Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/netpfil/ipfw/ip_fw_dynamic.c
106465 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2017-2025 Yandex LLC
5
* Copyright (c) 2017-2025 Andrey V. Elsukov <[email protected]>
6
* Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice, this list of conditions and the following disclaimer.
13
* 2. Redistributions in binary form must reproduce the above copyright
14
* notice, this list of conditions and the following disclaimer in the
15
* documentation and/or other materials provided with the distribution.
16
*
17
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27
* SUCH DAMAGE.
28
*/
29
30
#include <sys/cdefs.h>
31
#include "opt_inet.h"
32
#include "opt_inet6.h"
33
#include "opt_ipfw.h"
34
#ifndef INET
35
#error IPFIREWALL requires INET.
36
#endif /* INET */
37
38
#include <sys/param.h>
39
#include <sys/systm.h>
40
#include <sys/hash.h>
41
#include <sys/mbuf.h>
42
#include <sys/kernel.h>
43
#include <sys/lock.h>
44
#include <sys/pcpu.h>
45
#include <sys/queue.h>
46
#include <sys/rmlock.h>
47
#include <sys/smp.h>
48
#include <sys/socket.h>
49
#include <sys/sysctl.h>
50
#include <sys/syslog.h>
51
#include <net/ethernet.h>
52
#include <net/if.h>
53
#include <net/if_var.h>
54
#include <net/vnet.h>
55
56
#include <netinet/in.h>
57
#include <netinet/ip.h>
58
#include <netinet/ip_var.h>
59
#include <netinet/ip_fw.h>
60
#include <netinet/tcp.h>
61
#include <netinet/udp.h>
62
63
#include <netinet/ip6.h> /* IN6_ARE_ADDR_EQUAL */
64
#ifdef INET6
65
#include <netinet6/in6_var.h>
66
#include <netinet6/ip6_var.h>
67
#include <netinet6/scope6_var.h>
68
#endif
69
70
#include <netpfil/ipfw/ip_fw_private.h>
71
72
#include <machine/in_cksum.h> /* XXX for in_cksum */
73
74
#ifdef MAC
75
#include <security/mac/mac_framework.h>
76
#endif
77
78
/*
79
* Description of dynamic states.
80
*
81
* Dynamic states are stored in lists accessed through a hash tables
82
* whose size is curr_dyn_buckets. This value can be modified through
83
* the sysctl variable dyn_buckets.
84
*
85
* Currently there are four tables: dyn_ipv4, dyn_ipv6, dyn_ipv4_parent,
86
* and dyn_ipv6_parent.
87
*
88
* When a packet is received, its address fields hashed, then matched
89
* against the entries in the corresponding list by addr_type.
90
* Dynamic states can be used for different purposes:
91
* + stateful rules;
92
* + enforcing limits on the number of sessions;
93
* + in-kernel NAT (not implemented yet)
94
*
95
* The lifetime of dynamic states is regulated by dyn_*_lifetime,
96
* measured in seconds and depending on the flags.
97
*
98
* The total number of dynamic states is equal to UMA zone items count.
99
* The max number of dynamic states is dyn_max. When we reach
100
* the maximum number of rules we do not create anymore. This is
101
* done to avoid consuming too much memory, but also too much
102
* time when searching on each packet (ideally, we should try instead
103
* to put a limit on the length of the list on each bucket...).
104
*
105
* Each state holds a pointer to the parent ipfw rule so we know what
106
* action to perform. Dynamic rules are removed when the parent rule is
107
* deleted.
108
*
109
* There are some limitations with dynamic rules -- we do not
110
* obey the 'randomized match', and we do not do multiple
111
* passes through the firewall. XXX check the latter!!!
112
*/
113
114
/* By default use jenkins hash function */
115
#define IPFIREWALL_JENKINSHASH
116
117
#define DYN_COUNTER_INC(d, dir, pktlen) do { \
118
(d)->pcnt_ ## dir++; \
119
(d)->bcnt_ ## dir += pktlen; \
120
} while (0)
121
122
#define DYN_REFERENCED 0x01
123
/*
124
* DYN_REFERENCED flag is used to show that state keeps reference to named
125
* object, and this reference should be released when state becomes expired.
126
*/
127
128
struct dyn_data {
129
void *parent; /* pointer to parent rule */
130
uint32_t chain_id; /* cached ruleset id */
131
uint32_t f_pos; /* cached rule index */
132
133
uint32_t hashval; /* hash value used for hash resize */
134
uint16_t fibnum; /* fib used to send keepalives */
135
uint8_t _pad;
136
uint8_t flags; /* internal flags */
137
uint32_t rulenum; /* parent rule number */
138
uint32_t ruleid; /* parent rule id */
139
140
uint32_t state; /* TCP session state and flags */
141
uint32_t ack_fwd; /* most recent ACKs in forward */
142
uint32_t ack_rev; /* and reverse direction (used */
143
/* to generate keepalives) */
144
uint32_t sync; /* synchronization time */
145
uint32_t expire; /* expire time */
146
147
uint64_t pcnt_fwd; /* packets counter in forward */
148
uint64_t bcnt_fwd; /* bytes counter in forward */
149
uint64_t pcnt_rev; /* packets counter in reverse */
150
uint64_t bcnt_rev; /* bytes counter in reverse */
151
};
152
153
#define DPARENT_COUNT_DEC(p) do { \
154
MPASS(p->count > 0); \
155
ck_pr_dec_32(&(p)->count); \
156
} while (0)
157
#define DPARENT_COUNT_INC(p) ck_pr_inc_32(&(p)->count)
158
#define DPARENT_COUNT(p) ck_pr_load_32(&(p)->count)
159
struct dyn_parent {
160
void *parent; /* pointer to parent rule */
161
uint32_t count; /* number of linked states */
162
uint32_t rulenum; /* parent rule number */
163
uint32_t ruleid; /* parent rule id */
164
uint32_t hashval; /* hash value used for hash resize */
165
uint32_t expire; /* expire time */
166
};
167
168
struct dyn_ipv4_state {
169
uint8_t type; /* State type */
170
uint8_t proto; /* UL Protocol */
171
uint16_t spare;
172
uint32_t kidx; /* named object index */
173
uint16_t sport, dport; /* ULP source and destination ports */
174
in_addr_t src, dst; /* IPv4 source and destination */
175
176
union {
177
struct dyn_data *data;
178
struct dyn_parent *limit;
179
};
180
CK_SLIST_ENTRY(dyn_ipv4_state) entry;
181
SLIST_ENTRY(dyn_ipv4_state) expired;
182
};
183
CK_SLIST_HEAD(dyn_ipv4ck_slist, dyn_ipv4_state);
184
VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4);
185
VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4_parent);
186
187
SLIST_HEAD(dyn_ipv4_slist, dyn_ipv4_state);
188
VNET_DEFINE_STATIC(struct dyn_ipv4_slist, dyn_expired_ipv4);
189
#define V_dyn_ipv4 VNET(dyn_ipv4)
190
#define V_dyn_ipv4_parent VNET(dyn_ipv4_parent)
191
#define V_dyn_expired_ipv4 VNET(dyn_expired_ipv4)
192
193
#ifdef INET6
194
struct dyn_ipv6_state {
195
uint8_t type; /* State type */
196
uint8_t proto; /* UL Protocol */
197
uint16_t kidx; /* named object index */
198
uint16_t sport, dport; /* ULP source and destination ports */
199
struct in6_addr src, dst; /* IPv6 source and destination */
200
uint32_t zoneid; /* IPv6 scope zone id */
201
union {
202
struct dyn_data *data;
203
struct dyn_parent *limit;
204
};
205
CK_SLIST_ENTRY(dyn_ipv6_state) entry;
206
SLIST_ENTRY(dyn_ipv6_state) expired;
207
};
208
CK_SLIST_HEAD(dyn_ipv6ck_slist, dyn_ipv6_state);
209
VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6);
210
VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6_parent);
211
212
SLIST_HEAD(dyn_ipv6_slist, dyn_ipv6_state);
213
VNET_DEFINE_STATIC(struct dyn_ipv6_slist, dyn_expired_ipv6);
214
#define V_dyn_ipv6 VNET(dyn_ipv6)
215
#define V_dyn_ipv6_parent VNET(dyn_ipv6_parent)
216
#define V_dyn_expired_ipv6 VNET(dyn_expired_ipv6)
217
#endif /* INET6 */
218
219
/*
220
* Per-CPU pointer indicates that specified state is currently in use
221
* and must not be reclaimed by expiration callout.
222
*/
223
static void **dyn_hp_cache;
224
DPCPU_DEFINE_STATIC(void *, dyn_hp);
225
#define DYNSTATE_GET(cpu) ck_pr_load_ptr(DPCPU_ID_PTR((cpu), dyn_hp))
226
#define DYNSTATE_PROTECT(v) ck_pr_store_ptr(DPCPU_PTR(dyn_hp), (v))
227
#define DYNSTATE_RELEASE() DYNSTATE_PROTECT(NULL)
228
#define DYNSTATE_CRITICAL_ENTER() critical_enter()
229
#define DYNSTATE_CRITICAL_EXIT() do { \
230
DYNSTATE_RELEASE(); \
231
critical_exit(); \
232
} while (0);
233
234
/*
235
* We keep two version numbers, one is updated when new entry added to
236
* the list. Second is updated when an entry deleted from the list.
237
* Versions are updated under bucket lock.
238
*
239
* Bucket "add" version number is used to know, that in the time between
240
* state lookup (i.e. ipfw_dyn_lookup_state()) and the followed state
241
* creation (i.e. ipfw_dyn_install_state()) another concurrent thread did
242
* not install some state in this bucket. Using this info we can avoid
243
* additional state lookup, because we are sure that we will not install
244
* the state twice.
245
*
246
* Also doing the tracking of bucket "del" version during lookup we can
247
* be sure, that state entry was not unlinked and freed in time between
248
* we read the state pointer and protect it with hazard pointer.
249
*
250
* An entry unlinked from CK list keeps unchanged until it is freed.
251
* Unlinked entries are linked into expired lists using "expired" field.
252
*/
253
254
/*
255
* dyn_expire_lock is used to protect access to dyn_expired_xxx lists.
256
* dyn_bucket_lock is used to get write access to lists in specific bucket.
257
* Currently one dyn_bucket_lock is used for all ipv4, ipv4_parent, ipv6,
258
* and ipv6_parent lists.
259
*/
260
VNET_DEFINE_STATIC(struct mtx, dyn_expire_lock);
261
VNET_DEFINE_STATIC(struct mtx *, dyn_bucket_lock);
262
#define V_dyn_expire_lock VNET(dyn_expire_lock)
263
#define V_dyn_bucket_lock VNET(dyn_bucket_lock)
264
265
/*
266
* Bucket's add/delete generation versions.
267
*/
268
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_add);
269
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_del);
270
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_add);
271
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_del);
272
#define V_dyn_ipv4_add VNET(dyn_ipv4_add)
273
#define V_dyn_ipv4_del VNET(dyn_ipv4_del)
274
#define V_dyn_ipv4_parent_add VNET(dyn_ipv4_parent_add)
275
#define V_dyn_ipv4_parent_del VNET(dyn_ipv4_parent_del)
276
277
#ifdef INET6
278
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_add);
279
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_del);
280
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_add);
281
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_del);
282
#define V_dyn_ipv6_add VNET(dyn_ipv6_add)
283
#define V_dyn_ipv6_del VNET(dyn_ipv6_del)
284
#define V_dyn_ipv6_parent_add VNET(dyn_ipv6_parent_add)
285
#define V_dyn_ipv6_parent_del VNET(dyn_ipv6_parent_del)
286
#endif /* INET6 */
287
288
#define DYN_BUCKET(h, b) ((h) & (b - 1))
289
#define DYN_BUCKET_VERSION(b, v) ck_pr_load_32(&V_dyn_ ## v[(b)])
290
#define DYN_BUCKET_VERSION_BUMP(b, v) ck_pr_inc_32(&V_dyn_ ## v[(b)])
291
292
#define DYN_BUCKET_LOCK_INIT(lock, b) \
293
mtx_init(&lock[(b)], "IPFW dynamic bucket", NULL, MTX_DEF)
294
#define DYN_BUCKET_LOCK_DESTROY(lock, b) mtx_destroy(&lock[(b)])
295
#define DYN_BUCKET_LOCK(b) mtx_lock(&V_dyn_bucket_lock[(b)])
296
#define DYN_BUCKET_UNLOCK(b) mtx_unlock(&V_dyn_bucket_lock[(b)])
297
#define DYN_BUCKET_ASSERT(b) mtx_assert(&V_dyn_bucket_lock[(b)], MA_OWNED)
298
299
#define DYN_EXPIRED_LOCK_INIT() \
300
mtx_init(&V_dyn_expire_lock, "IPFW expired states list", NULL, MTX_DEF)
301
#define DYN_EXPIRED_LOCK_DESTROY() mtx_destroy(&V_dyn_expire_lock)
302
#define DYN_EXPIRED_LOCK() mtx_lock(&V_dyn_expire_lock)
303
#define DYN_EXPIRED_UNLOCK() mtx_unlock(&V_dyn_expire_lock)
304
305
VNET_DEFINE_STATIC(uint32_t, dyn_buckets_max);
306
VNET_DEFINE_STATIC(uint32_t, curr_dyn_buckets);
307
VNET_DEFINE_STATIC(struct callout, dyn_timeout);
308
#define V_dyn_buckets_max VNET(dyn_buckets_max)
309
#define V_curr_dyn_buckets VNET(curr_dyn_buckets)
310
#define V_dyn_timeout VNET(dyn_timeout)
311
312
/* Maximum length of states chain in a bucket */
313
VNET_DEFINE_STATIC(uint32_t, curr_max_length);
314
#define V_curr_max_length VNET(curr_max_length)
315
316
VNET_DEFINE_STATIC(uint32_t, dyn_keep_states);
317
#define V_dyn_keep_states VNET(dyn_keep_states)
318
319
VNET_DEFINE_STATIC(uma_zone_t, dyn_data_zone);
320
VNET_DEFINE_STATIC(uma_zone_t, dyn_parent_zone);
321
VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv4_zone);
322
#ifdef INET6
323
VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv6_zone);
324
#define V_dyn_ipv6_zone VNET(dyn_ipv6_zone)
325
#endif /* INET6 */
326
#define V_dyn_data_zone VNET(dyn_data_zone)
327
#define V_dyn_parent_zone VNET(dyn_parent_zone)
328
#define V_dyn_ipv4_zone VNET(dyn_ipv4_zone)
329
330
/*
331
* Timeouts for various events in handing dynamic rules.
332
*/
333
VNET_DEFINE_STATIC(uint32_t, dyn_ack_lifetime);
334
VNET_DEFINE_STATIC(uint32_t, dyn_syn_lifetime);
335
VNET_DEFINE_STATIC(uint32_t, dyn_fin_lifetime);
336
VNET_DEFINE_STATIC(uint32_t, dyn_rst_lifetime);
337
VNET_DEFINE_STATIC(uint32_t, dyn_udp_lifetime);
338
VNET_DEFINE_STATIC(uint32_t, dyn_short_lifetime);
339
340
#define V_dyn_ack_lifetime VNET(dyn_ack_lifetime)
341
#define V_dyn_syn_lifetime VNET(dyn_syn_lifetime)
342
#define V_dyn_fin_lifetime VNET(dyn_fin_lifetime)
343
#define V_dyn_rst_lifetime VNET(dyn_rst_lifetime)
344
#define V_dyn_udp_lifetime VNET(dyn_udp_lifetime)
345
#define V_dyn_short_lifetime VNET(dyn_short_lifetime)
346
347
/*
348
* Keepalives are sent if dyn_keepalive is set. They are sent every
349
* dyn_keepalive_period seconds, in the last dyn_keepalive_interval
350
* seconds of lifetime of a rule.
351
* dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
352
* than dyn_keepalive_period.
353
*/
354
VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_interval);
355
VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_period);
356
VNET_DEFINE_STATIC(uint32_t, dyn_keepalive);
357
VNET_DEFINE_STATIC(time_t, dyn_keepalive_last);
358
359
#define V_dyn_keepalive_interval VNET(dyn_keepalive_interval)
360
#define V_dyn_keepalive_period VNET(dyn_keepalive_period)
361
#define V_dyn_keepalive VNET(dyn_keepalive)
362
#define V_dyn_keepalive_last VNET(dyn_keepalive_last)
363
364
VNET_DEFINE_STATIC(uint32_t, dyn_max); /* max # of dynamic states */
365
VNET_DEFINE_STATIC(uint32_t, dyn_count); /* number of states */
366
VNET_DEFINE_STATIC(uint32_t, dyn_parent_max); /* max # of parent states */
367
VNET_DEFINE_STATIC(uint32_t, dyn_parent_count); /* number of parent states */
368
369
#define V_dyn_max VNET(dyn_max)
370
#define V_dyn_count VNET(dyn_count)
371
#define V_dyn_parent_max VNET(dyn_parent_max)
372
#define V_dyn_parent_count VNET(dyn_parent_count)
373
374
#define DYN_COUNT_DEC(name) do { \
375
MPASS((V_ ## name) > 0); \
376
ck_pr_dec_32(&(V_ ## name)); \
377
} while (0)
378
#define DYN_COUNT_INC(name) ck_pr_inc_32(&(V_ ## name))
379
#define DYN_COUNT(name) ck_pr_load_32(&(V_ ## name))
380
381
static time_t last_log; /* Log ratelimiting */
382
383
/*
384
* Get/set maximum number of dynamic states in given VNET instance.
385
*/
386
static int
387
sysctl_dyn_max(SYSCTL_HANDLER_ARGS)
388
{
389
uint32_t nstates;
390
int error;
391
392
nstates = V_dyn_max;
393
error = sysctl_handle_32(oidp, &nstates, 0, req);
394
/* Read operation or some error */
395
if ((error != 0) || (req->newptr == NULL))
396
return (error);
397
398
V_dyn_max = nstates;
399
uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
400
return (0);
401
}
402
403
static int
404
sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)
405
{
406
uint32_t nstates;
407
int error;
408
409
nstates = V_dyn_parent_max;
410
error = sysctl_handle_32(oidp, &nstates, 0, req);
411
/* Read operation or some error */
412
if ((error != 0) || (req->newptr == NULL))
413
return (error);
414
415
V_dyn_parent_max = nstates;
416
uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
417
return (0);
418
}
419
420
static int
421
sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
422
{
423
uint32_t nbuckets;
424
int error;
425
426
nbuckets = V_dyn_buckets_max;
427
error = sysctl_handle_32(oidp, &nbuckets, 0, req);
428
/* Read operation or some error */
429
if ((error != 0) || (req->newptr == NULL))
430
return (error);
431
432
if (nbuckets > 256)
433
V_dyn_buckets_max = 1 << fls(nbuckets - 1);
434
else
435
return (EINVAL);
436
return (0);
437
}
438
439
SYSCTL_DECL(_net_inet_ip_fw);
440
441
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_count,
442
CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
443
"Current number of dynamic states.");
444
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_parent_count,
445
CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_parent_count), 0,
446
"Current number of parent states. ");
447
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
448
CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
449
"Current number of buckets for states hash table.");
450
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_max_length,
451
CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_max_length), 0,
452
"Current maximum length of states chains in hash buckets.");
453
SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
454
CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
455
0, 0, sysctl_dyn_buckets, "IU",
456
"Max number of buckets for dynamic states hash table.");
457
SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
458
CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
459
0, 0, sysctl_dyn_max, "IU",
460
"Max number of dynamic states.");
461
SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_parent_max,
462
CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
463
0, 0, sysctl_dyn_parent_max, "IU",
464
"Max number of parent dynamic states.");
465
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
466
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
467
"Lifetime of dynamic states for TCP ACK.");
468
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
469
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
470
"Lifetime of dynamic states for TCP SYN.");
471
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
472
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
473
"Lifetime of dynamic states for TCP FIN.");
474
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
475
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
476
"Lifetime of dynamic states for TCP RST.");
477
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
478
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
479
"Lifetime of dynamic states for UDP.");
480
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
481
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
482
"Lifetime of dynamic states for other situations.");
483
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
484
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
485
"Enable keepalives for dynamic states.");
486
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
487
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
488
"Do not flush dynamic states on rule deletion");
489
490
#ifdef IPFIREWALL_DYNDEBUG
491
#define DYN_DEBUG(fmt, ...) do { \
492
printf("%s: " fmt "\n", __func__, __VA_ARGS__); \
493
} while (0)
494
#else
495
#define DYN_DEBUG(fmt, ...)
496
#endif /* !IPFIREWALL_DYNDEBUG */
497
498
#ifdef INET6
499
/* Functions to work with IPv6 states */
500
static struct dyn_ipv6_state *dyn_lookup_ipv6_state(
501
const struct ipfw_flow_id *, uint32_t, const void *,
502
struct ipfw_dyn_info *, int);
503
static int dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *,
504
uint32_t, const void *, int, uint32_t, uint32_t);
505
static struct dyn_ipv6_state *dyn_alloc_ipv6_state(
506
const struct ipfw_flow_id *, uint32_t, uint32_t, uint8_t);
507
static int dyn_add_ipv6_state(void *, uint32_t, uint32_t,
508
const struct ipfw_flow_id *, uint32_t, const void *, int, uint32_t,
509
struct ipfw_dyn_info *, uint16_t, uint32_t, uint8_t);
510
static void dyn_export_ipv6_state(const struct dyn_ipv6_state *,
511
ipfw_dyn_rule *);
512
513
static uint32_t dyn_getscopeid(const struct ip_fw_args *);
514
static void dyn_make_keepalive_ipv6(struct mbuf *, const struct in6_addr *,
515
const struct in6_addr *, uint32_t, uint32_t, uint32_t, uint16_t,
516
uint16_t);
517
static void dyn_enqueue_keepalive_ipv6(struct mbufq *,
518
const struct dyn_ipv6_state *);
519
static void dyn_send_keepalive_ipv6(struct ip_fw_chain *);
520
521
static struct dyn_ipv6_state *dyn_lookup_ipv6_parent(
522
const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint32_t,
523
uint32_t);
524
static struct dyn_ipv6_state *dyn_lookup_ipv6_parent_locked(
525
const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint32_t,
526
uint32_t);
527
static struct dyn_ipv6_state *dyn_add_ipv6_parent(void *, uint32_t, uint32_t,
528
const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t, uint32_t);
529
#endif /* INET6 */
530
531
/* Functions to work with limit states */
532
static void *dyn_get_parent_state(const struct ipfw_flow_id *, uint32_t,
533
struct ip_fw *, uint32_t, uint32_t, uint32_t);
534
static struct dyn_ipv4_state *dyn_lookup_ipv4_parent(
535
const struct ipfw_flow_id *, const void *, uint32_t, uint32_t, uint32_t);
536
static struct dyn_ipv4_state *dyn_lookup_ipv4_parent_locked(
537
const struct ipfw_flow_id *, const void *, uint32_t, uint32_t, uint32_t);
538
static struct dyn_parent *dyn_alloc_parent(void *, uint32_t, uint32_t,
539
uint32_t);
540
static struct dyn_ipv4_state *dyn_add_ipv4_parent(void *, uint32_t, uint32_t,
541
const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t);
542
543
static void dyn_tick(void *);
544
static void dyn_expire_states(struct ip_fw_chain *, ipfw_range_tlv *);
545
static void dyn_free_states(struct ip_fw_chain *);
546
static void dyn_export_parent(const struct dyn_parent *, uint32_t, uint8_t,
547
ipfw_dyn_rule *);
548
static void dyn_export_data(const struct dyn_data *, uint32_t, uint8_t,
549
uint8_t, ipfw_dyn_rule *);
550
static uint32_t dyn_update_tcp_state(struct dyn_data *,
551
const struct ipfw_flow_id *, const struct tcphdr *, int);
552
static void dyn_update_proto_state(struct dyn_data *,
553
const struct ipfw_flow_id *, const void *, int, int);
554
555
/* Functions to work with IPv4 states */
556
struct dyn_ipv4_state *dyn_lookup_ipv4_state(const struct ipfw_flow_id *,
557
const void *, struct ipfw_dyn_info *, int);
558
static int dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *,
559
const void *, int, uint32_t, uint32_t);
560
static struct dyn_ipv4_state *dyn_alloc_ipv4_state(
561
const struct ipfw_flow_id *, uint32_t, uint8_t);
562
static int dyn_add_ipv4_state(void *, uint32_t, uint32_t,
563
const struct ipfw_flow_id *, const void *, int, uint32_t,
564
struct ipfw_dyn_info *, uint16_t, uint32_t, uint8_t);
565
static void dyn_export_ipv4_state(const struct dyn_ipv4_state *,
566
ipfw_dyn_rule *);
567
568
/*
569
* Named states support.
570
*/
571
static char *default_state_name = "default";
572
struct dyn_state_obj {
573
struct named_object no;
574
char name[64];
575
};
576
577
/*
578
* Classifier callback.
579
* Return 0 if opcode contains object that should be referenced
580
* or rewritten.
581
*/
582
static int
583
dyn_classify(ipfw_insn *cmd0, uint32_t *puidx, uint8_t *ptype)
584
{
585
ipfw_insn_kidx *cmd;
586
587
if (F_LEN(cmd0) < 2)
588
return (EINVAL);
589
590
/*
591
* NOTE: ipfw_insn_kidx and ipfw_insn_limit has overlapped kidx
592
* field, so we can use one type to get access to kidx field.
593
*/
594
cmd = insntod(cmd0, kidx);
595
DYN_DEBUG("opcode %u, kidx %u", cmd0->opcode, cmd->kidx);
596
/* Don't rewrite "check-state any" */
597
if (cmd->kidx == 0 &&
598
cmd0->opcode == O_CHECK_STATE)
599
return (1);
600
601
*puidx = cmd->kidx;
602
*ptype = 0;
603
return (0);
604
}
605
606
static void
607
dyn_update(ipfw_insn *cmd0, uint32_t idx)
608
{
609
610
insntod(cmd0, kidx)->kidx = idx;
611
DYN_DEBUG("opcode %u, kidx %u", cmd0->opcode, idx);
612
}
613
614
static int
615
dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
616
struct named_object **pno)
617
{
618
ipfw_obj_ntlv *ntlv;
619
const char *name;
620
621
DYN_DEBUG("uidx %u", ti->uidx);
622
if (ti->uidx != 0) {
623
if (ti->tlvs == NULL)
624
return (EINVAL);
625
/* Search ntlv in the buffer provided by user */
626
ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
627
IPFW_TLV_STATE_NAME);
628
if (ntlv == NULL)
629
return (EINVAL);
630
name = ntlv->name;
631
} else
632
name = default_state_name;
633
/*
634
* Search named object with corresponding name.
635
* Since states objects are global - ignore the set value
636
* and use zero instead.
637
*/
638
*pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
639
IPFW_TLV_STATE_NAME, name);
640
/*
641
* We always return success here.
642
* The caller will check *pno and mark object as unresolved,
643
* then it will automatically create "default" object.
644
*/
645
return (0);
646
}
647
648
static struct named_object *
649
dyn_findbykidx(struct ip_fw_chain *ch, uint32_t idx)
650
{
651
652
DYN_DEBUG("kidx %u", idx);
653
return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
654
}
655
656
static int
657
dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
658
uint32_t *pkidx)
659
{
660
struct namedobj_instance *ni;
661
struct dyn_state_obj *obj;
662
struct named_object *no;
663
ipfw_obj_ntlv *ntlv;
664
char *name;
665
666
IPFW_UH_WLOCK_ASSERT(ch);
667
668
DYN_DEBUG("uidx %u", ti->uidx);
669
if (ti->uidx != 0) {
670
if (ti->tlvs == NULL)
671
return (EINVAL);
672
ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
673
IPFW_TLV_STATE_NAME);
674
if (ntlv == NULL)
675
return (EINVAL);
676
name = ntlv->name;
677
} else
678
name = default_state_name;
679
680
ni = CHAIN_TO_SRV(ch);
681
obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
682
obj->no.name = obj->name;
683
obj->no.etlv = IPFW_TLV_STATE_NAME;
684
strlcpy(obj->name, name, sizeof(obj->name));
685
686
no = ipfw_objhash_lookup_name_type(ni, 0,
687
IPFW_TLV_STATE_NAME, name);
688
if (no != NULL) {
689
/*
690
* Object is already created.
691
* Just return its kidx and bump refcount.
692
*/
693
*pkidx = no->kidx;
694
no->refcnt++;
695
free(obj, M_IPFW);
696
DYN_DEBUG("\tfound kidx %u for name '%s'", *pkidx, no->name);
697
return (0);
698
}
699
if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
700
DYN_DEBUG("\talloc_idx failed for %s", name);
701
free(obj, M_IPFW);
702
return (ENOSPC);
703
}
704
ipfw_objhash_add(ni, &obj->no);
705
SRV_OBJECT(ch, obj->no.kidx) = obj;
706
obj->no.refcnt++;
707
*pkidx = obj->no.kidx;
708
DYN_DEBUG("\tcreated kidx %u for name '%s'", *pkidx, name);
709
return (0);
710
}
711
712
static void
713
dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
714
{
715
struct dyn_state_obj *obj;
716
717
IPFW_UH_WLOCK_ASSERT(ch);
718
719
KASSERT(no->etlv == IPFW_TLV_STATE_NAME,
720
("%s: wrong object type %u", __func__, no->etlv));
721
KASSERT(no->refcnt == 1,
722
("Destroying object '%s' (type %u, idx %u) with refcnt %u",
723
no->name, no->etlv, no->kidx, no->refcnt));
724
DYN_DEBUG("kidx %u", no->kidx);
725
obj = SRV_OBJECT(ch, no->kidx);
726
SRV_OBJECT(ch, no->kidx) = NULL;
727
ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
728
ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
729
730
free(obj, M_IPFW);
731
}
732
733
static struct opcode_obj_rewrite dyn_opcodes[] = {
734
{
735
.opcode = O_KEEP_STATE,
736
.etlv = IPFW_TLV_STATE_NAME,
737
.classifier = dyn_classify,
738
.update = dyn_update,
739
.find_byname = dyn_findbyname,
740
.find_bykidx = dyn_findbykidx,
741
.create_object = dyn_create,
742
.destroy_object = dyn_destroy,
743
},
744
{
745
.opcode = O_CHECK_STATE,
746
.etlv = IPFW_TLV_STATE_NAME,
747
.classifier = dyn_classify,
748
.update = dyn_update,
749
.find_byname = dyn_findbyname,
750
.find_bykidx = dyn_findbykidx,
751
.create_object = dyn_create,
752
.destroy_object = dyn_destroy,
753
},
754
{
755
.opcode = O_PROBE_STATE,
756
.etlv = IPFW_TLV_STATE_NAME,
757
.classifier = dyn_classify,
758
.update = dyn_update,
759
.find_byname = dyn_findbyname,
760
.find_bykidx = dyn_findbykidx,
761
.create_object = dyn_create,
762
.destroy_object = dyn_destroy,
763
},
764
{
765
.opcode = O_LIMIT,
766
.etlv = IPFW_TLV_STATE_NAME,
767
.classifier = dyn_classify,
768
.update = dyn_update,
769
.find_byname = dyn_findbyname,
770
.find_bykidx = dyn_findbykidx,
771
.create_object = dyn_create,
772
.destroy_object = dyn_destroy,
773
},
774
};
775
776
/*
777
* IMPORTANT: the hash function for dynamic rules must be commutative
778
* in source and destination (ip,port), because rules are bidirectional
779
* and we want to find both in the same bucket.
780
*/
781
#ifndef IPFIREWALL_JENKINSHASH
782
static __inline uint32_t
783
hash_packet(const struct ipfw_flow_id *id)
784
{
785
uint32_t i;
786
787
#ifdef INET6
788
if (IS_IP6_FLOW_ID(id))
789
i = ntohl((id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
790
(id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
791
(id->src_ip6.__u6_addr.__u6_addr32[2]) ^
792
(id->src_ip6.__u6_addr.__u6_addr32[3]));
793
else
794
#endif /* INET6 */
795
i = (id->dst_ip) ^ (id->src_ip);
796
i ^= (id->dst_port) ^ (id->src_port);
797
return (i);
798
}
799
800
static __inline uint32_t
801
hash_parent(const struct ipfw_flow_id *id, const void *rule)
802
{
803
804
return (hash_packet(id) ^ ((uintptr_t)rule));
805
}
806
807
#else /* IPFIREWALL_JENKINSHASH */
808
809
VNET_DEFINE_STATIC(uint32_t, dyn_hashseed);
810
#define V_dyn_hashseed VNET(dyn_hashseed)
811
812
static __inline int
813
addrcmp4(const struct ipfw_flow_id *id)
814
{
815
816
if (id->src_ip < id->dst_ip)
817
return (0);
818
if (id->src_ip > id->dst_ip)
819
return (1);
820
if (id->src_port <= id->dst_port)
821
return (0);
822
return (1);
823
}
824
825
#ifdef INET6
826
static __inline int
827
addrcmp6(const struct ipfw_flow_id *id)
828
{
829
int ret;
830
831
ret = memcmp(&id->src_ip6, &id->dst_ip6, sizeof(struct in6_addr));
832
if (ret < 0)
833
return (0);
834
if (ret > 0)
835
return (1);
836
if (id->src_port <= id->dst_port)
837
return (0);
838
return (1);
839
}
840
841
static __inline uint32_t
842
hash_packet6(const struct ipfw_flow_id *id)
843
{
844
struct tuple6 {
845
struct in6_addr addr[2];
846
uint16_t port[2];
847
} t6;
848
849
if (addrcmp6(id) == 0) {
850
t6.addr[0] = id->src_ip6;
851
t6.addr[1] = id->dst_ip6;
852
t6.port[0] = id->src_port;
853
t6.port[1] = id->dst_port;
854
} else {
855
t6.addr[0] = id->dst_ip6;
856
t6.addr[1] = id->src_ip6;
857
t6.port[0] = id->dst_port;
858
t6.port[1] = id->src_port;
859
}
860
return (jenkins_hash32((const uint32_t *)&t6,
861
sizeof(t6) / sizeof(uint32_t), V_dyn_hashseed));
862
}
863
#endif
864
865
static __inline uint32_t
866
hash_packet(const struct ipfw_flow_id *id)
867
{
868
struct tuple4 {
869
in_addr_t addr[2];
870
uint16_t port[2];
871
} t4;
872
873
if (IS_IP4_FLOW_ID(id)) {
874
/* All fields are in host byte order */
875
if (addrcmp4(id) == 0) {
876
t4.addr[0] = id->src_ip;
877
t4.addr[1] = id->dst_ip;
878
t4.port[0] = id->src_port;
879
t4.port[1] = id->dst_port;
880
} else {
881
t4.addr[0] = id->dst_ip;
882
t4.addr[1] = id->src_ip;
883
t4.port[0] = id->dst_port;
884
t4.port[1] = id->src_port;
885
}
886
return (jenkins_hash32((const uint32_t *)&t4,
887
sizeof(t4) / sizeof(uint32_t), V_dyn_hashseed));
888
} else
889
#ifdef INET6
890
if (IS_IP6_FLOW_ID(id))
891
return (hash_packet6(id));
892
#endif
893
return (0);
894
}
895
896
static __inline uint32_t
897
hash_parent(const struct ipfw_flow_id *id, const void *rule)
898
{
899
900
return (jenkins_hash32((const uint32_t *)&rule,
901
sizeof(rule) / sizeof(uint32_t), hash_packet(id)));
902
}
903
#endif /* IPFIREWALL_JENKINSHASH */
904
905
/*
906
* Print customizable flow id description via log(9) facility.
907
*/
908
static void
909
print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
910
int log_flags, char *prefix, char *postfix)
911
{
912
struct in_addr da;
913
#ifdef INET6
914
char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
915
#else
916
char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
917
#endif
918
919
#ifdef INET6
920
if (IS_IP6_FLOW_ID(id)) {
921
ip6_sprintf(src, &id->src_ip6);
922
ip6_sprintf(dst, &id->dst_ip6);
923
} else
924
#endif
925
{
926
da.s_addr = htonl(id->src_ip);
927
inet_ntop(AF_INET, &da, src, sizeof(src));
928
da.s_addr = htonl(id->dst_ip);
929
inet_ntop(AF_INET, &da, dst, sizeof(dst));
930
}
931
log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
932
prefix, dyn_type, src, id->src_port, dst,
933
id->dst_port, V_dyn_count, postfix);
934
}
935
936
#define print_dyn_rule(id, dtype, prefix, postfix) \
937
print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
938
939
#define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0)
940
#define TIME_LE(a,b) ((int)((a)-(b)) < 0)
941
#define _SEQ_GE(a,b) ((int)((a)-(b)) >= 0)
942
#define BOTH_SYN (TH_SYN | (TH_SYN << 8))
943
#define BOTH_FIN (TH_FIN | (TH_FIN << 8))
944
#define BOTH_RST (TH_RST | (TH_RST << 8))
945
#define TCP_FLAGS (BOTH_SYN | BOTH_FIN | BOTH_RST)
946
#define ACK_FWD 0x00010000 /* fwd ack seen */
947
#define ACK_REV 0x00020000 /* rev ack seen */
948
#define ACK_BOTH (ACK_FWD | ACK_REV)
949
950
static uint32_t
951
dyn_update_tcp_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
952
const struct tcphdr *tcp, int dir)
953
{
954
uint32_t ack, expire;
955
uint32_t state, old;
956
uint8_t th_flags;
957
958
expire = data->expire;
959
old = state = data->state;
960
th_flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
961
state |= (dir == MATCH_FORWARD) ? th_flags: (th_flags << 8);
962
switch (state & TCP_FLAGS) {
963
case TH_SYN: /* opening */
964
expire = time_uptime + V_dyn_syn_lifetime;
965
break;
966
967
case BOTH_SYN: /* move to established */
968
case BOTH_SYN | TH_FIN: /* one side tries to close */
969
case BOTH_SYN | (TH_FIN << 8):
970
if (tcp == NULL)
971
break;
972
ack = ntohl(tcp->th_ack);
973
if (dir == MATCH_FORWARD) {
974
if (data->ack_fwd == 0 ||
975
_SEQ_GE(ack, data->ack_fwd)) {
976
state |= ACK_FWD;
977
if (data->ack_fwd != ack)
978
ck_pr_store_32(&data->ack_fwd, ack);
979
}
980
} else {
981
if (data->ack_rev == 0 ||
982
_SEQ_GE(ack, data->ack_rev)) {
983
state |= ACK_REV;
984
if (data->ack_rev != ack)
985
ck_pr_store_32(&data->ack_rev, ack);
986
}
987
}
988
if ((state & ACK_BOTH) == ACK_BOTH) {
989
/*
990
* Set expire time to V_dyn_ack_lifetime only if
991
* we got ACKs for both directions.
992
* We use XOR here to avoid possible state
993
* overwriting in concurrent thread.
994
*/
995
expire = time_uptime + V_dyn_ack_lifetime;
996
ck_pr_xor_32(&data->state, ACK_BOTH);
997
} else if ((data->state & ACK_BOTH) != (state & ACK_BOTH))
998
ck_pr_or_32(&data->state, state & ACK_BOTH);
999
break;
1000
1001
case BOTH_SYN | BOTH_FIN: /* both sides closed */
1002
if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
1003
V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
1004
expire = time_uptime + V_dyn_fin_lifetime;
1005
break;
1006
1007
default:
1008
if (V_dyn_keepalive != 0 &&
1009
V_dyn_rst_lifetime >= V_dyn_keepalive_period)
1010
V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
1011
expire = time_uptime + V_dyn_rst_lifetime;
1012
}
1013
/* Save TCP state if it was changed */
1014
if ((state & TCP_FLAGS) != (old & TCP_FLAGS))
1015
ck_pr_or_32(&data->state, state & TCP_FLAGS);
1016
return (expire);
1017
}
1018
1019
/*
1020
* Update ULP specific state.
1021
* For TCP we keep sequence numbers and flags. For other protocols
1022
* currently we update only expire time. Packets and bytes counters
1023
* are also updated here.
1024
*/
1025
static void
1026
dyn_update_proto_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
1027
const void *ulp, int pktlen, int dir)
1028
{
1029
uint32_t expire;
1030
1031
/* NOTE: we are in critical section here. */
1032
switch (pkt->proto) {
1033
case IPPROTO_UDP:
1034
case IPPROTO_UDPLITE:
1035
expire = time_uptime + V_dyn_udp_lifetime;
1036
break;
1037
case IPPROTO_TCP:
1038
expire = dyn_update_tcp_state(data, pkt, ulp, dir);
1039
break;
1040
default:
1041
expire = time_uptime + V_dyn_short_lifetime;
1042
}
1043
/*
1044
* Expiration timer has the per-second granularity, no need to update
1045
* it every time when state is matched.
1046
*/
1047
if (data->expire != expire)
1048
ck_pr_store_32(&data->expire, expire);
1049
1050
if (dir == MATCH_FORWARD)
1051
DYN_COUNTER_INC(data, fwd, pktlen);
1052
else
1053
DYN_COUNTER_INC(data, rev, pktlen);
1054
}
1055
1056
/*
1057
* Lookup IPv4 state.
1058
* Must be called in critical section.
1059
*/
1060
struct dyn_ipv4_state *
1061
dyn_lookup_ipv4_state(const struct ipfw_flow_id *pkt, const void *ulp,
1062
struct ipfw_dyn_info *info, int pktlen)
1063
{
1064
struct dyn_ipv4_state *s;
1065
uint32_t version, bucket;
1066
1067
bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1068
info->version = DYN_BUCKET_VERSION(bucket, ipv4_add);
1069
restart:
1070
version = DYN_BUCKET_VERSION(bucket, ipv4_del);
1071
CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1072
DYNSTATE_PROTECT(s);
1073
if (version != DYN_BUCKET_VERSION(bucket, ipv4_del))
1074
goto restart;
1075
if (s->proto != pkt->proto)
1076
continue;
1077
if (info->kidx != 0 && s->kidx != info->kidx)
1078
continue;
1079
if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1080
s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1081
info->direction = MATCH_FORWARD;
1082
break;
1083
}
1084
if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1085
s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1086
info->direction = MATCH_REVERSE;
1087
break;
1088
}
1089
}
1090
1091
if (s != NULL)
1092
dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1093
info->direction);
1094
return (s);
1095
}
1096
1097
/*
1098
* Lookup IPv4 state.
1099
* Simplifed version is used to check that matching state doesn't exist.
1100
*/
1101
static int
1102
dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *pkt,
1103
const void *ulp, int pktlen, uint32_t bucket, uint32_t kidx)
1104
{
1105
struct dyn_ipv4_state *s;
1106
int dir;
1107
1108
dir = MATCH_NONE;
1109
DYN_BUCKET_ASSERT(bucket);
1110
CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1111
if (s->proto != pkt->proto ||
1112
s->kidx != kidx)
1113
continue;
1114
if (s->sport == pkt->src_port &&
1115
s->dport == pkt->dst_port &&
1116
s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1117
dir = MATCH_FORWARD;
1118
break;
1119
}
1120
if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1121
s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1122
dir = MATCH_REVERSE;
1123
break;
1124
}
1125
}
1126
if (s != NULL)
1127
dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1128
return (s != NULL);
1129
}
1130
1131
struct dyn_ipv4_state *
1132
dyn_lookup_ipv4_parent(const struct ipfw_flow_id *pkt, const void *rule,
1133
uint32_t ruleid, uint32_t rulenum, uint32_t hashval)
1134
{
1135
struct dyn_ipv4_state *s;
1136
uint32_t version, bucket;
1137
1138
bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1139
restart:
1140
version = DYN_BUCKET_VERSION(bucket, ipv4_parent_del);
1141
CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1142
DYNSTATE_PROTECT(s);
1143
if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_del))
1144
goto restart;
1145
/*
1146
* NOTE: we do not need to check kidx, because parent rule
1147
* can not create states with different kidx.
1148
* And parent rule always created for forward direction.
1149
*/
1150
if (s->limit->parent == rule &&
1151
s->limit->ruleid == ruleid &&
1152
s->limit->rulenum == rulenum &&
1153
s->proto == pkt->proto &&
1154
s->sport == pkt->src_port &&
1155
s->dport == pkt->dst_port &&
1156
s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1157
if (s->limit->expire != time_uptime +
1158
V_dyn_short_lifetime)
1159
ck_pr_store_32(&s->limit->expire,
1160
time_uptime + V_dyn_short_lifetime);
1161
break;
1162
}
1163
}
1164
return (s);
1165
}
1166
1167
static struct dyn_ipv4_state *
1168
dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id *pkt,
1169
const void *rule, uint32_t ruleid, uint32_t rulenum, uint32_t bucket)
1170
{
1171
struct dyn_ipv4_state *s;
1172
1173
DYN_BUCKET_ASSERT(bucket);
1174
CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1175
if (s->limit->parent == rule &&
1176
s->limit->ruleid == ruleid &&
1177
s->limit->rulenum == rulenum &&
1178
s->proto == pkt->proto &&
1179
s->sport == pkt->src_port &&
1180
s->dport == pkt->dst_port &&
1181
s->src == pkt->src_ip && s->dst == pkt->dst_ip)
1182
break;
1183
}
1184
return (s);
1185
}
1186
1187
#ifdef INET6
1188
static uint32_t
1189
dyn_getscopeid(const struct ip_fw_args *args)
1190
{
1191
1192
/*
1193
* If source or destination address is an scopeid address, we need
1194
* determine the scope zone id to resolve address scope ambiguity.
1195
*/
1196
if (IN6_IS_ADDR_LINKLOCAL(&args->f_id.src_ip6) ||
1197
IN6_IS_ADDR_LINKLOCAL(&args->f_id.dst_ip6))
1198
return (in6_getscopezone(args->ifp, IPV6_ADDR_SCOPE_LINKLOCAL));
1199
1200
return (0);
1201
}
1202
1203
/*
1204
* Lookup IPv6 state.
1205
* Must be called in critical section.
1206
*/
1207
static struct dyn_ipv6_state *
1208
dyn_lookup_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1209
const void *ulp, struct ipfw_dyn_info *info, int pktlen)
1210
{
1211
struct dyn_ipv6_state *s;
1212
uint32_t version, bucket;
1213
1214
bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1215
info->version = DYN_BUCKET_VERSION(bucket, ipv6_add);
1216
restart:
1217
version = DYN_BUCKET_VERSION(bucket, ipv6_del);
1218
CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1219
DYNSTATE_PROTECT(s);
1220
if (version != DYN_BUCKET_VERSION(bucket, ipv6_del))
1221
goto restart;
1222
if (s->proto != pkt->proto || s->zoneid != zoneid)
1223
continue;
1224
if (info->kidx != 0 && s->kidx != info->kidx)
1225
continue;
1226
if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1227
IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1228
IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1229
info->direction = MATCH_FORWARD;
1230
break;
1231
}
1232
if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1233
IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1234
IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1235
info->direction = MATCH_REVERSE;
1236
break;
1237
}
1238
}
1239
if (s != NULL)
1240
dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1241
info->direction);
1242
return (s);
1243
}
1244
1245
/*
1246
* Lookup IPv6 state.
1247
* Simplifed version is used to check that matching state doesn't exist.
1248
*/
1249
static int
1250
dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1251
const void *ulp, int pktlen, uint32_t bucket, uint32_t kidx)
1252
{
1253
struct dyn_ipv6_state *s;
1254
int dir;
1255
1256
dir = MATCH_NONE;
1257
DYN_BUCKET_ASSERT(bucket);
1258
CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1259
if (s->proto != pkt->proto || s->kidx != kidx ||
1260
s->zoneid != zoneid)
1261
continue;
1262
if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1263
IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1264
IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1265
dir = MATCH_FORWARD;
1266
break;
1267
}
1268
if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1269
IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1270
IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1271
dir = MATCH_REVERSE;
1272
break;
1273
}
1274
}
1275
if (s != NULL)
1276
dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1277
return (s != NULL);
1278
}
1279
1280
static struct dyn_ipv6_state *
1281
dyn_lookup_ipv6_parent(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1282
const void *rule, uint32_t ruleid, uint32_t rulenum, uint32_t hashval)
1283
{
1284
struct dyn_ipv6_state *s;
1285
uint32_t version, bucket;
1286
1287
bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1288
restart:
1289
version = DYN_BUCKET_VERSION(bucket, ipv6_parent_del);
1290
CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1291
DYNSTATE_PROTECT(s);
1292
if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_del))
1293
goto restart;
1294
/*
1295
* NOTE: we do not need to check kidx, because parent rule
1296
* can not create states with different kidx.
1297
* Also parent rule always created for forward direction.
1298
*/
1299
if (s->limit->parent == rule &&
1300
s->limit->ruleid == ruleid &&
1301
s->limit->rulenum == rulenum &&
1302
s->proto == pkt->proto &&
1303
s->sport == pkt->src_port &&
1304
s->dport == pkt->dst_port && s->zoneid == zoneid &&
1305
IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1306
IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1307
if (s->limit->expire != time_uptime +
1308
V_dyn_short_lifetime)
1309
ck_pr_store_32(&s->limit->expire,
1310
time_uptime + V_dyn_short_lifetime);
1311
break;
1312
}
1313
}
1314
return (s);
1315
}
1316
1317
static struct dyn_ipv6_state *
1318
dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1319
const void *rule, uint32_t ruleid, uint32_t rulenum, uint32_t bucket)
1320
{
1321
struct dyn_ipv6_state *s;
1322
1323
DYN_BUCKET_ASSERT(bucket);
1324
CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1325
if (s->limit->parent == rule &&
1326
s->limit->ruleid == ruleid &&
1327
s->limit->rulenum == rulenum &&
1328
s->proto == pkt->proto &&
1329
s->sport == pkt->src_port &&
1330
s->dport == pkt->dst_port && s->zoneid == zoneid &&
1331
IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1332
IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6))
1333
break;
1334
}
1335
return (s);
1336
}
1337
1338
#endif /* INET6 */
1339
1340
static int
1341
dyn_handle_orphaned(struct ip_fw *old_rule, struct dyn_data *data)
1342
{
1343
struct ip_fw *rule;
1344
const ipfw_insn *cmd, *old_cmd;
1345
1346
old_cmd = ACTION_PTR(old_rule);
1347
switch (old_cmd->opcode) {
1348
case O_SETMARK:
1349
case O_SKIPTO:
1350
/*
1351
* Rule pointer was changed. For O_SKIPTO action it can be
1352
* dangerous to keep use old rule. If new rule has the same
1353
* action and the same destination number, then use this dynamic
1354
* state. Otherwise it is better to create new one.
1355
*/
1356
rule = V_layer3_chain.map[data->f_pos];
1357
cmd = ACTION_PTR(rule);
1358
if (cmd->opcode != old_cmd->opcode ||
1359
cmd->len != old_cmd->len || cmd->arg1 != old_cmd->arg1 ||
1360
insntoc(cmd, u32)->d[0] != insntoc(old_cmd, u32)->d[0])
1361
return (-1);
1362
break;
1363
}
1364
return (0);
1365
}
1366
1367
/*
1368
* Lookup dynamic state.
1369
* pkt - filled by ipfw_chk() ipfw_flow_id;
1370
* ulp - determined by ipfw_chk() upper level protocol header;
1371
* dyn_info - info about matched state to return back;
1372
* Returns pointer to state's parent rule and dyn_info. If there is
1373
* no state, NULL is returned.
1374
* On match ipfw_dyn_lookup() updates state's counters.
1375
*/
1376
struct ip_fw *
1377
ipfw_dyn_lookup_state(const struct ip_fw_args *args, const void *ulp,
1378
int pktlen, const ipfw_insn *cmd, struct ipfw_dyn_info *info)
1379
{
1380
struct dyn_data *data;
1381
struct ip_fw *rule;
1382
1383
IPFW_RLOCK_ASSERT(&V_layer3_chain);
1384
MPASS(F_LEN(cmd) >= F_INSN_SIZE(ipfw_insn_kidx));
1385
1386
data = NULL;
1387
rule = NULL;
1388
info->kidx = insntoc(cmd, kidx)->kidx;
1389
info->direction = MATCH_NONE;
1390
info->hashval = hash_packet(&args->f_id);
1391
1392
DYNSTATE_CRITICAL_ENTER();
1393
if (IS_IP4_FLOW_ID(&args->f_id)) {
1394
struct dyn_ipv4_state *s;
1395
1396
s = dyn_lookup_ipv4_state(&args->f_id, ulp, info, pktlen);
1397
if (s != NULL) {
1398
/*
1399
* Dynamic states are created using the same 5-tuple,
1400
* so it is assumed, that parent rule for O_LIMIT
1401
* state has the same address family.
1402
*/
1403
data = s->data;
1404
if (s->type == O_LIMIT) {
1405
s = data->parent;
1406
rule = s->limit->parent;
1407
} else
1408
rule = data->parent;
1409
}
1410
}
1411
#ifdef INET6
1412
else if (IS_IP6_FLOW_ID(&args->f_id)) {
1413
struct dyn_ipv6_state *s;
1414
1415
s = dyn_lookup_ipv6_state(&args->f_id, dyn_getscopeid(args),
1416
ulp, info, pktlen);
1417
if (s != NULL) {
1418
data = s->data;
1419
if (s->type == O_LIMIT) {
1420
s = data->parent;
1421
rule = s->limit->parent;
1422
} else
1423
rule = data->parent;
1424
}
1425
}
1426
#endif
1427
if (data != NULL) {
1428
/*
1429
* If cached chain id is the same, we can avoid rule index
1430
* lookup. Otherwise do lookup and update chain_id and f_pos.
1431
* It is safe even if there is concurrent thread that want
1432
* update the same state, because chain->id can be changed
1433
* only under IPFW_WLOCK().
1434
*/
1435
if (data->chain_id != V_layer3_chain.id) {
1436
data->f_pos = ipfw_find_rule(&V_layer3_chain,
1437
data->rulenum, data->ruleid);
1438
/*
1439
* Check that found state has not orphaned.
1440
* When chain->id being changed the parent
1441
* rule can be deleted. If found rule doesn't
1442
* match the parent pointer, consider this
1443
* result as MATCH_NONE and return NULL.
1444
*
1445
* This will lead to creation of new similar state
1446
* that will be added into head of this bucket.
1447
* And the state that we currently have matched
1448
* should be deleted by dyn_expire_states().
1449
*
1450
* In case when dyn_keep_states is enabled, return
1451
* pointer to deleted rule and f_pos value
1452
* corresponding to penultimate rule.
1453
* When we have enabled V_dyn_keep_states, states
1454
* that become orphaned will get the DYN_REFERENCED
1455
* flag and rule will keep around. So we can return
1456
* it. But since it is not in the rules map, we need
1457
* return such f_pos value, so after the state
1458
* handling if the search will continue, the next rule
1459
* will be the last one - the default rule.
1460
*/
1461
if (V_layer3_chain.map[data->f_pos] == rule) {
1462
data->chain_id = V_layer3_chain.id;
1463
} else if (V_dyn_keep_states != 0) {
1464
/*
1465
* The original rule pointer is still usable.
1466
* So, we return it, but f_pos need to be
1467
* changed to point to the penultimate rule.
1468
*/
1469
MPASS(V_layer3_chain.n_rules > 1);
1470
if (dyn_handle_orphaned(rule, data) == 0) {
1471
data->chain_id = V_layer3_chain.id;
1472
data->f_pos = V_layer3_chain.n_rules - 2;
1473
} else {
1474
rule = NULL;
1475
info->direction = MATCH_NONE;
1476
}
1477
} else {
1478
rule = NULL;
1479
info->direction = MATCH_NONE;
1480
DYN_DEBUG("rule %p [%u, %u] is considered "
1481
"invalid in data %p", rule, data->ruleid,
1482
data->rulenum, data);
1483
/* info->f_pos doesn't matter here. */
1484
}
1485
}
1486
info->f_pos = data->f_pos;
1487
}
1488
DYNSTATE_CRITICAL_EXIT();
1489
#if 0
1490
/*
1491
* Return MATCH_NONE if parent rule is in disabled set.
1492
* This will lead to creation of new similar state that
1493
* will be added into head of this bucket.
1494
*
1495
* XXXAE: we need to be able update state's set when parent
1496
* rule set is changed.
1497
*/
1498
if (rule != NULL && (V_set_disable & (1 << rule->set))) {
1499
rule = NULL;
1500
info->direction = MATCH_NONE;
1501
}
1502
#endif
1503
return (rule);
1504
}
1505
1506
static struct dyn_parent *
1507
dyn_alloc_parent(void *parent, uint32_t ruleid, uint32_t rulenum,
1508
uint32_t hashval)
1509
{
1510
struct dyn_parent *limit;
1511
1512
limit = uma_zalloc(V_dyn_parent_zone, M_NOWAIT | M_ZERO);
1513
if (limit == NULL) {
1514
if (last_log != time_uptime) {
1515
last_log = time_uptime;
1516
log(LOG_DEBUG,
1517
"ipfw: Cannot allocate parent dynamic state, "
1518
"consider increasing "
1519
"net.inet.ip.fw.dyn_parent_max\n");
1520
}
1521
return (NULL);
1522
}
1523
1524
limit->parent = parent;
1525
limit->ruleid = ruleid;
1526
limit->rulenum = rulenum;
1527
limit->hashval = hashval;
1528
limit->expire = time_uptime + V_dyn_short_lifetime;
1529
return (limit);
1530
}
1531
1532
static struct dyn_data *
1533
dyn_alloc_dyndata(void *parent, uint32_t ruleid, uint32_t rulenum,
1534
const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1535
uint32_t hashval, uint16_t fibnum)
1536
{
1537
struct dyn_data *data;
1538
1539
data = uma_zalloc(V_dyn_data_zone, M_NOWAIT | M_ZERO);
1540
if (data == NULL) {
1541
if (last_log != time_uptime) {
1542
last_log = time_uptime;
1543
log(LOG_DEBUG,
1544
"ipfw: Cannot allocate dynamic state, "
1545
"consider increasing net.inet.ip.fw.dyn_max\n");
1546
}
1547
return (NULL);
1548
}
1549
1550
data->parent = parent;
1551
data->ruleid = ruleid;
1552
data->rulenum = rulenum;
1553
data->fibnum = fibnum;
1554
data->hashval = hashval;
1555
data->expire = time_uptime + V_dyn_syn_lifetime;
1556
dyn_update_proto_state(data, pkt, ulp, pktlen, MATCH_FORWARD);
1557
return (data);
1558
}
1559
1560
static struct dyn_ipv4_state *
1561
dyn_alloc_ipv4_state(const struct ipfw_flow_id *pkt, uint32_t kidx,
1562
uint8_t type)
1563
{
1564
struct dyn_ipv4_state *s;
1565
1566
s = uma_zalloc(V_dyn_ipv4_zone, M_NOWAIT | M_ZERO);
1567
if (s == NULL)
1568
return (NULL);
1569
1570
s->type = type;
1571
s->kidx = kidx;
1572
s->proto = pkt->proto;
1573
s->sport = pkt->src_port;
1574
s->dport = pkt->dst_port;
1575
s->src = pkt->src_ip;
1576
s->dst = pkt->dst_ip;
1577
return (s);
1578
}
1579
1580
/*
1581
* Add IPv4 parent state.
1582
* Returns pointer to parent state. When it is not NULL we are in
1583
* critical section and pointer protected by hazard pointer.
1584
* When some error occurs, it returns NULL and exit from critical section
1585
* is not needed.
1586
*/
1587
static struct dyn_ipv4_state *
1588
dyn_add_ipv4_parent(void *rule, uint32_t ruleid, uint32_t rulenum,
1589
const struct ipfw_flow_id *pkt, uint32_t hashval, uint32_t version,
1590
uint32_t kidx)
1591
{
1592
struct dyn_ipv4_state *s;
1593
struct dyn_parent *limit;
1594
uint32_t bucket;
1595
1596
bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1597
DYN_BUCKET_LOCK(bucket);
1598
if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_add)) {
1599
/*
1600
* Bucket version has been changed since last lookup,
1601
* do lookup again to be sure that state does not exist.
1602
*/
1603
s = dyn_lookup_ipv4_parent_locked(pkt, rule, ruleid,
1604
rulenum, bucket);
1605
if (s != NULL) {
1606
/*
1607
* Simultaneous thread has already created this
1608
* state. Just return it.
1609
*/
1610
DYNSTATE_CRITICAL_ENTER();
1611
DYNSTATE_PROTECT(s);
1612
DYN_BUCKET_UNLOCK(bucket);
1613
return (s);
1614
}
1615
}
1616
1617
limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1618
if (limit == NULL) {
1619
DYN_BUCKET_UNLOCK(bucket);
1620
return (NULL);
1621
}
1622
1623
s = dyn_alloc_ipv4_state(pkt, kidx, O_LIMIT_PARENT);
1624
if (s == NULL) {
1625
DYN_BUCKET_UNLOCK(bucket);
1626
uma_zfree(V_dyn_parent_zone, limit);
1627
return (NULL);
1628
}
1629
1630
s->limit = limit;
1631
CK_SLIST_INSERT_HEAD(&V_dyn_ipv4_parent[bucket], s, entry);
1632
DYN_COUNT_INC(dyn_parent_count);
1633
DYN_BUCKET_VERSION_BUMP(bucket, ipv4_parent_add);
1634
DYNSTATE_CRITICAL_ENTER();
1635
DYNSTATE_PROTECT(s);
1636
DYN_BUCKET_UNLOCK(bucket);
1637
return (s);
1638
}
1639
1640
static int
1641
dyn_add_ipv4_state(void *parent, uint32_t ruleid, uint32_t rulenum,
1642
const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1643
uint32_t hashval, struct ipfw_dyn_info *info, uint16_t fibnum,
1644
uint32_t kidx, uint8_t type)
1645
{
1646
struct dyn_ipv4_state *s;
1647
void *data;
1648
uint32_t bucket;
1649
1650
bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1651
DYN_BUCKET_LOCK(bucket);
1652
if (info->direction == MATCH_UNKNOWN ||
1653
info->kidx != kidx ||
1654
info->hashval != hashval ||
1655
info->version != DYN_BUCKET_VERSION(bucket, ipv4_add)) {
1656
/*
1657
* Bucket version has been changed since last lookup,
1658
* do lookup again to be sure that state does not exist.
1659
*/
1660
if (dyn_lookup_ipv4_state_locked(pkt, ulp, pktlen,
1661
bucket, kidx) != 0) {
1662
DYN_BUCKET_UNLOCK(bucket);
1663
return (EEXIST);
1664
}
1665
}
1666
1667
data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1668
pktlen, hashval, fibnum);
1669
if (data == NULL) {
1670
DYN_BUCKET_UNLOCK(bucket);
1671
return (ENOMEM);
1672
}
1673
1674
s = dyn_alloc_ipv4_state(pkt, kidx, type);
1675
if (s == NULL) {
1676
DYN_BUCKET_UNLOCK(bucket);
1677
uma_zfree(V_dyn_data_zone, data);
1678
return (ENOMEM);
1679
}
1680
1681
s->data = data;
1682
CK_SLIST_INSERT_HEAD(&V_dyn_ipv4[bucket], s, entry);
1683
DYN_COUNT_INC(dyn_count);
1684
DYN_BUCKET_VERSION_BUMP(bucket, ipv4_add);
1685
DYN_BUCKET_UNLOCK(bucket);
1686
return (0);
1687
}
1688
1689
#ifdef INET6
1690
static struct dyn_ipv6_state *
1691
dyn_alloc_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1692
uint32_t kidx, uint8_t type)
1693
{
1694
struct dyn_ipv6_state *s;
1695
1696
s = uma_zalloc(V_dyn_ipv6_zone, M_NOWAIT | M_ZERO);
1697
if (s == NULL)
1698
return (NULL);
1699
1700
s->type = type;
1701
s->kidx = kidx;
1702
s->zoneid = zoneid;
1703
s->proto = pkt->proto;
1704
s->sport = pkt->src_port;
1705
s->dport = pkt->dst_port;
1706
s->src = pkt->src_ip6;
1707
s->dst = pkt->dst_ip6;
1708
return (s);
1709
}
1710
1711
/*
1712
* Add IPv6 parent state.
1713
* Returns pointer to parent state. When it is not NULL we are in
1714
* critical section and pointer protected by hazard pointer.
1715
* When some error occurs, it return NULL and exit from critical section
1716
* is not needed.
1717
*/
1718
static struct dyn_ipv6_state *
1719
dyn_add_ipv6_parent(void *rule, uint32_t ruleid, uint32_t rulenum,
1720
const struct ipfw_flow_id *pkt, uint32_t zoneid, uint32_t hashval,
1721
uint32_t version, uint32_t kidx)
1722
{
1723
struct dyn_ipv6_state *s;
1724
struct dyn_parent *limit;
1725
uint32_t bucket;
1726
1727
bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1728
DYN_BUCKET_LOCK(bucket);
1729
if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_add)) {
1730
/*
1731
* Bucket version has been changed since last lookup,
1732
* do lookup again to be sure that state does not exist.
1733
*/
1734
s = dyn_lookup_ipv6_parent_locked(pkt, zoneid, rule, ruleid,
1735
rulenum, bucket);
1736
if (s != NULL) {
1737
/*
1738
* Simultaneous thread has already created this
1739
* state. Just return it.
1740
*/
1741
DYNSTATE_CRITICAL_ENTER();
1742
DYNSTATE_PROTECT(s);
1743
DYN_BUCKET_UNLOCK(bucket);
1744
return (s);
1745
}
1746
}
1747
1748
limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1749
if (limit == NULL) {
1750
DYN_BUCKET_UNLOCK(bucket);
1751
return (NULL);
1752
}
1753
1754
s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, O_LIMIT_PARENT);
1755
if (s == NULL) {
1756
DYN_BUCKET_UNLOCK(bucket);
1757
uma_zfree(V_dyn_parent_zone, limit);
1758
return (NULL);
1759
}
1760
1761
s->limit = limit;
1762
CK_SLIST_INSERT_HEAD(&V_dyn_ipv6_parent[bucket], s, entry);
1763
DYN_COUNT_INC(dyn_parent_count);
1764
DYN_BUCKET_VERSION_BUMP(bucket, ipv6_parent_add);
1765
DYNSTATE_CRITICAL_ENTER();
1766
DYNSTATE_PROTECT(s);
1767
DYN_BUCKET_UNLOCK(bucket);
1768
return (s);
1769
}
1770
1771
static int
1772
dyn_add_ipv6_state(void *parent, uint32_t ruleid, uint32_t rulenum,
1773
const struct ipfw_flow_id *pkt, uint32_t zoneid, const void *ulp,
1774
int pktlen, uint32_t hashval, struct ipfw_dyn_info *info,
1775
uint16_t fibnum, uint32_t kidx, uint8_t type)
1776
{
1777
struct dyn_ipv6_state *s;
1778
struct dyn_data *data;
1779
uint32_t bucket;
1780
1781
bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1782
DYN_BUCKET_LOCK(bucket);
1783
if (info->direction == MATCH_UNKNOWN ||
1784
info->kidx != kidx ||
1785
info->hashval != hashval ||
1786
info->version != DYN_BUCKET_VERSION(bucket, ipv6_add)) {
1787
/*
1788
* Bucket version has been changed since last lookup,
1789
* do lookup again to be sure that state does not exist.
1790
*/
1791
if (dyn_lookup_ipv6_state_locked(pkt, zoneid, ulp, pktlen,
1792
bucket, kidx) != 0) {
1793
DYN_BUCKET_UNLOCK(bucket);
1794
return (EEXIST);
1795
}
1796
}
1797
1798
data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1799
pktlen, hashval, fibnum);
1800
if (data == NULL) {
1801
DYN_BUCKET_UNLOCK(bucket);
1802
return (ENOMEM);
1803
}
1804
1805
s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, type);
1806
if (s == NULL) {
1807
DYN_BUCKET_UNLOCK(bucket);
1808
uma_zfree(V_dyn_data_zone, data);
1809
return (ENOMEM);
1810
}
1811
1812
s->data = data;
1813
CK_SLIST_INSERT_HEAD(&V_dyn_ipv6[bucket], s, entry);
1814
DYN_COUNT_INC(dyn_count);
1815
DYN_BUCKET_VERSION_BUMP(bucket, ipv6_add);
1816
DYN_BUCKET_UNLOCK(bucket);
1817
return (0);
1818
}
1819
#endif /* INET6 */
1820
1821
static void *
1822
dyn_get_parent_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1823
struct ip_fw *rule, uint32_t hashval, uint32_t limit, uint32_t kidx)
1824
{
1825
char sbuf[24];
1826
struct dyn_parent *p;
1827
void *ret;
1828
uint32_t bucket, version;
1829
1830
p = NULL;
1831
ret = NULL;
1832
bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1833
DYNSTATE_CRITICAL_ENTER();
1834
if (IS_IP4_FLOW_ID(pkt)) {
1835
struct dyn_ipv4_state *s;
1836
1837
version = DYN_BUCKET_VERSION(bucket, ipv4_parent_add);
1838
s = dyn_lookup_ipv4_parent(pkt, rule, rule->id,
1839
rule->rulenum, bucket);
1840
if (s == NULL) {
1841
/*
1842
* Exit from critical section because dyn_add_parent()
1843
* will acquire bucket lock.
1844
*/
1845
DYNSTATE_CRITICAL_EXIT();
1846
1847
s = dyn_add_ipv4_parent(rule, rule->id,
1848
rule->rulenum, pkt, hashval, version, kidx);
1849
if (s == NULL)
1850
return (NULL);
1851
/* Now we are in critical section again. */
1852
}
1853
ret = s;
1854
p = s->limit;
1855
}
1856
#ifdef INET6
1857
else if (IS_IP6_FLOW_ID(pkt)) {
1858
struct dyn_ipv6_state *s;
1859
1860
version = DYN_BUCKET_VERSION(bucket, ipv6_parent_add);
1861
s = dyn_lookup_ipv6_parent(pkt, zoneid, rule, rule->id,
1862
rule->rulenum, bucket);
1863
if (s == NULL) {
1864
/*
1865
* Exit from critical section because dyn_add_parent()
1866
* can acquire bucket mutex.
1867
*/
1868
DYNSTATE_CRITICAL_EXIT();
1869
1870
s = dyn_add_ipv6_parent(rule, rule->id,
1871
rule->rulenum, pkt, zoneid, hashval, version,
1872
kidx);
1873
if (s == NULL)
1874
return (NULL);
1875
/* Now we are in critical section again. */
1876
}
1877
ret = s;
1878
p = s->limit;
1879
}
1880
#endif
1881
else {
1882
DYNSTATE_CRITICAL_EXIT();
1883
return (NULL);
1884
}
1885
1886
/* Check the limit */
1887
if (DPARENT_COUNT(p) >= limit) {
1888
DYNSTATE_CRITICAL_EXIT();
1889
if (V_fw_verbose && last_log != time_uptime) {
1890
last_log = time_uptime;
1891
snprintf(sbuf, sizeof(sbuf), "%u drop session",
1892
rule->rulenum);
1893
print_dyn_rule_flags(pkt, O_LIMIT,
1894
LOG_SECURITY | LOG_DEBUG, sbuf,
1895
"too many entries");
1896
}
1897
return (NULL);
1898
}
1899
1900
/* Take new session into account. */
1901
DPARENT_COUNT_INC(p);
1902
/*
1903
* We must exit from critical section because the following code
1904
* can acquire bucket mutex.
1905
* We rely on the 'count' field. The state will not expire
1906
* until it has some child states, i.e. 'count' field is not zero.
1907
* Return state pointer, it will be used by child states as parent.
1908
*/
1909
DYNSTATE_CRITICAL_EXIT();
1910
return (ret);
1911
}
1912
1913
static int
1914
dyn_install_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1915
uint16_t fibnum, const void *ulp, int pktlen, struct ip_fw *rule,
1916
struct ipfw_dyn_info *info, uint32_t limit, uint16_t limit_mask,
1917
uint32_t kidx, uint8_t type)
1918
{
1919
struct ipfw_flow_id id;
1920
uint32_t hashval, parent_hashval, ruleid, rulenum;
1921
int ret;
1922
1923
MPASS(type == O_LIMIT || type == O_KEEP_STATE);
1924
1925
ruleid = rule->id;
1926
rulenum = rule->rulenum;
1927
if (type == O_LIMIT) {
1928
/* Create masked flow id and calculate bucket */
1929
id.addr_type = pkt->addr_type;
1930
id.proto = pkt->proto;
1931
id.fib = fibnum; /* unused */
1932
id.src_port = (limit_mask & DYN_SRC_PORT) ?
1933
pkt->src_port: 0;
1934
id.dst_port = (limit_mask & DYN_DST_PORT) ?
1935
pkt->dst_port: 0;
1936
if (IS_IP4_FLOW_ID(pkt)) {
1937
id.src_ip = (limit_mask & DYN_SRC_ADDR) ?
1938
pkt->src_ip: 0;
1939
id.dst_ip = (limit_mask & DYN_DST_ADDR) ?
1940
pkt->dst_ip: 0;
1941
}
1942
#ifdef INET6
1943
else if (IS_IP6_FLOW_ID(pkt)) {
1944
if (limit_mask & DYN_SRC_ADDR)
1945
id.src_ip6 = pkt->src_ip6;
1946
else
1947
memset(&id.src_ip6, 0, sizeof(id.src_ip6));
1948
if (limit_mask & DYN_DST_ADDR)
1949
id.dst_ip6 = pkt->dst_ip6;
1950
else
1951
memset(&id.dst_ip6, 0, sizeof(id.dst_ip6));
1952
}
1953
#endif
1954
else
1955
return (EAFNOSUPPORT);
1956
1957
parent_hashval = hash_parent(&id, rule);
1958
rule = dyn_get_parent_state(&id, zoneid, rule, parent_hashval,
1959
limit, kidx);
1960
if (rule == NULL) {
1961
#if 0
1962
if (V_fw_verbose && last_log != time_uptime) {
1963
last_log = time_uptime;
1964
snprintf(sbuf, sizeof(sbuf),
1965
"%u drop session", rule->rulenum);
1966
print_dyn_rule_flags(pkt, O_LIMIT,
1967
LOG_SECURITY | LOG_DEBUG, sbuf,
1968
"too many entries");
1969
}
1970
#endif
1971
return (EACCES);
1972
}
1973
/*
1974
* Limit is not reached, create new state.
1975
* Now rule points to parent state.
1976
*/
1977
}
1978
1979
hashval = hash_packet(pkt);
1980
if (IS_IP4_FLOW_ID(pkt))
1981
ret = dyn_add_ipv4_state(rule, ruleid, rulenum, pkt,
1982
ulp, pktlen, hashval, info, fibnum, kidx, type);
1983
#ifdef INET6
1984
else if (IS_IP6_FLOW_ID(pkt))
1985
ret = dyn_add_ipv6_state(rule, ruleid, rulenum, pkt,
1986
zoneid, ulp, pktlen, hashval, info, fibnum, kidx, type);
1987
#endif /* INET6 */
1988
else
1989
ret = EAFNOSUPPORT;
1990
1991
if (type == O_LIMIT) {
1992
if (ret != 0) {
1993
/*
1994
* We failed to create child state for O_LIMIT
1995
* opcode. Since we already counted it in the parent,
1996
* we must revert counter back. The 'rule' points to
1997
* parent state, use it to get dyn_parent.
1998
*
1999
* XXXAE: it should be safe to use 'rule' pointer
2000
* without extra lookup, parent state is referenced
2001
* and should not be freed.
2002
*/
2003
if (IS_IP4_FLOW_ID(&id))
2004
DPARENT_COUNT_DEC(
2005
((struct dyn_ipv4_state *)rule)->limit);
2006
#ifdef INET6
2007
else if (IS_IP6_FLOW_ID(&id))
2008
DPARENT_COUNT_DEC(
2009
((struct dyn_ipv6_state *)rule)->limit);
2010
#endif
2011
}
2012
}
2013
/*
2014
* EEXIST means that simultaneous thread has created this
2015
* state. Consider this as success.
2016
*
2017
* XXXAE: should we invalidate 'info' content here?
2018
*/
2019
if (ret == EEXIST)
2020
return (0);
2021
return (ret);
2022
}
2023
2024
/*
2025
* Install dynamic state.
2026
* chain - ipfw's instance;
2027
* rule - the parent rule that installs the state;
2028
* cmd - opcode that installs the state;
2029
* args - ipfw arguments;
2030
* ulp - upper level protocol header;
2031
* pktlen - packet length;
2032
* info - dynamic state lookup info;
2033
* tablearg - tablearg id.
2034
*
2035
* Returns non-zero value (failure) if state is not installed because
2036
* of errors or because session limitations are enforced.
2037
*/
2038
int
2039
ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
2040
const ipfw_insn_limit *cmd, const struct ip_fw_args *args,
2041
const void *ulp, int pktlen, struct ipfw_dyn_info *info,
2042
uint32_t tablearg)
2043
{
2044
uint32_t limit;
2045
uint16_t limit_mask;
2046
2047
if (cmd->o.opcode == O_LIMIT) {
2048
limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
2049
limit_mask = cmd->limit_mask;
2050
} else {
2051
limit = 0;
2052
limit_mask = 0;
2053
}
2054
/*
2055
* NOTE: we assume that kidx field of struct ipfw_insn_kidx
2056
* located in the same place as kidx field of ipfw_insn_limit.
2057
*/
2058
return (dyn_install_state(&args->f_id,
2059
#ifdef INET6
2060
IS_IP6_FLOW_ID(&args->f_id) ? dyn_getscopeid(args):
2061
#endif
2062
0, M_GETFIB(args->m), ulp, pktlen, rule, info, limit,
2063
limit_mask, cmd->kidx, cmd->o.opcode));
2064
}
2065
2066
/*
2067
* Free safe to remove state entries from expired lists.
2068
*/
2069
static void
2070
dyn_free_states(struct ip_fw_chain *chain)
2071
{
2072
struct dyn_ipv4_state *s4, *s4n;
2073
#ifdef INET6
2074
struct dyn_ipv6_state *s6, *s6n;
2075
#endif
2076
int cached_count, i;
2077
2078
/*
2079
* We keep pointers to objects that are in use on each CPU
2080
* in the per-cpu dyn_hp pointer. When object is going to be
2081
* removed, first of it is unlinked from the corresponding
2082
* list. This leads to changing of dyn_bucket_xxx_delver version.
2083
* Unlinked objects is placed into corresponding dyn_expired_xxx
2084
* list. Reader that is going to dereference object pointer checks
2085
* dyn_bucket_xxx_delver version before and after storing pointer
2086
* into dyn_hp. If version is the same, the object is protected
2087
* from freeing and it is safe to dereference. Othervise reader
2088
* tries to iterate list again from the beginning, but this object
2089
* now unlinked and thus will not be accessible.
2090
*
2091
* Copy dyn_hp pointers for each CPU into dyn_hp_cache array.
2092
* It does not matter that some pointer can be changed in
2093
* time while we are copying. We need to check, that objects
2094
* removed in the previous pass are not in use. And if dyn_hp
2095
* pointer does not contain it in the time when we are copying,
2096
* it will not appear there, because it is already unlinked.
2097
* And for new pointers we will not free objects that will be
2098
* unlinked in this pass.
2099
*/
2100
cached_count = 0;
2101
CPU_FOREACH(i) {
2102
dyn_hp_cache[cached_count] = DYNSTATE_GET(i);
2103
if (dyn_hp_cache[cached_count] != NULL)
2104
cached_count++;
2105
}
2106
2107
/*
2108
* Free expired states that are safe to free.
2109
* Check each entry from previous pass in the dyn_expired_xxx
2110
* list, if pointer to the object is in the dyn_hp_cache array,
2111
* keep it until next pass. Otherwise it is safe to free the
2112
* object.
2113
*
2114
* XXXAE: optimize this to use SLIST_REMOVE_AFTER.
2115
*/
2116
#define DYN_FREE_STATES(s, next, name) do { \
2117
s = SLIST_FIRST(&V_dyn_expired_ ## name); \
2118
while (s != NULL) { \
2119
next = SLIST_NEXT(s, expired); \
2120
for (i = 0; i < cached_count; i++) \
2121
if (dyn_hp_cache[i] == s) \
2122
break; \
2123
if (i == cached_count) { \
2124
if (s->type == O_LIMIT_PARENT && \
2125
s->limit->count != 0) { \
2126
s = next; \
2127
continue; \
2128
} \
2129
SLIST_REMOVE(&V_dyn_expired_ ## name, \
2130
s, dyn_ ## name ## _state, expired); \
2131
if (s->type == O_LIMIT_PARENT) \
2132
uma_zfree(V_dyn_parent_zone, s->limit); \
2133
else \
2134
uma_zfree(V_dyn_data_zone, s->data); \
2135
uma_zfree(V_dyn_ ## name ## _zone, s); \
2136
} \
2137
s = next; \
2138
} \
2139
} while (0)
2140
2141
/*
2142
* Protect access to expired lists with DYN_EXPIRED_LOCK.
2143
* Userland can invoke ipfw_expire_dyn_states() to delete
2144
* specific states, this will lead to modification of expired
2145
* lists.
2146
*/
2147
DYN_EXPIRED_LOCK();
2148
DYN_FREE_STATES(s4, s4n, ipv4);
2149
#ifdef INET6
2150
DYN_FREE_STATES(s6, s6n, ipv6);
2151
#endif
2152
DYN_EXPIRED_UNLOCK();
2153
#undef DYN_FREE_STATES
2154
}
2155
2156
/*
2157
* Returns:
2158
* 0 when state is not matched by specified range;
2159
* 1 when state is matched by specified range;
2160
* 2 when state is matched by specified range and requested deletion of
2161
* dynamic states.
2162
*/
2163
static int
2164
dyn_match_range(uint32_t rulenum, uint8_t set, const ipfw_range_tlv *rt)
2165
{
2166
2167
MPASS(rt != NULL);
2168
/* flush all states */
2169
if (rt->flags & IPFW_RCFLAG_ALL) {
2170
if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2171
return (2); /* forced */
2172
return (1);
2173
}
2174
if ((rt->flags & IPFW_RCFLAG_SET) != 0 && set != rt->set)
2175
return (0);
2176
if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
2177
(rulenum < rt->start_rule || rulenum > rt->end_rule))
2178
return (0);
2179
if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2180
return (2);
2181
return (1);
2182
}
2183
2184
static void
2185
dyn_acquire_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2186
struct ip_fw *rule, uint32_t kidx)
2187
{
2188
struct dyn_state_obj *obj;
2189
2190
/*
2191
* Do not acquire reference twice.
2192
* This can happen when rule deletion executed for
2193
* the same range, but different ruleset id.
2194
*/
2195
if (data->flags & DYN_REFERENCED)
2196
return;
2197
2198
IPFW_UH_WLOCK_ASSERT(ch);
2199
MPASS(kidx != 0);
2200
2201
data->flags |= DYN_REFERENCED;
2202
/* Reference the named object */
2203
obj = SRV_OBJECT(ch, kidx);
2204
obj->no.refcnt++;
2205
MPASS(obj->no.etlv == IPFW_TLV_STATE_NAME);
2206
2207
/* Reference the parent rule */
2208
rule->refcnt++;
2209
}
2210
2211
static void
2212
dyn_release_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2213
struct ip_fw *rule, uint32_t kidx)
2214
{
2215
struct dyn_state_obj *obj;
2216
2217
IPFW_UH_WLOCK_ASSERT(ch);
2218
MPASS(kidx != 0);
2219
2220
obj = SRV_OBJECT(ch, kidx);
2221
if (obj->no.refcnt == 1)
2222
dyn_destroy(ch, &obj->no);
2223
else
2224
obj->no.refcnt--;
2225
2226
if (--rule->refcnt == 1)
2227
ipfw_free_rule(rule);
2228
}
2229
2230
/*
2231
* We do not keep O_LIMIT_PARENT states when V_dyn_keep_states is enabled.
2232
* O_LIMIT state is created when new connection is going to be established
2233
* and there is no matching state. So, since the old parent rule was deleted
2234
* we can't create new states with old parent, and thus we can not account
2235
* new connections with already established connections, and can not do
2236
* proper limiting.
2237
*/
2238
static int
2239
dyn_match_ipv4_state(struct ip_fw_chain *ch, struct dyn_ipv4_state *s,
2240
const ipfw_range_tlv *rt)
2241
{
2242
struct ip_fw *rule;
2243
int ret;
2244
2245
if (s->type == O_LIMIT_PARENT) {
2246
rule = s->limit->parent;
2247
return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2248
}
2249
2250
rule = s->data->parent;
2251
if (s->type == O_LIMIT)
2252
rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2253
2254
ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2255
if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2256
return (ret);
2257
2258
dyn_acquire_rule(ch, s->data, rule, s->kidx);
2259
return (0);
2260
}
2261
2262
#ifdef INET6
2263
static int
2264
dyn_match_ipv6_state(struct ip_fw_chain *ch, struct dyn_ipv6_state *s,
2265
const ipfw_range_tlv *rt)
2266
{
2267
struct ip_fw *rule;
2268
int ret;
2269
2270
if (s->type == O_LIMIT_PARENT) {
2271
rule = s->limit->parent;
2272
return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2273
}
2274
2275
rule = s->data->parent;
2276
if (s->type == O_LIMIT)
2277
rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
2278
2279
ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2280
if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2281
return (ret);
2282
2283
dyn_acquire_rule(ch, s->data, rule, s->kidx);
2284
return (0);
2285
}
2286
#endif
2287
2288
/*
2289
* Unlink expired entries from states lists.
2290
* @rt can be used to specify the range of states for deletion.
2291
*/
2292
static void
2293
dyn_expire_states(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
2294
{
2295
struct dyn_ipv4_slist expired_ipv4;
2296
#ifdef INET6
2297
struct dyn_ipv6_slist expired_ipv6;
2298
struct dyn_ipv6_state *s6, *s6n, *s6p;
2299
#endif
2300
struct dyn_ipv4_state *s4, *s4n, *s4p;
2301
void *rule;
2302
int bucket, removed, length, max_length;
2303
2304
/*
2305
* Unlink expired states from each bucket.
2306
* With acquired bucket lock iterate entries of each lists:
2307
* ipv4, ipv4_parent, ipv6, and ipv6_parent. Check expired time
2308
* and unlink entry from the list, link entry into temporary
2309
* expired_xxx lists then bump "del" bucket version.
2310
*
2311
* When an entry is removed, corresponding states counter is
2312
* decremented. If entry has O_LIMIT type, parent's reference
2313
* counter is decremented.
2314
*
2315
* NOTE: this function can be called from userspace context
2316
* when user deletes rules. In this case all matched states
2317
* will be forcedly unlinked. O_LIMIT_PARENT states will be kept
2318
* in the expired lists until reference counter become zero.
2319
*/
2320
#define DYN_UNLINK_STATES(s, prev, next, exp, af, name, extra) do { \
2321
length = 0; \
2322
removed = 0; \
2323
prev = NULL; \
2324
s = CK_SLIST_FIRST(&V_dyn_ ## name [bucket]); \
2325
while (s != NULL) { \
2326
next = CK_SLIST_NEXT(s, entry); \
2327
if ((TIME_LEQ((s)->exp, time_uptime) && extra) || \
2328
(rt != NULL && \
2329
dyn_match_ ## af ## _state(ch, s, rt))) { \
2330
if (prev != NULL) \
2331
CK_SLIST_REMOVE_AFTER(prev, entry); \
2332
else \
2333
CK_SLIST_REMOVE_HEAD( \
2334
&V_dyn_ ## name [bucket], entry); \
2335
removed++; \
2336
SLIST_INSERT_HEAD(&expired_ ## af, s, expired); \
2337
if (s->type == O_LIMIT_PARENT) \
2338
DYN_COUNT_DEC(dyn_parent_count); \
2339
else { \
2340
DYN_COUNT_DEC(dyn_count); \
2341
if (s->data->flags & DYN_REFERENCED) { \
2342
rule = s->data->parent; \
2343
if (s->type == O_LIMIT) \
2344
rule = ((__typeof(s)) \
2345
rule)->limit->parent;\
2346
dyn_release_rule(ch, s->data, \
2347
rule, s->kidx); \
2348
} \
2349
if (s->type == O_LIMIT) { \
2350
s = s->data->parent; \
2351
DPARENT_COUNT_DEC(s->limit); \
2352
} \
2353
} \
2354
} else { \
2355
prev = s; \
2356
length++; \
2357
} \
2358
s = next; \
2359
} \
2360
if (removed != 0) \
2361
DYN_BUCKET_VERSION_BUMP(bucket, name ## _del); \
2362
if (length > max_length) \
2363
max_length = length; \
2364
} while (0)
2365
2366
SLIST_INIT(&expired_ipv4);
2367
#ifdef INET6
2368
SLIST_INIT(&expired_ipv6);
2369
#endif
2370
max_length = 0;
2371
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2372
DYN_BUCKET_LOCK(bucket);
2373
DYN_UNLINK_STATES(s4, s4p, s4n, data->expire, ipv4, ipv4, 1);
2374
DYN_UNLINK_STATES(s4, s4p, s4n, limit->expire, ipv4,
2375
ipv4_parent, (s4->limit->count == 0));
2376
#ifdef INET6
2377
DYN_UNLINK_STATES(s6, s6p, s6n, data->expire, ipv6, ipv6, 1);
2378
DYN_UNLINK_STATES(s6, s6p, s6n, limit->expire, ipv6,
2379
ipv6_parent, (s6->limit->count == 0));
2380
#endif
2381
DYN_BUCKET_UNLOCK(bucket);
2382
}
2383
/* Update curr_max_length for statistics. */
2384
V_curr_max_length = max_length;
2385
/*
2386
* Concatenate temporary lists with global expired lists.
2387
*/
2388
DYN_EXPIRED_LOCK();
2389
SLIST_CONCAT(&V_dyn_expired_ipv4, &expired_ipv4,
2390
dyn_ipv4_state, expired);
2391
#ifdef INET6
2392
SLIST_CONCAT(&V_dyn_expired_ipv6, &expired_ipv6,
2393
dyn_ipv6_state, expired);
2394
#endif
2395
DYN_EXPIRED_UNLOCK();
2396
#undef DYN_UNLINK_STATES
2397
#undef DYN_UNREF_STATES
2398
}
2399
2400
static struct mbuf *
2401
dyn_mgethdr(int len, uint16_t fibnum)
2402
{
2403
struct mbuf *m;
2404
2405
m = m_gethdr(M_NOWAIT, MT_DATA);
2406
if (m == NULL)
2407
return (NULL);
2408
#ifdef MAC
2409
mac_netinet_firewall_send(m);
2410
#endif
2411
M_SETFIB(m, fibnum);
2412
m->m_data += max_linkhdr;
2413
m->m_flags |= M_SKIP_FIREWALL;
2414
m->m_len = m->m_pkthdr.len = len;
2415
bzero(m->m_data, len);
2416
return (m);
2417
}
2418
2419
static void
2420
dyn_make_keepalive_ipv4(struct mbuf *m, in_addr_t src, in_addr_t dst,
2421
uint32_t seq, uint32_t ack, uint16_t sport, uint16_t dport)
2422
{
2423
struct tcphdr *tcp;
2424
struct ip *ip;
2425
2426
ip = mtod(m, struct ip *);
2427
ip->ip_v = 4;
2428
ip->ip_hl = sizeof(*ip) >> 2;
2429
ip->ip_tos = IPTOS_LOWDELAY;
2430
ip->ip_len = htons(m->m_len);
2431
ip->ip_off |= htons(IP_DF);
2432
ip->ip_ttl = V_ip_defttl;
2433
ip->ip_p = IPPROTO_TCP;
2434
ip->ip_src.s_addr = htonl(src);
2435
ip->ip_dst.s_addr = htonl(dst);
2436
2437
tcp = mtodo(m, sizeof(struct ip));
2438
tcp->th_sport = htons(sport);
2439
tcp->th_dport = htons(dport);
2440
tcp->th_off = sizeof(struct tcphdr) >> 2;
2441
tcp->th_seq = htonl(seq);
2442
tcp->th_ack = htonl(ack);
2443
tcp_set_flags(tcp, TH_ACK);
2444
tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2445
htons(sizeof(struct tcphdr) + IPPROTO_TCP));
2446
2447
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2448
m->m_pkthdr.csum_flags = CSUM_TCP;
2449
}
2450
2451
static void
2452
dyn_enqueue_keepalive_ipv4(struct mbufq *q, const struct dyn_ipv4_state *s)
2453
{
2454
struct mbuf *m;
2455
2456
if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2457
m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2458
s->data->fibnum);
2459
if (m != NULL) {
2460
dyn_make_keepalive_ipv4(m, s->dst, s->src,
2461
s->data->ack_fwd - 1, s->data->ack_rev,
2462
s->dport, s->sport);
2463
if (mbufq_enqueue(q, m)) {
2464
m_freem(m);
2465
log(LOG_DEBUG, "ipfw: limit for IPv4 "
2466
"keepalive queue is reached.\n");
2467
return;
2468
}
2469
}
2470
}
2471
2472
if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2473
m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2474
s->data->fibnum);
2475
if (m != NULL) {
2476
dyn_make_keepalive_ipv4(m, s->src, s->dst,
2477
s->data->ack_rev - 1, s->data->ack_fwd,
2478
s->sport, s->dport);
2479
if (mbufq_enqueue(q, m)) {
2480
m_freem(m);
2481
log(LOG_DEBUG, "ipfw: limit for IPv4 "
2482
"keepalive queue is reached.\n");
2483
return;
2484
}
2485
}
2486
}
2487
}
2488
2489
/*
2490
* Prepare and send keep-alive packets.
2491
*/
2492
static void
2493
dyn_send_keepalive_ipv4(struct ip_fw_chain *chain)
2494
{
2495
struct mbufq q;
2496
struct mbuf *m;
2497
struct dyn_ipv4_state *s;
2498
uint32_t bucket;
2499
2500
mbufq_init(&q, INT_MAX);
2501
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2502
DYN_BUCKET_LOCK(bucket);
2503
CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
2504
/*
2505
* Only established TCP connections that will
2506
* become expired within dyn_keepalive_interval.
2507
*/
2508
if (s->proto != IPPROTO_TCP ||
2509
(s->data->state & BOTH_SYN) != BOTH_SYN ||
2510
TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2511
s->data->expire))
2512
continue;
2513
dyn_enqueue_keepalive_ipv4(&q, s);
2514
}
2515
DYN_BUCKET_UNLOCK(bucket);
2516
}
2517
while ((m = mbufq_dequeue(&q)) != NULL)
2518
ip_output(m, NULL, NULL, 0, NULL, NULL);
2519
}
2520
2521
#ifdef INET6
2522
static void
2523
dyn_make_keepalive_ipv6(struct mbuf *m, const struct in6_addr *src,
2524
const struct in6_addr *dst, uint32_t zoneid, uint32_t seq, uint32_t ack,
2525
uint16_t sport, uint16_t dport)
2526
{
2527
struct tcphdr *tcp;
2528
struct ip6_hdr *ip6;
2529
2530
ip6 = mtod(m, struct ip6_hdr *);
2531
ip6->ip6_vfc |= IPV6_VERSION;
2532
ip6->ip6_plen = htons(sizeof(struct tcphdr));
2533
ip6->ip6_nxt = IPPROTO_TCP;
2534
ip6->ip6_hlim = IPV6_DEFHLIM;
2535
ip6->ip6_src = *src;
2536
if (IN6_IS_ADDR_LINKLOCAL(src))
2537
ip6->ip6_src.s6_addr16[1] = htons(zoneid & 0xffff);
2538
ip6->ip6_dst = *dst;
2539
if (IN6_IS_ADDR_LINKLOCAL(dst))
2540
ip6->ip6_dst.s6_addr16[1] = htons(zoneid & 0xffff);
2541
2542
tcp = mtodo(m, sizeof(struct ip6_hdr));
2543
tcp->th_sport = htons(sport);
2544
tcp->th_dport = htons(dport);
2545
tcp->th_off = sizeof(struct tcphdr) >> 2;
2546
tcp->th_seq = htonl(seq);
2547
tcp->th_ack = htonl(ack);
2548
tcp_set_flags(tcp, TH_ACK);
2549
tcp->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr),
2550
IPPROTO_TCP, 0);
2551
2552
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2553
m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2554
}
2555
2556
static void
2557
dyn_enqueue_keepalive_ipv6(struct mbufq *q, const struct dyn_ipv6_state *s)
2558
{
2559
struct mbuf *m;
2560
2561
if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2562
m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2563
sizeof(struct tcphdr), s->data->fibnum);
2564
if (m != NULL) {
2565
dyn_make_keepalive_ipv6(m, &s->dst, &s->src,
2566
s->zoneid, s->data->ack_fwd - 1, s->data->ack_rev,
2567
s->dport, s->sport);
2568
if (mbufq_enqueue(q, m)) {
2569
m_freem(m);
2570
log(LOG_DEBUG, "ipfw: limit for IPv6 "
2571
"keepalive queue is reached.\n");
2572
return;
2573
}
2574
}
2575
}
2576
2577
if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2578
m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2579
sizeof(struct tcphdr), s->data->fibnum);
2580
if (m != NULL) {
2581
dyn_make_keepalive_ipv6(m, &s->src, &s->dst,
2582
s->zoneid, s->data->ack_rev - 1, s->data->ack_fwd,
2583
s->sport, s->dport);
2584
if (mbufq_enqueue(q, m)) {
2585
m_freem(m);
2586
log(LOG_DEBUG, "ipfw: limit for IPv6 "
2587
"keepalive queue is reached.\n");
2588
return;
2589
}
2590
}
2591
}
2592
}
2593
2594
static void
2595
dyn_send_keepalive_ipv6(struct ip_fw_chain *chain)
2596
{
2597
struct mbufq q;
2598
struct mbuf *m;
2599
struct dyn_ipv6_state *s;
2600
uint32_t bucket;
2601
2602
mbufq_init(&q, INT_MAX);
2603
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2604
DYN_BUCKET_LOCK(bucket);
2605
CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
2606
/*
2607
* Only established TCP connections that will
2608
* become expired within dyn_keepalive_interval.
2609
*/
2610
if (s->proto != IPPROTO_TCP ||
2611
(s->data->state & BOTH_SYN) != BOTH_SYN ||
2612
TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2613
s->data->expire))
2614
continue;
2615
dyn_enqueue_keepalive_ipv6(&q, s);
2616
}
2617
DYN_BUCKET_UNLOCK(bucket);
2618
}
2619
while ((m = mbufq_dequeue(&q)) != NULL)
2620
ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2621
}
2622
#endif /* INET6 */
2623
2624
static void
2625
dyn_grow_hashtable(struct ip_fw_chain *chain, uint32_t new, int flags)
2626
{
2627
#ifdef INET6
2628
struct dyn_ipv6ck_slist *ipv6, *ipv6_parent;
2629
uint32_t *ipv6_add, *ipv6_del, *ipv6_parent_add, *ipv6_parent_del;
2630
struct dyn_ipv6_state *s6;
2631
#endif
2632
struct dyn_ipv4ck_slist *ipv4, *ipv4_parent;
2633
uint32_t *ipv4_add, *ipv4_del, *ipv4_parent_add, *ipv4_parent_del;
2634
struct dyn_ipv4_state *s4;
2635
struct mtx *bucket_lock;
2636
void *tmp;
2637
uint32_t bucket;
2638
2639
MPASS(powerof2(new));
2640
DYN_DEBUG("grow hash size %u -> %u", V_curr_dyn_buckets, new);
2641
/*
2642
* Allocate and initialize new lists.
2643
*/
2644
bucket_lock = malloc(new * sizeof(struct mtx), M_IPFW,
2645
flags | M_ZERO);
2646
if (bucket_lock == NULL)
2647
return;
2648
2649
ipv4 = ipv4_parent = NULL;
2650
ipv4_add = ipv4_del = ipv4_parent_add = ipv4_parent_del = NULL;
2651
#ifdef INET6
2652
ipv6 = ipv6_parent = NULL;
2653
ipv6_add = ipv6_del = ipv6_parent_add = ipv6_parent_del = NULL;
2654
#endif
2655
2656
ipv4 = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2657
flags | M_ZERO);
2658
if (ipv4 == NULL)
2659
goto bad;
2660
ipv4_parent = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2661
flags | M_ZERO);
2662
if (ipv4_parent == NULL)
2663
goto bad;
2664
ipv4_add = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2665
if (ipv4_add == NULL)
2666
goto bad;
2667
ipv4_del = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2668
if (ipv4_del == NULL)
2669
goto bad;
2670
ipv4_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2671
flags | M_ZERO);
2672
if (ipv4_parent_add == NULL)
2673
goto bad;
2674
ipv4_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2675
flags | M_ZERO);
2676
if (ipv4_parent_del == NULL)
2677
goto bad;
2678
#ifdef INET6
2679
ipv6 = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2680
flags | M_ZERO);
2681
if (ipv6 == NULL)
2682
goto bad;
2683
ipv6_parent = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2684
flags | M_ZERO);
2685
if (ipv6_parent == NULL)
2686
goto bad;
2687
ipv6_add = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2688
if (ipv6_add == NULL)
2689
goto bad;
2690
ipv6_del = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2691
if (ipv6_del == NULL)
2692
goto bad;
2693
ipv6_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2694
flags | M_ZERO);
2695
if (ipv6_parent_add == NULL)
2696
goto bad;
2697
ipv6_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2698
flags | M_ZERO);
2699
if (ipv6_parent_del == NULL)
2700
goto bad;
2701
#endif
2702
for (bucket = 0; bucket < new; bucket++) {
2703
DYN_BUCKET_LOCK_INIT(bucket_lock, bucket);
2704
CK_SLIST_INIT(&ipv4[bucket]);
2705
CK_SLIST_INIT(&ipv4_parent[bucket]);
2706
#ifdef INET6
2707
CK_SLIST_INIT(&ipv6[bucket]);
2708
CK_SLIST_INIT(&ipv6_parent[bucket]);
2709
#endif
2710
}
2711
2712
#define DYN_RELINK_STATES(s, hval, i, head, ohead) do { \
2713
while ((s = CK_SLIST_FIRST(&V_dyn_ ## ohead[i])) != NULL) { \
2714
CK_SLIST_REMOVE_HEAD(&V_dyn_ ## ohead[i], entry); \
2715
CK_SLIST_INSERT_HEAD(&head[DYN_BUCKET(s->hval, new)], \
2716
s, entry); \
2717
} \
2718
} while (0)
2719
/*
2720
* Hold traffic processing until we finish resize to
2721
* prevent access to states lists.
2722
*/
2723
IPFW_WLOCK(chain);
2724
/* Re-link all dynamic states */
2725
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2726
DYN_RELINK_STATES(s4, data->hashval, bucket, ipv4, ipv4);
2727
DYN_RELINK_STATES(s4, limit->hashval, bucket, ipv4_parent,
2728
ipv4_parent);
2729
#ifdef INET6
2730
DYN_RELINK_STATES(s6, data->hashval, bucket, ipv6, ipv6);
2731
DYN_RELINK_STATES(s6, limit->hashval, bucket, ipv6_parent,
2732
ipv6_parent);
2733
#endif
2734
}
2735
2736
#define DYN_SWAP_PTR(old, new, tmp) do { \
2737
tmp = old; \
2738
old = new; \
2739
new = tmp; \
2740
} while (0)
2741
/* Swap pointers */
2742
DYN_SWAP_PTR(V_dyn_bucket_lock, bucket_lock, tmp);
2743
DYN_SWAP_PTR(V_dyn_ipv4, ipv4, tmp);
2744
DYN_SWAP_PTR(V_dyn_ipv4_parent, ipv4_parent, tmp);
2745
DYN_SWAP_PTR(V_dyn_ipv4_add, ipv4_add, tmp);
2746
DYN_SWAP_PTR(V_dyn_ipv4_parent_add, ipv4_parent_add, tmp);
2747
DYN_SWAP_PTR(V_dyn_ipv4_del, ipv4_del, tmp);
2748
DYN_SWAP_PTR(V_dyn_ipv4_parent_del, ipv4_parent_del, tmp);
2749
2750
#ifdef INET6
2751
DYN_SWAP_PTR(V_dyn_ipv6, ipv6, tmp);
2752
DYN_SWAP_PTR(V_dyn_ipv6_parent, ipv6_parent, tmp);
2753
DYN_SWAP_PTR(V_dyn_ipv6_add, ipv6_add, tmp);
2754
DYN_SWAP_PTR(V_dyn_ipv6_parent_add, ipv6_parent_add, tmp);
2755
DYN_SWAP_PTR(V_dyn_ipv6_del, ipv6_del, tmp);
2756
DYN_SWAP_PTR(V_dyn_ipv6_parent_del, ipv6_parent_del, tmp);
2757
#endif
2758
bucket = V_curr_dyn_buckets;
2759
V_curr_dyn_buckets = new;
2760
2761
IPFW_WUNLOCK(chain);
2762
2763
/* Release old resources */
2764
while (bucket-- != 0)
2765
DYN_BUCKET_LOCK_DESTROY(bucket_lock, bucket);
2766
bad:
2767
free(bucket_lock, M_IPFW);
2768
free(ipv4, M_IPFW);
2769
free(ipv4_parent, M_IPFW);
2770
free(ipv4_add, M_IPFW);
2771
free(ipv4_parent_add, M_IPFW);
2772
free(ipv4_del, M_IPFW);
2773
free(ipv4_parent_del, M_IPFW);
2774
#ifdef INET6
2775
free(ipv6, M_IPFW);
2776
free(ipv6_parent, M_IPFW);
2777
free(ipv6_add, M_IPFW);
2778
free(ipv6_parent_add, M_IPFW);
2779
free(ipv6_del, M_IPFW);
2780
free(ipv6_parent_del, M_IPFW);
2781
#endif
2782
}
2783
2784
/*
2785
* This function is used to perform various maintenance
2786
* on dynamic hash lists. Currently it is called every second.
2787
*/
2788
static void
2789
dyn_tick(void *vnetx)
2790
{
2791
struct epoch_tracker et;
2792
uint32_t buckets;
2793
2794
CURVNET_SET((struct vnet *)vnetx);
2795
/*
2796
* First free states unlinked in previous passes.
2797
*/
2798
dyn_free_states(&V_layer3_chain);
2799
dyn_expire_states(&V_layer3_chain, NULL);
2800
2801
/*
2802
* Send keepalives if they are enabled and the time has come.
2803
*/
2804
if (V_dyn_keepalive != 0 &&
2805
V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) {
2806
V_dyn_keepalive_last = time_uptime;
2807
NET_EPOCH_ENTER(et);
2808
dyn_send_keepalive_ipv4(&V_layer3_chain);
2809
#ifdef INET6
2810
dyn_send_keepalive_ipv6(&V_layer3_chain);
2811
#endif
2812
NET_EPOCH_EXIT(et);
2813
}
2814
/*
2815
* Check if we need to resize the hash:
2816
* if current number of states exceeds number of buckets in hash,
2817
* and dyn_buckets_max permits to grow the number of buckets, then
2818
* do it. Grow hash size to the minimum power of 2 which is bigger
2819
* than current states count.
2820
*/
2821
if (V_curr_dyn_buckets < V_dyn_buckets_max &&
2822
(V_curr_dyn_buckets < V_dyn_count / 2 || (
2823
V_curr_dyn_buckets < V_dyn_count && V_curr_max_length > 8))) {
2824
buckets = 1 << fls(V_dyn_count);
2825
if (buckets > V_dyn_buckets_max)
2826
buckets = V_dyn_buckets_max;
2827
dyn_grow_hashtable(&V_layer3_chain, buckets, M_NOWAIT);
2828
}
2829
2830
callout_reset_on(&V_dyn_timeout, hz, dyn_tick, vnetx, 0);
2831
CURVNET_RESTORE();
2832
}
2833
2834
void
2835
ipfw_expire_dyn_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2836
{
2837
IPFW_RLOCK_TRACKER;
2838
2839
/*
2840
* Do not perform any checks if we currently have no dynamic states
2841
*/
2842
if (V_dyn_count == 0)
2843
return;
2844
2845
/*
2846
* Acquire read lock to prevent race with dyn_grow_hashtable() called
2847
* via dyn_tick(). Note that dyn_tick() also calls dyn_expire_states(),
2848
* but doesn't acquire the chain lock. A race between dyn_tick() and
2849
* this function should be safe, as dyn_expire_states() does all proper
2850
* locking of buckets and expire lists.
2851
*/
2852
IPFW_RLOCK(chain);
2853
dyn_expire_states(chain, rt);
2854
IPFW_RUNLOCK(chain);
2855
}
2856
2857
/*
2858
* Pass through all states and reset eaction for orphaned rules.
2859
*/
2860
void
2861
ipfw_dyn_reset_eaction(struct ip_fw_chain *ch, uint32_t eaction_id,
2862
uint32_t default_id, uint32_t instance_id)
2863
{
2864
#ifdef INET6
2865
struct dyn_ipv6_state *s6;
2866
#endif
2867
struct dyn_ipv4_state *s4;
2868
struct ip_fw *rule;
2869
uint32_t bucket;
2870
2871
#define DYN_RESET_EACTION(s, h, b) \
2872
CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
2873
if ((s->data->flags & DYN_REFERENCED) == 0) \
2874
continue; \
2875
rule = s->data->parent; \
2876
if (s->type == O_LIMIT) \
2877
rule = ((__typeof(s))rule)->limit->parent; \
2878
ipfw_reset_eaction(ch, rule, eaction_id, \
2879
default_id, instance_id); \
2880
}
2881
2882
IPFW_UH_WLOCK_ASSERT(ch);
2883
if (V_dyn_count == 0)
2884
return;
2885
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2886
DYN_RESET_EACTION(s4, ipv4, bucket);
2887
#ifdef INET6
2888
DYN_RESET_EACTION(s6, ipv6, bucket);
2889
#endif
2890
}
2891
}
2892
2893
/*
2894
* Returns size of dynamic states in legacy format
2895
*/
2896
int
2897
ipfw_dyn_len(void)
2898
{
2899
2900
return ((V_dyn_count + V_dyn_parent_count) * sizeof(ipfw_dyn_rule));
2901
}
2902
2903
/*
2904
* Returns number of dynamic states.
2905
* Marks every named object index used by dynamic states with bit in @bmask.
2906
* Returns number of named objects accounted in bmask via @nocnt.
2907
* Used by dump format v1 (current).
2908
*/
2909
uint32_t
2910
ipfw_dyn_get_count(uint32_t *bmask, int *nocnt)
2911
{
2912
#ifdef INET6
2913
struct dyn_ipv6_state *s6;
2914
#endif
2915
struct dyn_ipv4_state *s4;
2916
uint32_t bucket;
2917
2918
#define DYN_COUNT_OBJECTS(s, h, b) \
2919
CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
2920
MPASS(s->kidx != 0); \
2921
if (ipfw_mark_object_kidx(bmask, IPFW_TLV_STATE_NAME, \
2922
s->kidx) != 0) \
2923
(*nocnt)++; \
2924
}
2925
2926
IPFW_UH_RLOCK_ASSERT(&V_layer3_chain);
2927
2928
/* No need to pass through all the buckets. */
2929
*nocnt = 0;
2930
if (V_dyn_count + V_dyn_parent_count == 0)
2931
return (0);
2932
2933
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2934
DYN_COUNT_OBJECTS(s4, ipv4, bucket);
2935
#ifdef INET6
2936
DYN_COUNT_OBJECTS(s6, ipv6, bucket);
2937
#endif
2938
}
2939
2940
return (V_dyn_count + V_dyn_parent_count);
2941
}
2942
2943
/*
2944
* Check if rule contains at least one dynamic opcode.
2945
*
2946
* Returns 1 if such opcode is found, 0 otherwise.
2947
*/
2948
int
2949
ipfw_is_dyn_rule(struct ip_fw *rule)
2950
{
2951
int cmdlen, l;
2952
ipfw_insn *cmd;
2953
2954
l = rule->cmd_len;
2955
cmd = rule->cmd;
2956
cmdlen = 0;
2957
for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
2958
cmdlen = F_LEN(cmd);
2959
2960
switch (cmd->opcode) {
2961
case O_LIMIT:
2962
case O_KEEP_STATE:
2963
case O_PROBE_STATE:
2964
case O_CHECK_STATE:
2965
return (1);
2966
}
2967
}
2968
2969
return (0);
2970
}
2971
2972
static void
2973
dyn_export_parent(const struct dyn_parent *p, uint32_t kidx, uint8_t set,
2974
ipfw_dyn_rule *dst)
2975
{
2976
2977
dst->type = O_LIMIT_PARENT;
2978
dst->set = set;
2979
dst->kidx = kidx;
2980
dst->rulenum = p->rulenum;
2981
dst->count = DPARENT_COUNT(p);
2982
dst->expire = TIME_LEQ(p->expire, time_uptime) ? 0:
2983
p->expire - time_uptime;
2984
dst->hashval = p->hashval;
2985
2986
/* unused fields */
2987
dst->pad = 0;
2988
dst->pcnt = 0;
2989
dst->bcnt = 0;
2990
dst->ack_fwd = 0;
2991
dst->ack_rev = 0;
2992
}
2993
2994
static void
2995
dyn_export_data(const struct dyn_data *data, uint32_t kidx, uint8_t type,
2996
uint8_t set, ipfw_dyn_rule *dst)
2997
{
2998
2999
dst->type = type;
3000
dst->set = set;
3001
dst->kidx = kidx;
3002
dst->rulenum = data->rulenum;
3003
dst->pcnt = data->pcnt_fwd + data->pcnt_rev;
3004
dst->bcnt = data->bcnt_fwd + data->bcnt_rev;
3005
dst->expire = TIME_LEQ(data->expire, time_uptime) ? 0:
3006
data->expire - time_uptime;
3007
dst->state = data->state;
3008
if (data->flags & DYN_REFERENCED)
3009
dst->state |= IPFW_DYN_ORPHANED;
3010
3011
dst->ack_fwd = data->ack_fwd;
3012
dst->ack_rev = data->ack_rev;
3013
dst->hashval = data->hashval;
3014
}
3015
3016
static void
3017
dyn_export_ipv4_state(const struct dyn_ipv4_state *s, ipfw_dyn_rule *dst)
3018
{
3019
struct ip_fw *rule;
3020
3021
switch (s->type) {
3022
case O_LIMIT_PARENT:
3023
rule = s->limit->parent;
3024
dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3025
break;
3026
default:
3027
rule = s->data->parent;
3028
if (s->type == O_LIMIT)
3029
rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
3030
dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3031
}
3032
3033
dst->id.dst_ip = s->dst;
3034
dst->id.src_ip = s->src;
3035
dst->id.dst_port = s->dport;
3036
dst->id.src_port = s->sport;
3037
dst->id.fib = s->data->fibnum;
3038
dst->id.proto = s->proto;
3039
dst->id._flags = 0;
3040
dst->id.addr_type = 4;
3041
3042
memset(&dst->id.dst_ip6, 0, sizeof(dst->id.dst_ip6));
3043
memset(&dst->id.src_ip6, 0, sizeof(dst->id.src_ip6));
3044
dst->id.flow_id6 = dst->id.extra = 0;
3045
}
3046
3047
#ifdef INET6
3048
static void
3049
dyn_export_ipv6_state(const struct dyn_ipv6_state *s, ipfw_dyn_rule *dst)
3050
{
3051
struct ip_fw *rule;
3052
3053
switch (s->type) {
3054
case O_LIMIT_PARENT:
3055
rule = s->limit->parent;
3056
dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3057
break;
3058
default:
3059
rule = s->data->parent;
3060
if (s->type == O_LIMIT)
3061
rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
3062
dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3063
}
3064
3065
dst->id.src_ip6 = s->src;
3066
dst->id.dst_ip6 = s->dst;
3067
dst->id.dst_port = s->dport;
3068
dst->id.src_port = s->sport;
3069
dst->id.fib = s->data->fibnum;
3070
dst->id.proto = s->proto;
3071
dst->id._flags = 0;
3072
dst->id.addr_type = 6;
3073
3074
dst->id.dst_ip = dst->id.src_ip = 0;
3075
dst->id.flow_id6 = dst->id.extra = 0;
3076
}
3077
#endif /* INET6 */
3078
3079
/*
3080
* Fills the buffer given by @sd with dynamic states.
3081
* Used by dump format v1 (current).
3082
*
3083
* Returns 0 on success.
3084
*/
3085
int
3086
ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
3087
{
3088
#ifdef INET6
3089
struct dyn_ipv6_state *s6;
3090
#endif
3091
struct dyn_ipv4_state *s4;
3092
ipfw_obj_dyntlv *dst, *last;
3093
ipfw_obj_ctlv *ctlv;
3094
uint32_t bucket;
3095
3096
if (V_dyn_count == 0)
3097
return (0);
3098
3099
/*
3100
* IPFW_UH_RLOCK garantees that another userland request
3101
* and callout thread will not delete entries from states
3102
* lists.
3103
*/
3104
IPFW_UH_RLOCK_ASSERT(chain);
3105
3106
ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
3107
if (ctlv == NULL)
3108
return (ENOMEM);
3109
ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
3110
ctlv->objsize = sizeof(ipfw_obj_dyntlv);
3111
last = NULL;
3112
3113
#define DYN_EXPORT_STATES(s, af, h, b) \
3114
CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
3115
dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd, \
3116
sizeof(ipfw_obj_dyntlv)); \
3117
if (dst == NULL) \
3118
return (ENOMEM); \
3119
dyn_export_ ## af ## _state(s, &dst->state); \
3120
dst->head.length = sizeof(ipfw_obj_dyntlv); \
3121
dst->head.type = IPFW_TLV_DYN_ENT; \
3122
last = dst; \
3123
}
3124
3125
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3126
DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3127
DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3128
#ifdef INET6
3129
DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3130
DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3131
#endif /* INET6 */
3132
}
3133
3134
/* mark last dynamic rule */
3135
if (last != NULL)
3136
last->head.flags = IPFW_DF_LAST; /* XXX: unused */
3137
return (0);
3138
#undef DYN_EXPORT_STATES
3139
}
3140
3141
/*
3142
* When we have enabled V_dyn_keep_states, states that become ORPHANED
3143
* will keep pointer to original rule. Then this rule pointer is used
3144
* to apply rule action after ipfw_dyn_lookup_state().
3145
* Some rule actions use IPFW_INC_RULE_COUNTER() directly to this rule
3146
* pointer, but other actions use chain->map[f_pos] instead. The last
3147
* case leads to incrementing counters on the wrong rule, because
3148
* ORPHANED states have not parent rule in chain->map[].
3149
* To solve this we add protected rule:
3150
* count ip from any to any not // comment
3151
* It will be matched only by packets that are handled by ORPHANED states.
3152
*/
3153
static void
3154
dyn_add_protected_rule(struct ip_fw_chain *chain)
3155
{
3156
static const char *comment =
3157
"orphaned dynamic states counter";
3158
struct ip_fw *rule;
3159
ipfw_insn *cmd;
3160
size_t l;
3161
3162
l = roundup(strlen(comment) + 1, sizeof(uint32_t));
3163
rule = ipfw_alloc_rule(chain, sizeof(*rule) + sizeof(ipfw_insn) + l);
3164
cmd = rule->cmd;
3165
cmd->opcode = O_NOP;
3166
cmd->len = 1 + l/sizeof(uint32_t);
3167
cmd->len |= F_NOT; /* make rule to be not matched */
3168
strcpy((char *)(cmd + 1), comment);
3169
cmd += F_LEN(cmd);
3170
3171
cmd->len = 1;
3172
cmd->opcode = O_COUNT;
3173
rule->act_ofs = cmd - rule->cmd;
3174
rule->cmd_len = rule->act_ofs + 1;
3175
ipfw_add_protected_rule(chain, rule);
3176
}
3177
3178
void
3179
ipfw_dyn_init(struct ip_fw_chain *chain)
3180
{
3181
3182
#ifdef IPFIREWALL_JENKINSHASH
3183
V_dyn_hashseed = arc4random();
3184
#endif
3185
V_dyn_max = 16384; /* max # of states */
3186
V_dyn_parent_max = 4096; /* max # of parent states */
3187
V_dyn_buckets_max = 8192; /* must be power of 2 */
3188
3189
V_dyn_ack_lifetime = 300;
3190
V_dyn_syn_lifetime = 20;
3191
V_dyn_fin_lifetime = 1;
3192
V_dyn_rst_lifetime = 1;
3193
V_dyn_udp_lifetime = 10;
3194
V_dyn_short_lifetime = 5;
3195
3196
V_dyn_keepalive_interval = 20;
3197
V_dyn_keepalive_period = 5;
3198
V_dyn_keepalive = 1; /* send keepalives */
3199
V_dyn_keepalive_last = time_uptime;
3200
3201
V_dyn_data_zone = uma_zcreate("IPFW dynamic states data",
3202
sizeof(struct dyn_data), NULL, NULL, NULL, NULL,
3203
UMA_ALIGN_PTR, 0);
3204
uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
3205
3206
V_dyn_parent_zone = uma_zcreate("IPFW parent dynamic states",
3207
sizeof(struct dyn_parent), NULL, NULL, NULL, NULL,
3208
UMA_ALIGN_PTR, 0);
3209
uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
3210
3211
SLIST_INIT(&V_dyn_expired_ipv4);
3212
V_dyn_ipv4 = NULL;
3213
V_dyn_ipv4_parent = NULL;
3214
V_dyn_ipv4_zone = uma_zcreate("IPFW IPv4 dynamic states",
3215
sizeof(struct dyn_ipv4_state), NULL, NULL, NULL, NULL,
3216
UMA_ALIGN_PTR, 0);
3217
3218
#ifdef INET6
3219
SLIST_INIT(&V_dyn_expired_ipv6);
3220
V_dyn_ipv6 = NULL;
3221
V_dyn_ipv6_parent = NULL;
3222
V_dyn_ipv6_zone = uma_zcreate("IPFW IPv6 dynamic states",
3223
sizeof(struct dyn_ipv6_state), NULL, NULL, NULL, NULL,
3224
UMA_ALIGN_PTR, 0);
3225
#endif
3226
3227
/* Initialize buckets. */
3228
V_curr_dyn_buckets = 0;
3229
V_dyn_bucket_lock = NULL;
3230
dyn_grow_hashtable(chain, 256, M_WAITOK);
3231
3232
if (IS_DEFAULT_VNET(curvnet))
3233
dyn_hp_cache = malloc(mp_ncpus * sizeof(void *), M_IPFW,
3234
M_WAITOK | M_ZERO);
3235
3236
DYN_EXPIRED_LOCK_INIT();
3237
callout_init(&V_dyn_timeout, 1);
3238
callout_reset(&V_dyn_timeout, hz, dyn_tick, curvnet);
3239
IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3240
3241
dyn_add_protected_rule(chain);
3242
}
3243
3244
void
3245
ipfw_dyn_uninit(int pass)
3246
{
3247
#ifdef INET6
3248
struct dyn_ipv6_state *s6;
3249
#endif
3250
struct dyn_ipv4_state *s4;
3251
int bucket;
3252
3253
if (pass == 0) {
3254
callout_drain(&V_dyn_timeout);
3255
return;
3256
}
3257
IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3258
DYN_EXPIRED_LOCK_DESTROY();
3259
3260
#define DYN_FREE_STATES_FORCED(CK, s, af, name, en) do { \
3261
while ((s = CK ## SLIST_FIRST(&V_dyn_ ## name)) != NULL) { \
3262
CK ## SLIST_REMOVE_HEAD(&V_dyn_ ## name, en); \
3263
if (s->type == O_LIMIT_PARENT) \
3264
uma_zfree(V_dyn_parent_zone, s->limit); \
3265
else \
3266
uma_zfree(V_dyn_data_zone, s->data); \
3267
uma_zfree(V_dyn_ ## af ## _zone, s); \
3268
} \
3269
} while (0)
3270
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3271
DYN_BUCKET_LOCK_DESTROY(V_dyn_bucket_lock, bucket);
3272
3273
DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4[bucket], entry);
3274
DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4_parent[bucket],
3275
entry);
3276
#ifdef INET6
3277
DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6[bucket], entry);
3278
DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6_parent[bucket],
3279
entry);
3280
#endif /* INET6 */
3281
}
3282
DYN_FREE_STATES_FORCED(, s4, ipv4, expired_ipv4, expired);
3283
#ifdef INET6
3284
DYN_FREE_STATES_FORCED(, s6, ipv6, expired_ipv6, expired);
3285
#endif
3286
#undef DYN_FREE_STATES_FORCED
3287
3288
uma_zdestroy(V_dyn_ipv4_zone);
3289
uma_zdestroy(V_dyn_data_zone);
3290
uma_zdestroy(V_dyn_parent_zone);
3291
#ifdef INET6
3292
uma_zdestroy(V_dyn_ipv6_zone);
3293
free(V_dyn_ipv6, M_IPFW);
3294
free(V_dyn_ipv6_parent, M_IPFW);
3295
free(V_dyn_ipv6_add, M_IPFW);
3296
free(V_dyn_ipv6_parent_add, M_IPFW);
3297
free(V_dyn_ipv6_del, M_IPFW);
3298
free(V_dyn_ipv6_parent_del, M_IPFW);
3299
#endif
3300
free(V_dyn_bucket_lock, M_IPFW);
3301
free(V_dyn_ipv4, M_IPFW);
3302
free(V_dyn_ipv4_parent, M_IPFW);
3303
free(V_dyn_ipv4_add, M_IPFW);
3304
free(V_dyn_ipv4_parent_add, M_IPFW);
3305
free(V_dyn_ipv4_del, M_IPFW);
3306
free(V_dyn_ipv4_parent_del, M_IPFW);
3307
if (IS_DEFAULT_VNET(curvnet))
3308
free(dyn_hp_cache, M_IPFW);
3309
}
3310
3311