Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/netpfil/ipfw/ip_fw_dynamic.c
39482 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2017-2025 Yandex LLC
5
* Copyright (c) 2017-2025 Andrey V. Elsukov <[email protected]>
6
* Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice, this list of conditions and the following disclaimer.
13
* 2. Redistributions in binary form must reproduce the above copyright
14
* notice, this list of conditions and the following disclaimer in the
15
* documentation and/or other materials provided with the distribution.
16
*
17
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27
* SUCH DAMAGE.
28
*/
29
30
#include <sys/cdefs.h>
31
#include "opt_inet.h"
32
#include "opt_inet6.h"
33
#include "opt_ipfw.h"
34
#ifndef INET
35
#error IPFIREWALL requires INET.
36
#endif /* INET */
37
38
#include <sys/param.h>
39
#include <sys/systm.h>
40
#include <sys/hash.h>
41
#include <sys/mbuf.h>
42
#include <sys/kernel.h>
43
#include <sys/lock.h>
44
#include <sys/pcpu.h>
45
#include <sys/queue.h>
46
#include <sys/rmlock.h>
47
#include <sys/smp.h>
48
#include <sys/socket.h>
49
#include <sys/sysctl.h>
50
#include <sys/syslog.h>
51
#include <net/ethernet.h>
52
#include <net/if.h>
53
#include <net/if_var.h>
54
#include <net/vnet.h>
55
56
#include <netinet/in.h>
57
#include <netinet/ip.h>
58
#include <netinet/ip_var.h>
59
#include <netinet/ip_fw.h>
60
#include <netinet/tcp.h>
61
#include <netinet/udp.h>
62
63
#include <netinet/ip6.h> /* IN6_ARE_ADDR_EQUAL */
64
#ifdef INET6
65
#include <netinet6/in6_var.h>
66
#include <netinet6/ip6_var.h>
67
#include <netinet6/scope6_var.h>
68
#endif
69
70
#include <netpfil/ipfw/ip_fw_private.h>
71
72
#include <machine/in_cksum.h> /* XXX for in_cksum */
73
74
#ifdef MAC
75
#include <security/mac/mac_framework.h>
76
#endif
77
78
/*
79
* Description of dynamic states.
80
*
81
* Dynamic states are stored in lists accessed through a hash tables
82
* whose size is curr_dyn_buckets. This value can be modified through
83
* the sysctl variable dyn_buckets.
84
*
85
* Currently there are four tables: dyn_ipv4, dyn_ipv6, dyn_ipv4_parent,
86
* and dyn_ipv6_parent.
87
*
88
* When a packet is received, its address fields hashed, then matched
89
* against the entries in the corresponding list by addr_type.
90
* Dynamic states can be used for different purposes:
91
* + stateful rules;
92
* + enforcing limits on the number of sessions;
93
* + in-kernel NAT (not implemented yet)
94
*
95
* The lifetime of dynamic states is regulated by dyn_*_lifetime,
96
* measured in seconds and depending on the flags.
97
*
98
* The total number of dynamic states is equal to UMA zone items count.
99
* The max number of dynamic states is dyn_max. When we reach
100
* the maximum number of rules we do not create anymore. This is
101
* done to avoid consuming too much memory, but also too much
102
* time when searching on each packet (ideally, we should try instead
103
* to put a limit on the length of the list on each bucket...).
104
*
105
* Each state holds a pointer to the parent ipfw rule so we know what
106
* action to perform. Dynamic rules are removed when the parent rule is
107
* deleted.
108
*
109
* There are some limitations with dynamic rules -- we do not
110
* obey the 'randomized match', and we do not do multiple
111
* passes through the firewall. XXX check the latter!!!
112
*/
113
114
/* By default use jenkins hash function */
115
#define IPFIREWALL_JENKINSHASH
116
117
#define DYN_COUNTER_INC(d, dir, pktlen) do { \
118
(d)->pcnt_ ## dir++; \
119
(d)->bcnt_ ## dir += pktlen; \
120
} while (0)
121
122
#define DYN_REFERENCED 0x01
123
/*
124
* DYN_REFERENCED flag is used to show that state keeps reference to named
125
* object, and this reference should be released when state becomes expired.
126
*/
127
128
struct dyn_data {
129
void *parent; /* pointer to parent rule */
130
uint32_t chain_id; /* cached ruleset id */
131
uint32_t f_pos; /* cached rule index */
132
133
uint32_t hashval; /* hash value used for hash resize */
134
uint16_t fibnum; /* fib used to send keepalives */
135
uint8_t _pad;
136
uint8_t flags; /* internal flags */
137
uint32_t rulenum; /* parent rule number */
138
uint32_t ruleid; /* parent rule id */
139
140
uint32_t state; /* TCP session state and flags */
141
uint32_t ack_fwd; /* most recent ACKs in forward */
142
uint32_t ack_rev; /* and reverse direction (used */
143
/* to generate keepalives) */
144
uint32_t sync; /* synchronization time */
145
uint32_t expire; /* expire time */
146
147
uint64_t pcnt_fwd; /* packets counter in forward */
148
uint64_t bcnt_fwd; /* bytes counter in forward */
149
uint64_t pcnt_rev; /* packets counter in reverse */
150
uint64_t bcnt_rev; /* bytes counter in reverse */
151
};
152
153
#define DPARENT_COUNT_DEC(p) do { \
154
MPASS(p->count > 0); \
155
ck_pr_dec_32(&(p)->count); \
156
} while (0)
157
#define DPARENT_COUNT_INC(p) ck_pr_inc_32(&(p)->count)
158
#define DPARENT_COUNT(p) ck_pr_load_32(&(p)->count)
159
struct dyn_parent {
160
void *parent; /* pointer to parent rule */
161
uint32_t count; /* number of linked states */
162
uint32_t rulenum; /* parent rule number */
163
uint32_t ruleid; /* parent rule id */
164
uint32_t hashval; /* hash value used for hash resize */
165
uint32_t expire; /* expire time */
166
};
167
168
struct dyn_ipv4_state {
169
uint8_t type; /* State type */
170
uint8_t proto; /* UL Protocol */
171
uint16_t spare;
172
uint32_t kidx; /* named object index */
173
uint16_t sport, dport; /* ULP source and destination ports */
174
in_addr_t src, dst; /* IPv4 source and destination */
175
176
union {
177
struct dyn_data *data;
178
struct dyn_parent *limit;
179
};
180
CK_SLIST_ENTRY(dyn_ipv4_state) entry;
181
SLIST_ENTRY(dyn_ipv4_state) expired;
182
};
183
CK_SLIST_HEAD(dyn_ipv4ck_slist, dyn_ipv4_state);
184
VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4);
185
VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4_parent);
186
187
SLIST_HEAD(dyn_ipv4_slist, dyn_ipv4_state);
188
VNET_DEFINE_STATIC(struct dyn_ipv4_slist, dyn_expired_ipv4);
189
#define V_dyn_ipv4 VNET(dyn_ipv4)
190
#define V_dyn_ipv4_parent VNET(dyn_ipv4_parent)
191
#define V_dyn_expired_ipv4 VNET(dyn_expired_ipv4)
192
193
#ifdef INET6
194
struct dyn_ipv6_state {
195
uint8_t type; /* State type */
196
uint8_t proto; /* UL Protocol */
197
uint16_t kidx; /* named object index */
198
uint16_t sport, dport; /* ULP source and destination ports */
199
struct in6_addr src, dst; /* IPv6 source and destination */
200
uint32_t zoneid; /* IPv6 scope zone id */
201
union {
202
struct dyn_data *data;
203
struct dyn_parent *limit;
204
};
205
CK_SLIST_ENTRY(dyn_ipv6_state) entry;
206
SLIST_ENTRY(dyn_ipv6_state) expired;
207
};
208
CK_SLIST_HEAD(dyn_ipv6ck_slist, dyn_ipv6_state);
209
VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6);
210
VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6_parent);
211
212
SLIST_HEAD(dyn_ipv6_slist, dyn_ipv6_state);
213
VNET_DEFINE_STATIC(struct dyn_ipv6_slist, dyn_expired_ipv6);
214
#define V_dyn_ipv6 VNET(dyn_ipv6)
215
#define V_dyn_ipv6_parent VNET(dyn_ipv6_parent)
216
#define V_dyn_expired_ipv6 VNET(dyn_expired_ipv6)
217
#endif /* INET6 */
218
219
/*
220
* Per-CPU pointer indicates that specified state is currently in use
221
* and must not be reclaimed by expiration callout.
222
*/
223
static void **dyn_hp_cache;
224
DPCPU_DEFINE_STATIC(void *, dyn_hp);
225
#define DYNSTATE_GET(cpu) ck_pr_load_ptr(DPCPU_ID_PTR((cpu), dyn_hp))
226
#define DYNSTATE_PROTECT(v) ck_pr_store_ptr(DPCPU_PTR(dyn_hp), (v))
227
#define DYNSTATE_RELEASE() DYNSTATE_PROTECT(NULL)
228
#define DYNSTATE_CRITICAL_ENTER() critical_enter()
229
#define DYNSTATE_CRITICAL_EXIT() do { \
230
DYNSTATE_RELEASE(); \
231
critical_exit(); \
232
} while (0);
233
234
/*
235
* We keep two version numbers, one is updated when new entry added to
236
* the list. Second is updated when an entry deleted from the list.
237
* Versions are updated under bucket lock.
238
*
239
* Bucket "add" version number is used to know, that in the time between
240
* state lookup (i.e. ipfw_dyn_lookup_state()) and the followed state
241
* creation (i.e. ipfw_dyn_install_state()) another concurrent thread did
242
* not install some state in this bucket. Using this info we can avoid
243
* additional state lookup, because we are sure that we will not install
244
* the state twice.
245
*
246
* Also doing the tracking of bucket "del" version during lookup we can
247
* be sure, that state entry was not unlinked and freed in time between
248
* we read the state pointer and protect it with hazard pointer.
249
*
250
* An entry unlinked from CK list keeps unchanged until it is freed.
251
* Unlinked entries are linked into expired lists using "expired" field.
252
*/
253
254
/*
255
* dyn_expire_lock is used to protect access to dyn_expired_xxx lists.
256
* dyn_bucket_lock is used to get write access to lists in specific bucket.
257
* Currently one dyn_bucket_lock is used for all ipv4, ipv4_parent, ipv6,
258
* and ipv6_parent lists.
259
*/
260
VNET_DEFINE_STATIC(struct mtx, dyn_expire_lock);
261
VNET_DEFINE_STATIC(struct mtx *, dyn_bucket_lock);
262
#define V_dyn_expire_lock VNET(dyn_expire_lock)
263
#define V_dyn_bucket_lock VNET(dyn_bucket_lock)
264
265
/*
266
* Bucket's add/delete generation versions.
267
*/
268
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_add);
269
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_del);
270
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_add);
271
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_del);
272
#define V_dyn_ipv4_add VNET(dyn_ipv4_add)
273
#define V_dyn_ipv4_del VNET(dyn_ipv4_del)
274
#define V_dyn_ipv4_parent_add VNET(dyn_ipv4_parent_add)
275
#define V_dyn_ipv4_parent_del VNET(dyn_ipv4_parent_del)
276
277
#ifdef INET6
278
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_add);
279
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_del);
280
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_add);
281
VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_del);
282
#define V_dyn_ipv6_add VNET(dyn_ipv6_add)
283
#define V_dyn_ipv6_del VNET(dyn_ipv6_del)
284
#define V_dyn_ipv6_parent_add VNET(dyn_ipv6_parent_add)
285
#define V_dyn_ipv6_parent_del VNET(dyn_ipv6_parent_del)
286
#endif /* INET6 */
287
288
#define DYN_BUCKET(h, b) ((h) & (b - 1))
289
#define DYN_BUCKET_VERSION(b, v) ck_pr_load_32(&V_dyn_ ## v[(b)])
290
#define DYN_BUCKET_VERSION_BUMP(b, v) ck_pr_inc_32(&V_dyn_ ## v[(b)])
291
292
#define DYN_BUCKET_LOCK_INIT(lock, b) \
293
mtx_init(&lock[(b)], "IPFW dynamic bucket", NULL, MTX_DEF)
294
#define DYN_BUCKET_LOCK_DESTROY(lock, b) mtx_destroy(&lock[(b)])
295
#define DYN_BUCKET_LOCK(b) mtx_lock(&V_dyn_bucket_lock[(b)])
296
#define DYN_BUCKET_UNLOCK(b) mtx_unlock(&V_dyn_bucket_lock[(b)])
297
#define DYN_BUCKET_ASSERT(b) mtx_assert(&V_dyn_bucket_lock[(b)], MA_OWNED)
298
299
#define DYN_EXPIRED_LOCK_INIT() \
300
mtx_init(&V_dyn_expire_lock, "IPFW expired states list", NULL, MTX_DEF)
301
#define DYN_EXPIRED_LOCK_DESTROY() mtx_destroy(&V_dyn_expire_lock)
302
#define DYN_EXPIRED_LOCK() mtx_lock(&V_dyn_expire_lock)
303
#define DYN_EXPIRED_UNLOCK() mtx_unlock(&V_dyn_expire_lock)
304
305
VNET_DEFINE_STATIC(uint32_t, dyn_buckets_max);
306
VNET_DEFINE_STATIC(uint32_t, curr_dyn_buckets);
307
VNET_DEFINE_STATIC(struct callout, dyn_timeout);
308
#define V_dyn_buckets_max VNET(dyn_buckets_max)
309
#define V_curr_dyn_buckets VNET(curr_dyn_buckets)
310
#define V_dyn_timeout VNET(dyn_timeout)
311
312
/* Maximum length of states chain in a bucket */
313
VNET_DEFINE_STATIC(uint32_t, curr_max_length);
314
#define V_curr_max_length VNET(curr_max_length)
315
316
VNET_DEFINE_STATIC(uint32_t, dyn_keep_states);
317
#define V_dyn_keep_states VNET(dyn_keep_states)
318
319
VNET_DEFINE_STATIC(uma_zone_t, dyn_data_zone);
320
VNET_DEFINE_STATIC(uma_zone_t, dyn_parent_zone);
321
VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv4_zone);
322
#ifdef INET6
323
VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv6_zone);
324
#define V_dyn_ipv6_zone VNET(dyn_ipv6_zone)
325
#endif /* INET6 */
326
#define V_dyn_data_zone VNET(dyn_data_zone)
327
#define V_dyn_parent_zone VNET(dyn_parent_zone)
328
#define V_dyn_ipv4_zone VNET(dyn_ipv4_zone)
329
330
/*
331
* Timeouts for various events in handing dynamic rules.
332
*/
333
VNET_DEFINE_STATIC(uint32_t, dyn_ack_lifetime);
334
VNET_DEFINE_STATIC(uint32_t, dyn_syn_lifetime);
335
VNET_DEFINE_STATIC(uint32_t, dyn_fin_lifetime);
336
VNET_DEFINE_STATIC(uint32_t, dyn_rst_lifetime);
337
VNET_DEFINE_STATIC(uint32_t, dyn_udp_lifetime);
338
VNET_DEFINE_STATIC(uint32_t, dyn_short_lifetime);
339
340
#define V_dyn_ack_lifetime VNET(dyn_ack_lifetime)
341
#define V_dyn_syn_lifetime VNET(dyn_syn_lifetime)
342
#define V_dyn_fin_lifetime VNET(dyn_fin_lifetime)
343
#define V_dyn_rst_lifetime VNET(dyn_rst_lifetime)
344
#define V_dyn_udp_lifetime VNET(dyn_udp_lifetime)
345
#define V_dyn_short_lifetime VNET(dyn_short_lifetime)
346
347
/*
348
* Keepalives are sent if dyn_keepalive is set. They are sent every
349
* dyn_keepalive_period seconds, in the last dyn_keepalive_interval
350
* seconds of lifetime of a rule.
351
* dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
352
* than dyn_keepalive_period.
353
*/
354
VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_interval);
355
VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_period);
356
VNET_DEFINE_STATIC(uint32_t, dyn_keepalive);
357
VNET_DEFINE_STATIC(time_t, dyn_keepalive_last);
358
359
#define V_dyn_keepalive_interval VNET(dyn_keepalive_interval)
360
#define V_dyn_keepalive_period VNET(dyn_keepalive_period)
361
#define V_dyn_keepalive VNET(dyn_keepalive)
362
#define V_dyn_keepalive_last VNET(dyn_keepalive_last)
363
364
VNET_DEFINE_STATIC(uint32_t, dyn_max); /* max # of dynamic states */
365
VNET_DEFINE_STATIC(uint32_t, dyn_count); /* number of states */
366
VNET_DEFINE_STATIC(uint32_t, dyn_parent_max); /* max # of parent states */
367
VNET_DEFINE_STATIC(uint32_t, dyn_parent_count); /* number of parent states */
368
369
#define V_dyn_max VNET(dyn_max)
370
#define V_dyn_count VNET(dyn_count)
371
#define V_dyn_parent_max VNET(dyn_parent_max)
372
#define V_dyn_parent_count VNET(dyn_parent_count)
373
374
#define DYN_COUNT_DEC(name) do { \
375
MPASS((V_ ## name) > 0); \
376
ck_pr_dec_32(&(V_ ## name)); \
377
} while (0)
378
#define DYN_COUNT_INC(name) ck_pr_inc_32(&(V_ ## name))
379
#define DYN_COUNT(name) ck_pr_load_32(&(V_ ## name))
380
381
static time_t last_log; /* Log ratelimiting */
382
383
/*
384
* Get/set maximum number of dynamic states in given VNET instance.
385
*/
386
static int
387
sysctl_dyn_max(SYSCTL_HANDLER_ARGS)
388
{
389
uint32_t nstates;
390
int error;
391
392
nstates = V_dyn_max;
393
error = sysctl_handle_32(oidp, &nstates, 0, req);
394
/* Read operation or some error */
395
if ((error != 0) || (req->newptr == NULL))
396
return (error);
397
398
V_dyn_max = nstates;
399
uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
400
return (0);
401
}
402
403
static int
404
sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)
405
{
406
uint32_t nstates;
407
int error;
408
409
nstates = V_dyn_parent_max;
410
error = sysctl_handle_32(oidp, &nstates, 0, req);
411
/* Read operation or some error */
412
if ((error != 0) || (req->newptr == NULL))
413
return (error);
414
415
V_dyn_parent_max = nstates;
416
uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
417
return (0);
418
}
419
420
static int
421
sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
422
{
423
uint32_t nbuckets;
424
int error;
425
426
nbuckets = V_dyn_buckets_max;
427
error = sysctl_handle_32(oidp, &nbuckets, 0, req);
428
/* Read operation or some error */
429
if ((error != 0) || (req->newptr == NULL))
430
return (error);
431
432
if (nbuckets > 256)
433
V_dyn_buckets_max = 1 << fls(nbuckets - 1);
434
else
435
return (EINVAL);
436
return (0);
437
}
438
439
SYSCTL_DECL(_net_inet_ip_fw);
440
441
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_count,
442
CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
443
"Current number of dynamic states.");
444
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_parent_count,
445
CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_parent_count), 0,
446
"Current number of parent states. ");
447
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
448
CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
449
"Current number of buckets for states hash table.");
450
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_max_length,
451
CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_max_length), 0,
452
"Current maximum length of states chains in hash buckets.");
453
SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
454
CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
455
0, 0, sysctl_dyn_buckets, "IU",
456
"Max number of buckets for dynamic states hash table.");
457
SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
458
CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
459
0, 0, sysctl_dyn_max, "IU",
460
"Max number of dynamic states.");
461
SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_parent_max,
462
CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
463
0, 0, sysctl_dyn_parent_max, "IU",
464
"Max number of parent dynamic states.");
465
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
466
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
467
"Lifetime of dynamic states for TCP ACK.");
468
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
469
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
470
"Lifetime of dynamic states for TCP SYN.");
471
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
472
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
473
"Lifetime of dynamic states for TCP FIN.");
474
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
475
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
476
"Lifetime of dynamic states for TCP RST.");
477
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
478
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
479
"Lifetime of dynamic states for UDP.");
480
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
481
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
482
"Lifetime of dynamic states for other situations.");
483
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
484
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
485
"Enable keepalives for dynamic states.");
486
SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
487
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
488
"Do not flush dynamic states on rule deletion");
489
490
#ifdef IPFIREWALL_DYNDEBUG
491
#define DYN_DEBUG(fmt, ...) do { \
492
printf("%s: " fmt "\n", __func__, __VA_ARGS__); \
493
} while (0)
494
#else
495
#define DYN_DEBUG(fmt, ...)
496
#endif /* !IPFIREWALL_DYNDEBUG */
497
498
#ifdef INET6
499
/* Functions to work with IPv6 states */
500
static struct dyn_ipv6_state *dyn_lookup_ipv6_state(
501
const struct ipfw_flow_id *, uint32_t, const void *,
502
struct ipfw_dyn_info *, int);
503
static int dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *,
504
uint32_t, const void *, int, uint32_t, uint32_t);
505
static struct dyn_ipv6_state *dyn_alloc_ipv6_state(
506
const struct ipfw_flow_id *, uint32_t, uint32_t, uint8_t);
507
static int dyn_add_ipv6_state(void *, uint32_t, uint32_t,
508
const struct ipfw_flow_id *, uint32_t, const void *, int, uint32_t,
509
struct ipfw_dyn_info *, uint16_t, uint32_t, uint8_t);
510
static void dyn_export_ipv6_state(const struct dyn_ipv6_state *,
511
ipfw_dyn_rule *);
512
513
static uint32_t dyn_getscopeid(const struct ip_fw_args *);
514
static void dyn_make_keepalive_ipv6(struct mbuf *, const struct in6_addr *,
515
const struct in6_addr *, uint32_t, uint32_t, uint32_t, uint16_t,
516
uint16_t);
517
static void dyn_enqueue_keepalive_ipv6(struct mbufq *,
518
const struct dyn_ipv6_state *);
519
static void dyn_send_keepalive_ipv6(struct ip_fw_chain *);
520
521
static struct dyn_ipv6_state *dyn_lookup_ipv6_parent(
522
const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint32_t,
523
uint32_t);
524
static struct dyn_ipv6_state *dyn_lookup_ipv6_parent_locked(
525
const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint32_t,
526
uint32_t);
527
static struct dyn_ipv6_state *dyn_add_ipv6_parent(void *, uint32_t, uint32_t,
528
const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t, uint32_t);
529
#endif /* INET6 */
530
531
/* Functions to work with limit states */
532
static void *dyn_get_parent_state(const struct ipfw_flow_id *, uint32_t,
533
struct ip_fw *, uint32_t, uint32_t, uint32_t);
534
static struct dyn_ipv4_state *dyn_lookup_ipv4_parent(
535
const struct ipfw_flow_id *, const void *, uint32_t, uint32_t, uint32_t);
536
static struct dyn_ipv4_state *dyn_lookup_ipv4_parent_locked(
537
const struct ipfw_flow_id *, const void *, uint32_t, uint32_t, uint32_t);
538
static struct dyn_parent *dyn_alloc_parent(void *, uint32_t, uint32_t,
539
uint32_t);
540
static struct dyn_ipv4_state *dyn_add_ipv4_parent(void *, uint32_t, uint32_t,
541
const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t);
542
543
static void dyn_tick(void *);
544
static void dyn_expire_states(struct ip_fw_chain *, ipfw_range_tlv *);
545
static void dyn_free_states(struct ip_fw_chain *);
546
static void dyn_export_parent(const struct dyn_parent *, uint32_t, uint8_t,
547
ipfw_dyn_rule *);
548
static void dyn_export_data(const struct dyn_data *, uint32_t, uint8_t,
549
uint8_t, ipfw_dyn_rule *);
550
static uint32_t dyn_update_tcp_state(struct dyn_data *,
551
const struct ipfw_flow_id *, const struct tcphdr *, int);
552
static void dyn_update_proto_state(struct dyn_data *,
553
const struct ipfw_flow_id *, const void *, int, int);
554
555
/* Functions to work with IPv4 states */
556
struct dyn_ipv4_state *dyn_lookup_ipv4_state(const struct ipfw_flow_id *,
557
const void *, struct ipfw_dyn_info *, int);
558
static int dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *,
559
const void *, int, uint32_t, uint32_t);
560
static struct dyn_ipv4_state *dyn_alloc_ipv4_state(
561
const struct ipfw_flow_id *, uint32_t, uint8_t);
562
static int dyn_add_ipv4_state(void *, uint32_t, uint32_t,
563
const struct ipfw_flow_id *, const void *, int, uint32_t,
564
struct ipfw_dyn_info *, uint16_t, uint32_t, uint8_t);
565
static void dyn_export_ipv4_state(const struct dyn_ipv4_state *,
566
ipfw_dyn_rule *);
567
568
/*
569
* Named states support.
570
*/
571
static char *default_state_name = "default";
572
struct dyn_state_obj {
573
struct named_object no;
574
char name[64];
575
};
576
577
/*
578
* Classifier callback.
579
* Return 0 if opcode contains object that should be referenced
580
* or rewritten.
581
*/
582
static int
583
dyn_classify(ipfw_insn *cmd0, uint32_t *puidx, uint8_t *ptype)
584
{
585
ipfw_insn_kidx *cmd;
586
587
if (F_LEN(cmd0) < 2)
588
return (EINVAL);
589
590
/*
591
* NOTE: ipfw_insn_kidx and ipfw_insn_limit has overlapped kidx
592
* field, so we can use one type to get access to kidx field.
593
*/
594
cmd = insntod(cmd0, kidx);
595
DYN_DEBUG("opcode %u, kidx %u", cmd0->opcode, cmd->kidx);
596
/* Don't rewrite "check-state any" */
597
if (cmd->kidx == 0 &&
598
cmd0->opcode == O_CHECK_STATE)
599
return (1);
600
601
*puidx = cmd->kidx;
602
*ptype = 0;
603
return (0);
604
}
605
606
static void
607
dyn_update(ipfw_insn *cmd0, uint32_t idx)
608
{
609
610
insntod(cmd0, kidx)->kidx = idx;
611
DYN_DEBUG("opcode %u, kidx %u", cmd0->opcode, idx);
612
}
613
614
static int
615
dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
616
struct named_object **pno)
617
{
618
ipfw_obj_ntlv *ntlv;
619
const char *name;
620
621
DYN_DEBUG("uidx %u", ti->uidx);
622
if (ti->uidx != 0) {
623
if (ti->tlvs == NULL)
624
return (EINVAL);
625
/* Search ntlv in the buffer provided by user */
626
ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
627
IPFW_TLV_STATE_NAME);
628
if (ntlv == NULL)
629
return (EINVAL);
630
name = ntlv->name;
631
} else
632
name = default_state_name;
633
/*
634
* Search named object with corresponding name.
635
* Since states objects are global - ignore the set value
636
* and use zero instead.
637
*/
638
*pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
639
IPFW_TLV_STATE_NAME, name);
640
/*
641
* We always return success here.
642
* The caller will check *pno and mark object as unresolved,
643
* then it will automatically create "default" object.
644
*/
645
return (0);
646
}
647
648
static struct named_object *
649
dyn_findbykidx(struct ip_fw_chain *ch, uint32_t idx)
650
{
651
652
DYN_DEBUG("kidx %u", idx);
653
return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
654
}
655
656
static int
657
dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
658
uint32_t *pkidx)
659
{
660
struct namedobj_instance *ni;
661
struct dyn_state_obj *obj;
662
struct named_object *no;
663
ipfw_obj_ntlv *ntlv;
664
char *name;
665
666
DYN_DEBUG("uidx %u", ti->uidx);
667
if (ti->uidx != 0) {
668
if (ti->tlvs == NULL)
669
return (EINVAL);
670
ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
671
IPFW_TLV_STATE_NAME);
672
if (ntlv == NULL)
673
return (EINVAL);
674
name = ntlv->name;
675
} else
676
name = default_state_name;
677
678
ni = CHAIN_TO_SRV(ch);
679
obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
680
obj->no.name = obj->name;
681
obj->no.etlv = IPFW_TLV_STATE_NAME;
682
strlcpy(obj->name, name, sizeof(obj->name));
683
684
IPFW_UH_WLOCK(ch);
685
no = ipfw_objhash_lookup_name_type(ni, 0,
686
IPFW_TLV_STATE_NAME, name);
687
if (no != NULL) {
688
/*
689
* Object is already created.
690
* Just return its kidx and bump refcount.
691
*/
692
*pkidx = no->kidx;
693
no->refcnt++;
694
IPFW_UH_WUNLOCK(ch);
695
free(obj, M_IPFW);
696
DYN_DEBUG("\tfound kidx %u for name '%s'", *pkidx, no->name);
697
return (0);
698
}
699
if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
700
DYN_DEBUG("\talloc_idx failed for %s", name);
701
IPFW_UH_WUNLOCK(ch);
702
free(obj, M_IPFW);
703
return (ENOSPC);
704
}
705
ipfw_objhash_add(ni, &obj->no);
706
SRV_OBJECT(ch, obj->no.kidx) = obj;
707
obj->no.refcnt++;
708
*pkidx = obj->no.kidx;
709
IPFW_UH_WUNLOCK(ch);
710
DYN_DEBUG("\tcreated kidx %u for name '%s'", *pkidx, name);
711
return (0);
712
}
713
714
static void
715
dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
716
{
717
struct dyn_state_obj *obj;
718
719
IPFW_UH_WLOCK_ASSERT(ch);
720
721
KASSERT(no->etlv == IPFW_TLV_STATE_NAME,
722
("%s: wrong object type %u", __func__, no->etlv));
723
KASSERT(no->refcnt == 1,
724
("Destroying object '%s' (type %u, idx %u) with refcnt %u",
725
no->name, no->etlv, no->kidx, no->refcnt));
726
DYN_DEBUG("kidx %u", no->kidx);
727
obj = SRV_OBJECT(ch, no->kidx);
728
SRV_OBJECT(ch, no->kidx) = NULL;
729
ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
730
ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
731
732
free(obj, M_IPFW);
733
}
734
735
static struct opcode_obj_rewrite dyn_opcodes[] = {
736
{
737
O_KEEP_STATE, IPFW_TLV_STATE_NAME,
738
dyn_classify, dyn_update,
739
dyn_findbyname, dyn_findbykidx,
740
dyn_create, dyn_destroy
741
},
742
{
743
O_CHECK_STATE, IPFW_TLV_STATE_NAME,
744
dyn_classify, dyn_update,
745
dyn_findbyname, dyn_findbykidx,
746
dyn_create, dyn_destroy
747
},
748
{
749
O_PROBE_STATE, IPFW_TLV_STATE_NAME,
750
dyn_classify, dyn_update,
751
dyn_findbyname, dyn_findbykidx,
752
dyn_create, dyn_destroy
753
},
754
{
755
O_LIMIT, IPFW_TLV_STATE_NAME,
756
dyn_classify, dyn_update,
757
dyn_findbyname, dyn_findbykidx,
758
dyn_create, dyn_destroy
759
},
760
};
761
762
/*
763
* IMPORTANT: the hash function for dynamic rules must be commutative
764
* in source and destination (ip,port), because rules are bidirectional
765
* and we want to find both in the same bucket.
766
*/
767
#ifndef IPFIREWALL_JENKINSHASH
768
static __inline uint32_t
769
hash_packet(const struct ipfw_flow_id *id)
770
{
771
uint32_t i;
772
773
#ifdef INET6
774
if (IS_IP6_FLOW_ID(id))
775
i = ntohl((id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
776
(id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
777
(id->src_ip6.__u6_addr.__u6_addr32[2]) ^
778
(id->src_ip6.__u6_addr.__u6_addr32[3]));
779
else
780
#endif /* INET6 */
781
i = (id->dst_ip) ^ (id->src_ip);
782
i ^= (id->dst_port) ^ (id->src_port);
783
return (i);
784
}
785
786
static __inline uint32_t
787
hash_parent(const struct ipfw_flow_id *id, const void *rule)
788
{
789
790
return (hash_packet(id) ^ ((uintptr_t)rule));
791
}
792
793
#else /* IPFIREWALL_JENKINSHASH */
794
795
VNET_DEFINE_STATIC(uint32_t, dyn_hashseed);
796
#define V_dyn_hashseed VNET(dyn_hashseed)
797
798
static __inline int
799
addrcmp4(const struct ipfw_flow_id *id)
800
{
801
802
if (id->src_ip < id->dst_ip)
803
return (0);
804
if (id->src_ip > id->dst_ip)
805
return (1);
806
if (id->src_port <= id->dst_port)
807
return (0);
808
return (1);
809
}
810
811
#ifdef INET6
812
static __inline int
813
addrcmp6(const struct ipfw_flow_id *id)
814
{
815
int ret;
816
817
ret = memcmp(&id->src_ip6, &id->dst_ip6, sizeof(struct in6_addr));
818
if (ret < 0)
819
return (0);
820
if (ret > 0)
821
return (1);
822
if (id->src_port <= id->dst_port)
823
return (0);
824
return (1);
825
}
826
827
static __inline uint32_t
828
hash_packet6(const struct ipfw_flow_id *id)
829
{
830
struct tuple6 {
831
struct in6_addr addr[2];
832
uint16_t port[2];
833
} t6;
834
835
if (addrcmp6(id) == 0) {
836
t6.addr[0] = id->src_ip6;
837
t6.addr[1] = id->dst_ip6;
838
t6.port[0] = id->src_port;
839
t6.port[1] = id->dst_port;
840
} else {
841
t6.addr[0] = id->dst_ip6;
842
t6.addr[1] = id->src_ip6;
843
t6.port[0] = id->dst_port;
844
t6.port[1] = id->src_port;
845
}
846
return (jenkins_hash32((const uint32_t *)&t6,
847
sizeof(t6) / sizeof(uint32_t), V_dyn_hashseed));
848
}
849
#endif
850
851
static __inline uint32_t
852
hash_packet(const struct ipfw_flow_id *id)
853
{
854
struct tuple4 {
855
in_addr_t addr[2];
856
uint16_t port[2];
857
} t4;
858
859
if (IS_IP4_FLOW_ID(id)) {
860
/* All fields are in host byte order */
861
if (addrcmp4(id) == 0) {
862
t4.addr[0] = id->src_ip;
863
t4.addr[1] = id->dst_ip;
864
t4.port[0] = id->src_port;
865
t4.port[1] = id->dst_port;
866
} else {
867
t4.addr[0] = id->dst_ip;
868
t4.addr[1] = id->src_ip;
869
t4.port[0] = id->dst_port;
870
t4.port[1] = id->src_port;
871
}
872
return (jenkins_hash32((const uint32_t *)&t4,
873
sizeof(t4) / sizeof(uint32_t), V_dyn_hashseed));
874
} else
875
#ifdef INET6
876
if (IS_IP6_FLOW_ID(id))
877
return (hash_packet6(id));
878
#endif
879
return (0);
880
}
881
882
static __inline uint32_t
883
hash_parent(const struct ipfw_flow_id *id, const void *rule)
884
{
885
886
return (jenkins_hash32((const uint32_t *)&rule,
887
sizeof(rule) / sizeof(uint32_t), hash_packet(id)));
888
}
889
#endif /* IPFIREWALL_JENKINSHASH */
890
891
/*
892
* Print customizable flow id description via log(9) facility.
893
*/
894
static void
895
print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
896
int log_flags, char *prefix, char *postfix)
897
{
898
struct in_addr da;
899
#ifdef INET6
900
char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
901
#else
902
char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
903
#endif
904
905
#ifdef INET6
906
if (IS_IP6_FLOW_ID(id)) {
907
ip6_sprintf(src, &id->src_ip6);
908
ip6_sprintf(dst, &id->dst_ip6);
909
} else
910
#endif
911
{
912
da.s_addr = htonl(id->src_ip);
913
inet_ntop(AF_INET, &da, src, sizeof(src));
914
da.s_addr = htonl(id->dst_ip);
915
inet_ntop(AF_INET, &da, dst, sizeof(dst));
916
}
917
log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
918
prefix, dyn_type, src, id->src_port, dst,
919
id->dst_port, V_dyn_count, postfix);
920
}
921
922
#define print_dyn_rule(id, dtype, prefix, postfix) \
923
print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
924
925
#define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0)
926
#define TIME_LE(a,b) ((int)((a)-(b)) < 0)
927
#define _SEQ_GE(a,b) ((int)((a)-(b)) >= 0)
928
#define BOTH_SYN (TH_SYN | (TH_SYN << 8))
929
#define BOTH_FIN (TH_FIN | (TH_FIN << 8))
930
#define BOTH_RST (TH_RST | (TH_RST << 8))
931
#define TCP_FLAGS (BOTH_SYN | BOTH_FIN | BOTH_RST)
932
#define ACK_FWD 0x00010000 /* fwd ack seen */
933
#define ACK_REV 0x00020000 /* rev ack seen */
934
#define ACK_BOTH (ACK_FWD | ACK_REV)
935
936
static uint32_t
937
dyn_update_tcp_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
938
const struct tcphdr *tcp, int dir)
939
{
940
uint32_t ack, expire;
941
uint32_t state, old;
942
uint8_t th_flags;
943
944
expire = data->expire;
945
old = state = data->state;
946
th_flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
947
state |= (dir == MATCH_FORWARD) ? th_flags: (th_flags << 8);
948
switch (state & TCP_FLAGS) {
949
case TH_SYN: /* opening */
950
expire = time_uptime + V_dyn_syn_lifetime;
951
break;
952
953
case BOTH_SYN: /* move to established */
954
case BOTH_SYN | TH_FIN: /* one side tries to close */
955
case BOTH_SYN | (TH_FIN << 8):
956
if (tcp == NULL)
957
break;
958
ack = ntohl(tcp->th_ack);
959
if (dir == MATCH_FORWARD) {
960
if (data->ack_fwd == 0 ||
961
_SEQ_GE(ack, data->ack_fwd)) {
962
state |= ACK_FWD;
963
if (data->ack_fwd != ack)
964
ck_pr_store_32(&data->ack_fwd, ack);
965
}
966
} else {
967
if (data->ack_rev == 0 ||
968
_SEQ_GE(ack, data->ack_rev)) {
969
state |= ACK_REV;
970
if (data->ack_rev != ack)
971
ck_pr_store_32(&data->ack_rev, ack);
972
}
973
}
974
if ((state & ACK_BOTH) == ACK_BOTH) {
975
/*
976
* Set expire time to V_dyn_ack_lifetime only if
977
* we got ACKs for both directions.
978
* We use XOR here to avoid possible state
979
* overwriting in concurrent thread.
980
*/
981
expire = time_uptime + V_dyn_ack_lifetime;
982
ck_pr_xor_32(&data->state, ACK_BOTH);
983
} else if ((data->state & ACK_BOTH) != (state & ACK_BOTH))
984
ck_pr_or_32(&data->state, state & ACK_BOTH);
985
break;
986
987
case BOTH_SYN | BOTH_FIN: /* both sides closed */
988
if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
989
V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
990
expire = time_uptime + V_dyn_fin_lifetime;
991
break;
992
993
default:
994
if (V_dyn_keepalive != 0 &&
995
V_dyn_rst_lifetime >= V_dyn_keepalive_period)
996
V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
997
expire = time_uptime + V_dyn_rst_lifetime;
998
}
999
/* Save TCP state if it was changed */
1000
if ((state & TCP_FLAGS) != (old & TCP_FLAGS))
1001
ck_pr_or_32(&data->state, state & TCP_FLAGS);
1002
return (expire);
1003
}
1004
1005
/*
1006
* Update ULP specific state.
1007
* For TCP we keep sequence numbers and flags. For other protocols
1008
* currently we update only expire time. Packets and bytes counters
1009
* are also updated here.
1010
*/
1011
static void
1012
dyn_update_proto_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
1013
const void *ulp, int pktlen, int dir)
1014
{
1015
uint32_t expire;
1016
1017
/* NOTE: we are in critical section here. */
1018
switch (pkt->proto) {
1019
case IPPROTO_UDP:
1020
case IPPROTO_UDPLITE:
1021
expire = time_uptime + V_dyn_udp_lifetime;
1022
break;
1023
case IPPROTO_TCP:
1024
expire = dyn_update_tcp_state(data, pkt, ulp, dir);
1025
break;
1026
default:
1027
expire = time_uptime + V_dyn_short_lifetime;
1028
}
1029
/*
1030
* Expiration timer has the per-second granularity, no need to update
1031
* it every time when state is matched.
1032
*/
1033
if (data->expire != expire)
1034
ck_pr_store_32(&data->expire, expire);
1035
1036
if (dir == MATCH_FORWARD)
1037
DYN_COUNTER_INC(data, fwd, pktlen);
1038
else
1039
DYN_COUNTER_INC(data, rev, pktlen);
1040
}
1041
1042
/*
1043
* Lookup IPv4 state.
1044
* Must be called in critical section.
1045
*/
1046
struct dyn_ipv4_state *
1047
dyn_lookup_ipv4_state(const struct ipfw_flow_id *pkt, const void *ulp,
1048
struct ipfw_dyn_info *info, int pktlen)
1049
{
1050
struct dyn_ipv4_state *s;
1051
uint32_t version, bucket;
1052
1053
bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1054
info->version = DYN_BUCKET_VERSION(bucket, ipv4_add);
1055
restart:
1056
version = DYN_BUCKET_VERSION(bucket, ipv4_del);
1057
CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1058
DYNSTATE_PROTECT(s);
1059
if (version != DYN_BUCKET_VERSION(bucket, ipv4_del))
1060
goto restart;
1061
if (s->proto != pkt->proto)
1062
continue;
1063
if (info->kidx != 0 && s->kidx != info->kidx)
1064
continue;
1065
if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1066
s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1067
info->direction = MATCH_FORWARD;
1068
break;
1069
}
1070
if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1071
s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1072
info->direction = MATCH_REVERSE;
1073
break;
1074
}
1075
}
1076
1077
if (s != NULL)
1078
dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1079
info->direction);
1080
return (s);
1081
}
1082
1083
/*
1084
* Lookup IPv4 state.
1085
* Simplifed version is used to check that matching state doesn't exist.
1086
*/
1087
static int
1088
dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *pkt,
1089
const void *ulp, int pktlen, uint32_t bucket, uint32_t kidx)
1090
{
1091
struct dyn_ipv4_state *s;
1092
int dir;
1093
1094
dir = MATCH_NONE;
1095
DYN_BUCKET_ASSERT(bucket);
1096
CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1097
if (s->proto != pkt->proto ||
1098
s->kidx != kidx)
1099
continue;
1100
if (s->sport == pkt->src_port &&
1101
s->dport == pkt->dst_port &&
1102
s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1103
dir = MATCH_FORWARD;
1104
break;
1105
}
1106
if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1107
s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1108
dir = MATCH_REVERSE;
1109
break;
1110
}
1111
}
1112
if (s != NULL)
1113
dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1114
return (s != NULL);
1115
}
1116
1117
struct dyn_ipv4_state *
1118
dyn_lookup_ipv4_parent(const struct ipfw_flow_id *pkt, const void *rule,
1119
uint32_t ruleid, uint32_t rulenum, uint32_t hashval)
1120
{
1121
struct dyn_ipv4_state *s;
1122
uint32_t version, bucket;
1123
1124
bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1125
restart:
1126
version = DYN_BUCKET_VERSION(bucket, ipv4_parent_del);
1127
CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1128
DYNSTATE_PROTECT(s);
1129
if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_del))
1130
goto restart;
1131
/*
1132
* NOTE: we do not need to check kidx, because parent rule
1133
* can not create states with different kidx.
1134
* And parent rule always created for forward direction.
1135
*/
1136
if (s->limit->parent == rule &&
1137
s->limit->ruleid == ruleid &&
1138
s->limit->rulenum == rulenum &&
1139
s->proto == pkt->proto &&
1140
s->sport == pkt->src_port &&
1141
s->dport == pkt->dst_port &&
1142
s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1143
if (s->limit->expire != time_uptime +
1144
V_dyn_short_lifetime)
1145
ck_pr_store_32(&s->limit->expire,
1146
time_uptime + V_dyn_short_lifetime);
1147
break;
1148
}
1149
}
1150
return (s);
1151
}
1152
1153
static struct dyn_ipv4_state *
1154
dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id *pkt,
1155
const void *rule, uint32_t ruleid, uint32_t rulenum, uint32_t bucket)
1156
{
1157
struct dyn_ipv4_state *s;
1158
1159
DYN_BUCKET_ASSERT(bucket);
1160
CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1161
if (s->limit->parent == rule &&
1162
s->limit->ruleid == ruleid &&
1163
s->limit->rulenum == rulenum &&
1164
s->proto == pkt->proto &&
1165
s->sport == pkt->src_port &&
1166
s->dport == pkt->dst_port &&
1167
s->src == pkt->src_ip && s->dst == pkt->dst_ip)
1168
break;
1169
}
1170
return (s);
1171
}
1172
1173
#ifdef INET6
1174
static uint32_t
1175
dyn_getscopeid(const struct ip_fw_args *args)
1176
{
1177
1178
/*
1179
* If source or destination address is an scopeid address, we need
1180
* determine the scope zone id to resolve address scope ambiguity.
1181
*/
1182
if (IN6_IS_ADDR_LINKLOCAL(&args->f_id.src_ip6) ||
1183
IN6_IS_ADDR_LINKLOCAL(&args->f_id.dst_ip6))
1184
return (in6_getscopezone(args->ifp, IPV6_ADDR_SCOPE_LINKLOCAL));
1185
1186
return (0);
1187
}
1188
1189
/*
1190
* Lookup IPv6 state.
1191
* Must be called in critical section.
1192
*/
1193
static struct dyn_ipv6_state *
1194
dyn_lookup_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1195
const void *ulp, struct ipfw_dyn_info *info, int pktlen)
1196
{
1197
struct dyn_ipv6_state *s;
1198
uint32_t version, bucket;
1199
1200
bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1201
info->version = DYN_BUCKET_VERSION(bucket, ipv6_add);
1202
restart:
1203
version = DYN_BUCKET_VERSION(bucket, ipv6_del);
1204
CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1205
DYNSTATE_PROTECT(s);
1206
if (version != DYN_BUCKET_VERSION(bucket, ipv6_del))
1207
goto restart;
1208
if (s->proto != pkt->proto || s->zoneid != zoneid)
1209
continue;
1210
if (info->kidx != 0 && s->kidx != info->kidx)
1211
continue;
1212
if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1213
IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1214
IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1215
info->direction = MATCH_FORWARD;
1216
break;
1217
}
1218
if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1219
IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1220
IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1221
info->direction = MATCH_REVERSE;
1222
break;
1223
}
1224
}
1225
if (s != NULL)
1226
dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1227
info->direction);
1228
return (s);
1229
}
1230
1231
/*
1232
* Lookup IPv6 state.
1233
* Simplifed version is used to check that matching state doesn't exist.
1234
*/
1235
static int
1236
dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1237
const void *ulp, int pktlen, uint32_t bucket, uint32_t kidx)
1238
{
1239
struct dyn_ipv6_state *s;
1240
int dir;
1241
1242
dir = MATCH_NONE;
1243
DYN_BUCKET_ASSERT(bucket);
1244
CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1245
if (s->proto != pkt->proto || s->kidx != kidx ||
1246
s->zoneid != zoneid)
1247
continue;
1248
if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1249
IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1250
IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1251
dir = MATCH_FORWARD;
1252
break;
1253
}
1254
if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1255
IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1256
IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1257
dir = MATCH_REVERSE;
1258
break;
1259
}
1260
}
1261
if (s != NULL)
1262
dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1263
return (s != NULL);
1264
}
1265
1266
static struct dyn_ipv6_state *
1267
dyn_lookup_ipv6_parent(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1268
const void *rule, uint32_t ruleid, uint32_t rulenum, uint32_t hashval)
1269
{
1270
struct dyn_ipv6_state *s;
1271
uint32_t version, bucket;
1272
1273
bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1274
restart:
1275
version = DYN_BUCKET_VERSION(bucket, ipv6_parent_del);
1276
CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1277
DYNSTATE_PROTECT(s);
1278
if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_del))
1279
goto restart;
1280
/*
1281
* NOTE: we do not need to check kidx, because parent rule
1282
* can not create states with different kidx.
1283
* Also parent rule always created for forward direction.
1284
*/
1285
if (s->limit->parent == rule &&
1286
s->limit->ruleid == ruleid &&
1287
s->limit->rulenum == rulenum &&
1288
s->proto == pkt->proto &&
1289
s->sport == pkt->src_port &&
1290
s->dport == pkt->dst_port && s->zoneid == zoneid &&
1291
IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1292
IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1293
if (s->limit->expire != time_uptime +
1294
V_dyn_short_lifetime)
1295
ck_pr_store_32(&s->limit->expire,
1296
time_uptime + V_dyn_short_lifetime);
1297
break;
1298
}
1299
}
1300
return (s);
1301
}
1302
1303
static struct dyn_ipv6_state *
1304
dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1305
const void *rule, uint32_t ruleid, uint32_t rulenum, uint32_t bucket)
1306
{
1307
struct dyn_ipv6_state *s;
1308
1309
DYN_BUCKET_ASSERT(bucket);
1310
CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1311
if (s->limit->parent == rule &&
1312
s->limit->ruleid == ruleid &&
1313
s->limit->rulenum == rulenum &&
1314
s->proto == pkt->proto &&
1315
s->sport == pkt->src_port &&
1316
s->dport == pkt->dst_port && s->zoneid == zoneid &&
1317
IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1318
IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6))
1319
break;
1320
}
1321
return (s);
1322
}
1323
1324
#endif /* INET6 */
1325
1326
static int
1327
dyn_handle_orphaned(struct ip_fw *old_rule, struct dyn_data *data)
1328
{
1329
struct ip_fw *rule;
1330
const ipfw_insn *cmd, *old_cmd;
1331
1332
old_cmd = ACTION_PTR(old_rule);
1333
switch (old_cmd->opcode) {
1334
case O_SETMARK:
1335
case O_SKIPTO:
1336
/*
1337
* Rule pointer was changed. For O_SKIPTO action it can be
1338
* dangerous to keep use old rule. If new rule has the same
1339
* action and the same destination number, then use this dynamic
1340
* state. Otherwise it is better to create new one.
1341
*/
1342
rule = V_layer3_chain.map[data->f_pos];
1343
cmd = ACTION_PTR(rule);
1344
if (cmd->opcode != old_cmd->opcode ||
1345
cmd->len != old_cmd->len || cmd->arg1 != old_cmd->arg1 ||
1346
insntoc(cmd, u32)->d[0] != insntoc(old_cmd, u32)->d[0])
1347
return (-1);
1348
break;
1349
}
1350
return (0);
1351
}
1352
1353
/*
1354
* Lookup dynamic state.
1355
* pkt - filled by ipfw_chk() ipfw_flow_id;
1356
* ulp - determined by ipfw_chk() upper level protocol header;
1357
* dyn_info - info about matched state to return back;
1358
* Returns pointer to state's parent rule and dyn_info. If there is
1359
* no state, NULL is returned.
1360
* On match ipfw_dyn_lookup() updates state's counters.
1361
*/
1362
struct ip_fw *
1363
ipfw_dyn_lookup_state(const struct ip_fw_args *args, const void *ulp,
1364
int pktlen, const ipfw_insn *cmd, struct ipfw_dyn_info *info)
1365
{
1366
struct dyn_data *data;
1367
struct ip_fw *rule;
1368
1369
IPFW_RLOCK_ASSERT(&V_layer3_chain);
1370
MPASS(F_LEN(cmd) >= F_INSN_SIZE(ipfw_insn_kidx));
1371
1372
data = NULL;
1373
rule = NULL;
1374
info->kidx = insntoc(cmd, kidx)->kidx;
1375
info->direction = MATCH_NONE;
1376
info->hashval = hash_packet(&args->f_id);
1377
1378
DYNSTATE_CRITICAL_ENTER();
1379
if (IS_IP4_FLOW_ID(&args->f_id)) {
1380
struct dyn_ipv4_state *s;
1381
1382
s = dyn_lookup_ipv4_state(&args->f_id, ulp, info, pktlen);
1383
if (s != NULL) {
1384
/*
1385
* Dynamic states are created using the same 5-tuple,
1386
* so it is assumed, that parent rule for O_LIMIT
1387
* state has the same address family.
1388
*/
1389
data = s->data;
1390
if (s->type == O_LIMIT) {
1391
s = data->parent;
1392
rule = s->limit->parent;
1393
} else
1394
rule = data->parent;
1395
}
1396
}
1397
#ifdef INET6
1398
else if (IS_IP6_FLOW_ID(&args->f_id)) {
1399
struct dyn_ipv6_state *s;
1400
1401
s = dyn_lookup_ipv6_state(&args->f_id, dyn_getscopeid(args),
1402
ulp, info, pktlen);
1403
if (s != NULL) {
1404
data = s->data;
1405
if (s->type == O_LIMIT) {
1406
s = data->parent;
1407
rule = s->limit->parent;
1408
} else
1409
rule = data->parent;
1410
}
1411
}
1412
#endif
1413
if (data != NULL) {
1414
/*
1415
* If cached chain id is the same, we can avoid rule index
1416
* lookup. Otherwise do lookup and update chain_id and f_pos.
1417
* It is safe even if there is concurrent thread that want
1418
* update the same state, because chain->id can be changed
1419
* only under IPFW_WLOCK().
1420
*/
1421
if (data->chain_id != V_layer3_chain.id) {
1422
data->f_pos = ipfw_find_rule(&V_layer3_chain,
1423
data->rulenum, data->ruleid);
1424
/*
1425
* Check that found state has not orphaned.
1426
* When chain->id being changed the parent
1427
* rule can be deleted. If found rule doesn't
1428
* match the parent pointer, consider this
1429
* result as MATCH_NONE and return NULL.
1430
*
1431
* This will lead to creation of new similar state
1432
* that will be added into head of this bucket.
1433
* And the state that we currently have matched
1434
* should be deleted by dyn_expire_states().
1435
*
1436
* In case when dyn_keep_states is enabled, return
1437
* pointer to deleted rule and f_pos value
1438
* corresponding to penultimate rule.
1439
* When we have enabled V_dyn_keep_states, states
1440
* that become orphaned will get the DYN_REFERENCED
1441
* flag and rule will keep around. So we can return
1442
* it. But since it is not in the rules map, we need
1443
* return such f_pos value, so after the state
1444
* handling if the search will continue, the next rule
1445
* will be the last one - the default rule.
1446
*/
1447
if (V_layer3_chain.map[data->f_pos] == rule) {
1448
data->chain_id = V_layer3_chain.id;
1449
} else if (V_dyn_keep_states != 0) {
1450
/*
1451
* The original rule pointer is still usable.
1452
* So, we return it, but f_pos need to be
1453
* changed to point to the penultimate rule.
1454
*/
1455
MPASS(V_layer3_chain.n_rules > 1);
1456
if (dyn_handle_orphaned(rule, data) == 0) {
1457
data->chain_id = V_layer3_chain.id;
1458
data->f_pos = V_layer3_chain.n_rules - 2;
1459
} else {
1460
rule = NULL;
1461
info->direction = MATCH_NONE;
1462
}
1463
} else {
1464
rule = NULL;
1465
info->direction = MATCH_NONE;
1466
DYN_DEBUG("rule %p [%u, %u] is considered "
1467
"invalid in data %p", rule, data->ruleid,
1468
data->rulenum, data);
1469
/* info->f_pos doesn't matter here. */
1470
}
1471
}
1472
info->f_pos = data->f_pos;
1473
}
1474
DYNSTATE_CRITICAL_EXIT();
1475
#if 0
1476
/*
1477
* Return MATCH_NONE if parent rule is in disabled set.
1478
* This will lead to creation of new similar state that
1479
* will be added into head of this bucket.
1480
*
1481
* XXXAE: we need to be able update state's set when parent
1482
* rule set is changed.
1483
*/
1484
if (rule != NULL && (V_set_disable & (1 << rule->set))) {
1485
rule = NULL;
1486
info->direction = MATCH_NONE;
1487
}
1488
#endif
1489
return (rule);
1490
}
1491
1492
static struct dyn_parent *
1493
dyn_alloc_parent(void *parent, uint32_t ruleid, uint32_t rulenum,
1494
uint32_t hashval)
1495
{
1496
struct dyn_parent *limit;
1497
1498
limit = uma_zalloc(V_dyn_parent_zone, M_NOWAIT | M_ZERO);
1499
if (limit == NULL) {
1500
if (last_log != time_uptime) {
1501
last_log = time_uptime;
1502
log(LOG_DEBUG,
1503
"ipfw: Cannot allocate parent dynamic state, "
1504
"consider increasing "
1505
"net.inet.ip.fw.dyn_parent_max\n");
1506
}
1507
return (NULL);
1508
}
1509
1510
limit->parent = parent;
1511
limit->ruleid = ruleid;
1512
limit->rulenum = rulenum;
1513
limit->hashval = hashval;
1514
limit->expire = time_uptime + V_dyn_short_lifetime;
1515
return (limit);
1516
}
1517
1518
static struct dyn_data *
1519
dyn_alloc_dyndata(void *parent, uint32_t ruleid, uint32_t rulenum,
1520
const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1521
uint32_t hashval, uint16_t fibnum)
1522
{
1523
struct dyn_data *data;
1524
1525
data = uma_zalloc(V_dyn_data_zone, M_NOWAIT | M_ZERO);
1526
if (data == NULL) {
1527
if (last_log != time_uptime) {
1528
last_log = time_uptime;
1529
log(LOG_DEBUG,
1530
"ipfw: Cannot allocate dynamic state, "
1531
"consider increasing net.inet.ip.fw.dyn_max\n");
1532
}
1533
return (NULL);
1534
}
1535
1536
data->parent = parent;
1537
data->ruleid = ruleid;
1538
data->rulenum = rulenum;
1539
data->fibnum = fibnum;
1540
data->hashval = hashval;
1541
data->expire = time_uptime + V_dyn_syn_lifetime;
1542
dyn_update_proto_state(data, pkt, ulp, pktlen, MATCH_FORWARD);
1543
return (data);
1544
}
1545
1546
static struct dyn_ipv4_state *
1547
dyn_alloc_ipv4_state(const struct ipfw_flow_id *pkt, uint32_t kidx,
1548
uint8_t type)
1549
{
1550
struct dyn_ipv4_state *s;
1551
1552
s = uma_zalloc(V_dyn_ipv4_zone, M_NOWAIT | M_ZERO);
1553
if (s == NULL)
1554
return (NULL);
1555
1556
s->type = type;
1557
s->kidx = kidx;
1558
s->proto = pkt->proto;
1559
s->sport = pkt->src_port;
1560
s->dport = pkt->dst_port;
1561
s->src = pkt->src_ip;
1562
s->dst = pkt->dst_ip;
1563
return (s);
1564
}
1565
1566
/*
1567
* Add IPv4 parent state.
1568
* Returns pointer to parent state. When it is not NULL we are in
1569
* critical section and pointer protected by hazard pointer.
1570
* When some error occurs, it returns NULL and exit from critical section
1571
* is not needed.
1572
*/
1573
static struct dyn_ipv4_state *
1574
dyn_add_ipv4_parent(void *rule, uint32_t ruleid, uint32_t rulenum,
1575
const struct ipfw_flow_id *pkt, uint32_t hashval, uint32_t version,
1576
uint32_t kidx)
1577
{
1578
struct dyn_ipv4_state *s;
1579
struct dyn_parent *limit;
1580
uint32_t bucket;
1581
1582
bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1583
DYN_BUCKET_LOCK(bucket);
1584
if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_add)) {
1585
/*
1586
* Bucket version has been changed since last lookup,
1587
* do lookup again to be sure that state does not exist.
1588
*/
1589
s = dyn_lookup_ipv4_parent_locked(pkt, rule, ruleid,
1590
rulenum, bucket);
1591
if (s != NULL) {
1592
/*
1593
* Simultaneous thread has already created this
1594
* state. Just return it.
1595
*/
1596
DYNSTATE_CRITICAL_ENTER();
1597
DYNSTATE_PROTECT(s);
1598
DYN_BUCKET_UNLOCK(bucket);
1599
return (s);
1600
}
1601
}
1602
1603
limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1604
if (limit == NULL) {
1605
DYN_BUCKET_UNLOCK(bucket);
1606
return (NULL);
1607
}
1608
1609
s = dyn_alloc_ipv4_state(pkt, kidx, O_LIMIT_PARENT);
1610
if (s == NULL) {
1611
DYN_BUCKET_UNLOCK(bucket);
1612
uma_zfree(V_dyn_parent_zone, limit);
1613
return (NULL);
1614
}
1615
1616
s->limit = limit;
1617
CK_SLIST_INSERT_HEAD(&V_dyn_ipv4_parent[bucket], s, entry);
1618
DYN_COUNT_INC(dyn_parent_count);
1619
DYN_BUCKET_VERSION_BUMP(bucket, ipv4_parent_add);
1620
DYNSTATE_CRITICAL_ENTER();
1621
DYNSTATE_PROTECT(s);
1622
DYN_BUCKET_UNLOCK(bucket);
1623
return (s);
1624
}
1625
1626
static int
1627
dyn_add_ipv4_state(void *parent, uint32_t ruleid, uint32_t rulenum,
1628
const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1629
uint32_t hashval, struct ipfw_dyn_info *info, uint16_t fibnum,
1630
uint32_t kidx, uint8_t type)
1631
{
1632
struct dyn_ipv4_state *s;
1633
void *data;
1634
uint32_t bucket;
1635
1636
bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1637
DYN_BUCKET_LOCK(bucket);
1638
if (info->direction == MATCH_UNKNOWN ||
1639
info->kidx != kidx ||
1640
info->hashval != hashval ||
1641
info->version != DYN_BUCKET_VERSION(bucket, ipv4_add)) {
1642
/*
1643
* Bucket version has been changed since last lookup,
1644
* do lookup again to be sure that state does not exist.
1645
*/
1646
if (dyn_lookup_ipv4_state_locked(pkt, ulp, pktlen,
1647
bucket, kidx) != 0) {
1648
DYN_BUCKET_UNLOCK(bucket);
1649
return (EEXIST);
1650
}
1651
}
1652
1653
data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1654
pktlen, hashval, fibnum);
1655
if (data == NULL) {
1656
DYN_BUCKET_UNLOCK(bucket);
1657
return (ENOMEM);
1658
}
1659
1660
s = dyn_alloc_ipv4_state(pkt, kidx, type);
1661
if (s == NULL) {
1662
DYN_BUCKET_UNLOCK(bucket);
1663
uma_zfree(V_dyn_data_zone, data);
1664
return (ENOMEM);
1665
}
1666
1667
s->data = data;
1668
CK_SLIST_INSERT_HEAD(&V_dyn_ipv4[bucket], s, entry);
1669
DYN_COUNT_INC(dyn_count);
1670
DYN_BUCKET_VERSION_BUMP(bucket, ipv4_add);
1671
DYN_BUCKET_UNLOCK(bucket);
1672
return (0);
1673
}
1674
1675
#ifdef INET6
1676
static struct dyn_ipv6_state *
1677
dyn_alloc_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1678
uint32_t kidx, uint8_t type)
1679
{
1680
struct dyn_ipv6_state *s;
1681
1682
s = uma_zalloc(V_dyn_ipv6_zone, M_NOWAIT | M_ZERO);
1683
if (s == NULL)
1684
return (NULL);
1685
1686
s->type = type;
1687
s->kidx = kidx;
1688
s->zoneid = zoneid;
1689
s->proto = pkt->proto;
1690
s->sport = pkt->src_port;
1691
s->dport = pkt->dst_port;
1692
s->src = pkt->src_ip6;
1693
s->dst = pkt->dst_ip6;
1694
return (s);
1695
}
1696
1697
/*
1698
* Add IPv6 parent state.
1699
* Returns pointer to parent state. When it is not NULL we are in
1700
* critical section and pointer protected by hazard pointer.
1701
* When some error occurs, it return NULL and exit from critical section
1702
* is not needed.
1703
*/
1704
static struct dyn_ipv6_state *
1705
dyn_add_ipv6_parent(void *rule, uint32_t ruleid, uint32_t rulenum,
1706
const struct ipfw_flow_id *pkt, uint32_t zoneid, uint32_t hashval,
1707
uint32_t version, uint32_t kidx)
1708
{
1709
struct dyn_ipv6_state *s;
1710
struct dyn_parent *limit;
1711
uint32_t bucket;
1712
1713
bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1714
DYN_BUCKET_LOCK(bucket);
1715
if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_add)) {
1716
/*
1717
* Bucket version has been changed since last lookup,
1718
* do lookup again to be sure that state does not exist.
1719
*/
1720
s = dyn_lookup_ipv6_parent_locked(pkt, zoneid, rule, ruleid,
1721
rulenum, bucket);
1722
if (s != NULL) {
1723
/*
1724
* Simultaneous thread has already created this
1725
* state. Just return it.
1726
*/
1727
DYNSTATE_CRITICAL_ENTER();
1728
DYNSTATE_PROTECT(s);
1729
DYN_BUCKET_UNLOCK(bucket);
1730
return (s);
1731
}
1732
}
1733
1734
limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1735
if (limit == NULL) {
1736
DYN_BUCKET_UNLOCK(bucket);
1737
return (NULL);
1738
}
1739
1740
s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, O_LIMIT_PARENT);
1741
if (s == NULL) {
1742
DYN_BUCKET_UNLOCK(bucket);
1743
uma_zfree(V_dyn_parent_zone, limit);
1744
return (NULL);
1745
}
1746
1747
s->limit = limit;
1748
CK_SLIST_INSERT_HEAD(&V_dyn_ipv6_parent[bucket], s, entry);
1749
DYN_COUNT_INC(dyn_parent_count);
1750
DYN_BUCKET_VERSION_BUMP(bucket, ipv6_parent_add);
1751
DYNSTATE_CRITICAL_ENTER();
1752
DYNSTATE_PROTECT(s);
1753
DYN_BUCKET_UNLOCK(bucket);
1754
return (s);
1755
}
1756
1757
static int
1758
dyn_add_ipv6_state(void *parent, uint32_t ruleid, uint32_t rulenum,
1759
const struct ipfw_flow_id *pkt, uint32_t zoneid, const void *ulp,
1760
int pktlen, uint32_t hashval, struct ipfw_dyn_info *info,
1761
uint16_t fibnum, uint32_t kidx, uint8_t type)
1762
{
1763
struct dyn_ipv6_state *s;
1764
struct dyn_data *data;
1765
uint32_t bucket;
1766
1767
bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1768
DYN_BUCKET_LOCK(bucket);
1769
if (info->direction == MATCH_UNKNOWN ||
1770
info->kidx != kidx ||
1771
info->hashval != hashval ||
1772
info->version != DYN_BUCKET_VERSION(bucket, ipv6_add)) {
1773
/*
1774
* Bucket version has been changed since last lookup,
1775
* do lookup again to be sure that state does not exist.
1776
*/
1777
if (dyn_lookup_ipv6_state_locked(pkt, zoneid, ulp, pktlen,
1778
bucket, kidx) != 0) {
1779
DYN_BUCKET_UNLOCK(bucket);
1780
return (EEXIST);
1781
}
1782
}
1783
1784
data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1785
pktlen, hashval, fibnum);
1786
if (data == NULL) {
1787
DYN_BUCKET_UNLOCK(bucket);
1788
return (ENOMEM);
1789
}
1790
1791
s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, type);
1792
if (s == NULL) {
1793
DYN_BUCKET_UNLOCK(bucket);
1794
uma_zfree(V_dyn_data_zone, data);
1795
return (ENOMEM);
1796
}
1797
1798
s->data = data;
1799
CK_SLIST_INSERT_HEAD(&V_dyn_ipv6[bucket], s, entry);
1800
DYN_COUNT_INC(dyn_count);
1801
DYN_BUCKET_VERSION_BUMP(bucket, ipv6_add);
1802
DYN_BUCKET_UNLOCK(bucket);
1803
return (0);
1804
}
1805
#endif /* INET6 */
1806
1807
static void *
1808
dyn_get_parent_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1809
struct ip_fw *rule, uint32_t hashval, uint32_t limit, uint32_t kidx)
1810
{
1811
char sbuf[24];
1812
struct dyn_parent *p;
1813
void *ret;
1814
uint32_t bucket, version;
1815
1816
p = NULL;
1817
ret = NULL;
1818
bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1819
DYNSTATE_CRITICAL_ENTER();
1820
if (IS_IP4_FLOW_ID(pkt)) {
1821
struct dyn_ipv4_state *s;
1822
1823
version = DYN_BUCKET_VERSION(bucket, ipv4_parent_add);
1824
s = dyn_lookup_ipv4_parent(pkt, rule, rule->id,
1825
rule->rulenum, bucket);
1826
if (s == NULL) {
1827
/*
1828
* Exit from critical section because dyn_add_parent()
1829
* will acquire bucket lock.
1830
*/
1831
DYNSTATE_CRITICAL_EXIT();
1832
1833
s = dyn_add_ipv4_parent(rule, rule->id,
1834
rule->rulenum, pkt, hashval, version, kidx);
1835
if (s == NULL)
1836
return (NULL);
1837
/* Now we are in critical section again. */
1838
}
1839
ret = s;
1840
p = s->limit;
1841
}
1842
#ifdef INET6
1843
else if (IS_IP6_FLOW_ID(pkt)) {
1844
struct dyn_ipv6_state *s;
1845
1846
version = DYN_BUCKET_VERSION(bucket, ipv6_parent_add);
1847
s = dyn_lookup_ipv6_parent(pkt, zoneid, rule, rule->id,
1848
rule->rulenum, bucket);
1849
if (s == NULL) {
1850
/*
1851
* Exit from critical section because dyn_add_parent()
1852
* can acquire bucket mutex.
1853
*/
1854
DYNSTATE_CRITICAL_EXIT();
1855
1856
s = dyn_add_ipv6_parent(rule, rule->id,
1857
rule->rulenum, pkt, zoneid, hashval, version,
1858
kidx);
1859
if (s == NULL)
1860
return (NULL);
1861
/* Now we are in critical section again. */
1862
}
1863
ret = s;
1864
p = s->limit;
1865
}
1866
#endif
1867
else {
1868
DYNSTATE_CRITICAL_EXIT();
1869
return (NULL);
1870
}
1871
1872
/* Check the limit */
1873
if (DPARENT_COUNT(p) >= limit) {
1874
DYNSTATE_CRITICAL_EXIT();
1875
if (V_fw_verbose && last_log != time_uptime) {
1876
last_log = time_uptime;
1877
snprintf(sbuf, sizeof(sbuf), "%u drop session",
1878
rule->rulenum);
1879
print_dyn_rule_flags(pkt, O_LIMIT,
1880
LOG_SECURITY | LOG_DEBUG, sbuf,
1881
"too many entries");
1882
}
1883
return (NULL);
1884
}
1885
1886
/* Take new session into account. */
1887
DPARENT_COUNT_INC(p);
1888
/*
1889
* We must exit from critical section because the following code
1890
* can acquire bucket mutex.
1891
* We rely on the 'count' field. The state will not expire
1892
* until it has some child states, i.e. 'count' field is not zero.
1893
* Return state pointer, it will be used by child states as parent.
1894
*/
1895
DYNSTATE_CRITICAL_EXIT();
1896
return (ret);
1897
}
1898
1899
static int
1900
dyn_install_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1901
uint16_t fibnum, const void *ulp, int pktlen, struct ip_fw *rule,
1902
struct ipfw_dyn_info *info, uint32_t limit, uint16_t limit_mask,
1903
uint32_t kidx, uint8_t type)
1904
{
1905
struct ipfw_flow_id id;
1906
uint32_t hashval, parent_hashval, ruleid, rulenum;
1907
int ret;
1908
1909
MPASS(type == O_LIMIT || type == O_KEEP_STATE);
1910
1911
ruleid = rule->id;
1912
rulenum = rule->rulenum;
1913
if (type == O_LIMIT) {
1914
/* Create masked flow id and calculate bucket */
1915
id.addr_type = pkt->addr_type;
1916
id.proto = pkt->proto;
1917
id.fib = fibnum; /* unused */
1918
id.src_port = (limit_mask & DYN_SRC_PORT) ?
1919
pkt->src_port: 0;
1920
id.dst_port = (limit_mask & DYN_DST_PORT) ?
1921
pkt->dst_port: 0;
1922
if (IS_IP4_FLOW_ID(pkt)) {
1923
id.src_ip = (limit_mask & DYN_SRC_ADDR) ?
1924
pkt->src_ip: 0;
1925
id.dst_ip = (limit_mask & DYN_DST_ADDR) ?
1926
pkt->dst_ip: 0;
1927
}
1928
#ifdef INET6
1929
else if (IS_IP6_FLOW_ID(pkt)) {
1930
if (limit_mask & DYN_SRC_ADDR)
1931
id.src_ip6 = pkt->src_ip6;
1932
else
1933
memset(&id.src_ip6, 0, sizeof(id.src_ip6));
1934
if (limit_mask & DYN_DST_ADDR)
1935
id.dst_ip6 = pkt->dst_ip6;
1936
else
1937
memset(&id.dst_ip6, 0, sizeof(id.dst_ip6));
1938
}
1939
#endif
1940
else
1941
return (EAFNOSUPPORT);
1942
1943
parent_hashval = hash_parent(&id, rule);
1944
rule = dyn_get_parent_state(&id, zoneid, rule, parent_hashval,
1945
limit, kidx);
1946
if (rule == NULL) {
1947
#if 0
1948
if (V_fw_verbose && last_log != time_uptime) {
1949
last_log = time_uptime;
1950
snprintf(sbuf, sizeof(sbuf),
1951
"%u drop session", rule->rulenum);
1952
print_dyn_rule_flags(pkt, O_LIMIT,
1953
LOG_SECURITY | LOG_DEBUG, sbuf,
1954
"too many entries");
1955
}
1956
#endif
1957
return (EACCES);
1958
}
1959
/*
1960
* Limit is not reached, create new state.
1961
* Now rule points to parent state.
1962
*/
1963
}
1964
1965
hashval = hash_packet(pkt);
1966
if (IS_IP4_FLOW_ID(pkt))
1967
ret = dyn_add_ipv4_state(rule, ruleid, rulenum, pkt,
1968
ulp, pktlen, hashval, info, fibnum, kidx, type);
1969
#ifdef INET6
1970
else if (IS_IP6_FLOW_ID(pkt))
1971
ret = dyn_add_ipv6_state(rule, ruleid, rulenum, pkt,
1972
zoneid, ulp, pktlen, hashval, info, fibnum, kidx, type);
1973
#endif /* INET6 */
1974
else
1975
ret = EAFNOSUPPORT;
1976
1977
if (type == O_LIMIT) {
1978
if (ret != 0) {
1979
/*
1980
* We failed to create child state for O_LIMIT
1981
* opcode. Since we already counted it in the parent,
1982
* we must revert counter back. The 'rule' points to
1983
* parent state, use it to get dyn_parent.
1984
*
1985
* XXXAE: it should be safe to use 'rule' pointer
1986
* without extra lookup, parent state is referenced
1987
* and should not be freed.
1988
*/
1989
if (IS_IP4_FLOW_ID(&id))
1990
DPARENT_COUNT_DEC(
1991
((struct dyn_ipv4_state *)rule)->limit);
1992
#ifdef INET6
1993
else if (IS_IP6_FLOW_ID(&id))
1994
DPARENT_COUNT_DEC(
1995
((struct dyn_ipv6_state *)rule)->limit);
1996
#endif
1997
}
1998
}
1999
/*
2000
* EEXIST means that simultaneous thread has created this
2001
* state. Consider this as success.
2002
*
2003
* XXXAE: should we invalidate 'info' content here?
2004
*/
2005
if (ret == EEXIST)
2006
return (0);
2007
return (ret);
2008
}
2009
2010
/*
2011
* Install dynamic state.
2012
* chain - ipfw's instance;
2013
* rule - the parent rule that installs the state;
2014
* cmd - opcode that installs the state;
2015
* args - ipfw arguments;
2016
* ulp - upper level protocol header;
2017
* pktlen - packet length;
2018
* info - dynamic state lookup info;
2019
* tablearg - tablearg id.
2020
*
2021
* Returns non-zero value (failure) if state is not installed because
2022
* of errors or because session limitations are enforced.
2023
*/
2024
int
2025
ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
2026
const ipfw_insn_limit *cmd, const struct ip_fw_args *args,
2027
const void *ulp, int pktlen, struct ipfw_dyn_info *info,
2028
uint32_t tablearg)
2029
{
2030
uint32_t limit;
2031
uint16_t limit_mask;
2032
2033
if (cmd->o.opcode == O_LIMIT) {
2034
limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
2035
limit_mask = cmd->limit_mask;
2036
} else {
2037
limit = 0;
2038
limit_mask = 0;
2039
}
2040
/*
2041
* NOTE: we assume that kidx field of struct ipfw_insn_kidx
2042
* located in the same place as kidx field of ipfw_insn_limit.
2043
*/
2044
return (dyn_install_state(&args->f_id,
2045
#ifdef INET6
2046
IS_IP6_FLOW_ID(&args->f_id) ? dyn_getscopeid(args):
2047
#endif
2048
0, M_GETFIB(args->m), ulp, pktlen, rule, info, limit,
2049
limit_mask, cmd->kidx, cmd->o.opcode));
2050
}
2051
2052
/*
2053
* Free safe to remove state entries from expired lists.
2054
*/
2055
static void
2056
dyn_free_states(struct ip_fw_chain *chain)
2057
{
2058
struct dyn_ipv4_state *s4, *s4n;
2059
#ifdef INET6
2060
struct dyn_ipv6_state *s6, *s6n;
2061
#endif
2062
int cached_count, i;
2063
2064
/*
2065
* We keep pointers to objects that are in use on each CPU
2066
* in the per-cpu dyn_hp pointer. When object is going to be
2067
* removed, first of it is unlinked from the corresponding
2068
* list. This leads to changing of dyn_bucket_xxx_delver version.
2069
* Unlinked objects is placed into corresponding dyn_expired_xxx
2070
* list. Reader that is going to dereference object pointer checks
2071
* dyn_bucket_xxx_delver version before and after storing pointer
2072
* into dyn_hp. If version is the same, the object is protected
2073
* from freeing and it is safe to dereference. Othervise reader
2074
* tries to iterate list again from the beginning, but this object
2075
* now unlinked and thus will not be accessible.
2076
*
2077
* Copy dyn_hp pointers for each CPU into dyn_hp_cache array.
2078
* It does not matter that some pointer can be changed in
2079
* time while we are copying. We need to check, that objects
2080
* removed in the previous pass are not in use. And if dyn_hp
2081
* pointer does not contain it in the time when we are copying,
2082
* it will not appear there, because it is already unlinked.
2083
* And for new pointers we will not free objects that will be
2084
* unlinked in this pass.
2085
*/
2086
cached_count = 0;
2087
CPU_FOREACH(i) {
2088
dyn_hp_cache[cached_count] = DYNSTATE_GET(i);
2089
if (dyn_hp_cache[cached_count] != NULL)
2090
cached_count++;
2091
}
2092
2093
/*
2094
* Free expired states that are safe to free.
2095
* Check each entry from previous pass in the dyn_expired_xxx
2096
* list, if pointer to the object is in the dyn_hp_cache array,
2097
* keep it until next pass. Otherwise it is safe to free the
2098
* object.
2099
*
2100
* XXXAE: optimize this to use SLIST_REMOVE_AFTER.
2101
*/
2102
#define DYN_FREE_STATES(s, next, name) do { \
2103
s = SLIST_FIRST(&V_dyn_expired_ ## name); \
2104
while (s != NULL) { \
2105
next = SLIST_NEXT(s, expired); \
2106
for (i = 0; i < cached_count; i++) \
2107
if (dyn_hp_cache[i] == s) \
2108
break; \
2109
if (i == cached_count) { \
2110
if (s->type == O_LIMIT_PARENT && \
2111
s->limit->count != 0) { \
2112
s = next; \
2113
continue; \
2114
} \
2115
SLIST_REMOVE(&V_dyn_expired_ ## name, \
2116
s, dyn_ ## name ## _state, expired); \
2117
if (s->type == O_LIMIT_PARENT) \
2118
uma_zfree(V_dyn_parent_zone, s->limit); \
2119
else \
2120
uma_zfree(V_dyn_data_zone, s->data); \
2121
uma_zfree(V_dyn_ ## name ## _zone, s); \
2122
} \
2123
s = next; \
2124
} \
2125
} while (0)
2126
2127
/*
2128
* Protect access to expired lists with DYN_EXPIRED_LOCK.
2129
* Userland can invoke ipfw_expire_dyn_states() to delete
2130
* specific states, this will lead to modification of expired
2131
* lists.
2132
*
2133
* XXXAE: do we need DYN_EXPIRED_LOCK? We can just use
2134
* IPFW_UH_WLOCK to protect access to these lists.
2135
*/
2136
DYN_EXPIRED_LOCK();
2137
DYN_FREE_STATES(s4, s4n, ipv4);
2138
#ifdef INET6
2139
DYN_FREE_STATES(s6, s6n, ipv6);
2140
#endif
2141
DYN_EXPIRED_UNLOCK();
2142
#undef DYN_FREE_STATES
2143
}
2144
2145
/*
2146
* Returns:
2147
* 0 when state is not matched by specified range;
2148
* 1 when state is matched by specified range;
2149
* 2 when state is matched by specified range and requested deletion of
2150
* dynamic states.
2151
*/
2152
static int
2153
dyn_match_range(uint32_t rulenum, uint8_t set, const ipfw_range_tlv *rt)
2154
{
2155
2156
MPASS(rt != NULL);
2157
/* flush all states */
2158
if (rt->flags & IPFW_RCFLAG_ALL) {
2159
if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2160
return (2); /* forced */
2161
return (1);
2162
}
2163
if ((rt->flags & IPFW_RCFLAG_SET) != 0 && set != rt->set)
2164
return (0);
2165
if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
2166
(rulenum < rt->start_rule || rulenum > rt->end_rule))
2167
return (0);
2168
if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2169
return (2);
2170
return (1);
2171
}
2172
2173
static void
2174
dyn_acquire_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2175
struct ip_fw *rule, uint32_t kidx)
2176
{
2177
struct dyn_state_obj *obj;
2178
2179
/*
2180
* Do not acquire reference twice.
2181
* This can happen when rule deletion executed for
2182
* the same range, but different ruleset id.
2183
*/
2184
if (data->flags & DYN_REFERENCED)
2185
return;
2186
2187
IPFW_UH_WLOCK_ASSERT(ch);
2188
MPASS(kidx != 0);
2189
2190
data->flags |= DYN_REFERENCED;
2191
/* Reference the named object */
2192
obj = SRV_OBJECT(ch, kidx);
2193
obj->no.refcnt++;
2194
MPASS(obj->no.etlv == IPFW_TLV_STATE_NAME);
2195
2196
/* Reference the parent rule */
2197
rule->refcnt++;
2198
}
2199
2200
static void
2201
dyn_release_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2202
struct ip_fw *rule, uint32_t kidx)
2203
{
2204
struct dyn_state_obj *obj;
2205
2206
IPFW_UH_WLOCK_ASSERT(ch);
2207
MPASS(kidx != 0);
2208
2209
obj = SRV_OBJECT(ch, kidx);
2210
if (obj->no.refcnt == 1)
2211
dyn_destroy(ch, &obj->no);
2212
else
2213
obj->no.refcnt--;
2214
2215
if (--rule->refcnt == 1)
2216
ipfw_free_rule(rule);
2217
}
2218
2219
/*
2220
* We do not keep O_LIMIT_PARENT states when V_dyn_keep_states is enabled.
2221
* O_LIMIT state is created when new connection is going to be established
2222
* and there is no matching state. So, since the old parent rule was deleted
2223
* we can't create new states with old parent, and thus we can not account
2224
* new connections with already established connections, and can not do
2225
* proper limiting.
2226
*/
2227
static int
2228
dyn_match_ipv4_state(struct ip_fw_chain *ch, struct dyn_ipv4_state *s,
2229
const ipfw_range_tlv *rt)
2230
{
2231
struct ip_fw *rule;
2232
int ret;
2233
2234
if (s->type == O_LIMIT_PARENT) {
2235
rule = s->limit->parent;
2236
return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2237
}
2238
2239
rule = s->data->parent;
2240
if (s->type == O_LIMIT)
2241
rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2242
2243
ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2244
if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2245
return (ret);
2246
2247
dyn_acquire_rule(ch, s->data, rule, s->kidx);
2248
return (0);
2249
}
2250
2251
#ifdef INET6
2252
static int
2253
dyn_match_ipv6_state(struct ip_fw_chain *ch, struct dyn_ipv6_state *s,
2254
const ipfw_range_tlv *rt)
2255
{
2256
struct ip_fw *rule;
2257
int ret;
2258
2259
if (s->type == O_LIMIT_PARENT) {
2260
rule = s->limit->parent;
2261
return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2262
}
2263
2264
rule = s->data->parent;
2265
if (s->type == O_LIMIT)
2266
rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
2267
2268
ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2269
if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2270
return (ret);
2271
2272
dyn_acquire_rule(ch, s->data, rule, s->kidx);
2273
return (0);
2274
}
2275
#endif
2276
2277
/*
2278
* Unlink expired entries from states lists.
2279
* @rt can be used to specify the range of states for deletion.
2280
*/
2281
static void
2282
dyn_expire_states(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
2283
{
2284
struct dyn_ipv4_slist expired_ipv4;
2285
#ifdef INET6
2286
struct dyn_ipv6_slist expired_ipv6;
2287
struct dyn_ipv6_state *s6, *s6n, *s6p;
2288
#endif
2289
struct dyn_ipv4_state *s4, *s4n, *s4p;
2290
void *rule;
2291
int bucket, removed, length, max_length;
2292
2293
IPFW_UH_WLOCK_ASSERT(ch);
2294
2295
/*
2296
* Unlink expired states from each bucket.
2297
* With acquired bucket lock iterate entries of each lists:
2298
* ipv4, ipv4_parent, ipv6, and ipv6_parent. Check expired time
2299
* and unlink entry from the list, link entry into temporary
2300
* expired_xxx lists then bump "del" bucket version.
2301
*
2302
* When an entry is removed, corresponding states counter is
2303
* decremented. If entry has O_LIMIT type, parent's reference
2304
* counter is decremented.
2305
*
2306
* NOTE: this function can be called from userspace context
2307
* when user deletes rules. In this case all matched states
2308
* will be forcedly unlinked. O_LIMIT_PARENT states will be kept
2309
* in the expired lists until reference counter become zero.
2310
*/
2311
#define DYN_UNLINK_STATES(s, prev, next, exp, af, name, extra) do { \
2312
length = 0; \
2313
removed = 0; \
2314
prev = NULL; \
2315
s = CK_SLIST_FIRST(&V_dyn_ ## name [bucket]); \
2316
while (s != NULL) { \
2317
next = CK_SLIST_NEXT(s, entry); \
2318
if ((TIME_LEQ((s)->exp, time_uptime) && extra) || \
2319
(rt != NULL && \
2320
dyn_match_ ## af ## _state(ch, s, rt))) { \
2321
if (prev != NULL) \
2322
CK_SLIST_REMOVE_AFTER(prev, entry); \
2323
else \
2324
CK_SLIST_REMOVE_HEAD( \
2325
&V_dyn_ ## name [bucket], entry); \
2326
removed++; \
2327
SLIST_INSERT_HEAD(&expired_ ## af, s, expired); \
2328
if (s->type == O_LIMIT_PARENT) \
2329
DYN_COUNT_DEC(dyn_parent_count); \
2330
else { \
2331
DYN_COUNT_DEC(dyn_count); \
2332
if (s->data->flags & DYN_REFERENCED) { \
2333
rule = s->data->parent; \
2334
if (s->type == O_LIMIT) \
2335
rule = ((__typeof(s)) \
2336
rule)->limit->parent;\
2337
dyn_release_rule(ch, s->data, \
2338
rule, s->kidx); \
2339
} \
2340
if (s->type == O_LIMIT) { \
2341
s = s->data->parent; \
2342
DPARENT_COUNT_DEC(s->limit); \
2343
} \
2344
} \
2345
} else { \
2346
prev = s; \
2347
length++; \
2348
} \
2349
s = next; \
2350
} \
2351
if (removed != 0) \
2352
DYN_BUCKET_VERSION_BUMP(bucket, name ## _del); \
2353
if (length > max_length) \
2354
max_length = length; \
2355
} while (0)
2356
2357
SLIST_INIT(&expired_ipv4);
2358
#ifdef INET6
2359
SLIST_INIT(&expired_ipv6);
2360
#endif
2361
max_length = 0;
2362
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2363
DYN_BUCKET_LOCK(bucket);
2364
DYN_UNLINK_STATES(s4, s4p, s4n, data->expire, ipv4, ipv4, 1);
2365
DYN_UNLINK_STATES(s4, s4p, s4n, limit->expire, ipv4,
2366
ipv4_parent, (s4->limit->count == 0));
2367
#ifdef INET6
2368
DYN_UNLINK_STATES(s6, s6p, s6n, data->expire, ipv6, ipv6, 1);
2369
DYN_UNLINK_STATES(s6, s6p, s6n, limit->expire, ipv6,
2370
ipv6_parent, (s6->limit->count == 0));
2371
#endif
2372
DYN_BUCKET_UNLOCK(bucket);
2373
}
2374
/* Update curr_max_length for statistics. */
2375
V_curr_max_length = max_length;
2376
/*
2377
* Concatenate temporary lists with global expired lists.
2378
*/
2379
DYN_EXPIRED_LOCK();
2380
SLIST_CONCAT(&V_dyn_expired_ipv4, &expired_ipv4,
2381
dyn_ipv4_state, expired);
2382
#ifdef INET6
2383
SLIST_CONCAT(&V_dyn_expired_ipv6, &expired_ipv6,
2384
dyn_ipv6_state, expired);
2385
#endif
2386
DYN_EXPIRED_UNLOCK();
2387
#undef DYN_UNLINK_STATES
2388
#undef DYN_UNREF_STATES
2389
}
2390
2391
static struct mbuf *
2392
dyn_mgethdr(int len, uint16_t fibnum)
2393
{
2394
struct mbuf *m;
2395
2396
m = m_gethdr(M_NOWAIT, MT_DATA);
2397
if (m == NULL)
2398
return (NULL);
2399
#ifdef MAC
2400
mac_netinet_firewall_send(m);
2401
#endif
2402
M_SETFIB(m, fibnum);
2403
m->m_data += max_linkhdr;
2404
m->m_flags |= M_SKIP_FIREWALL;
2405
m->m_len = m->m_pkthdr.len = len;
2406
bzero(m->m_data, len);
2407
return (m);
2408
}
2409
2410
static void
2411
dyn_make_keepalive_ipv4(struct mbuf *m, in_addr_t src, in_addr_t dst,
2412
uint32_t seq, uint32_t ack, uint16_t sport, uint16_t dport)
2413
{
2414
struct tcphdr *tcp;
2415
struct ip *ip;
2416
2417
ip = mtod(m, struct ip *);
2418
ip->ip_v = 4;
2419
ip->ip_hl = sizeof(*ip) >> 2;
2420
ip->ip_tos = IPTOS_LOWDELAY;
2421
ip->ip_len = htons(m->m_len);
2422
ip->ip_off |= htons(IP_DF);
2423
ip->ip_ttl = V_ip_defttl;
2424
ip->ip_p = IPPROTO_TCP;
2425
ip->ip_src.s_addr = htonl(src);
2426
ip->ip_dst.s_addr = htonl(dst);
2427
2428
tcp = mtodo(m, sizeof(struct ip));
2429
tcp->th_sport = htons(sport);
2430
tcp->th_dport = htons(dport);
2431
tcp->th_off = sizeof(struct tcphdr) >> 2;
2432
tcp->th_seq = htonl(seq);
2433
tcp->th_ack = htonl(ack);
2434
tcp_set_flags(tcp, TH_ACK);
2435
tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2436
htons(sizeof(struct tcphdr) + IPPROTO_TCP));
2437
2438
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2439
m->m_pkthdr.csum_flags = CSUM_TCP;
2440
}
2441
2442
static void
2443
dyn_enqueue_keepalive_ipv4(struct mbufq *q, const struct dyn_ipv4_state *s)
2444
{
2445
struct mbuf *m;
2446
2447
if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2448
m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2449
s->data->fibnum);
2450
if (m != NULL) {
2451
dyn_make_keepalive_ipv4(m, s->dst, s->src,
2452
s->data->ack_fwd - 1, s->data->ack_rev,
2453
s->dport, s->sport);
2454
if (mbufq_enqueue(q, m)) {
2455
m_freem(m);
2456
log(LOG_DEBUG, "ipfw: limit for IPv4 "
2457
"keepalive queue is reached.\n");
2458
return;
2459
}
2460
}
2461
}
2462
2463
if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2464
m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2465
s->data->fibnum);
2466
if (m != NULL) {
2467
dyn_make_keepalive_ipv4(m, s->src, s->dst,
2468
s->data->ack_rev - 1, s->data->ack_fwd,
2469
s->sport, s->dport);
2470
if (mbufq_enqueue(q, m)) {
2471
m_freem(m);
2472
log(LOG_DEBUG, "ipfw: limit for IPv4 "
2473
"keepalive queue is reached.\n");
2474
return;
2475
}
2476
}
2477
}
2478
}
2479
2480
/*
2481
* Prepare and send keep-alive packets.
2482
*/
2483
static void
2484
dyn_send_keepalive_ipv4(struct ip_fw_chain *chain)
2485
{
2486
struct mbufq q;
2487
struct mbuf *m;
2488
struct dyn_ipv4_state *s;
2489
uint32_t bucket;
2490
2491
mbufq_init(&q, INT_MAX);
2492
IPFW_UH_RLOCK(chain);
2493
/*
2494
* It is safe to not use hazard pointer and just do lockless
2495
* access to the lists, because states entries can not be deleted
2496
* while we hold IPFW_UH_RLOCK.
2497
*/
2498
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2499
CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
2500
/*
2501
* Only established TCP connections that will
2502
* become expired within dyn_keepalive_interval.
2503
*/
2504
if (s->proto != IPPROTO_TCP ||
2505
(s->data->state & BOTH_SYN) != BOTH_SYN ||
2506
TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2507
s->data->expire))
2508
continue;
2509
dyn_enqueue_keepalive_ipv4(&q, s);
2510
}
2511
}
2512
IPFW_UH_RUNLOCK(chain);
2513
while ((m = mbufq_dequeue(&q)) != NULL)
2514
ip_output(m, NULL, NULL, 0, NULL, NULL);
2515
}
2516
2517
#ifdef INET6
2518
static void
2519
dyn_make_keepalive_ipv6(struct mbuf *m, const struct in6_addr *src,
2520
const struct in6_addr *dst, uint32_t zoneid, uint32_t seq, uint32_t ack,
2521
uint16_t sport, uint16_t dport)
2522
{
2523
struct tcphdr *tcp;
2524
struct ip6_hdr *ip6;
2525
2526
ip6 = mtod(m, struct ip6_hdr *);
2527
ip6->ip6_vfc |= IPV6_VERSION;
2528
ip6->ip6_plen = htons(sizeof(struct tcphdr));
2529
ip6->ip6_nxt = IPPROTO_TCP;
2530
ip6->ip6_hlim = IPV6_DEFHLIM;
2531
ip6->ip6_src = *src;
2532
if (IN6_IS_ADDR_LINKLOCAL(src))
2533
ip6->ip6_src.s6_addr16[1] = htons(zoneid & 0xffff);
2534
ip6->ip6_dst = *dst;
2535
if (IN6_IS_ADDR_LINKLOCAL(dst))
2536
ip6->ip6_dst.s6_addr16[1] = htons(zoneid & 0xffff);
2537
2538
tcp = mtodo(m, sizeof(struct ip6_hdr));
2539
tcp->th_sport = htons(sport);
2540
tcp->th_dport = htons(dport);
2541
tcp->th_off = sizeof(struct tcphdr) >> 2;
2542
tcp->th_seq = htonl(seq);
2543
tcp->th_ack = htonl(ack);
2544
tcp_set_flags(tcp, TH_ACK);
2545
tcp->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr),
2546
IPPROTO_TCP, 0);
2547
2548
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2549
m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2550
}
2551
2552
static void
2553
dyn_enqueue_keepalive_ipv6(struct mbufq *q, const struct dyn_ipv6_state *s)
2554
{
2555
struct mbuf *m;
2556
2557
if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2558
m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2559
sizeof(struct tcphdr), s->data->fibnum);
2560
if (m != NULL) {
2561
dyn_make_keepalive_ipv6(m, &s->dst, &s->src,
2562
s->zoneid, s->data->ack_fwd - 1, s->data->ack_rev,
2563
s->dport, s->sport);
2564
if (mbufq_enqueue(q, m)) {
2565
m_freem(m);
2566
log(LOG_DEBUG, "ipfw: limit for IPv6 "
2567
"keepalive queue is reached.\n");
2568
return;
2569
}
2570
}
2571
}
2572
2573
if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2574
m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2575
sizeof(struct tcphdr), s->data->fibnum);
2576
if (m != NULL) {
2577
dyn_make_keepalive_ipv6(m, &s->src, &s->dst,
2578
s->zoneid, s->data->ack_rev - 1, s->data->ack_fwd,
2579
s->sport, s->dport);
2580
if (mbufq_enqueue(q, m)) {
2581
m_freem(m);
2582
log(LOG_DEBUG, "ipfw: limit for IPv6 "
2583
"keepalive queue is reached.\n");
2584
return;
2585
}
2586
}
2587
}
2588
}
2589
2590
static void
2591
dyn_send_keepalive_ipv6(struct ip_fw_chain *chain)
2592
{
2593
struct mbufq q;
2594
struct mbuf *m;
2595
struct dyn_ipv6_state *s;
2596
uint32_t bucket;
2597
2598
mbufq_init(&q, INT_MAX);
2599
IPFW_UH_RLOCK(chain);
2600
/*
2601
* It is safe to not use hazard pointer and just do lockless
2602
* access to the lists, because states entries can not be deleted
2603
* while we hold IPFW_UH_RLOCK.
2604
*/
2605
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2606
CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
2607
/*
2608
* Only established TCP connections that will
2609
* become expired within dyn_keepalive_interval.
2610
*/
2611
if (s->proto != IPPROTO_TCP ||
2612
(s->data->state & BOTH_SYN) != BOTH_SYN ||
2613
TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2614
s->data->expire))
2615
continue;
2616
dyn_enqueue_keepalive_ipv6(&q, s);
2617
}
2618
}
2619
IPFW_UH_RUNLOCK(chain);
2620
while ((m = mbufq_dequeue(&q)) != NULL)
2621
ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2622
}
2623
#endif /* INET6 */
2624
2625
static void
2626
dyn_grow_hashtable(struct ip_fw_chain *chain, uint32_t new, int flags)
2627
{
2628
#ifdef INET6
2629
struct dyn_ipv6ck_slist *ipv6, *ipv6_parent;
2630
uint32_t *ipv6_add, *ipv6_del, *ipv6_parent_add, *ipv6_parent_del;
2631
struct dyn_ipv6_state *s6;
2632
#endif
2633
struct dyn_ipv4ck_slist *ipv4, *ipv4_parent;
2634
uint32_t *ipv4_add, *ipv4_del, *ipv4_parent_add, *ipv4_parent_del;
2635
struct dyn_ipv4_state *s4;
2636
struct mtx *bucket_lock;
2637
void *tmp;
2638
uint32_t bucket;
2639
2640
MPASS(powerof2(new));
2641
DYN_DEBUG("grow hash size %u -> %u", V_curr_dyn_buckets, new);
2642
/*
2643
* Allocate and initialize new lists.
2644
*/
2645
bucket_lock = malloc(new * sizeof(struct mtx), M_IPFW,
2646
flags | M_ZERO);
2647
if (bucket_lock == NULL)
2648
return;
2649
2650
ipv4 = ipv4_parent = NULL;
2651
ipv4_add = ipv4_del = ipv4_parent_add = ipv4_parent_del = NULL;
2652
#ifdef INET6
2653
ipv6 = ipv6_parent = NULL;
2654
ipv6_add = ipv6_del = ipv6_parent_add = ipv6_parent_del = NULL;
2655
#endif
2656
2657
ipv4 = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2658
flags | M_ZERO);
2659
if (ipv4 == NULL)
2660
goto bad;
2661
ipv4_parent = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2662
flags | M_ZERO);
2663
if (ipv4_parent == NULL)
2664
goto bad;
2665
ipv4_add = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2666
if (ipv4_add == NULL)
2667
goto bad;
2668
ipv4_del = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2669
if (ipv4_del == NULL)
2670
goto bad;
2671
ipv4_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2672
flags | M_ZERO);
2673
if (ipv4_parent_add == NULL)
2674
goto bad;
2675
ipv4_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2676
flags | M_ZERO);
2677
if (ipv4_parent_del == NULL)
2678
goto bad;
2679
#ifdef INET6
2680
ipv6 = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2681
flags | M_ZERO);
2682
if (ipv6 == NULL)
2683
goto bad;
2684
ipv6_parent = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2685
flags | M_ZERO);
2686
if (ipv6_parent == NULL)
2687
goto bad;
2688
ipv6_add = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2689
if (ipv6_add == NULL)
2690
goto bad;
2691
ipv6_del = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2692
if (ipv6_del == NULL)
2693
goto bad;
2694
ipv6_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2695
flags | M_ZERO);
2696
if (ipv6_parent_add == NULL)
2697
goto bad;
2698
ipv6_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2699
flags | M_ZERO);
2700
if (ipv6_parent_del == NULL)
2701
goto bad;
2702
#endif
2703
for (bucket = 0; bucket < new; bucket++) {
2704
DYN_BUCKET_LOCK_INIT(bucket_lock, bucket);
2705
CK_SLIST_INIT(&ipv4[bucket]);
2706
CK_SLIST_INIT(&ipv4_parent[bucket]);
2707
#ifdef INET6
2708
CK_SLIST_INIT(&ipv6[bucket]);
2709
CK_SLIST_INIT(&ipv6_parent[bucket]);
2710
#endif
2711
}
2712
2713
#define DYN_RELINK_STATES(s, hval, i, head, ohead) do { \
2714
while ((s = CK_SLIST_FIRST(&V_dyn_ ## ohead[i])) != NULL) { \
2715
CK_SLIST_REMOVE_HEAD(&V_dyn_ ## ohead[i], entry); \
2716
CK_SLIST_INSERT_HEAD(&head[DYN_BUCKET(s->hval, new)], \
2717
s, entry); \
2718
} \
2719
} while (0)
2720
/*
2721
* Prevent rules changing from userland.
2722
*/
2723
IPFW_UH_WLOCK(chain);
2724
/*
2725
* Hold traffic processing until we finish resize to
2726
* prevent access to states lists.
2727
*/
2728
IPFW_WLOCK(chain);
2729
/* Re-link all dynamic states */
2730
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2731
DYN_RELINK_STATES(s4, data->hashval, bucket, ipv4, ipv4);
2732
DYN_RELINK_STATES(s4, limit->hashval, bucket, ipv4_parent,
2733
ipv4_parent);
2734
#ifdef INET6
2735
DYN_RELINK_STATES(s6, data->hashval, bucket, ipv6, ipv6);
2736
DYN_RELINK_STATES(s6, limit->hashval, bucket, ipv6_parent,
2737
ipv6_parent);
2738
#endif
2739
}
2740
2741
#define DYN_SWAP_PTR(old, new, tmp) do { \
2742
tmp = old; \
2743
old = new; \
2744
new = tmp; \
2745
} while (0)
2746
/* Swap pointers */
2747
DYN_SWAP_PTR(V_dyn_bucket_lock, bucket_lock, tmp);
2748
DYN_SWAP_PTR(V_dyn_ipv4, ipv4, tmp);
2749
DYN_SWAP_PTR(V_dyn_ipv4_parent, ipv4_parent, tmp);
2750
DYN_SWAP_PTR(V_dyn_ipv4_add, ipv4_add, tmp);
2751
DYN_SWAP_PTR(V_dyn_ipv4_parent_add, ipv4_parent_add, tmp);
2752
DYN_SWAP_PTR(V_dyn_ipv4_del, ipv4_del, tmp);
2753
DYN_SWAP_PTR(V_dyn_ipv4_parent_del, ipv4_parent_del, tmp);
2754
2755
#ifdef INET6
2756
DYN_SWAP_PTR(V_dyn_ipv6, ipv6, tmp);
2757
DYN_SWAP_PTR(V_dyn_ipv6_parent, ipv6_parent, tmp);
2758
DYN_SWAP_PTR(V_dyn_ipv6_add, ipv6_add, tmp);
2759
DYN_SWAP_PTR(V_dyn_ipv6_parent_add, ipv6_parent_add, tmp);
2760
DYN_SWAP_PTR(V_dyn_ipv6_del, ipv6_del, tmp);
2761
DYN_SWAP_PTR(V_dyn_ipv6_parent_del, ipv6_parent_del, tmp);
2762
#endif
2763
bucket = V_curr_dyn_buckets;
2764
V_curr_dyn_buckets = new;
2765
2766
IPFW_WUNLOCK(chain);
2767
IPFW_UH_WUNLOCK(chain);
2768
2769
/* Release old resources */
2770
while (bucket-- != 0)
2771
DYN_BUCKET_LOCK_DESTROY(bucket_lock, bucket);
2772
bad:
2773
free(bucket_lock, M_IPFW);
2774
free(ipv4, M_IPFW);
2775
free(ipv4_parent, M_IPFW);
2776
free(ipv4_add, M_IPFW);
2777
free(ipv4_parent_add, M_IPFW);
2778
free(ipv4_del, M_IPFW);
2779
free(ipv4_parent_del, M_IPFW);
2780
#ifdef INET6
2781
free(ipv6, M_IPFW);
2782
free(ipv6_parent, M_IPFW);
2783
free(ipv6_add, M_IPFW);
2784
free(ipv6_parent_add, M_IPFW);
2785
free(ipv6_del, M_IPFW);
2786
free(ipv6_parent_del, M_IPFW);
2787
#endif
2788
}
2789
2790
/*
2791
* This function is used to perform various maintenance
2792
* on dynamic hash lists. Currently it is called every second.
2793
*/
2794
static void
2795
dyn_tick(void *vnetx)
2796
{
2797
struct epoch_tracker et;
2798
uint32_t buckets;
2799
2800
CURVNET_SET((struct vnet *)vnetx);
2801
/*
2802
* First free states unlinked in previous passes.
2803
*/
2804
dyn_free_states(&V_layer3_chain);
2805
/*
2806
* Now unlink others expired states.
2807
* We use IPFW_UH_WLOCK to avoid concurrent call of
2808
* dyn_expire_states(). It is the only function that does
2809
* deletion of state entries from states lists.
2810
*/
2811
IPFW_UH_WLOCK(&V_layer3_chain);
2812
dyn_expire_states(&V_layer3_chain, NULL);
2813
IPFW_UH_WUNLOCK(&V_layer3_chain);
2814
/*
2815
* Send keepalives if they are enabled and the time has come.
2816
*/
2817
if (V_dyn_keepalive != 0 &&
2818
V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) {
2819
V_dyn_keepalive_last = time_uptime;
2820
NET_EPOCH_ENTER(et);
2821
dyn_send_keepalive_ipv4(&V_layer3_chain);
2822
#ifdef INET6
2823
dyn_send_keepalive_ipv6(&V_layer3_chain);
2824
#endif
2825
NET_EPOCH_EXIT(et);
2826
}
2827
/*
2828
* Check if we need to resize the hash:
2829
* if current number of states exceeds number of buckets in hash,
2830
* and dyn_buckets_max permits to grow the number of buckets, then
2831
* do it. Grow hash size to the minimum power of 2 which is bigger
2832
* than current states count.
2833
*/
2834
if (V_curr_dyn_buckets < V_dyn_buckets_max &&
2835
(V_curr_dyn_buckets < V_dyn_count / 2 || (
2836
V_curr_dyn_buckets < V_dyn_count && V_curr_max_length > 8))) {
2837
buckets = 1 << fls(V_dyn_count);
2838
if (buckets > V_dyn_buckets_max)
2839
buckets = V_dyn_buckets_max;
2840
dyn_grow_hashtable(&V_layer3_chain, buckets, M_NOWAIT);
2841
}
2842
2843
callout_reset_on(&V_dyn_timeout, hz, dyn_tick, vnetx, 0);
2844
CURVNET_RESTORE();
2845
}
2846
2847
void
2848
ipfw_expire_dyn_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2849
{
2850
/*
2851
* Do not perform any checks if we currently have no dynamic states
2852
*/
2853
if (V_dyn_count == 0)
2854
return;
2855
2856
IPFW_UH_WLOCK_ASSERT(chain);
2857
dyn_expire_states(chain, rt);
2858
}
2859
2860
/*
2861
* Pass through all states and reset eaction for orphaned rules.
2862
*/
2863
void
2864
ipfw_dyn_reset_eaction(struct ip_fw_chain *ch, uint32_t eaction_id,
2865
uint32_t default_id, uint32_t instance_id)
2866
{
2867
#ifdef INET6
2868
struct dyn_ipv6_state *s6;
2869
#endif
2870
struct dyn_ipv4_state *s4;
2871
struct ip_fw *rule;
2872
uint32_t bucket;
2873
2874
#define DYN_RESET_EACTION(s, h, b) \
2875
CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
2876
if ((s->data->flags & DYN_REFERENCED) == 0) \
2877
continue; \
2878
rule = s->data->parent; \
2879
if (s->type == O_LIMIT) \
2880
rule = ((__typeof(s))rule)->limit->parent; \
2881
ipfw_reset_eaction(ch, rule, eaction_id, \
2882
default_id, instance_id); \
2883
}
2884
2885
IPFW_UH_WLOCK_ASSERT(ch);
2886
if (V_dyn_count == 0)
2887
return;
2888
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2889
DYN_RESET_EACTION(s4, ipv4, bucket);
2890
#ifdef INET6
2891
DYN_RESET_EACTION(s6, ipv6, bucket);
2892
#endif
2893
}
2894
}
2895
2896
/*
2897
* Returns size of dynamic states in legacy format
2898
*/
2899
int
2900
ipfw_dyn_len(void)
2901
{
2902
2903
return ((V_dyn_count + V_dyn_parent_count) * sizeof(ipfw_dyn_rule));
2904
}
2905
2906
/*
2907
* Returns number of dynamic states.
2908
* Marks every named object index used by dynamic states with bit in @bmask.
2909
* Returns number of named objects accounted in bmask via @nocnt.
2910
* Used by dump format v1 (current).
2911
*/
2912
uint32_t
2913
ipfw_dyn_get_count(uint32_t *bmask, int *nocnt)
2914
{
2915
#ifdef INET6
2916
struct dyn_ipv6_state *s6;
2917
#endif
2918
struct dyn_ipv4_state *s4;
2919
uint32_t bucket;
2920
2921
#define DYN_COUNT_OBJECTS(s, h, b) \
2922
CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
2923
MPASS(s->kidx != 0); \
2924
if (ipfw_mark_object_kidx(bmask, IPFW_TLV_STATE_NAME, \
2925
s->kidx) != 0) \
2926
(*nocnt)++; \
2927
}
2928
2929
IPFW_UH_RLOCK_ASSERT(&V_layer3_chain);
2930
2931
/* No need to pass through all the buckets. */
2932
*nocnt = 0;
2933
if (V_dyn_count + V_dyn_parent_count == 0)
2934
return (0);
2935
2936
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2937
DYN_COUNT_OBJECTS(s4, ipv4, bucket);
2938
#ifdef INET6
2939
DYN_COUNT_OBJECTS(s6, ipv6, bucket);
2940
#endif
2941
}
2942
2943
return (V_dyn_count + V_dyn_parent_count);
2944
}
2945
2946
/*
2947
* Check if rule contains at least one dynamic opcode.
2948
*
2949
* Returns 1 if such opcode is found, 0 otherwise.
2950
*/
2951
int
2952
ipfw_is_dyn_rule(struct ip_fw *rule)
2953
{
2954
int cmdlen, l;
2955
ipfw_insn *cmd;
2956
2957
l = rule->cmd_len;
2958
cmd = rule->cmd;
2959
cmdlen = 0;
2960
for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
2961
cmdlen = F_LEN(cmd);
2962
2963
switch (cmd->opcode) {
2964
case O_LIMIT:
2965
case O_KEEP_STATE:
2966
case O_PROBE_STATE:
2967
case O_CHECK_STATE:
2968
return (1);
2969
}
2970
}
2971
2972
return (0);
2973
}
2974
2975
static void
2976
dyn_export_parent(const struct dyn_parent *p, uint32_t kidx, uint8_t set,
2977
ipfw_dyn_rule *dst)
2978
{
2979
2980
dst->type = O_LIMIT_PARENT;
2981
dst->set = set;
2982
dst->kidx = kidx;
2983
dst->rulenum = p->rulenum;
2984
dst->count = DPARENT_COUNT(p);
2985
dst->expire = TIME_LEQ(p->expire, time_uptime) ? 0:
2986
p->expire - time_uptime;
2987
dst->hashval = p->hashval;
2988
2989
/* unused fields */
2990
dst->pad = 0;
2991
dst->pcnt = 0;
2992
dst->bcnt = 0;
2993
dst->ack_fwd = 0;
2994
dst->ack_rev = 0;
2995
}
2996
2997
static void
2998
dyn_export_data(const struct dyn_data *data, uint32_t kidx, uint8_t type,
2999
uint8_t set, ipfw_dyn_rule *dst)
3000
{
3001
3002
dst->type = type;
3003
dst->set = set;
3004
dst->kidx = kidx;
3005
dst->rulenum = data->rulenum;
3006
dst->pcnt = data->pcnt_fwd + data->pcnt_rev;
3007
dst->bcnt = data->bcnt_fwd + data->bcnt_rev;
3008
dst->expire = TIME_LEQ(data->expire, time_uptime) ? 0:
3009
data->expire - time_uptime;
3010
dst->state = data->state;
3011
if (data->flags & DYN_REFERENCED)
3012
dst->state |= IPFW_DYN_ORPHANED;
3013
3014
dst->ack_fwd = data->ack_fwd;
3015
dst->ack_rev = data->ack_rev;
3016
dst->hashval = data->hashval;
3017
}
3018
3019
static void
3020
dyn_export_ipv4_state(const struct dyn_ipv4_state *s, ipfw_dyn_rule *dst)
3021
{
3022
struct ip_fw *rule;
3023
3024
switch (s->type) {
3025
case O_LIMIT_PARENT:
3026
rule = s->limit->parent;
3027
dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3028
break;
3029
default:
3030
rule = s->data->parent;
3031
if (s->type == O_LIMIT)
3032
rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
3033
dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3034
}
3035
3036
dst->id.dst_ip = s->dst;
3037
dst->id.src_ip = s->src;
3038
dst->id.dst_port = s->dport;
3039
dst->id.src_port = s->sport;
3040
dst->id.fib = s->data->fibnum;
3041
dst->id.proto = s->proto;
3042
dst->id._flags = 0;
3043
dst->id.addr_type = 4;
3044
3045
memset(&dst->id.dst_ip6, 0, sizeof(dst->id.dst_ip6));
3046
memset(&dst->id.src_ip6, 0, sizeof(dst->id.src_ip6));
3047
dst->id.flow_id6 = dst->id.extra = 0;
3048
}
3049
3050
#ifdef INET6
3051
static void
3052
dyn_export_ipv6_state(const struct dyn_ipv6_state *s, ipfw_dyn_rule *dst)
3053
{
3054
struct ip_fw *rule;
3055
3056
switch (s->type) {
3057
case O_LIMIT_PARENT:
3058
rule = s->limit->parent;
3059
dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3060
break;
3061
default:
3062
rule = s->data->parent;
3063
if (s->type == O_LIMIT)
3064
rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
3065
dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3066
}
3067
3068
dst->id.src_ip6 = s->src;
3069
dst->id.dst_ip6 = s->dst;
3070
dst->id.dst_port = s->dport;
3071
dst->id.src_port = s->sport;
3072
dst->id.fib = s->data->fibnum;
3073
dst->id.proto = s->proto;
3074
dst->id._flags = 0;
3075
dst->id.addr_type = 6;
3076
3077
dst->id.dst_ip = dst->id.src_ip = 0;
3078
dst->id.flow_id6 = dst->id.extra = 0;
3079
}
3080
#endif /* INET6 */
3081
3082
/*
3083
* Fills the buffer given by @sd with dynamic states.
3084
* Used by dump format v1 (current).
3085
*
3086
* Returns 0 on success.
3087
*/
3088
int
3089
ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
3090
{
3091
#ifdef INET6
3092
struct dyn_ipv6_state *s6;
3093
#endif
3094
struct dyn_ipv4_state *s4;
3095
ipfw_obj_dyntlv *dst, *last;
3096
ipfw_obj_ctlv *ctlv;
3097
uint32_t bucket;
3098
3099
if (V_dyn_count == 0)
3100
return (0);
3101
3102
/*
3103
* IPFW_UH_RLOCK garantees that another userland request
3104
* and callout thread will not delete entries from states
3105
* lists.
3106
*/
3107
IPFW_UH_RLOCK_ASSERT(chain);
3108
3109
ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
3110
if (ctlv == NULL)
3111
return (ENOMEM);
3112
ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
3113
ctlv->objsize = sizeof(ipfw_obj_dyntlv);
3114
last = NULL;
3115
3116
#define DYN_EXPORT_STATES(s, af, h, b) \
3117
CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
3118
dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd, \
3119
sizeof(ipfw_obj_dyntlv)); \
3120
if (dst == NULL) \
3121
return (ENOMEM); \
3122
dyn_export_ ## af ## _state(s, &dst->state); \
3123
dst->head.length = sizeof(ipfw_obj_dyntlv); \
3124
dst->head.type = IPFW_TLV_DYN_ENT; \
3125
last = dst; \
3126
}
3127
3128
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3129
DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3130
DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3131
#ifdef INET6
3132
DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3133
DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3134
#endif /* INET6 */
3135
}
3136
3137
/* mark last dynamic rule */
3138
if (last != NULL)
3139
last->head.flags = IPFW_DF_LAST; /* XXX: unused */
3140
return (0);
3141
#undef DYN_EXPORT_STATES
3142
}
3143
3144
/*
3145
* When we have enabled V_dyn_keep_states, states that become ORPHANED
3146
* will keep pointer to original rule. Then this rule pointer is used
3147
* to apply rule action after ipfw_dyn_lookup_state().
3148
* Some rule actions use IPFW_INC_RULE_COUNTER() directly to this rule
3149
* pointer, but other actions use chain->map[f_pos] instead. The last
3150
* case leads to incrementing counters on the wrong rule, because
3151
* ORPHANED states have not parent rule in chain->map[].
3152
* To solve this we add protected rule:
3153
* count ip from any to any not // comment
3154
* It will be matched only by packets that are handled by ORPHANED states.
3155
*/
3156
static void
3157
dyn_add_protected_rule(struct ip_fw_chain *chain)
3158
{
3159
static const char *comment =
3160
"orphaned dynamic states counter";
3161
struct ip_fw *rule;
3162
ipfw_insn *cmd;
3163
size_t l;
3164
3165
l = roundup(strlen(comment) + 1, sizeof(uint32_t));
3166
rule = ipfw_alloc_rule(chain, sizeof(*rule) + sizeof(ipfw_insn) + l);
3167
cmd = rule->cmd;
3168
cmd->opcode = O_NOP;
3169
cmd->len = 1 + l/sizeof(uint32_t);
3170
cmd->len |= F_NOT; /* make rule to be not matched */
3171
strcpy((char *)(cmd + 1), comment);
3172
cmd += F_LEN(cmd);
3173
3174
cmd->len = 1;
3175
cmd->opcode = O_COUNT;
3176
rule->act_ofs = cmd - rule->cmd;
3177
rule->cmd_len = rule->act_ofs + 1;
3178
ipfw_add_protected_rule(chain, rule, 0);
3179
}
3180
3181
void
3182
ipfw_dyn_init(struct ip_fw_chain *chain)
3183
{
3184
3185
#ifdef IPFIREWALL_JENKINSHASH
3186
V_dyn_hashseed = arc4random();
3187
#endif
3188
V_dyn_max = 16384; /* max # of states */
3189
V_dyn_parent_max = 4096; /* max # of parent states */
3190
V_dyn_buckets_max = 8192; /* must be power of 2 */
3191
3192
V_dyn_ack_lifetime = 300;
3193
V_dyn_syn_lifetime = 20;
3194
V_dyn_fin_lifetime = 1;
3195
V_dyn_rst_lifetime = 1;
3196
V_dyn_udp_lifetime = 10;
3197
V_dyn_short_lifetime = 5;
3198
3199
V_dyn_keepalive_interval = 20;
3200
V_dyn_keepalive_period = 5;
3201
V_dyn_keepalive = 1; /* send keepalives */
3202
V_dyn_keepalive_last = time_uptime;
3203
3204
V_dyn_data_zone = uma_zcreate("IPFW dynamic states data",
3205
sizeof(struct dyn_data), NULL, NULL, NULL, NULL,
3206
UMA_ALIGN_PTR, 0);
3207
uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
3208
3209
V_dyn_parent_zone = uma_zcreate("IPFW parent dynamic states",
3210
sizeof(struct dyn_parent), NULL, NULL, NULL, NULL,
3211
UMA_ALIGN_PTR, 0);
3212
uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
3213
3214
SLIST_INIT(&V_dyn_expired_ipv4);
3215
V_dyn_ipv4 = NULL;
3216
V_dyn_ipv4_parent = NULL;
3217
V_dyn_ipv4_zone = uma_zcreate("IPFW IPv4 dynamic states",
3218
sizeof(struct dyn_ipv4_state), NULL, NULL, NULL, NULL,
3219
UMA_ALIGN_PTR, 0);
3220
3221
#ifdef INET6
3222
SLIST_INIT(&V_dyn_expired_ipv6);
3223
V_dyn_ipv6 = NULL;
3224
V_dyn_ipv6_parent = NULL;
3225
V_dyn_ipv6_zone = uma_zcreate("IPFW IPv6 dynamic states",
3226
sizeof(struct dyn_ipv6_state), NULL, NULL, NULL, NULL,
3227
UMA_ALIGN_PTR, 0);
3228
#endif
3229
3230
/* Initialize buckets. */
3231
V_curr_dyn_buckets = 0;
3232
V_dyn_bucket_lock = NULL;
3233
dyn_grow_hashtable(chain, 256, M_WAITOK);
3234
3235
if (IS_DEFAULT_VNET(curvnet))
3236
dyn_hp_cache = malloc(mp_ncpus * sizeof(void *), M_IPFW,
3237
M_WAITOK | M_ZERO);
3238
3239
DYN_EXPIRED_LOCK_INIT();
3240
callout_init(&V_dyn_timeout, 1);
3241
callout_reset(&V_dyn_timeout, hz, dyn_tick, curvnet);
3242
IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3243
3244
dyn_add_protected_rule(chain);
3245
}
3246
3247
void
3248
ipfw_dyn_uninit(int pass)
3249
{
3250
#ifdef INET6
3251
struct dyn_ipv6_state *s6;
3252
#endif
3253
struct dyn_ipv4_state *s4;
3254
int bucket;
3255
3256
if (pass == 0) {
3257
callout_drain(&V_dyn_timeout);
3258
return;
3259
}
3260
IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3261
DYN_EXPIRED_LOCK_DESTROY();
3262
3263
#define DYN_FREE_STATES_FORCED(CK, s, af, name, en) do { \
3264
while ((s = CK ## SLIST_FIRST(&V_dyn_ ## name)) != NULL) { \
3265
CK ## SLIST_REMOVE_HEAD(&V_dyn_ ## name, en); \
3266
if (s->type == O_LIMIT_PARENT) \
3267
uma_zfree(V_dyn_parent_zone, s->limit); \
3268
else \
3269
uma_zfree(V_dyn_data_zone, s->data); \
3270
uma_zfree(V_dyn_ ## af ## _zone, s); \
3271
} \
3272
} while (0)
3273
for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3274
DYN_BUCKET_LOCK_DESTROY(V_dyn_bucket_lock, bucket);
3275
3276
DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4[bucket], entry);
3277
DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4_parent[bucket],
3278
entry);
3279
#ifdef INET6
3280
DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6[bucket], entry);
3281
DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6_parent[bucket],
3282
entry);
3283
#endif /* INET6 */
3284
}
3285
DYN_FREE_STATES_FORCED(, s4, ipv4, expired_ipv4, expired);
3286
#ifdef INET6
3287
DYN_FREE_STATES_FORCED(, s6, ipv6, expired_ipv6, expired);
3288
#endif
3289
#undef DYN_FREE_STATES_FORCED
3290
3291
uma_zdestroy(V_dyn_ipv4_zone);
3292
uma_zdestroy(V_dyn_data_zone);
3293
uma_zdestroy(V_dyn_parent_zone);
3294
#ifdef INET6
3295
uma_zdestroy(V_dyn_ipv6_zone);
3296
free(V_dyn_ipv6, M_IPFW);
3297
free(V_dyn_ipv6_parent, M_IPFW);
3298
free(V_dyn_ipv6_add, M_IPFW);
3299
free(V_dyn_ipv6_parent_add, M_IPFW);
3300
free(V_dyn_ipv6_del, M_IPFW);
3301
free(V_dyn_ipv6_parent_del, M_IPFW);
3302
#endif
3303
free(V_dyn_bucket_lock, M_IPFW);
3304
free(V_dyn_ipv4, M_IPFW);
3305
free(V_dyn_ipv4_parent, M_IPFW);
3306
free(V_dyn_ipv4_add, M_IPFW);
3307
free(V_dyn_ipv4_parent_add, M_IPFW);
3308
free(V_dyn_ipv4_del, M_IPFW);
3309
free(V_dyn_ipv4_parent_del, M_IPFW);
3310
if (IS_DEFAULT_VNET(curvnet))
3311
free(dyn_hp_cache, M_IPFW);
3312
}
3313
3314