Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/netpfil/ipfw/dn_sched_qfq.c
39482 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente
5
* All rights reserved
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
*
16
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26
* SUCH DAMAGE.
27
*/
28
29
/*
30
*/
31
32
#ifdef _KERNEL
33
#include <sys/malloc.h>
34
#include <sys/socket.h>
35
#include <sys/socketvar.h>
36
#include <sys/kernel.h>
37
#include <sys/lock.h>
38
#include <sys/mbuf.h>
39
#include <sys/module.h>
40
#include <sys/rwlock.h>
41
#include <net/if.h> /* IFNAMSIZ */
42
#include <netinet/in.h>
43
#include <netinet/ip_var.h> /* ipfw_rule_ref */
44
#include <netinet/ip_fw.h> /* flow_id */
45
#include <netinet/ip_dummynet.h>
46
#include <netpfil/ipfw/ip_fw_private.h>
47
#include <netpfil/ipfw/dn_heap.h>
48
#include <netpfil/ipfw/ip_dn_private.h>
49
#ifdef NEW_AQM
50
#include <netpfil/ipfw/dn_aqm.h>
51
#endif
52
#include <netpfil/ipfw/dn_sched.h>
53
#else
54
#include <dn_test.h>
55
#endif
56
57
#ifdef QFQ_DEBUG
58
#define _P64 unsigned long long /* cast for printing uint64_t */
59
struct qfq_sched;
60
static void dump_sched(struct qfq_sched *q, const char *msg);
61
#define NO(x) x
62
#else
63
#define NO(x)
64
#endif
65
#define DN_SCHED_QFQ 4 // XXX Where?
66
typedef unsigned long bitmap;
67
68
/*
69
* bitmaps ops are critical. Some linux versions have __fls
70
* and the bitmap ops. Some machines have ffs
71
* NOTE: fls() returns 1 for the least significant bit,
72
* __fls() returns 0 for the same case.
73
* We use the base-0 version __fls() to match the description in
74
* the ToN QFQ paper
75
*/
76
#if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
77
int fls(unsigned int n)
78
{
79
int i = 0;
80
for (i = 0; n > 0; n >>= 1, i++)
81
;
82
return i;
83
}
84
#endif
85
86
#if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
87
static inline unsigned long __fls(unsigned long word)
88
{
89
return fls(word) - 1;
90
}
91
#endif
92
93
#if !defined(_KERNEL) || !defined(__linux__)
94
#ifdef QFQ_DEBUG
95
static int test_bit(int ix, bitmap *p)
96
{
97
if (ix < 0 || ix > 31)
98
D("bad index %d", ix);
99
return *p & (1<<ix);
100
}
101
static void __set_bit(int ix, bitmap *p)
102
{
103
if (ix < 0 || ix > 31)
104
D("bad index %d", ix);
105
*p |= (1<<ix);
106
}
107
static void __clear_bit(int ix, bitmap *p)
108
{
109
if (ix < 0 || ix > 31)
110
D("bad index %d", ix);
111
*p &= ~(1<<ix);
112
}
113
#else /* !QFQ_DEBUG */
114
/* XXX do we have fast version, or leave it to the compiler ? */
115
#define test_bit(ix, pData) ((*pData) & (1<<(ix)))
116
#define __set_bit(ix, pData) (*pData) |= (1<<(ix))
117
#define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix))
118
#endif /* !QFQ_DEBUG */
119
#endif /* !__linux__ */
120
121
#ifdef __MIPSEL__
122
#define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix))
123
#endif
124
125
/*-------------------------------------------*/
126
/*
127
128
Virtual time computations.
129
130
S, F and V are all computed in fixed point arithmetic with
131
FRAC_BITS decimal bits.
132
133
QFQ_MAX_INDEX is the maximum index allowed for a group. We need
134
one bit per index.
135
QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
136
The layout of the bits is as below:
137
138
[ MTU_SHIFT ][ FRAC_BITS ]
139
[ MAX_INDEX ][ MIN_SLOT_SHIFT ]
140
^.__grp->index = 0
141
*.__grp->slot_shift
142
143
where MIN_SLOT_SHIFT is derived by difference from the others.
144
145
The max group index corresponds to Lmax/w_min, where
146
Lmax=1<<MTU_SHIFT, w_min = 1 .
147
From this, and knowing how many groups (MAX_INDEX) we want,
148
we can derive the shift corresponding to each group.
149
150
Because we often need to compute
151
F = S + len/w_i and V = V + len/wsum
152
instead of storing w_i store the value
153
inv_w = (1<<FRAC_BITS)/w_i
154
so we can do F = S + len * inv_w * wsum.
155
We use W_TOT in the formulas so we can easily move between
156
static and adaptive weight sum.
157
158
The per-scheduler-instance data contain all the data structures
159
for the scheduler: bitmaps and bucket lists.
160
161
*/
162
/*
163
* Maximum number of consecutive slots occupied by backlogged classes
164
* inside a group. This is approx lmax/lmin + 5.
165
* XXX check because it poses constraints on MAX_INDEX
166
*/
167
#define QFQ_MAX_SLOTS 32
168
/*
169
* Shifts used for class<->group mapping. Class weights are
170
* in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the
171
* group with the smallest index that can support the L_i / r_i
172
* configured for the class.
173
*
174
* grp->index is the index of the group; and grp->slot_shift
175
* is the shift for the corresponding (scaled) sigma_i.
176
*
177
* When computing the group index, we do (len<<FP_SHIFT)/weight,
178
* then compute an FLS (which is like a log2()), and if the result
179
* is below the MAX_INDEX region we use 0 (which is the same as
180
* using a larger len).
181
*/
182
#define QFQ_MAX_INDEX 19
183
#define QFQ_MAX_WSHIFT 16 /* log2(max_weight) */
184
185
#define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT)
186
#define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT)
187
188
#define FRAC_BITS 30 /* fixed point arithmetic */
189
#define ONE_FP (1UL << FRAC_BITS)
190
191
#define QFQ_MTU_SHIFT 11 /* log2(max_len) */
192
#define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
193
194
/*
195
* Possible group states, also indexes for the bitmaps array in
196
* struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3
197
*/
198
enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
199
200
struct qfq_group;
201
/*
202
* additional queue info. Some of this info should come from
203
* the flowset, we copy them here for faster processing.
204
* This is an overlay of the struct dn_queue
205
*/
206
struct qfq_class {
207
struct dn_queue _q;
208
uint64_t S, F; /* flow timestamps (exact) */
209
struct qfq_class *next; /* Link for the slot list. */
210
211
/* group we belong to. In principle we would need the index,
212
* which is log_2(lmax/weight), but we never reference it
213
* directly, only the group.
214
*/
215
struct qfq_group *grp;
216
217
/* these are copied from the flowset. */
218
uint32_t inv_w; /* ONE_FP/weight */
219
uint32_t lmax; /* Max packet size for this flow. */
220
};
221
222
/* Group descriptor, see the paper for details.
223
* Basically this contains the bucket lists
224
*/
225
struct qfq_group {
226
uint64_t S, F; /* group timestamps (approx). */
227
unsigned int slot_shift; /* Slot shift. */
228
unsigned int index; /* Group index. */
229
unsigned int front; /* Index of the front slot. */
230
bitmap full_slots; /* non-empty slots */
231
232
/* Array of lists of active classes. */
233
struct qfq_class *slots[QFQ_MAX_SLOTS];
234
};
235
236
/* scheduler instance descriptor. */
237
struct qfq_sched {
238
uint64_t V; /* Precise virtual time. */
239
uint32_t wsum; /* weight sum */
240
uint32_t iwsum; /* inverse weight sum */
241
NO(uint32_t i_wsum;) /* ONE_FP/w_sum */
242
NO(uint32_t queued;) /* debugging */
243
NO(uint32_t loops;) /* debugging */
244
bitmap bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
245
struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
246
};
247
248
/*---- support functions ----------------------------*/
249
250
/* Generic comparison function, handling wraparound. */
251
static inline int qfq_gt(uint64_t a, uint64_t b)
252
{
253
return (int64_t)(a - b) > 0;
254
}
255
256
/* Round a precise timestamp to its slotted value. */
257
static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift)
258
{
259
return ts & ~((1ULL << shift) - 1);
260
}
261
262
/* return the pointer to the group with lowest index in the bitmap */
263
static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
264
unsigned long bitmap)
265
{
266
int index = ffs(bitmap) - 1; // zero-based
267
return &q->groups[index];
268
}
269
270
/*
271
* Calculate a flow index, given its weight and maximum packet length.
272
* index = log_2(maxlen/weight) but we need to apply the scaling.
273
* This is used only once at flow creation.
274
*/
275
static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen)
276
{
277
uint64_t slot_size = (uint64_t)maxlen *inv_w;
278
unsigned long size_map;
279
int index = 0;
280
281
size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT);
282
if (!size_map)
283
goto out;
284
285
index = __fls(size_map) + 1; // basically a log_2()
286
index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
287
288
if (index < 0)
289
index = 0;
290
291
out:
292
ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index);
293
return index;
294
}
295
/*---- end support functions ----*/
296
297
/*-------- API calls --------------------------------*/
298
/*
299
* Validate and copy parameters from flowset.
300
*/
301
static int
302
qfq_new_queue(struct dn_queue *_q)
303
{
304
struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
305
struct qfq_class *cl = (struct qfq_class *)_q;
306
int i;
307
uint32_t w; /* approximated weight */
308
309
/* import parameters from the flowset. They should be correct
310
* already.
311
*/
312
w = _q->fs->fs.par[0];
313
cl->lmax = _q->fs->fs.par[1];
314
if (!w || w > QFQ_MAX_WEIGHT) {
315
w = 1;
316
D("rounding weight to 1");
317
}
318
cl->inv_w = ONE_FP/w;
319
w = ONE_FP/cl->inv_w;
320
if (q->wsum + w > QFQ_MAX_WSUM)
321
return EINVAL;
322
323
i = qfq_calc_index(cl->inv_w, cl->lmax);
324
cl->grp = &q->groups[i];
325
q->wsum += w;
326
q->iwsum = ONE_FP / q->wsum; /* XXX note theory */
327
// XXX cl->S = q->V; ?
328
return 0;
329
}
330
331
/* remove an empty queue */
332
static int
333
qfq_free_queue(struct dn_queue *_q)
334
{
335
struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
336
struct qfq_class *cl = (struct qfq_class *)_q;
337
if (cl->inv_w) {
338
q->wsum -= ONE_FP/cl->inv_w;
339
if (q->wsum != 0)
340
q->iwsum = ONE_FP / q->wsum;
341
cl->inv_w = 0; /* reset weight to avoid run twice */
342
}
343
return 0;
344
}
345
346
/* Calculate a mask to mimic what would be ffs_from(). */
347
static inline unsigned long
348
mask_from(unsigned long bitmap, int from)
349
{
350
return bitmap & ~((1UL << from) - 1);
351
}
352
353
/*
354
* The state computation relies on ER=0, IR=1, EB=2, IB=3
355
* First compute eligibility comparing grp->S, q->V,
356
* then check if someone is blocking us and possibly add EB
357
*/
358
static inline unsigned int
359
qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp)
360
{
361
/* if S > V we are not eligible */
362
unsigned int state = qfq_gt(grp->S, q->V);
363
unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
364
struct qfq_group *next;
365
366
if (mask) {
367
next = qfq_ffs(q, mask);
368
if (qfq_gt(grp->F, next->F))
369
state |= EB;
370
}
371
372
return state;
373
}
374
375
/*
376
* In principle
377
* q->bitmaps[dst] |= q->bitmaps[src] & mask;
378
* q->bitmaps[src] &= ~mask;
379
* but we should make sure that src != dst
380
*/
381
static inline void
382
qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst)
383
{
384
q->bitmaps[dst] |= q->bitmaps[src] & mask;
385
q->bitmaps[src] &= ~mask;
386
}
387
388
static inline void
389
qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish)
390
{
391
unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
392
struct qfq_group *next;
393
394
if (mask) {
395
next = qfq_ffs(q, mask);
396
if (!qfq_gt(next->F, old_finish))
397
return;
398
}
399
400
mask = (1UL << index) - 1;
401
qfq_move_groups(q, mask, EB, ER);
402
qfq_move_groups(q, mask, IB, IR);
403
}
404
405
/*
406
* perhaps
407
*
408
old_V ^= q->V;
409
old_V >>= QFQ_MIN_SLOT_SHIFT;
410
if (old_V) {
411
...
412
}
413
*
414
*/
415
static inline void
416
qfq_make_eligible(struct qfq_sched *q, uint64_t old_V)
417
{
418
unsigned long mask, vslot, old_vslot;
419
420
vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
421
old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
422
423
if (vslot != old_vslot) {
424
/* must be 2ULL, see ToN QFQ article fig.5, we use base-0 fls */
425
mask = (2ULL << (__fls(vslot ^ old_vslot))) - 1;
426
qfq_move_groups(q, mask, IR, ER);
427
qfq_move_groups(q, mask, IB, EB);
428
}
429
}
430
431
/*
432
* XXX we should make sure that slot becomes less than 32.
433
* This is guaranteed by the input values.
434
* roundedS is always cl->S rounded on grp->slot_shift bits.
435
*/
436
static inline void
437
qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS)
438
{
439
uint64_t slot = (roundedS - grp->S) >> grp->slot_shift;
440
unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS;
441
442
cl->next = grp->slots[i];
443
grp->slots[i] = cl;
444
__set_bit(slot, &grp->full_slots);
445
}
446
447
/*
448
* remove the entry from the slot
449
*/
450
static inline void
451
qfq_front_slot_remove(struct qfq_group *grp)
452
{
453
struct qfq_class **h = &grp->slots[grp->front];
454
455
*h = (*h)->next;
456
if (!*h)
457
__clear_bit(0, &grp->full_slots);
458
}
459
460
/*
461
* Returns the first full queue in a group. As a side effect,
462
* adjust the bucket list so the first non-empty bucket is at
463
* position 0 in full_slots.
464
*/
465
static inline struct qfq_class *
466
qfq_slot_scan(struct qfq_group *grp)
467
{
468
int i;
469
470
ND("grp %d full %x", grp->index, grp->full_slots);
471
if (!grp->full_slots)
472
return NULL;
473
474
i = ffs(grp->full_slots) - 1; // zero-based
475
if (i > 0) {
476
grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
477
grp->full_slots >>= i;
478
}
479
480
return grp->slots[grp->front];
481
}
482
483
/*
484
* adjust the bucket list. When the start time of a group decreases,
485
* we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
486
* move the objects. The mask of occupied slots must be shifted
487
* because we use ffs() to find the first non-empty slot.
488
* This covers decreases in the group's start time, but what about
489
* increases of the start time ?
490
* Here too we should make sure that i is less than 32
491
*/
492
static inline void
493
qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS)
494
{
495
unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
496
497
(void)q;
498
grp->full_slots <<= i;
499
grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
500
}
501
502
static inline void
503
qfq_update_eligible(struct qfq_sched *q, uint64_t old_V)
504
{
505
bitmap ineligible;
506
507
ineligible = q->bitmaps[IR] | q->bitmaps[IB];
508
if (ineligible) {
509
if (!q->bitmaps[ER]) {
510
struct qfq_group *grp;
511
grp = qfq_ffs(q, ineligible);
512
if (qfq_gt(grp->S, q->V))
513
q->V = grp->S;
514
}
515
qfq_make_eligible(q, old_V);
516
}
517
}
518
519
/*
520
* Updates the class, returns true if also the group needs to be updated.
521
*/
522
static inline int
523
qfq_update_class(struct qfq_sched *q, struct qfq_group *grp,
524
struct qfq_class *cl)
525
{
526
527
(void)q;
528
cl->S = cl->F;
529
if (cl->_q.mq.head == NULL) {
530
qfq_front_slot_remove(grp);
531
} else {
532
unsigned int len;
533
uint64_t roundedS;
534
535
len = cl->_q.mq.head->m_pkthdr.len;
536
cl->F = cl->S + (uint64_t)len * cl->inv_w;
537
roundedS = qfq_round_down(cl->S, grp->slot_shift);
538
if (roundedS == grp->S)
539
return 0;
540
541
qfq_front_slot_remove(grp);
542
qfq_slot_insert(grp, cl, roundedS);
543
}
544
return 1;
545
}
546
547
static struct mbuf *
548
qfq_dequeue(struct dn_sch_inst *si)
549
{
550
struct qfq_sched *q = (struct qfq_sched *)(si + 1);
551
struct qfq_group *grp;
552
struct qfq_class *cl;
553
struct mbuf *m;
554
uint64_t old_V;
555
556
NO(q->loops++;)
557
if (!q->bitmaps[ER]) {
558
NO(if (q->queued)
559
dump_sched(q, "start dequeue");)
560
return NULL;
561
}
562
563
grp = qfq_ffs(q, q->bitmaps[ER]);
564
565
cl = grp->slots[grp->front];
566
/* extract from the first bucket in the bucket list */
567
m = dn_dequeue(&cl->_q);
568
569
if (!m) {
570
D("BUG/* non-workconserving leaf */");
571
return NULL;
572
}
573
NO(q->queued--;)
574
old_V = q->V;
575
q->V += (uint64_t)m->m_pkthdr.len * q->iwsum;
576
ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V);
577
578
if (qfq_update_class(q, grp, cl)) {
579
uint64_t old_F = grp->F;
580
cl = qfq_slot_scan(grp);
581
if (!cl) { /* group gone, remove from ER */
582
__clear_bit(grp->index, &q->bitmaps[ER]);
583
// grp->S = grp->F + 1; // XXX debugging only
584
} else {
585
uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift);
586
unsigned int s;
587
588
if (grp->S == roundedS)
589
goto skip_unblock;
590
grp->S = roundedS;
591
grp->F = roundedS + (2ULL << grp->slot_shift);
592
/* remove from ER and put in the new set */
593
__clear_bit(grp->index, &q->bitmaps[ER]);
594
s = qfq_calc_state(q, grp);
595
__set_bit(grp->index, &q->bitmaps[s]);
596
}
597
/* we need to unblock even if the group has gone away */
598
qfq_unblock_groups(q, grp->index, old_F);
599
}
600
601
skip_unblock:
602
qfq_update_eligible(q, old_V);
603
NO(if (!q->bitmaps[ER] && q->queued)
604
dump_sched(q, "end dequeue");)
605
606
return m;
607
}
608
609
/*
610
* Assign a reasonable start time for a new flow k in group i.
611
* Admissible values for \hat(F) are multiples of \sigma_i
612
* no greater than V+\sigma_i . Larger values mean that
613
* we had a wraparound so we consider the timestamp to be stale.
614
*
615
* If F is not stale and F >= V then we set S = F.
616
* Otherwise we should assign S = V, but this may violate
617
* the ordering in ER. So, if we have groups in ER, set S to
618
* the F_j of the first group j which would be blocking us.
619
* We are guaranteed not to move S backward because
620
* otherwise our group i would still be blocked.
621
*/
622
static inline void
623
qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
624
{
625
unsigned long mask;
626
uint64_t limit, roundedF;
627
int slot_shift = cl->grp->slot_shift;
628
629
roundedF = qfq_round_down(cl->F, slot_shift);
630
limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
631
632
if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
633
/* timestamp was stale */
634
mask = mask_from(q->bitmaps[ER], cl->grp->index);
635
if (mask) {
636
struct qfq_group *next = qfq_ffs(q, mask);
637
if (qfq_gt(roundedF, next->F)) {
638
/* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */
639
if (qfq_gt(limit, next->F))
640
cl->S = next->F;
641
else /* preserve timestamp correctness */
642
cl->S = limit;
643
return;
644
}
645
}
646
cl->S = q->V;
647
} else { /* timestamp is not stale */
648
cl->S = cl->F;
649
}
650
}
651
652
static int
653
qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m)
654
{
655
struct qfq_sched *q = (struct qfq_sched *)(si + 1);
656
struct qfq_group *grp;
657
struct qfq_class *cl = (struct qfq_class *)_q;
658
uint64_t roundedS;
659
int s;
660
661
NO(q->loops++;)
662
DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len,
663
_q, cl->inv_w, cl->grp->index);
664
/* XXX verify that the packet obeys the parameters */
665
if (m != _q->mq.head) {
666
if (dn_enqueue(_q, m, 0)) /* packet was dropped */
667
return 1;
668
NO(q->queued++;)
669
if (m != _q->mq.head)
670
return 0;
671
}
672
/* If reach this point, queue q was idle */
673
grp = cl->grp;
674
qfq_update_start(q, cl); /* adjust start time */
675
/* compute new finish time and rounded start. */
676
cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w;
677
roundedS = qfq_round_down(cl->S, grp->slot_shift);
678
679
/*
680
* insert cl in the correct bucket.
681
* If cl->S >= grp->S we don't need to adjust the
682
* bucket list and simply go to the insertion phase.
683
* Otherwise grp->S is decreasing, we must make room
684
* in the bucket list, and also recompute the group state.
685
* Finally, if there were no flows in this group and nobody
686
* was in ER make sure to adjust V.
687
*/
688
if (grp->full_slots) {
689
if (!qfq_gt(grp->S, cl->S))
690
goto skip_update;
691
/* create a slot for this cl->S */
692
qfq_slot_rotate(q, grp, roundedS);
693
/* group was surely ineligible, remove */
694
__clear_bit(grp->index, &q->bitmaps[IR]);
695
__clear_bit(grp->index, &q->bitmaps[IB]);
696
} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
697
q->V = roundedS;
698
699
grp->S = roundedS;
700
grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i
701
s = qfq_calc_state(q, grp);
702
__set_bit(grp->index, &q->bitmaps[s]);
703
ND("new state %d 0x%x", s, q->bitmaps[s]);
704
ND("S %llx F %llx V %llx", cl->S, cl->F, q->V);
705
skip_update:
706
qfq_slot_insert(grp, cl, roundedS);
707
708
return 0;
709
}
710
711
#if 0
712
static inline void
713
qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
714
struct qfq_class *cl, struct qfq_class **pprev)
715
{
716
unsigned int i, offset;
717
uint64_t roundedS;
718
719
roundedS = qfq_round_down(cl->S, grp->slot_shift);
720
offset = (roundedS - grp->S) >> grp->slot_shift;
721
i = (grp->front + offset) % QFQ_MAX_SLOTS;
722
723
#ifdef notyet
724
if (!pprev) {
725
pprev = &grp->slots[i];
726
while (*pprev && *pprev != cl)
727
pprev = &(*pprev)->next;
728
}
729
#endif
730
731
*pprev = cl->next;
732
if (!grp->slots[i])
733
__clear_bit(offset, &grp->full_slots);
734
}
735
736
/*
737
* called to forcibly destroy a queue.
738
* If the queue is not in the front bucket, or if it has
739
* other queues in the front bucket, we can simply remove
740
* the queue with no other side effects.
741
* Otherwise we must propagate the event up.
742
* XXX description to be completed.
743
*/
744
static void
745
qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl,
746
struct qfq_class **pprev)
747
{
748
struct qfq_group *grp = &q->groups[cl->index];
749
unsigned long mask;
750
uint64_t roundedS;
751
int s;
752
753
cl->F = cl->S; // not needed if the class goes away.
754
qfq_slot_remove(q, grp, cl, pprev);
755
756
if (!grp->full_slots) {
757
/* nothing left in the group, remove from all sets.
758
* Do ER last because if we were blocking other groups
759
* we must unblock them.
760
*/
761
__clear_bit(grp->index, &q->bitmaps[IR]);
762
__clear_bit(grp->index, &q->bitmaps[EB]);
763
__clear_bit(grp->index, &q->bitmaps[IB]);
764
765
if (test_bit(grp->index, &q->bitmaps[ER]) &&
766
!(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
767
mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
768
if (mask)
769
mask = ~((1UL << __fls(mask)) - 1);
770
else
771
mask = ~0UL;
772
qfq_move_groups(q, mask, EB, ER);
773
qfq_move_groups(q, mask, IB, IR);
774
}
775
__clear_bit(grp->index, &q->bitmaps[ER]);
776
} else if (!grp->slots[grp->front]) {
777
cl = qfq_slot_scan(grp);
778
roundedS = qfq_round_down(cl->S, grp->slot_shift);
779
if (grp->S != roundedS) {
780
__clear_bit(grp->index, &q->bitmaps[ER]);
781
__clear_bit(grp->index, &q->bitmaps[IR]);
782
__clear_bit(grp->index, &q->bitmaps[EB]);
783
__clear_bit(grp->index, &q->bitmaps[IB]);
784
grp->S = roundedS;
785
grp->F = roundedS + (2ULL << grp->slot_shift);
786
s = qfq_calc_state(q, grp);
787
__set_bit(grp->index, &q->bitmaps[s]);
788
}
789
}
790
qfq_update_eligible(q, q->V);
791
}
792
#endif
793
794
static int
795
qfq_new_fsk(struct dn_fsk *f)
796
{
797
ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight");
798
ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen");
799
ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]);
800
return 0;
801
}
802
803
/*
804
* initialize a new scheduler instance
805
*/
806
static int
807
qfq_new_sched(struct dn_sch_inst *si)
808
{
809
struct qfq_sched *q = (struct qfq_sched *)(si + 1);
810
struct qfq_group *grp;
811
int i;
812
813
for (i = 0; i <= QFQ_MAX_INDEX; i++) {
814
grp = &q->groups[i];
815
grp->index = i;
816
grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS -
817
(QFQ_MAX_INDEX - i);
818
}
819
return 0;
820
}
821
822
/*
823
* QFQ scheduler descriptor
824
*/
825
static struct dn_alg qfq_desc = {
826
_SI( .type = ) DN_SCHED_QFQ,
827
_SI( .name = ) "QFQ",
828
_SI( .flags = ) DN_MULTIQUEUE,
829
830
_SI( .schk_datalen = ) 0,
831
_SI( .si_datalen = ) sizeof(struct qfq_sched),
832
_SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue),
833
834
_SI( .enqueue = ) qfq_enqueue,
835
_SI( .dequeue = ) qfq_dequeue,
836
837
_SI( .config = ) NULL,
838
_SI( .destroy = ) NULL,
839
_SI( .new_sched = ) qfq_new_sched,
840
_SI( .free_sched = ) NULL,
841
_SI( .new_fsk = ) qfq_new_fsk,
842
_SI( .free_fsk = ) NULL,
843
_SI( .new_queue = ) qfq_new_queue,
844
_SI( .free_queue = ) qfq_free_queue,
845
#ifdef NEW_AQM
846
_SI( .getconfig = ) NULL,
847
#endif
848
};
849
850
DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc);
851
852
#ifdef QFQ_DEBUG
853
static void
854
dump_groups(struct qfq_sched *q, uint32_t mask)
855
{
856
int i, j;
857
858
for (i = 0; i < QFQ_MAX_INDEX + 1; i++) {
859
struct qfq_group *g = &q->groups[i];
860
861
if (0 == (mask & (1<<i)))
862
continue;
863
for (j = 0; j < QFQ_MAX_SLOTS; j++) {
864
if (g->slots[j])
865
D(" bucket %d %p", j, g->slots[j]);
866
}
867
D("full_slots 0x%llx", (_P64)g->full_slots);
868
D(" %2d S 0x%20llx F 0x%llx %c", i,
869
(_P64)g->S, (_P64)g->F,
870
mask & (1<<i) ? '1' : '0');
871
}
872
}
873
874
static void
875
dump_sched(struct qfq_sched *q, const char *msg)
876
{
877
D("--- in %s: ---", msg);
878
D("loops %d queued %d V 0x%llx", q->loops, q->queued, (_P64)q->V);
879
D(" ER 0x%08x", (unsigned)q->bitmaps[ER]);
880
D(" EB 0x%08x", (unsigned)q->bitmaps[EB]);
881
D(" IR 0x%08x", (unsigned)q->bitmaps[IR]);
882
D(" IB 0x%08x", (unsigned)q->bitmaps[IB]);
883
dump_groups(q, 0xffffffff);
884
};
885
#endif /* QFQ_DEBUG */
886
887