from setting certain options in outgoing packets,
1680
* and might never see certain options in received
1681
* packets. [RFC 2292 Section 6]
1682
* KAME specific note:
1683
* KAME prevents non-privileged users from sending or
1684
* receiving ANY hbh/dst options in order to avoid
1685
* overhead of parsing options in the kernel.
1686
*/
1687
case IPV6_RECVHOPOPTS:
1688
case IPV6_RECVDSTOPTS:
1689
case IPV6_RECVRTHDRDSTOPTS:
1690
if (td != NULL) {
1691
error = priv_check(td,
1692
PRIV_NETINET_SETHDROPTS);
1693
if (error)
1694
break;
1695
}
1696
/* FALLTHROUGH */
1697
case IPV6_UNICAST_HOPS:
1698
case IPV6_HOPLIMIT:
1699
1700
case IPV6_RECVPKTINFO:
1701
case IPV6_RECVHOPLIMIT:
1702
case IPV6_RECVRTHDR:
1703
case IPV6_RECVPATHMTU:
1704
case IPV6_RECVTCLASS:
1705
case IPV6_RECVFLOWID:
1706
#ifdef RSS
1707
case IPV6_RECVRSSBUCKETID:
1708
#endif
1709
case IPV6_V6ONLY:
1710
case IPV6_AUTOFLOWLABEL:
1711
case IPV6_ORIGDSTADDR:
1712
case IPV6_BINDANY:
1713
case IPV6_VLAN_PCP:
1714
if (optname == IPV6_BINDANY && td != NULL) {
1715
error = priv_check(td,
1716
PRIV_NETINET_BINDANY);
1717
if (error)
1718
break;
1719
}
1720
1721
if (optlen != sizeof(int)) {
1722
error = EINVAL;
1723
break;
1724
}
1725
error = sooptcopyin(sopt, &optval,
1726
sizeof optval, sizeof optval);
1727
if (error)
1728
break;
1729
switch (optname) {
1730
case IPV6_UNICAST_HOPS:
1731
if (optval < -1 || optval >= 256)
1732
error = EINVAL;
1733
else {
1734
/* -1 = kernel default */
1735
inp->in6p_hops = optval;
1736
if ((inp->inp_vflag &
1737
INP_IPV4) != 0)
1738
inp->inp_ip_ttl = optval;
1739
}
1740
break;
1741
#define OPTSET(bit) \
1742
do { \
1743
INP_WLOCK(inp); \
1744
if (optval) \
1745
inp->inp_flags |= (bit); \
1746
else \
1747
inp->inp_flags &= ~(bit); \
1748
INP_WUNLOCK(inp); \
1749
} while (/*CONSTCOND*/ 0)
1750
#define OPTSET2292(bit) \
1751
do { \
1752
INP_WLOCK(inp); \
1753
inp->inp_flags |= IN6P_RFC2292; \
1754
if (optval) \
1755
inp->inp_flags |= (bit); \
1756
else \
1757
inp->inp_flags &= ~(bit); \
1758
INP_WUNLOCK(inp); \
1759
} while (/*CONSTCOND*/ 0)
1760
#define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0)
1761
1762
#define OPTSET2_N(bit, val) do { \
1763
if (val) \
1764
inp->inp_flags2 |= bit; \
1765
else \
1766
inp->inp_flags2 &= ~bit; \
1767
} while (0)
1768
#define OPTSET2(bit, val) do { \
1769
INP_WLOCK(inp); \
1770
OPTSET2_N(bit, val); \
1771
INP_WUNLOCK(inp); \
1772
} while (0)
1773
#define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0)
1774
#define OPTSET2292_EXCLUSIVE(bit) \
1775
do { \
1776
INP_WLOCK(inp); \
1777
if (OPTBIT(IN6P_RFC2292)) { \
1778
error = EINVAL; \
1779
} else { \
1780
if (optval) \
1781
inp->inp_flags |= (bit); \
1782
else \
1783
inp->inp_flags &= ~(bit); \
1784
} \
1785
INP_WUNLOCK(inp); \
1786
} while (/*CONSTCOND*/ 0)
1787
1788
case IPV6_RECVPKTINFO:
1789
OPTSET2292_EXCLUSIVE(IN6P_PKTINFO);
1790
break;
1791
1792
case IPV6_HOPLIMIT:
1793
{
1794
struct ip6_pktopts **optp;
1795
1796
/* cannot mix with RFC2292 */
1797
if (OPTBIT(IN6P_RFC2292)) {
1798
error = EINVAL;
1799
break;
1800
}
1801
INP_WLOCK(inp);
1802
if (inp->inp_flags & INP_DROPPED) {
1803
INP_WUNLOCK(inp);
1804
return (ECONNRESET);
1805
}
1806
optp = &inp->in6p_outputopts;
1807
error = ip6_pcbopt(IPV6_HOPLIMIT,
1808
(u_char *)&optval, sizeof(optval),
1809
optp, (td != NULL) ? td->td_ucred :
1810
NULL, uproto);
1811
INP_WUNLOCK(inp);
1812
break;
1813
}
1814
1815
case IPV6_RECVHOPLIMIT:
1816
OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT);
1817
break;
1818
1819
case IPV6_RECVHOPOPTS:
1820
OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS);
1821
break;
1822
1823
case IPV6_RECVDSTOPTS:
1824
OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS);
1825
break;
1826
1827
case IPV6_RECVRTHDRDSTOPTS:
1828
OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS);
1829
break;
1830
1831
case IPV6_RECVRTHDR:
1832
OPTSET2292_EXCLUSIVE(IN6P_RTHDR);
1833
break;
1834
1835
case IPV6_RECVPATHMTU:
1836
/*
1837
* We ignore this option for TCP
1838
* sockets.
1839
* (RFC3542 leaves this case
1840
* unspecified.)
1841
*/
1842
if (uproto != IPPROTO_TCP)
1843
OPTSET(IN6P_MTU);
1844
break;
1845
1846
case IPV6_RECVFLOWID:
1847
OPTSET2(INP_RECVFLOWID, optval);
1848
break;
1849
1850
#ifdef RSS
1851
case IPV6_RECVRSSBUCKETID:
1852
OPTSET2(INP_RECVRSSBUCKETID, optval);
1853
break;
1854
#endif
1855
1856
case IPV6_V6ONLY:
1857
INP_WLOCK(inp);
1858
if (inp->inp_lport ||
1859
!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
1860
/*
1861
* The socket is already bound.
1862
*/
1863
INP_WUNLOCK(inp);
1864
error = EINVAL;
1865
break;
1866
}
1867
if (optval) {
1868
inp->inp_flags |= IN6P_IPV6_V6ONLY;
1869
inp->inp_vflag &= ~INP_IPV4;
1870
} else {
1871
inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
1872
inp->inp_vflag |= INP_IPV4;
1873
}
1874
INP_WUNLOCK(inp);
1875
break;
1876
case IPV6_RECVTCLASS:
1877
/* cannot mix with RFC2292 XXX */
1878
OPTSET2292_EXCLUSIVE(IN6P_TCLASS);
1879
break;
1880
case IPV6_AUTOFLOWLABEL:
1881
OPTSET(IN6P_AUTOFLOWLABEL);
1882
break;
1883
1884
case IPV6_ORIGDSTADDR:
1885
OPTSET2(INP_ORIGDSTADDR, optval);
1886
break;
1887
case IPV6_BINDANY:
1888
OPTSET(INP_BINDANY);
1889
break;
1890
case IPV6_VLAN_PCP:
1891
if ((optval >= -1) && (optval <=
1892
(INP_2PCP_MASK >> INP_2PCP_SHIFT))) {
1893
if (optval == -1) {
1894
INP_WLOCK(inp);
1895
inp->inp_flags2 &=
1896
~(INP_2PCP_SET |
1897
INP_2PCP_MASK);
1898
INP_WUNLOCK(inp);
1899
} else {
1900
INP_WLOCK(inp);
1901
inp->inp_flags2 |=
1902
INP_2PCP_SET;
1903
inp->inp_flags2 &=
1904
~INP_2PCP_MASK;
1905
inp->inp_flags2 |=
1906
optval <<
1907
INP_2PCP_SHIFT;
1908
INP_WUNLOCK(inp);
1909
}
1910
} else
1911
error = EINVAL;
1912
break;
1913
}
1914
break;
1915
1916
case IPV6_TCLASS:
1917
case IPV6_DONTFRAG:
1918
case IPV6_USE_MIN_MTU:
1919
case IPV6_PREFER_TEMPADDR:
1920
if (optlen != sizeof(optval)) {
1921
error = EINVAL;
1922
break;
1923
}
1924
error = sooptcopyin(sopt, &optval,
1925
sizeof optval, sizeof optval);
1926
if (error)
1927
break;
1928
{
1929
struct ip6_pktopts **optp;
1930
INP_WLOCK(inp);
1931
if (inp->inp_flags & INP_DROPPED) {
1932
INP_WUNLOCK(inp);
1933
return (ECONNRESET);
1934
}
1935
optp = &inp->in6p_outputopts;
1936
error = ip6_pcbopt(optname,
1937
(u_char *)&optval, sizeof(optval),
1938
optp, (td != NULL) ? td->td_ucred :
1939
NULL, uproto);
1940
INP_WUNLOCK(inp);
1941
break;
1942
}
1943
1944
case IPV6_2292PKTINFO:
1945
case IPV6_2292HOPLIMIT:
1946
case IPV6_2292HOPOPTS:
1947
case IPV6_2292DSTOPTS:
1948
case IPV6_2292RTHDR:
1949
/* RFC 2292 */
1950
if (optlen != sizeof(int)) {
1951
error = EINVAL;
1952
break;
1953
}
1954
error = sooptcopyin(sopt, &optval,
1955
sizeof optval, sizeof optval);
1956
if (error)
1957
break;
1958
switch (optname) {
1959
case IPV6_2292PKTINFO:
1960
OPTSET2292(IN6P_PKTINFO);
1961
break;
1962
case IPV6_2292HOPLIMIT:
1963
OPTSET2292(IN6P_HOPLIMIT);
1964
break;
1965
case IPV6_2292HOPOPTS:
1966
/*
1967
* Check super-user privilege.
1968
* See comments for IPV6_RECVHOPOPTS.
1969
*/
1970
if (td != NULL) {
1971
error = priv_check(td,
1972
PRIV_NETINET_SETHDROPTS);
1973
if (error)
1974
return (error);
1975
}
1976
OPTSET2292(IN6P_HOPOPTS);
1977
break;
1978
case IPV6_2292DSTOPTS:
1979
if (td != NULL) {
1980
error = priv_check(td,
1981
PRIV_NETINET_SETHDROPTS);
1982
if (error)
1983
return (error);
1984
}
1985
OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1986
break;
1987
case IPV6_2292RTHDR:
1988
OPTSET2292(IN6P_RTHDR);
1989
break;
1990
}
1991
break;
1992
case IPV6_PKTINFO:
1993
case IPV6_HOPOPTS:
1994
case IPV6_RTHDR:
1995
case IPV6_DSTOPTS:
1996
case IPV6_RTHDRDSTOPTS:
1997
case IPV6_NEXTHOP:
1998
{
1999
/* new advanced API (RFC3542) */
2000
u_char *optbuf;
2001
u_char optbuf_storage[MCLBYTES];
2002
int optlen;
2003
struct ip6_pktopts **optp;
2004
2005
/* cannot mix with RFC2292 */
2006
if (OPTBIT(IN6P_RFC2292)) {
2007
error = EINVAL;
2008
break;
2009
}
2010
2011
/*
2012
* We only ensure valsize is not too large
2013
* here. Further validation will be done
2014
* later.
2015
*/
2016
error = sooptcopyin(sopt, optbuf_storage,
2017
sizeof(optbuf_storage), 0);
2018
if (error)
2019
break;
2020
optlen = sopt->sopt_valsize;
2021
optbuf = optbuf_storage;
2022
INP_WLOCK(inp);
2023
if (inp->inp_flags & INP_DROPPED) {
2024
INP_WUNLOCK(inp);
2025
return (ECONNRESET);
2026
}
2027
optp = &inp->in6p_outputopts;
2028
error = ip6_pcbopt(optname, optbuf, optlen,
2029
optp, (td != NULL) ? td->td_ucred : NULL,
2030
uproto);
2031
INP_WUNLOCK(inp);
2032
break;
2033
}
2034
#undef OPTSET
2035
2036
case IPV6_MULTICAST_IF:
2037
case IPV6_MULTICAST_HOPS:
2038
case IPV6_MULTICAST_LOOP:
2039
case IPV6_JOIN_GROUP:
2040
case IPV6_LEAVE_GROUP:
2041
case IPV6_MSFILTER:
2042
case MCAST_BLOCK_SOURCE:
2043
case MCAST_UNBLOCK_SOURCE:
2044
case MCAST_JOIN_GROUP:
2045
case MCAST_LEAVE_GROUP:
2046
case MCAST_JOIN_SOURCE_GROUP:
2047
case MCAST_LEAVE_SOURCE_GROUP:
2048
error = ip6_setmoptions(inp, sopt);
2049
break;
2050
2051
case IPV6_PORTRANGE:
2052
error = sooptcopyin(sopt, &optval,
2053
sizeof optval, sizeof optval);
2054
if (error)
2055
break;
2056
2057
INP_WLOCK(inp);
2058
switch (optval) {
2059
case IPV6_PORTRANGE_DEFAULT:
2060
inp->inp_flags &= ~(INP_LOWPORT);
2061
inp->inp_flags &= ~(INP_HIGHPORT);
2062
break;
2063
2064
case IPV6_PORTRANGE_HIGH:
2065
inp->inp_flags &= ~(INP_LOWPORT);
2066
inp->inp_flags |= INP_HIGHPORT;
2067
break;
2068
2069
case IPV6_PORTRANGE_LOW:
2070
inp->inp_flags &= ~(INP_HIGHPORT);
2071
inp->inp_flags |= INP_LOWPORT;
2072
break;
2073
2074
default:
2075
error = EINVAL;
2076
break;
2077
}
2078
INP_WUNLOCK(inp);
2079
break;
2080
2081
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
2082
case IPV6_IPSEC_POLICY:
2083
if (IPSEC_ENABLED(ipv6)) {
2084
error = IPSEC_PCBCTL(ipv6, inp, sopt);
2085
break;
2086
}
2087
/* FALLTHROUGH */
2088
#endif /* IPSEC */
2089
2090
default:
2091
error = ENOPROTOOPT;
2092
break;
2093
}
2094
break;
2095
2096
case SOPT_GET:
2097
switch (optname) {
2098
case IPV6_2292PKTOPTIONS:
2099
#ifdef IPV6_PKTOPTIONS
2100
case IPV6_PKTOPTIONS:
2101
#endif
2102
/*
2103
* RFC3542 (effectively) deprecated the
2104
* semantics of the 2292-style pktoptions.
2105
* Since it was not reliable in nature (i.e.,
2106
* applications had to expect the lack of some
2107
* information after all), it would make sense
2108
* to simplify this part by always returning
2109
* empty data.
2110
*/
2111
sopt->sopt_valsize = 0;
2112
break;
2113
2114
case IPV6_RECVHOPOPTS:
2115
case IPV6_RECVDSTOPTS:
2116
case IPV6_RECVRTHDRDSTOPTS:
2117
case IPV6_UNICAST_HOPS:
2118
case IPV6_RECVPKTINFO:
2119
case IPV6_RECVHOPLIMIT:
2120
case IPV6_RECVRTHDR:
2121
case IPV6_RECVPATHMTU:
2122
2123
case IPV6_V6ONLY:
2124
case IPV6_PORTRANGE:
2125
case IPV6_RECVTCLASS:
2126
case IPV6_AUTOFLOWLABEL:
2127
case IPV6_BINDANY:
2128
case IPV6_FLOWID:
2129
case IPV6_FLOWTYPE:
2130
case IPV6_RECVFLOWID:
2131
#ifdef RSS
2132
case IPV6_RSSBUCKETID:
2133
case IPV6_RECVRSSBUCKETID:
2134
#endif
2135
case IPV6_VLAN_PCP:
2136
switch (optname) {
2137
case IPV6_RECVHOPOPTS:
2138
optval = OPTBIT(IN6P_HOPOPTS);
2139
break;
2140
2141
case IPV6_RECVDSTOPTS:
2142
optval = OPTBIT(IN6P_DSTOPTS);
2143
break;
2144
2145
case IPV6_RECVRTHDRDSTOPTS:
2146
optval = OPTBIT(IN6P_RTHDRDSTOPTS);
2147
break;
2148
2149
case IPV6_UNICAST_HOPS:
2150
optval = inp->in6p_hops;
2151
break;
2152
2153
case IPV6_RECVPKTINFO:
2154
optval = OPTBIT(IN6P_PKTINFO);
2155
break;
2156
2157
case IPV6_RECVHOPLIMIT:
2158
optval = OPTBIT(IN6P_HOPLIMIT);
2159
break;
2160
2161
case IPV6_RECVRTHDR:
2162
optval = OPTBIT(IN6P_RTHDR);
2163
break;
2164
2165
case IPV6_RECVPATHMTU:
2166
optval = OPTBIT(IN6P_MTU);
2167
break;
2168
2169
case IPV6_V6ONLY:
2170
optval = OPTBIT(IN6P_IPV6_V6ONLY);
2171
break;
2172
2173
case IPV6_PORTRANGE:
2174
{
2175
int flags;
2176
flags = inp->inp_flags;
2177
if (flags & INP_HIGHPORT)
2178
optval = IPV6_PORTRANGE_HIGH;
2179
else if (flags & INP_LOWPORT)
2180
optval = IPV6_PORTRANGE_LOW;
2181
else
2182
optval = 0;
2183
break;
2184
}
2185
case IPV6_RECVTCLASS:
2186
optval = OPTBIT(IN6P_TCLASS);
2187
break;
2188
2189
case IPV6_AUTOFLOWLABEL:
2190
optval = OPTBIT(IN6P_AUTOFLOWLABEL);
2191
break;
2192
2193
case IPV6_ORIGDSTADDR:
2194
optval = OPTBIT2(INP_ORIGDSTADDR);
2195
break;
2196
2197
case IPV6_BINDANY:
2198
optval = OPTBIT(INP_BINDANY);
2199
break;
2200
2201
case IPV6_FLOWID:
2202
optval = inp->inp_flowid;
2203
break;
2204
2205
case IPV6_FLOWTYPE:
2206
optval = inp->inp_flowtype;
2207
break;
2208
2209
case IPV6_RECVFLOWID:
2210
optval = OPTBIT2(INP_RECVFLOWID);
2211
break;
2212
#ifdef RSS
2213
case IPV6_RSSBUCKETID:
2214
retval =
2215
rss_hash2bucket(inp->inp_flowid,
2216
inp->inp_flowtype,
2217
&rss_bucket);
2218
if (retval == 0)
2219
optval = rss_bucket;
2220
else
2221
error = EINVAL;
2222
break;
2223
2224
case IPV6_RECVRSSBUCKETID:
2225
optval = OPTBIT2(INP_RECVRSSBUCKETID);
2226
break;
2227
#endif
2228
2229
2230
case IPV6_VLAN_PCP:
2231
if (OPTBIT2(INP_2PCP_SET)) {
2232
optval = (inp->inp_flags2 &
2233
INP_2PCP_MASK) >>
2234
INP_2PCP_SHIFT;
2235
} else {
2236
optval = -1;
2237
}
2238
break;
2239
}
2240
2241
if (error)
2242
break;
2243
error = sooptcopyout(sopt, &optval,
2244
sizeof optval);
2245
break;
2246
2247
case IPV6_PATHMTU:
2248
{
2249
u_long pmtu = 0;
2250
struct ip6_mtuinfo mtuinfo;
2251
struct in6_addr addr;
2252
2253
if (!(so->so_state & SS_ISCONNECTED))
2254
return (ENOTCONN);
2255
/*
2256
* XXX: we dot not consider the case of source
2257
* routing, or optional information to specify
2258
* the outgoing interface.
2259
* Copy faddr out of inp to avoid holding lock
2260
* on inp during route lookup.
2261
*/
2262
INP_RLOCK(inp);
2263
bcopy(&inp->in6p_faddr, &addr, sizeof(addr));
2264
INP_RUNLOCK(inp);
2265
error = ip6_getpmtu_ctl(so->so_fibnum,
2266
&addr, &pmtu);
2267
if (error)
2268
break;
2269
if (pmtu > IPV6_MAXPACKET)
2270
pmtu = IPV6_MAXPACKET;
2271
2272
bzero(&mtuinfo, sizeof(mtuinfo));
2273
mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
2274
optdata = (void *)&mtuinfo;
2275
optdatalen = sizeof(mtuinfo);
2276
error = sooptcopyout(sopt, optdata,
2277
optdatalen);
2278
break;
2279
}
2280
2281
case IPV6_2292PKTINFO:
2282
case IPV6_2292HOPLIMIT:
2283
case IPV6_2292HOPOPTS:
2284
case IPV6_2292RTHDR:
2285
case IPV6_2292DSTOPTS:
2286
switch (optname) {
2287
case IPV6_2292PKTINFO:
2288
optval = OPTBIT(IN6P_PKTINFO);
2289
break;
2290
case IPV6_2292HOPLIMIT:
2291
optval = OPTBIT(IN6P_HOPLIMIT);
2292
break;
2293
case IPV6_2292HOPOPTS:
2294
optval = OPTBIT(IN6P_HOPOPTS);
2295
break;
2296
case IPV6_2292RTHDR:
2297
optval = OPTBIT(IN6P_RTHDR);
2298
break;
2299
case IPV6_2292DSTOPTS:
2300
optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
2301
break;
2302
}
2303
error = sooptcopyout(sopt, &optval,
2304
sizeof optval);
2305
break;
2306
case IPV6_PKTINFO:
2307
case IPV6_HOPOPTS:
2308
case IPV6_RTHDR:
2309
case IPV6_DSTOPTS:
2310
case IPV6_RTHDRDSTOPTS:
2311
case IPV6_NEXTHOP:
2312
case IPV6_TCLASS:
2313
case IPV6_DONTFRAG:
2314
case IPV6_USE_MIN_MTU:
2315
case IPV6_PREFER_TEMPADDR:
2316
error = ip6_getpcbopt(inp, optname, sopt);
2317
break;
2318
2319
case IPV6_MULTICAST_IF:
2320
case IPV6_MULTICAST_HOPS:
2321
case IPV6_MULTICAST_LOOP:
2322
case IPV6_MSFILTER:
2323
error = ip6_getmoptions(inp, sopt);
2324
break;
2325
2326
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
2327
case IPV6_IPSEC_POLICY:
2328
if (IPSEC_ENABLED(ipv6)) {
2329
error = IPSEC_PCBCTL(ipv6, inp, sopt);
2330
break;
2331
}
2332
/* FALLTHROUGH */
2333
#endif /* IPSEC */
2334
default:
2335
error = ENOPROTOOPT;
2336
break;
2337
}
2338
break;
2339
}
2340
}
2341
return (error);
2342
}
2343
2344
int
2345
ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2346
{
2347
int error = 0, optval, optlen;
2348
const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2349
struct inpcb *inp = sotoinpcb(so);
2350
int level, op, optname;
2351
2352
level = sopt->sopt_level;
2353
op = sopt->sopt_dir;
2354
optname = sopt->sopt_name;
2355
optlen = sopt->sopt_valsize;
2356
2357
if (level != IPPROTO_IPV6) {
2358
return (EINVAL);
2359
}
2360
2361
switch (optname) {
2362
case IPV6_CHECKSUM:
2363
/*
2364
* For ICMPv6 sockets, no modification allowed for checksum
2365
* offset, permit "no change" values to help existing apps.
2366
*
2367
* RFC3542 says: "An attempt to set IPV6_CHECKSUM
2368
* for an ICMPv6 socket will fail."
2369
* The current behavior does not meet RFC3542.
2370
*/
2371
switch (op) {
2372
case SOPT_SET:
2373
if (optlen != sizeof(int)) {
2374
error = EINVAL;
2375
break;
2376
}
2377
error = sooptcopyin(sopt, &optval, sizeof(optval),
2378
sizeof(optval));
2379
if (error)
2380
break;
2381
if (optval < -1 || (optval % 2) != 0) {
2382
/*
2383
* The API assumes non-negative even offset
2384
* values or -1 as a special value.
2385
*/
2386
error = EINVAL;
2387
} else if (inp->inp_ip_p == IPPROTO_ICMPV6) {
2388
if (optval != icmp6off)
2389
error = EINVAL;
2390
} else
2391
inp->in6p_cksum = optval;
2392
break;
2393
2394
case SOPT_GET:
2395
if (inp->inp_ip_p == IPPROTO_ICMPV6)
2396
optval = icmp6off;
2397
else
2398
optval = inp->in6p_cksum;
2399
2400
error = sooptcopyout(sopt, &optval, sizeof(optval));
2401
break;
2402
2403
default:
2404
error = EINVAL;
2405
break;
2406
}
2407
break;
2408
2409
default:
2410
error = ENOPROTOOPT;
2411
break;
2412
}
2413
2414
return (error);
2415
}
2416
2417
/*
2418
* Set up IP6 options in pcb for insertion in output packets or
2419
* specifying behavior of outgoing packets.
2420
*/
2421
static int
2422
ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2423
struct socket *so, struct sockopt *sopt)
2424
{
2425
struct ip6_pktopts *opt = *pktopt;
2426
int error = 0;
2427
struct thread *td = sopt->sopt_td;
2428
struct epoch_tracker et;
2429
2430
/* turn off any old options. */
2431
if (opt) {
2432
#ifdef DIAGNOSTIC
2433
if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2434
opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2435
opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2436
printf("ip6_pcbopts: all specified options are cleared.\n");
2437
#endif
2438
ip6_clearpktopts(opt, -1);
2439
} else {
2440
opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2441
if (opt == NULL)
2442
return (ENOMEM);
2443
}
2444
*pktopt = NULL;
2445
2446
if (!m || m->m_len == 0) {
2447
/*
2448
* Only turning off any previous options, regardless of
2449
* whether the opt is just created or given.
2450
*/
2451
free(opt, M_IP6OPT);
2452
return (0);
2453
}
2454
2455
/* set options specified by user. */
2456
NET_EPOCH_ENTER(et);
2457
if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2458
td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2459
ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2460
free(opt, M_IP6OPT);
2461
NET_EPOCH_EXIT(et);
2462
return (error);
2463
}
2464
NET_EPOCH_EXIT(et);
2465
*pktopt = opt;
2466
return (0);
2467
}
2468
2469
/*
2470
* initialize ip6_pktopts. beware that there are non-zero default values in
2471
* the struct.
2472
*/
2473
void
2474
ip6_initpktopts(struct ip6_pktopts *opt)
2475
{
2476
2477
bzero(opt, sizeof(*opt));
2478
opt->ip6po_hlim = -1; /* -1 means default hop limit */
2479
opt->ip6po_tclass = -1; /* -1 means default traffic class */
2480
opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2481
opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2482
}
2483
2484
static int
2485
ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2486
struct ucred *cred, int uproto)
2487
{
2488
struct epoch_tracker et;
2489
struct ip6_pktopts *opt;
2490
int ret;
2491
2492
if (*pktopt == NULL) {
2493
*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2494
M_NOWAIT);
2495
if (*pktopt == NULL)
2496
return (ENOBUFS);
2497
ip6_initpktopts(*pktopt);
2498
}
2499
opt = *pktopt;
2500
2501
NET_EPOCH_ENTER(et);
2502
ret = ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto);
2503
NET_EPOCH_EXIT(et);
2504
2505
return (ret);
2506
}
2507
2508
#define GET_PKTOPT_VAR(field, lenexpr) do { \
2509
if (pktopt && pktopt->field) { \
2510
INP_RUNLOCK(inp); \
2511
optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \
2512
malloc_optdata = true; \
2513
INP_RLOCK(inp); \
2514
if (inp->inp_flags & INP_DROPPED) { \
2515
INP_RUNLOCK(inp); \
2516
free(optdata, M_TEMP); \
2517
return (ECONNRESET); \
2518
} \
2519
pktopt = inp->in6p_outputopts; \
2520
if (pktopt && pktopt->field) { \
2521
optdatalen = min(lenexpr, sopt->sopt_valsize); \
2522
bcopy(pktopt->field, optdata, optdatalen); \
2523
} else { \
2524
free(optdata, M_TEMP); \
2525
optdata = NULL; \
2526
malloc_optdata = false; \
2527
} \
2528
} \
2529
} while(0)
2530
2531
#define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \
2532
(((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3)
2533
2534
#define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \
2535
pktopt->field->sa_len)
2536
2537
static int
2538
ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt)
2539
{
2540
void *optdata = NULL;
2541
bool malloc_optdata = false;
2542
int optdatalen = 0;
2543
int error = 0;
2544
struct in6_pktinfo null_pktinfo;
2545
int deftclass = 0, on;
2546
int defminmtu = IP6PO_MINMTU_MCASTONLY;
2547
int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2548
struct ip6_pktopts *pktopt;
2549
2550
INP_RLOCK(inp);
2551
pktopt = inp->in6p_outputopts;
2552
2553
switch (optname) {
2554
case IPV6_PKTINFO:
2555
optdata = (void *)&null_pktinfo;
2556
if (pktopt && pktopt->ip6po_pktinfo) {
2557
bcopy(pktopt->ip6po_pktinfo, &null_pktinfo,
2558
sizeof(null_pktinfo));
2559
in6_clearscope(&null_pktinfo.ipi6_addr);
2560
} else {
2561
/* XXX: we don't have to do this every time... */
2562
bzero(&null_pktinfo, sizeof(null_pktinfo));
2563
}
2564
optdatalen = sizeof(struct in6_pktinfo);
2565
break;
2566
case IPV6_TCLASS:
2567
if (pktopt && pktopt->ip6po_tclass >= 0)
2568
deftclass = pktopt->ip6po_tclass;
2569
optdata = (void *)&deftclass;
2570
optdatalen = sizeof(int);
2571
break;
2572
case IPV6_HOPOPTS:
2573
GET_PKTOPT_EXT_HDR(ip6po_hbh);
2574
break;
2575
case IPV6_RTHDR:
2576
GET_PKTOPT_EXT_HDR(ip6po_rthdr);
2577
break;
2578
case IPV6_RTHDRDSTOPTS:
2579
GET_PKTOPT_EXT_HDR(ip6po_dest1);
2580
break;
2581
case IPV6_DSTOPTS:
2582
GET_PKTOPT_EXT_HDR(ip6po_dest2);
2583
break;
2584
case IPV6_NEXTHOP:
2585
GET_PKTOPT_SOCKADDR(ip6po_nexthop);
2586
break;
2587
case IPV6_USE_MIN_MTU:
2588
if (pktopt)
2589
defminmtu = pktopt->ip6po_minmtu;
2590
optdata = (void *)&defminmtu;
2591
optdatalen = sizeof(int);
2592
break;
2593
case IPV6_DONTFRAG:
2594
if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2595
on = 1;
2596
else
2597
on = 0;
2598
optdata = (void *)&on;
2599
optdatalen = sizeof(on);
2600
break;
2601
case IPV6_PREFER_TEMPADDR:
2602
if (pktopt)
2603
defpreftemp = pktopt->ip6po_prefer_tempaddr;
2604
optdata = (void *)&defpreftemp;
2605
optdatalen = sizeof(int);
2606
break;
2607
default: /* should not happen */
2608
#ifdef DIAGNOSTIC
2609
panic("ip6_getpcbopt: unexpected option\n");
2610
#endif
2611
INP_RUNLOCK(inp);
2612
return (ENOPROTOOPT);
2613
}
2614
INP_RUNLOCK(inp);
2615
2616
error = sooptcopyout(sopt, optdata, optdatalen);
2617
if (malloc_optdata)
2618
free(optdata, M_TEMP);
2619
2620
return (error);
2621
}
2622
2623
void
2624
ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2625
{
2626
if (pktopt == NULL)
2627
return;
2628
2629
if (optname == -1 || optname == IPV6_PKTINFO) {
2630
if (pktopt->ip6po_pktinfo)
2631
free(pktopt->ip6po_pktinfo, M_IP6OPT);
2632
pktopt->ip6po_pktinfo = NULL;
2633
}
2634
if (optname == -1 || optname == IPV6_HOPLIMIT) {
2635
pktopt->ip6po_hlim = -1;
2636
pktopt->ip6po_valid &= ~IP6PO_VALID_HLIM;
2637
}
2638
if (optname == -1 || optname == IPV6_TCLASS) {
2639
pktopt->ip6po_tclass = -1;
2640
pktopt->ip6po_valid &= ~IP6PO_VALID_TC;
2641
}
2642
if (optname == -1 || optname == IPV6_NEXTHOP) {
2643
if (pktopt->ip6po_nextroute.ro_nh) {
2644
NH_FREE(pktopt->ip6po_nextroute.ro_nh);
2645
pktopt->ip6po_nextroute.ro_nh = NULL;
2646
}
2647
if (pktopt->ip6po_nexthop)
2648
free(pktopt->ip6po_nexthop, M_IP6OPT);
2649
pktopt->ip6po_nexthop = NULL;
2650
pktopt->ip6po_valid &= ~IP6PO_VALID_NHINFO;
2651
}
2652
if (optname == -1 || optname == IPV6_HOPOPTS) {
2653
if (pktopt->ip6po_hbh)
2654
free(pktopt->ip6po_hbh, M_IP6OPT);
2655
pktopt->ip6po_hbh = NULL;
2656
pktopt->ip6po_valid &= ~IP6PO_VALID_HBH;
2657
}
2658
if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2659
if (pktopt->ip6po_dest1)
2660
free(pktopt->ip6po_dest1, M_IP6OPT);
2661
pktopt->ip6po_dest1 = NULL;
2662
pktopt->ip6po_valid &= ~IP6PO_VALID_DEST1;
2663
}
2664
if (optname == -1 || optname == IPV6_RTHDR) {
2665
if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2666
free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2667
pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2668
if (pktopt->ip6po_route.ro_nh) {
2669
NH_FREE(pktopt->ip6po_route.ro_nh);
2670
pktopt->ip6po_route.ro_nh = NULL;
2671
}
2672
pktopt->ip6po_valid &= ~IP6PO_VALID_RHINFO;
2673
}
2674
if (optname == -1 || optname == IPV6_DSTOPTS) {
2675
if (pktopt->ip6po_dest2)
2676
free(pktopt->ip6po_dest2, M_IP6OPT);
2677
pktopt->ip6po_dest2 = NULL;
2678
pktopt->ip6po_valid &= ~IP6PO_VALID_DEST2;
2679
}
2680
}
2681
2682
#define PKTOPT_EXTHDRCPY(type) \
2683
do {\
2684
if (src->type) {\
2685
int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2686
dst->type = malloc(hlen, M_IP6OPT, canwait);\
2687
if (dst->type == NULL)\
2688
goto bad;\
2689
bcopy(src->type, dst->type, hlen);\
2690
}\
2691
} while (/*CONSTCOND*/ 0)
2692
2693
static int
2694
copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2695
{
2696
if (dst == NULL || src == NULL) {
2697
printf("ip6_clearpktopts: invalid argument\n");
2698
return (EINVAL);
2699
}
2700
2701
dst->ip6po_hlim = src->ip6po_hlim;
2702
dst->ip6po_tclass = src->ip6po_tclass;
2703
dst->ip6po_flags = src->ip6po_flags;
2704
dst->ip6po_minmtu = src->ip6po_minmtu;
2705
dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2706
if (src->ip6po_pktinfo) {
2707
dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2708
M_IP6OPT, canwait);
2709
if (dst->ip6po_pktinfo == NULL)
2710
goto bad;
2711
*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2712
}
2713
if (src->ip6po_nexthop) {
2714
dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2715
M_IP6OPT, canwait);
2716
if (dst->ip6po_nexthop == NULL)
2717
goto bad;
2718
bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2719
src->ip6po_nexthop->sa_len);
2720
}
2721
PKTOPT_EXTHDRCPY(ip6po_hbh);
2722
PKTOPT_EXTHDRCPY(ip6po_dest1);
2723
PKTOPT_EXTHDRCPY(ip6po_dest2);
2724
PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2725
dst->ip6po_valid = src->ip6po_valid;
2726
return (0);
2727
2728
bad:
2729
ip6_clearpktopts(dst, -1);
2730
return (ENOBUFS);
2731
}
2732
#undef PKTOPT_EXTHDRCPY
2733
2734
struct ip6_pktopts *
2735
ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2736
{
2737
int error;
2738
struct ip6_pktopts *dst;
2739
2740
dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2741
if (dst == NULL)
2742
return (NULL);
2743
ip6_initpktopts(dst);
2744
2745
if ((error = copypktopts(dst, src, canwait)) != 0) {
2746
free(dst, M_IP6OPT);
2747
return (NULL);
2748
}
2749
2750
return (dst);
2751
}
2752
2753
void
2754
ip6_freepcbopts(struct ip6_pktopts *pktopt)
2755
{
2756
if (pktopt == NULL)
2757
return;
2758
2759
ip6_clearpktopts(pktopt, -1);
2760
2761
free(pktopt, M_IP6OPT);
2762
}
2763
2764
/*
2765
* Set IPv6 outgoing packet options based on advanced API.
2766
*/
2767
int
2768
ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2769
struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2770
{
2771
struct cmsghdr *cm = NULL;
2772
2773
if (control == NULL || opt == NULL)
2774
return (EINVAL);
2775
2776
/*
2777
* ip6_setpktopt can call ifnet_byindex(), so it's imperative that we
2778
* are in the network epoch here.
2779
*/
2780
NET_EPOCH_ASSERT();
2781
2782
ip6_initpktopts(opt);
2783
if (stickyopt) {
2784
int error;
2785
2786
/*
2787
* If stickyopt is provided, make a local copy of the options
2788
* for this particular packet, then override them by ancillary
2789
* objects.
2790
* XXX: copypktopts() does not copy the cached route to a next
2791
* hop (if any). This is not very good in terms of efficiency,
2792
* but we can allow this since this option should be rarely
2793
* used.
2794
*/
2795
if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2796
return (error);
2797
}
2798
2799
/*
2800
* XXX: Currently, we assume all the optional information is stored
2801
* in a single mbuf.
2802
*/
2803
if (control->m_next)
2804
return (EINVAL);
2805
2806
for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2807
control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2808
int error;
2809
2810
if (control->m_len < CMSG_LEN(0))
2811
return (EINVAL);
2812
2813
cm = mtod(control, struct cmsghdr *);
2814
if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2815
return (EINVAL);
2816
if (cm->cmsg_level != IPPROTO_IPV6)
2817
continue;
2818
2819
error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2820
cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2821
if (error)
2822
return (error);
2823
}
2824
2825
return (0);
2826
}
2827
2828
/*
2829
* Set a particular packet option, as a sticky option or an ancillary data
2830
* item. "len" can be 0 only when it's a sticky option.
2831
* We have 4 cases of combination of "sticky" and "cmsg":
2832
* "sticky=0, cmsg=0": impossible
2833
* "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2834
* "sticky=1, cmsg=0": RFC3542 socket option
2835
* "sticky=1, cmsg=1": RFC2292 socket option
2836
*/
2837
static int
2838
ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2839
struct ucred *cred, int sticky, int cmsg, int uproto)
2840
{
2841
int minmtupolicy, preftemp;
2842
int error;
2843
2844
NET_EPOCH_ASSERT();
2845
2846
if (!sticky && !cmsg) {
2847
#ifdef DIAGNOSTIC
2848
printf("ip6_setpktopt: impossible case\n");
2849
#endif
2850
return (EINVAL);
2851
}
2852
2853
/*
2854
* IPV6_2292xxx is for backward compatibility to RFC2292, and should
2855
* not be specified in the context of RFC3542. Conversely,
2856
* RFC3542 types should not be specified in the context of RFC2292.
2857
*/
2858
if (!cmsg) {
2859
switch (optname) {
2860
case IPV6_2292PKTINFO:
2861
case IPV6_2292HOPLIMIT:
2862
case IPV6_2292NEXTHOP:
2863
case IPV6_2292HOPOPTS:
2864
case IPV6_2292DSTOPTS:
2865
case IPV6_2292RTHDR:
2866
case IPV6_2292PKTOPTIONS:
2867
return (ENOPROTOOPT);
2868
}
2869
}
2870
if (sticky && cmsg) {
2871
switch (optname) {
2872
case IPV6_PKTINFO:
2873
case IPV6_HOPLIMIT:
2874
case IPV6_NEXTHOP:
2875
case IPV6_HOPOPTS:
2876
case IPV6_DSTOPTS:
2877
case IPV6_RTHDRDSTOPTS:
2878
case IPV6_RTHDR:
2879
case IPV6_USE_MIN_MTU:
2880
case IPV6_DONTFRAG:
2881
case IPV6_TCLASS:
2882
case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2883
return (ENOPROTOOPT);
2884
}
2885
}
2886
2887
switch (optname) {
2888
case IPV6_2292PKTINFO:
2889
case IPV6_PKTINFO:
2890
{
2891
struct ifnet *ifp = NULL;
2892
struct in6_pktinfo *pktinfo;
2893
2894
if (len != sizeof(struct in6_pktinfo))
2895
return (EINVAL);
2896
2897
pktinfo = (struct in6_pktinfo *)buf;
2898
2899
/*
2900
* An application can clear any sticky IPV6_PKTINFO option by
2901
* doing a "regular" setsockopt with ipi6_addr being
2902
* in6addr_any and ipi6_ifindex being zero.
2903
* [RFC 3542, Section 6]
2904
*/
2905
if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2906
pktinfo->ipi6_ifindex == 0 &&
2907
IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2908
ip6_clearpktopts(opt, optname);
2909
break;
2910
}
2911
2912
if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2913
sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2914
return (EINVAL);
2915
}
2916
if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr))
2917
return (EINVAL);
2918
/* validate the interface index if specified. */
2919
if (pktinfo->ipi6_ifindex) {
2920
ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2921
if (ifp == NULL)
2922
return (ENXIO);
2923
}
2924
if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL ||
2925
(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0))
2926
return (ENETDOWN);
2927
2928
if (ifp != NULL &&
2929
!IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2930
struct in6_ifaddr *ia;
2931
2932
in6_setscope(&pktinfo->ipi6_addr, ifp, NULL);
2933
ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr);
2934
if (ia == NULL)
2935
return (EADDRNOTAVAIL);
2936
ifa_free(&ia->ia_ifa);
2937
}
2938
/*
2939
* We store the address anyway, and let in6_selectsrc()
2940
* validate the specified address. This is because ipi6_addr
2941
* may not have enough information about its scope zone, and
2942
* we may need additional information (such as outgoing
2943
* interface or the scope zone of a destination address) to
2944
* disambiguate the scope.
2945
* XXX: the delay of the validation may confuse the
2946
* application when it is used as a sticky option.
2947
*/
2948
if (opt->ip6po_pktinfo == NULL) {
2949
opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2950
M_IP6OPT, M_NOWAIT);
2951
if (opt->ip6po_pktinfo == NULL)
2952
return (ENOBUFS);
2953
}
2954
bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2955
opt->ip6po_valid |= IP6PO_VALID_PKTINFO;
2956
break;
2957
}
2958
2959
case IPV6_2292HOPLIMIT:
2960
case IPV6_HOPLIMIT:
2961
{
2962
int *hlimp;
2963
2964
/*
2965
* RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2966
* to simplify the ordering among hoplimit options.
2967
*/
2968
if (optname == IPV6_HOPLIMIT && sticky)
2969
return (ENOPROTOOPT);
2970
2971
if (len != sizeof(int))
2972
return (EINVAL);
2973
hlimp = (int *)buf;
2974
if (*hlimp < -1 || *hlimp > 255)
2975
return (EINVAL);
2976
2977
opt->ip6po_hlim = *hlimp;
2978
opt->ip6po_valid |= IP6PO_VALID_HLIM;
2979
break;
2980
}
2981
2982
case IPV6_TCLASS:
2983
{
2984
int tclass;
2985
2986
if (len != sizeof(int))
2987
return (EINVAL);
2988
tclass = *(int *)buf;
2989
if (tclass < -1 || tclass > 255)
2990
return (EINVAL);
2991
2992
opt->ip6po_tclass = tclass;
2993
opt->ip6po_valid |= IP6PO_VALID_TC;
2994
break;
2995
}
2996
2997
case IPV6_2292NEXTHOP:
2998
case IPV6_NEXTHOP:
2999
if (cred != NULL) {
3000
error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
3001
if (error)
3002
return (error);
3003
}
3004
3005
if (len == 0) { /* just remove the option */
3006
ip6_clearpktopts(opt, IPV6_NEXTHOP);
3007
break;
3008
}
3009
3010
/* check if cmsg_len is large enough for sa_len */
3011
if (len < sizeof(struct sockaddr) || len < *buf)
3012
return (EINVAL);
3013
3014
switch (((struct sockaddr *)buf)->sa_family) {
3015
case AF_INET6:
3016
{
3017
struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3018
int error;
3019
3020
if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3021
return (EINVAL);
3022
3023
if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3024
IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3025
return (EINVAL);
3026
}
3027
if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
3028
!= 0) {
3029
return (error);
3030
}
3031
break;
3032
}
3033
case AF_LINK: /* should eventually be supported */
3034
default:
3035
return (EAFNOSUPPORT);
3036
}
3037
3038
/* turn off the previous option, then set the new option. */
3039
ip6_clearpktopts(opt, IPV6_NEXTHOP);
3040
opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3041
if (opt->ip6po_nexthop == NULL)
3042
return (ENOBUFS);
3043
bcopy(buf, opt->ip6po_nexthop, *buf);
3044
opt->ip6po_valid |= IP6PO_VALID_NHINFO;
3045
break;
3046
3047
case IPV6_2292HOPOPTS:
3048
case IPV6_HOPOPTS:
3049
{
3050
struct ip6_hbh *hbh;
3051
int hbhlen;
3052
3053
/*
3054
* XXX: We don't allow a non-privileged user to set ANY HbH
3055
* options, since per-option restriction has too much
3056
* overhead.
3057
*/
3058
if (cred != NULL) {
3059
error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
3060
if (error)
3061
return (error);
3062
}
3063
3064
if (len == 0) {
3065
ip6_clearpktopts(opt, IPV6_HOPOPTS);
3066
break; /* just remove the option */
3067
}
3068
3069
/* message length validation */
3070
if (len < sizeof(struct ip6_hbh))
3071
return (EINVAL);
3072
hbh = (struct ip6_hbh *)buf;
3073
hbhlen = (hbh->ip6h_len + 1) << 3;
3074
if (len != hbhlen)
3075
return (EINVAL);
3076
3077
/* turn off the previous option, then set the new option. */
3078
ip6_clearpktopts(opt, IPV6_HOPOPTS);
3079
opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3080
if (opt->ip6po_hbh == NULL)
3081
return (ENOBUFS);
3082
bcopy(hbh, opt->ip6po_hbh, hbhlen);
3083
opt->ip6po_valid |= IP6PO_VALID_HBH;
3084
3085
break;
3086
}
3087
3088
case IPV6_2292DSTOPTS:
3089
case IPV6_DSTOPTS:
3090
case IPV6_RTHDRDSTOPTS:
3091
{
3092
struct ip6_dest *dest, **newdest = NULL;
3093
int destlen;
3094
3095
if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
3096
error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
3097
if (error)
3098
return (error);
3099
}
3100
3101
if (len == 0) {
3102
ip6_clearpktopts(opt, optname);
3103
break; /* just remove the option */
3104
}
3105
3106
/* message length validation */
3107
if (len < sizeof(struct ip6_dest))
3108
return (EINVAL);
3109
dest = (struct ip6_dest *)buf;
3110
destlen = (dest->ip6d_len + 1) << 3;
3111
if (len != destlen)
3112
return (EINVAL);
3113
3114
/*
3115
* Determine the position that the destination options header
3116
* should be inserted; before or after the routing header.
3117
*/
3118
switch (optname) {
3119
case IPV6_2292DSTOPTS:
3120
/*
3121
* The old advacned API is ambiguous on this point.
3122
* Our approach is to determine the position based
3123
* according to the existence of a routing header.
3124
* Note, however, that this depends on the order of the
3125
* extension headers in the ancillary data; the 1st
3126
* part of the destination options header must appear
3127
* before the routing header in the ancillary data,
3128
* too.
3129
* RFC3542 solved the ambiguity by introducing
3130
* separate ancillary data or option types.
3131
*/
3132
if (opt->ip6po_rthdr == NULL)
3133
newdest = &opt->ip6po_dest1;
3134
else
3135
newdest = &opt->ip6po_dest2;
3136
break;
3137
case IPV6_RTHDRDSTOPTS:
3138
newdest = &opt->ip6po_dest1;
3139
break;
3140
case IPV6_DSTOPTS:
3141
newdest = &opt->ip6po_dest2;
3142
break;
3143
}
3144
3145
/* turn off the previous option, then set the new option. */
3146
ip6_clearpktopts(opt, optname);
3147
*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3148
if (*newdest == NULL)
3149
return (ENOBUFS);
3150
bcopy(dest, *newdest, destlen);
3151
if (newdest == &opt->ip6po_dest1)
3152
opt->ip6po_valid |= IP6PO_VALID_DEST1;
3153
else
3154
opt->ip6po_valid |= IP6PO_VALID_DEST2;
3155
3156
break;
3157
}
3158
3159
case IPV6_2292RTHDR:
3160
case IPV6_RTHDR:
3161
{
3162
struct ip6_rthdr *rth;
3163
int rthlen;
3164
3165
if (len == 0) {
3166
ip6_clearpktopts(opt, IPV6_RTHDR);
3167
break; /* just remove the option */
3168
}
3169
3170
/* message length validation */
3171
if (len < sizeof(struct ip6_rthdr))
3172
return (EINVAL);
3173
rth = (struct ip6_rthdr *)buf;
3174
rthlen = (rth->ip6r_len + 1) << 3;
3175
if (len != rthlen)
3176
return (EINVAL);
3177
3178
switch (rth->ip6r_type) {
3179
case IPV6_RTHDR_TYPE_0:
3180
if (rth->ip6r_len == 0) /* must contain one addr */
3181
return (EINVAL);
3182
if (rth->ip6r_len % 2) /* length must be even */
3183
return (EINVAL);
3184
if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3185
return (EINVAL);
3186
break;
3187
default:
3188
return (EINVAL); /* not supported */
3189
}
3190
3191
/* turn off the previous option */
3192
ip6_clearpktopts(opt, IPV6_RTHDR);
3193
opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3194
if (opt->ip6po_rthdr == NULL)
3195
return (ENOBUFS);
3196
bcopy(rth, opt->ip6po_rthdr, rthlen);
3197
opt->ip6po_valid |= IP6PO_VALID_RHINFO;
3198
3199
break;
3200
}
3201
3202
case IPV6_USE_MIN_MTU:
3203
if (len != sizeof(int))
3204
return (EINVAL);
3205
minmtupolicy = *(int *)buf;
3206
if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3207
minmtupolicy != IP6PO_MINMTU_DISABLE &&
3208
minmtupolicy != IP6PO_MINMTU_ALL) {
3209
return (EINVAL);
3210
}
3211
opt->ip6po_minmtu = minmtupolicy;
3212
break;
3213
3214
case IPV6_DONTFRAG:
3215
if (len != sizeof(int))
3216
return (EINVAL);
3217
3218
if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3219
/*
3220
* we ignore this option for TCP sockets.
3221
* (RFC3542 leaves this case unspecified.)
3222
*/
3223
opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3224
} else
3225
opt->ip6po_flags |= IP6PO_DONTFRAG;
3226
break;
3227
3228
case IPV6_PREFER_TEMPADDR:
3229
if (len != sizeof(int))
3230
return (EINVAL);
3231
preftemp = *(int *)buf;
3232
if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
3233
preftemp != IP6PO_TEMPADDR_NOTPREFER &&
3234
preftemp != IP6PO_TEMPADDR_PREFER) {
3235
return (EINVAL);
3236
}
3237
opt->ip6po_prefer_tempaddr = preftemp;
3238
break;
3239
3240
default:
3241
return (ENOPROTOOPT);
3242
} /* end of switch */
3243
3244
return (0);
3245
}
3246
3247
/*
3248
* Routine called from ip6_output() to loop back a copy of an IP6 multicast
3249
* packet to the input queue of a specified interface. Note that this
3250
* calls the output routine of the loopback "driver", but with an interface
3251
* pointer that might NOT be &loif -- easier than replicating that code here.
3252
*/
3253
void
3254
ip6_mloopback(struct ifnet *ifp, struct mbuf *m)
3255
{
3256
struct mbuf *copym;
3257
struct ip6_hdr *ip6;
3258
3259
copym = m_copym(m, 0, M_COPYALL, M_NOWAIT);
3260
if (copym == NULL)
3261
return;
3262
3263
/*
3264
* Make sure to deep-copy IPv6 header portion in case the data
3265
* is in an mbuf cluster, so that we can safely override the IPv6
3266
* header portion later.
3267
*/
3268
if (!M_WRITABLE(copym) ||
3269
copym->m_len < sizeof(struct ip6_hdr)) {
3270
copym = m_pullup(copym, sizeof(struct ip6_hdr));
3271
if (copym == NULL)
3272
return;
3273
}
3274
ip6 = mtod(copym, struct ip6_hdr *);
3275
/*
3276
* clear embedded scope identifiers if necessary.
3277
* in6_clearscope will touch the addresses only when necessary.
3278
*/
3279
in6_clearscope(&ip6->ip6_src);
3280
in6_clearscope(&ip6->ip6_dst);
3281
if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
3282
copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 |
3283
CSUM_PSEUDO_HDR;
3284
copym->m_pkthdr.csum_data = 0xffff;
3285
}
3286
if_simloop(ifp, copym, AF_INET6, 0);
3287
}
3288
3289
/*
3290
* Chop IPv6 header off from the payload.
3291
*/
3292
static int
3293
ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3294
{
3295
struct mbuf *mh;
3296
struct ip6_hdr *ip6;
3297
3298
ip6 = mtod(m, struct ip6_hdr *);
3299
if (m->m_len > sizeof(*ip6)) {
3300
mh = m_gethdr(M_NOWAIT, MT_DATA);
3301
if (mh == NULL) {
3302
m_freem(m);
3303
return ENOBUFS;
3304
}
3305
m_move_pkthdr(mh, m);
3306
M_ALIGN(mh, sizeof(*ip6));
3307
m->m_len -= sizeof(*ip6);
3308
m->m_data += sizeof(*ip6);
3309
mh->m_next = m;
3310
m = mh;
3311
m->m_len = sizeof(*ip6);
3312
bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3313
}
3314
exthdrs->ip6e_ip6 = m;
3315
return 0;
3316
}
3317
3318
/*
3319
* Compute IPv6 extension header length.
3320
*/
3321
int
3322
ip6_optlen(struct inpcb *inp)
3323
{
3324
int len;
3325
3326
if (!inp->in6p_outputopts)
3327
return 0;
3328
3329
len = 0;
3330
#define elen(x) \
3331
(((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3332
3333
len += elen(inp->in6p_outputopts->ip6po_hbh);
3334
if (inp->in6p_outputopts->ip6po_rthdr)
3335
/* dest1 is valid with rthdr only */
3336
len += elen(inp->in6p_outputopts->ip6po_dest1);
3337
len += elen(inp->in6p_outputopts->ip6po_rthdr);
3338
len += elen(inp->in6p_outputopts->ip6po_dest2);
3339
return len;
3340
#undef elen
3341
}
3342
3343