Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/netpfil/ipfw/ip_dn_io.c
39482 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2010 Luigi Rizzo, Riccardo Panicucci, Universita` di Pisa
5
* All rights reserved
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
*
16
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26
* SUCH DAMAGE.
27
*/
28
29
/*
30
* Dummynet portions related to packet handling.
31
*/
32
#include <sys/cdefs.h>
33
#include "opt_inet6.h"
34
35
#include <sys/param.h>
36
#include <sys/systm.h>
37
#include <sys/malloc.h>
38
#include <sys/mbuf.h>
39
#include <sys/kernel.h>
40
#include <sys/lock.h>
41
#include <sys/module.h>
42
#include <sys/mutex.h>
43
#include <sys/priv.h>
44
#include <sys/proc.h>
45
#include <sys/rwlock.h>
46
#include <sys/socket.h>
47
#include <sys/time.h>
48
#include <sys/sysctl.h>
49
50
#include <net/if.h> /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */
51
#include <net/if_var.h> /* NET_EPOCH_... */
52
#include <net/if_private.h>
53
#include <net/netisr.h>
54
#include <net/vnet.h>
55
56
#include <netinet/in.h>
57
#include <netinet/ip.h> /* ip_len, ip_off */
58
#include <netinet/ip_var.h> /* ip_output(), IP_FORWARDING */
59
#include <netinet/ip_fw.h>
60
#include <netinet/ip_dummynet.h>
61
#include <netinet/if_ether.h> /* various ether_* routines */
62
#include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */
63
#include <netinet6/ip6_var.h>
64
65
#include <netpfil/ipfw/ip_fw_private.h>
66
#include <netpfil/ipfw/dn_heap.h>
67
#include <netpfil/ipfw/ip_dn_private.h>
68
#ifdef NEW_AQM
69
#include <netpfil/ipfw/dn_aqm.h>
70
#endif
71
#include <netpfil/ipfw/dn_sched.h>
72
73
/*
74
* We keep a private variable for the simulation time, but we could
75
* probably use an existing one ("softticks" in sys/kern/kern_timeout.c)
76
* instead of V_dn_cfg.curr_time
77
*/
78
VNET_DEFINE(struct dn_parms, dn_cfg);
79
#define V_dn_cfg VNET(dn_cfg)
80
81
/*
82
* We use a heap to store entities for which we have pending timer events.
83
* The heap is checked at every tick and all entities with expired events
84
* are extracted.
85
*/
86
87
MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
88
89
extern void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
90
91
#ifdef SYSCTL_NODE
92
93
/*
94
* Because of the way the SYSBEGIN/SYSEND macros work on other
95
* platforms, there should not be functions between them.
96
* So keep the handlers outside the block.
97
*/
98
static int
99
sysctl_hash_size(SYSCTL_HANDLER_ARGS)
100
{
101
int error, value;
102
103
value = V_dn_cfg.hash_size;
104
error = sysctl_handle_int(oidp, &value, 0, req);
105
if (error != 0 || req->newptr == NULL)
106
return (error);
107
if (value < 16 || value > 65536)
108
return (EINVAL);
109
V_dn_cfg.hash_size = value;
110
return (0);
111
}
112
113
static int
114
sysctl_limits(SYSCTL_HANDLER_ARGS)
115
{
116
int error;
117
long value;
118
119
if (arg2 != 0)
120
value = V_dn_cfg.slot_limit;
121
else
122
value = V_dn_cfg.byte_limit;
123
error = sysctl_handle_long(oidp, &value, 0, req);
124
125
if (error != 0 || req->newptr == NULL)
126
return (error);
127
if (arg2 != 0) {
128
if (value < 1)
129
return (EINVAL);
130
V_dn_cfg.slot_limit = value;
131
} else {
132
if (value < 1500)
133
return (EINVAL);
134
V_dn_cfg.byte_limit = value;
135
}
136
return (0);
137
}
138
139
SYSBEGIN(f4)
140
141
SYSCTL_DECL(_net_inet);
142
SYSCTL_DECL(_net_inet_ip);
143
#ifdef NEW_AQM
144
SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
145
"Dummynet");
146
#else
147
static SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
148
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
149
"Dummynet");
150
#endif
151
152
/* wrapper to pass V_dn_cfg fields to SYSCTL_* */
153
#define DC(x) (&(VNET_NAME(dn_cfg).x))
154
155
/* parameters */
156
157
SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, hash_size,
158
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
159
0, 0, sysctl_hash_size, "I",
160
"Default hash table size");
161
162
SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_slot_limit,
163
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
164
0, 1, sysctl_limits, "L",
165
"Upper limit in slots for pipe queue.");
166
SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_byte_limit,
167
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
168
0, 0, sysctl_limits, "L",
169
"Upper limit in bytes for pipe queue.");
170
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, io_fast,
171
CTLFLAG_RW | CTLFLAG_VNET, DC(io_fast), 0, "Enable fast dummynet io.");
172
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug,
173
CTLFLAG_RW | CTLFLAG_VNET, DC(debug), 0, "Dummynet debug level");
174
175
/* RED parameters */
176
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
177
CTLFLAG_RD | CTLFLAG_VNET, DC(red_lookup_depth), 0, "Depth of RED lookup table");
178
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
179
CTLFLAG_RD | CTLFLAG_VNET, DC(red_avg_pkt_size), 0, "RED Medium packet size");
180
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
181
CTLFLAG_RD | CTLFLAG_VNET, DC(red_max_pkt_size), 0, "RED Max packet size");
182
183
/* time adjustment */
184
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta,
185
CTLFLAG_RD | CTLFLAG_VNET, DC(tick_delta), 0, "Last vs standard tick difference (usec).");
186
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta_sum,
187
CTLFLAG_RD | CTLFLAG_VNET, DC(tick_delta_sum), 0, "Accumulated tick difference (usec).");
188
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_adjustment,
189
CTLFLAG_RD | CTLFLAG_VNET, DC(tick_adjustment), 0, "Tick adjustments done.");
190
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_diff,
191
CTLFLAG_RD | CTLFLAG_VNET, DC(tick_diff), 0,
192
"Adjusted vs non-adjusted curr_time difference (ticks).");
193
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_lost,
194
CTLFLAG_RD | CTLFLAG_VNET, DC(tick_lost), 0,
195
"Number of ticks coalesced by dummynet taskqueue.");
196
197
/* Drain parameters */
198
SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire,
199
CTLFLAG_RW | CTLFLAG_VNET, DC(expire), 0, "Expire empty queues/pipes");
200
SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire_cycle,
201
CTLFLAG_RD | CTLFLAG_VNET, DC(expire_cycle), 0, "Expire cycle for queues/pipes");
202
203
/* statistics */
204
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, schk_count,
205
CTLFLAG_RD | CTLFLAG_VNET, DC(schk_count), 0, "Number of schedulers");
206
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, si_count,
207
CTLFLAG_RD | CTLFLAG_VNET, DC(si_count), 0, "Number of scheduler instances");
208
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, fsk_count,
209
CTLFLAG_RD | CTLFLAG_VNET, DC(fsk_count), 0, "Number of flowsets");
210
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, queue_count,
211
CTLFLAG_RD | CTLFLAG_VNET, DC(queue_count), 0, "Number of queues");
212
SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt,
213
CTLFLAG_RD | CTLFLAG_VNET, DC(io_pkt), 0,
214
"Number of packets passed to dummynet.");
215
SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_fast,
216
CTLFLAG_RD | CTLFLAG_VNET, DC(io_pkt_fast), 0,
217
"Number of packets bypassed dummynet scheduler.");
218
SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_drop,
219
CTLFLAG_RD | CTLFLAG_VNET, DC(io_pkt_drop), 0,
220
"Number of packets dropped by dummynet.");
221
#undef DC
222
SYSEND
223
224
#endif
225
226
static void dummynet_send(struct mbuf *);
227
228
/*
229
* Return the mbuf tag holding the dummynet state (it should
230
* be the first one on the list).
231
*/
232
struct dn_pkt_tag *
233
dn_tag_get(struct mbuf *m)
234
{
235
struct m_tag *mtag = m_tag_first(m);
236
#ifdef NEW_AQM
237
/* XXX: to skip ts m_tag. For Debugging only*/
238
if (mtag != NULL && mtag->m_tag_id == DN_AQM_MTAG_TS) {
239
m_tag_delete(m,mtag);
240
mtag = m_tag_first(m);
241
D("skip TS tag");
242
}
243
#endif
244
KASSERT(mtag != NULL &&
245
mtag->m_tag_cookie == MTAG_ABI_COMPAT &&
246
mtag->m_tag_id == PACKET_TAG_DUMMYNET,
247
("packet on dummynet queue w/o dummynet tag!"));
248
return (struct dn_pkt_tag *)(mtag+1);
249
}
250
251
#ifndef NEW_AQM
252
static inline void
253
mq_append(struct mq *q, struct mbuf *m)
254
{
255
#ifdef USERSPACE
256
// buffers from netmap need to be copied
257
// XXX note that the routine is not expected to fail
258
ND("append %p to %p", m, q);
259
if (m->m_flags & M_STACK) {
260
struct mbuf *m_new;
261
void *p;
262
int l, ofs;
263
264
ofs = m->m_data - m->__m_extbuf;
265
// XXX allocate
266
MGETHDR(m_new, M_NOWAIT, MT_DATA);
267
ND("*** WARNING, volatile buf %p ext %p %d dofs %d m_new %p",
268
m, m->__m_extbuf, m->__m_extlen, ofs, m_new);
269
p = m_new->__m_extbuf; /* new pointer */
270
l = m_new->__m_extlen; /* new len */
271
if (l <= m->__m_extlen) {
272
panic("extlen too large");
273
}
274
275
*m_new = *m; // copy
276
m_new->m_flags &= ~M_STACK;
277
m_new->__m_extbuf = p; // point to new buffer
278
_pkt_copy(m->__m_extbuf, p, m->__m_extlen);
279
m_new->m_data = p + ofs;
280
m = m_new;
281
}
282
#endif /* USERSPACE */
283
if (q->head == NULL)
284
q->head = m;
285
else
286
q->tail->m_nextpkt = m;
287
q->count++;
288
q->tail = m;
289
m->m_nextpkt = NULL;
290
}
291
#endif
292
293
/*
294
* Dispose a list of packet. Use a functions so if we need to do
295
* more work, this is a central point to do it.
296
*/
297
void dn_free_pkts(struct mbuf *mnext)
298
{
299
struct mbuf *m;
300
301
while ((m = mnext) != NULL) {
302
mnext = m->m_nextpkt;
303
FREE_PKT(m);
304
}
305
}
306
307
static int
308
red_drops (struct dn_queue *q, int len)
309
{
310
/*
311
* RED algorithm
312
*
313
* RED calculates the average queue size (avg) using a low-pass filter
314
* with an exponential weighted (w_q) moving average:
315
* avg <- (1-w_q) * avg + w_q * q_size
316
* where q_size is the queue length (measured in bytes or * packets).
317
*
318
* If q_size == 0, we compute the idle time for the link, and set
319
* avg = (1 - w_q)^(idle/s)
320
* where s is the time needed for transmitting a medium-sized packet.
321
*
322
* Now, if avg < min_th the packet is enqueued.
323
* If avg > max_th the packet is dropped. Otherwise, the packet is
324
* dropped with probability P function of avg.
325
*/
326
327
struct dn_fsk *fs = q->fs;
328
int64_t p_b = 0;
329
330
/* Queue in bytes or packets? */
331
uint32_t q_size = (fs->fs.flags & DN_QSIZE_BYTES) ?
332
q->ni.len_bytes : q->ni.length;
333
334
/* Average queue size estimation. */
335
if (q_size != 0) {
336
/* Queue is not empty, avg <- avg + (q_size - avg) * w_q */
337
int diff = SCALE(q_size) - q->avg;
338
int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q);
339
340
q->avg += (int)v;
341
} else {
342
/*
343
* Queue is empty, find for how long the queue has been
344
* empty and use a lookup table for computing
345
* (1 - * w_q)^(idle_time/s) where s is the time to send a
346
* (small) packet.
347
* XXX check wraps...
348
*/
349
if (q->avg) {
350
u_int t = div64((V_dn_cfg.curr_time - q->q_time), fs->lookup_step);
351
352
q->avg = (t < fs->lookup_depth) ?
353
SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
354
}
355
}
356
357
/* Should i drop? */
358
if (q->avg < fs->min_th) {
359
q->count = -1;
360
return (0); /* accept packet */
361
}
362
if (q->avg >= fs->max_th) { /* average queue >= max threshold */
363
if (fs->fs.flags & DN_IS_ECN)
364
return (1);
365
if (fs->fs.flags & DN_IS_GENTLE_RED) {
366
/*
367
* According to Gentle-RED, if avg is greater than
368
* max_th the packet is dropped with a probability
369
* p_b = c_3 * avg - c_4
370
* where c_3 = (1 - max_p) / max_th
371
* c_4 = 1 - 2 * max_p
372
*/
373
p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) -
374
fs->c_4;
375
} else {
376
q->count = -1;
377
return (1);
378
}
379
} else if (q->avg > fs->min_th) {
380
if (fs->fs.flags & DN_IS_ECN)
381
return (1);
382
/*
383
* We compute p_b using the linear dropping function
384
* p_b = c_1 * avg - c_2
385
* where c_1 = max_p / (max_th - min_th)
386
* c_2 = max_p * min_th / (max_th - min_th)
387
*/
388
p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2;
389
}
390
391
if (fs->fs.flags & DN_QSIZE_BYTES)
392
p_b = div64((p_b * len) , fs->max_pkt_size);
393
if (++q->count == 0)
394
q->random = random() & 0xffff;
395
else {
396
/*
397
* q->count counts packets arrived since last drop, so a greater
398
* value of q->count means a greater packet drop probability.
399
*/
400
if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) {
401
q->count = 0;
402
/* After a drop we calculate a new random value. */
403
q->random = random() & 0xffff;
404
return (1); /* drop */
405
}
406
}
407
/* End of RED algorithm. */
408
409
return (0); /* accept */
410
411
}
412
413
/*
414
* ECN/ECT Processing (partially adopted from altq)
415
*/
416
#ifndef NEW_AQM
417
static
418
#endif
419
int
420
ecn_mark(struct mbuf* m)
421
{
422
struct ip *ip;
423
ip = (struct ip *)mtodo(m, dn_tag_get(m)->iphdr_off);
424
425
switch (ip->ip_v) {
426
case IPVERSION:
427
{
428
uint16_t old;
429
430
if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_NOTECT)
431
return (0); /* not-ECT */
432
if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_CE)
433
return (1); /* already marked */
434
435
/*
436
* ecn-capable but not marked,
437
* mark CE and update checksum
438
*/
439
old = *(uint16_t *)ip;
440
ip->ip_tos |= IPTOS_ECN_CE;
441
ip->ip_sum = cksum_adjust(ip->ip_sum, old, *(uint16_t *)ip);
442
return (1);
443
}
444
#ifdef INET6
445
case (IPV6_VERSION >> 4):
446
{
447
struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
448
u_int32_t flowlabel;
449
450
flowlabel = ntohl(ip6->ip6_flow);
451
if ((flowlabel >> 28) != 6)
452
return (0); /* version mismatch! */
453
if ((flowlabel & (IPTOS_ECN_MASK << 20)) ==
454
(IPTOS_ECN_NOTECT << 20))
455
return (0); /* not-ECT */
456
if ((flowlabel & (IPTOS_ECN_MASK << 20)) ==
457
(IPTOS_ECN_CE << 20))
458
return (1); /* already marked */
459
/*
460
* ecn-capable but not marked, mark CE
461
*/
462
flowlabel |= (IPTOS_ECN_CE << 20);
463
ip6->ip6_flow = htonl(flowlabel);
464
return (1);
465
}
466
#endif
467
}
468
return (0);
469
}
470
471
/*
472
* Enqueue a packet in q, subject to space and queue management policy
473
* (whose parameters are in q->fs).
474
* Update stats for the queue and the scheduler.
475
* Return 0 on success, 1 on drop. The packet is consumed anyways.
476
*/
477
int
478
dn_enqueue(struct dn_queue *q, struct mbuf* m, int drop)
479
{
480
struct dn_fs *f;
481
struct dn_flow *ni; /* stats for scheduler instance */
482
uint64_t len;
483
484
if (q->fs == NULL || q->_si == NULL) {
485
printf("%s fs %p si %p, dropping\n",
486
__FUNCTION__, q->fs, q->_si);
487
FREE_PKT(m);
488
return 1;
489
}
490
f = &(q->fs->fs);
491
ni = &q->_si->ni;
492
len = m->m_pkthdr.len;
493
/* Update statistics, then check reasons to drop pkt. */
494
q->ni.tot_bytes += len;
495
q->ni.tot_pkts++;
496
ni->tot_bytes += len;
497
ni->tot_pkts++;
498
if (drop)
499
goto drop;
500
if (f->plr[0] || f->plr[1]) {
501
if (__predict_true(f->plr[1] == 0)) {
502
if (random() < f->plr[0])
503
goto drop;
504
} else {
505
switch (f->pl_state) {
506
case PLR_STATE_B:
507
if (random() < f->plr[3])
508
f->pl_state = PLR_STATE_G;
509
if (random() < f->plr[2])
510
goto drop;
511
break;
512
case PLR_STATE_G: /* FALLTHROUGH */
513
default:
514
if (random() < f->plr[1])
515
f->pl_state = PLR_STATE_B;
516
if (random() < f->plr[0])
517
goto drop;
518
break;
519
}
520
}
521
}
522
if (m->m_pkthdr.rcvif != NULL)
523
m_rcvif_serialize(m);
524
#ifdef NEW_AQM
525
/* Call AQM enqueue function */
526
if (q->fs->aqmfp)
527
return q->fs->aqmfp->enqueue(q ,m);
528
#endif
529
if (f->flags & DN_IS_RED && red_drops(q, m->m_pkthdr.len)) {
530
if (!(f->flags & DN_IS_ECN) || !ecn_mark(m))
531
goto drop;
532
}
533
if (f->flags & DN_QSIZE_BYTES) {
534
if (q->ni.len_bytes > f->qsize)
535
goto drop;
536
} else if (q->ni.length >= f->qsize) {
537
goto drop;
538
}
539
mq_append(&q->mq, m);
540
q->ni.length++;
541
q->ni.len_bytes += len;
542
ni->length++;
543
ni->len_bytes += len;
544
return (0);
545
546
drop:
547
V_dn_cfg.io_pkt_drop++;
548
q->ni.drops++;
549
ni->drops++;
550
FREE_PKT(m);
551
return (1);
552
}
553
554
/*
555
* Fetch packets from the delay line which are due now. If there are
556
* leftover packets, reinsert the delay line in the heap.
557
* Runs under scheduler lock.
558
*/
559
static void
560
transmit_event(struct mq *q, struct delay_line *dline, uint64_t now)
561
{
562
struct mbuf *m;
563
struct dn_pkt_tag *pkt = NULL;
564
565
dline->oid.subtype = 0; /* not in heap */
566
while ((m = dline->mq.head) != NULL) {
567
pkt = dn_tag_get(m);
568
if (!DN_KEY_LEQ(pkt->output_time, now))
569
break;
570
dline->mq.head = m->m_nextpkt;
571
dline->mq.count--;
572
if (m->m_pkthdr.rcvif != NULL &&
573
__predict_false(m_rcvif_restore(m) == NULL))
574
m_freem(m);
575
else
576
mq_append(q, m);
577
}
578
if (m != NULL) {
579
dline->oid.subtype = 1; /* in heap */
580
heap_insert(&V_dn_cfg.evheap, pkt->output_time, dline);
581
}
582
}
583
584
/*
585
* Convert the additional MAC overheads/delays into an equivalent
586
* number of bits for the given data rate. The samples are
587
* in milliseconds so we need to divide by 1000.
588
*/
589
static uint64_t
590
extra_bits(struct mbuf *m, struct dn_schk *s)
591
{
592
int index;
593
uint64_t bits;
594
struct dn_profile *pf = s->profile;
595
596
if (!pf || pf->samples_no == 0)
597
return 0;
598
index = random() % pf->samples_no;
599
bits = div64((uint64_t)pf->samples[index] * s->link.bandwidth, 1000);
600
if (index >= pf->loss_level) {
601
struct dn_pkt_tag *dt = dn_tag_get(m);
602
if (dt)
603
dt->dn_dir = DIR_DROP;
604
}
605
return bits;
606
}
607
608
/*
609
* Send traffic from a scheduler instance due by 'now'.
610
* Return a pointer to the head of the queue.
611
*/
612
static struct mbuf *
613
serve_sched(struct mq *q, struct dn_sch_inst *si, uint64_t now)
614
{
615
struct mq def_q;
616
struct dn_schk *s = si->sched;
617
struct mbuf *m = NULL;
618
int delay_line_idle = (si->dline.mq.head == NULL);
619
int done;
620
uint32_t bw;
621
622
if (q == NULL) {
623
q = &def_q;
624
q->head = NULL;
625
}
626
627
bw = s->link.bandwidth;
628
si->kflags &= ~DN_ACTIVE;
629
630
if (bw > 0)
631
si->credit += (now - si->sched_time) * bw;
632
else
633
si->credit = 0;
634
si->sched_time = now;
635
done = 0;
636
while (si->credit >= 0 && (m = s->fp->dequeue(si)) != NULL) {
637
uint64_t len_scaled;
638
639
done++;
640
len_scaled = (bw == 0) ? 0 : hz *
641
(m->m_pkthdr.len * 8 + extra_bits(m, s));
642
si->credit -= len_scaled;
643
/* Move packet in the delay line */
644
dn_tag_get(m)->output_time = V_dn_cfg.curr_time + s->link.delay ;
645
if (m->m_pkthdr.rcvif != NULL)
646
m_rcvif_serialize(m);
647
mq_append(&si->dline.mq, m);
648
}
649
650
/*
651
* If credit >= 0 the instance is idle, mark time.
652
* Otherwise put back in the heap, and adjust the output
653
* time of the last inserted packet, m, which was too early.
654
*/
655
if (si->credit >= 0) {
656
si->idle_time = now;
657
} else {
658
uint64_t t;
659
KASSERT (bw > 0, ("bw=0 and credit<0 ?"));
660
t = div64(bw - 1 - si->credit, bw);
661
if (m)
662
dn_tag_get(m)->output_time += t;
663
si->kflags |= DN_ACTIVE;
664
heap_insert(&V_dn_cfg.evheap, now + t, si);
665
}
666
if (delay_line_idle && done)
667
transmit_event(q, &si->dline, now);
668
return q->head;
669
}
670
671
/*
672
* The timer handler for dummynet. Time is computed in ticks, but
673
* but the code is tolerant to the actual rate at which this is called.
674
* Once complete, the function reschedules itself for the next tick.
675
*/
676
void
677
dummynet_task(void *context, int pending)
678
{
679
struct timeval t;
680
struct mq q = { NULL, NULL }; /* queue to accumulate results */
681
struct epoch_tracker et;
682
683
VNET_ITERATOR_DECL(vnet_iter);
684
VNET_LIST_RLOCK();
685
NET_EPOCH_ENTER(et);
686
687
VNET_FOREACH(vnet_iter) {
688
memset(&q, 0, sizeof(struct mq));
689
CURVNET_SET(vnet_iter);
690
691
if (! V_dn_cfg.init_done) {
692
CURVNET_RESTORE();
693
continue;
694
}
695
696
DN_BH_WLOCK();
697
698
/* Update number of lost(coalesced) ticks. */
699
V_dn_cfg.tick_lost += pending - 1;
700
701
getmicrouptime(&t);
702
/* Last tick duration (usec). */
703
V_dn_cfg.tick_last = (t.tv_sec - V_dn_cfg.prev_t.tv_sec) * 1000000 +
704
(t.tv_usec - V_dn_cfg.prev_t.tv_usec);
705
/* Last tick vs standard tick difference (usec). */
706
V_dn_cfg.tick_delta = (V_dn_cfg.tick_last * hz - 1000000) / hz;
707
/* Accumulated tick difference (usec). */
708
V_dn_cfg.tick_delta_sum += V_dn_cfg.tick_delta;
709
710
V_dn_cfg.prev_t = t;
711
712
/*
713
* Adjust curr_time if the accumulated tick difference is
714
* greater than the 'standard' tick. Since curr_time should
715
* be monotonically increasing, we do positive adjustments
716
* as required, and throttle curr_time in case of negative
717
* adjustment.
718
*/
719
V_dn_cfg.curr_time++;
720
if (V_dn_cfg.tick_delta_sum - tick >= 0) {
721
int diff = V_dn_cfg.tick_delta_sum / tick;
722
723
V_dn_cfg.curr_time += diff;
724
V_dn_cfg.tick_diff += diff;
725
V_dn_cfg.tick_delta_sum %= tick;
726
V_dn_cfg.tick_adjustment++;
727
} else if (V_dn_cfg.tick_delta_sum + tick <= 0) {
728
V_dn_cfg.curr_time--;
729
V_dn_cfg.tick_diff--;
730
V_dn_cfg.tick_delta_sum += tick;
731
V_dn_cfg.tick_adjustment++;
732
}
733
734
/* serve pending events, accumulate in q */
735
for (;;) {
736
struct dn_id *p; /* generic parameter to handler */
737
738
if (V_dn_cfg.evheap.elements == 0 ||
739
DN_KEY_LT(V_dn_cfg.curr_time, HEAP_TOP(&V_dn_cfg.evheap)->key))
740
break;
741
p = HEAP_TOP(&V_dn_cfg.evheap)->object;
742
heap_extract(&V_dn_cfg.evheap, NULL);
743
if (p->type == DN_SCH_I) {
744
serve_sched(&q, (struct dn_sch_inst *)p, V_dn_cfg.curr_time);
745
} else { /* extracted a delay line */
746
transmit_event(&q, (struct delay_line *)p, V_dn_cfg.curr_time);
747
}
748
}
749
if (V_dn_cfg.expire && ++V_dn_cfg.expire_cycle >= V_dn_cfg.expire) {
750
V_dn_cfg.expire_cycle = 0;
751
dn_drain_scheduler();
752
dn_drain_queue();
753
}
754
DN_BH_WUNLOCK();
755
if (q.head != NULL)
756
dummynet_send(q.head);
757
758
CURVNET_RESTORE();
759
}
760
NET_EPOCH_EXIT(et);
761
VNET_LIST_RUNLOCK();
762
763
/* Schedule our next run. */
764
dn_reschedule();
765
}
766
767
/*
768
* forward a chain of packets to the proper destination.
769
* This runs outside the dummynet lock.
770
*/
771
static void
772
dummynet_send(struct mbuf *m)
773
{
774
struct mbuf *n;
775
776
NET_EPOCH_ASSERT();
777
778
for (; m != NULL; m = n) {
779
struct ifnet *ifp = NULL; /* gcc 3.4.6 complains */
780
struct m_tag *tag;
781
int dst;
782
783
n = m->m_nextpkt;
784
m->m_nextpkt = NULL;
785
tag = m_tag_first(m);
786
if (tag == NULL) { /* should not happen */
787
dst = DIR_DROP;
788
} else {
789
struct dn_pkt_tag *pkt = dn_tag_get(m);
790
/* extract the dummynet info, rename the tag
791
* to carry reinject info.
792
*/
793
ifp = ifnet_byindexgen(pkt->if_index, pkt->if_idxgen);
794
if (((pkt->dn_dir == (DIR_OUT | PROTO_LAYER2)) ||
795
(pkt->dn_dir == (DIR_OUT | PROTO_LAYER2 | PROTO_IPV6))) &&
796
ifp == NULL) {
797
dst = DIR_DROP;
798
} else {
799
dst = pkt->dn_dir;
800
tag->m_tag_cookie = MTAG_IPFW_RULE;
801
tag->m_tag_id = 0;
802
}
803
}
804
805
switch (dst) {
806
case DIR_OUT:
807
ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
808
break ;
809
810
case DIR_IN :
811
netisr_dispatch(NETISR_IP, m);
812
break;
813
814
#ifdef INET6
815
case DIR_IN | PROTO_IPV6:
816
netisr_dispatch(NETISR_IPV6, m);
817
break;
818
819
case DIR_OUT | PROTO_IPV6:
820
ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
821
break;
822
#endif
823
824
case DIR_FWD | PROTO_IFB: /* DN_TO_IFB_FWD: */
825
if (bridge_dn_p != NULL)
826
((*bridge_dn_p)(m, ifp));
827
else
828
printf("dummynet: if_bridge not loaded\n");
829
830
break;
831
832
case DIR_IN | PROTO_LAYER2 | PROTO_IPV6:
833
case DIR_IN | PROTO_LAYER2: /* DN_TO_ETH_DEMUX: */
834
/*
835
* The Ethernet code assumes the Ethernet header is
836
* contiguous in the first mbuf header.
837
* Insure this is true.
838
*/
839
if (m->m_len < ETHER_HDR_LEN &&
840
(m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
841
printf("dummynet/ether: pullup failed, "
842
"dropping packet\n");
843
break;
844
}
845
ether_demux(m->m_pkthdr.rcvif, m);
846
break;
847
848
case DIR_OUT | PROTO_LAYER2 | PROTO_IPV6:
849
case DIR_OUT | PROTO_LAYER2: /* DN_TO_ETH_OUT: */
850
MPASS(ifp != NULL);
851
ether_output_frame(ifp, m);
852
break;
853
854
case DIR_DROP:
855
/* drop the packet after some time */
856
FREE_PKT(m);
857
break;
858
859
default:
860
printf("dummynet: bad switch %d!\n", dst);
861
FREE_PKT(m);
862
break;
863
}
864
}
865
}
866
867
static inline int
868
tag_mbuf(struct mbuf *m, int dir, struct ip_fw_args *fwa)
869
{
870
struct dn_pkt_tag *dt;
871
struct m_tag *mtag;
872
873
mtag = m_tag_get(PACKET_TAG_DUMMYNET,
874
sizeof(*dt), M_NOWAIT | M_ZERO);
875
if (mtag == NULL)
876
return 1; /* Cannot allocate packet header. */
877
m_tag_prepend(m, mtag); /* Attach to mbuf chain. */
878
dt = (struct dn_pkt_tag *)(mtag + 1);
879
dt->rule = fwa->rule;
880
/* only keep this info */
881
dt->rule.info &= (IPFW_ONEPASS | IPFW_IS_DUMMYNET);
882
dt->dn_dir = dir;
883
if (fwa->flags & IPFW_ARGS_OUT && fwa->ifp != NULL) {
884
NET_EPOCH_ASSERT();
885
dt->if_index = fwa->ifp->if_index;
886
dt->if_idxgen = fwa->ifp->if_idxgen;
887
}
888
/* dt->output_time is updated as we move through */
889
dt->output_time = V_dn_cfg.curr_time;
890
dt->iphdr_off = (dir & PROTO_LAYER2) ? ETHER_HDR_LEN : 0;
891
return 0;
892
}
893
894
/*
895
* dummynet hook for packets.
896
* We use the argument to locate the flowset fs and the sched_set sch
897
* associated to it. The we apply flow_mask and sched_mask to
898
* determine the queue and scheduler instances.
899
*/
900
int
901
dummynet_io(struct mbuf **m0, struct ip_fw_args *fwa)
902
{
903
struct mbuf *m = *m0;
904
struct dn_fsk *fs = NULL;
905
struct dn_sch_inst *si;
906
struct dn_queue *q = NULL; /* default */
907
int fs_id, dir;
908
909
fs_id = (fwa->rule.info & IPFW_INFO_MASK) +
910
((fwa->rule.info & IPFW_IS_PIPE) ? 2*DN_MAX_ID : 0);
911
/* XXXGL: convert args to dir */
912
if (fwa->flags & IPFW_ARGS_IN)
913
dir = DIR_IN;
914
else
915
dir = DIR_OUT;
916
if (fwa->flags & IPFW_ARGS_ETHER)
917
dir |= PROTO_LAYER2;
918
else if (fwa->flags & IPFW_ARGS_IP6)
919
dir |= PROTO_IPV6;
920
DN_BH_WLOCK();
921
V_dn_cfg.io_pkt++;
922
/* we could actually tag outside the lock, but who cares... */
923
if (tag_mbuf(m, dir, fwa))
924
goto dropit;
925
/* XXX locate_flowset could be optimised with a direct ref. */
926
fs = dn_ht_find(V_dn_cfg.fshash, fs_id, 0, NULL);
927
if (fs == NULL)
928
goto dropit; /* This queue/pipe does not exist! */
929
if (fs->sched == NULL) /* should not happen */
930
goto dropit;
931
/* find scheduler instance, possibly applying sched_mask */
932
si = ipdn_si_find(fs->sched, &(fwa->f_id));
933
if (si == NULL)
934
goto dropit;
935
/*
936
* If the scheduler supports multiple queues, find the right one
937
* (otherwise it will be ignored by enqueue).
938
*/
939
if (fs->sched->fp->flags & DN_MULTIQUEUE) {
940
q = ipdn_q_find(fs, si, &(fwa->f_id));
941
if (q == NULL)
942
goto dropit;
943
}
944
if (fs->sched->fp->enqueue(si, q, m)) {
945
/* packet was dropped by enqueue() */
946
m = *m0 = NULL;
947
948
/* dn_enqueue already increases io_pkt_drop */
949
V_dn_cfg.io_pkt_drop--;
950
951
goto dropit;
952
}
953
954
if (si->kflags & DN_ACTIVE) {
955
m = *m0 = NULL; /* consumed */
956
goto done; /* already active, nothing to do */
957
}
958
959
/* compute the initial allowance */
960
if (si->idle_time < V_dn_cfg.curr_time) {
961
/* Do this only on the first packet on an idle pipe */
962
struct dn_link *p = &fs->sched->link;
963
964
si->sched_time = V_dn_cfg.curr_time;
965
si->credit = V_dn_cfg.io_fast ? p->bandwidth : 0;
966
if (p->burst) {
967
uint64_t burst = (V_dn_cfg.curr_time - si->idle_time) * p->bandwidth;
968
if (burst > p->burst)
969
burst = p->burst;
970
si->credit += burst;
971
}
972
}
973
/* pass through scheduler and delay line */
974
m = serve_sched(NULL, si, V_dn_cfg.curr_time);
975
976
/* optimization -- pass it back to ipfw for immediate send */
977
/* XXX Don't call dummynet_send() if scheduler return the packet
978
* just enqueued. This avoid a lock order reversal.
979
*
980
*/
981
if (/*V_dn_cfg.io_fast &&*/ m == *m0 && (dir & PROTO_LAYER2) == 0 ) {
982
/* fast io, rename the tag * to carry reinject info. */
983
struct m_tag *tag = m_tag_first(m);
984
985
tag->m_tag_cookie = MTAG_IPFW_RULE;
986
tag->m_tag_id = 0;
987
V_dn_cfg.io_pkt_fast++;
988
if (m->m_nextpkt != NULL) {
989
printf("dummynet: fast io: pkt chain detected!\n");
990
m->m_nextpkt = NULL;
991
}
992
m = NULL;
993
} else {
994
*m0 = NULL;
995
}
996
done:
997
DN_BH_WUNLOCK();
998
if (m)
999
dummynet_send(m);
1000
return 0;
1001
1002
dropit:
1003
V_dn_cfg.io_pkt_drop++;
1004
DN_BH_WUNLOCK();
1005
if (m)
1006
FREE_PKT(m);
1007
*m0 = NULL;
1008
return (fs && (fs->fs.flags & DN_NOERROR)) ? 0 : ENOBUFS;
1009
}
1010
1011