Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/netpfil/ipfw/nat64/nat64_translate.c
39536 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2015-2019 Yandex LLC
5
* Copyright (c) 2015-2019 Andrey V. Elsukov <[email protected]>
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
*
11
* 1. Redistributions of source code must retain the above copyright
12
* notice, this list of conditions and the following disclaimer.
13
* 2. Redistributions in binary form must reproduce the above copyright
14
* notice, this list of conditions and the following disclaimer in the
15
* documentation and/or other materials provided with the distribution.
16
*
17
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
*/
28
29
#include <sys/cdefs.h>
30
#include "opt_ipstealth.h"
31
32
#include <sys/param.h>
33
#include <sys/systm.h>
34
#include <sys/counter.h>
35
#include <sys/errno.h>
36
#include <sys/kernel.h>
37
#include <sys/lock.h>
38
#include <sys/mbuf.h>
39
#include <sys/module.h>
40
#include <sys/rmlock.h>
41
#include <sys/rwlock.h>
42
#include <sys/socket.h>
43
#include <sys/queue.h>
44
45
#include <net/if.h>
46
#include <net/if_var.h>
47
#include <net/if_private.h>
48
#include <net/if_pflog.h>
49
#include <net/pfil.h>
50
#include <net/netisr.h>
51
#include <net/route.h>
52
#include <net/route/nhop.h>
53
54
#include <netinet/in.h>
55
#include <netinet/in_fib.h>
56
#include <netinet/in_var.h>
57
#include <netinet/ip.h>
58
#include <netinet/ip_var.h>
59
#include <netinet/ip_fw.h>
60
#include <netinet/ip6.h>
61
#include <netinet/icmp6.h>
62
#include <netinet/ip_icmp.h>
63
#include <netinet/tcp.h>
64
#include <netinet/udp.h>
65
#include <netinet6/in6_var.h>
66
#include <netinet6/in6_fib.h>
67
#include <netinet6/ip6_var.h>
68
#include <netinet6/ip_fw_nat64.h>
69
70
#include <netpfil/pf/pf.h>
71
#include <netpfil/ipfw/ip_fw_private.h>
72
#include <machine/in_cksum.h>
73
74
#include "ip_fw_nat64.h"
75
#include "nat64_translate.h"
76
77
typedef int (*nat64_output_t)(struct ifnet *, struct mbuf *,
78
struct sockaddr *, struct nat64_counters *, void *);
79
typedef int (*nat64_output_one_t)(struct mbuf *, struct nat64_counters *,
80
void *);
81
82
static struct nhop_object *nat64_find_route4(struct sockaddr_in *,
83
struct mbuf *);
84
static struct nhop_object *nat64_find_route6(struct sockaddr_in6 *,
85
struct mbuf *);
86
static int nat64_output_one(struct mbuf *, struct nat64_counters *, void *);
87
static int nat64_output(struct ifnet *, struct mbuf *, struct sockaddr *,
88
struct nat64_counters *, void *);
89
static int nat64_direct_output_one(struct mbuf *, struct nat64_counters *,
90
void *);
91
static int nat64_direct_output(struct ifnet *, struct mbuf *,
92
struct sockaddr *, struct nat64_counters *, void *);
93
94
struct nat64_methods {
95
nat64_output_t output;
96
nat64_output_one_t output_one;
97
};
98
static const struct nat64_methods nat64_netisr = {
99
.output = nat64_output,
100
.output_one = nat64_output_one
101
};
102
static const struct nat64_methods nat64_direct = {
103
.output = nat64_direct_output,
104
.output_one = nat64_direct_output_one
105
};
106
107
/* These variables should be initialized explicitly on module loading */
108
VNET_DEFINE_STATIC(const struct nat64_methods *, nat64out);
109
VNET_DEFINE_STATIC(const int *, nat64ipstealth);
110
VNET_DEFINE_STATIC(const int *, nat64ip6stealth);
111
#define V_nat64out VNET(nat64out)
112
#define V_nat64ipstealth VNET(nat64ipstealth)
113
#define V_nat64ip6stealth VNET(nat64ip6stealth)
114
115
static const int stealth_on = 1;
116
#ifndef IPSTEALTH
117
static const int stealth_off = 0;
118
#endif
119
120
void
121
nat64_set_output_method(int direct)
122
{
123
124
if (direct != 0) {
125
V_nat64out = &nat64_direct;
126
#ifdef IPSTEALTH
127
/* Honor corresponding variables, if IPSTEALTH is defined */
128
V_nat64ipstealth = &V_ipstealth;
129
V_nat64ip6stealth = &V_ip6stealth;
130
#else
131
/* otherwise we need to decrement HLIM/TTL for direct case */
132
V_nat64ipstealth = V_nat64ip6stealth = &stealth_off;
133
#endif
134
} else {
135
V_nat64out = &nat64_netisr;
136
/* Leave TTL/HLIM decrementing to forwarding code */
137
V_nat64ipstealth = V_nat64ip6stealth = &stealth_on;
138
}
139
}
140
141
int
142
nat64_get_output_method(void)
143
{
144
145
return (V_nat64out == &nat64_direct ? 1: 0);
146
}
147
148
static void
149
nat64_log(struct pfloghdr *logdata, struct mbuf *m, sa_family_t family)
150
{
151
152
logdata->dir = PF_OUT;
153
logdata->af = family;
154
ipfw_bpf_mtap2(logdata, PFLOG_HDRLEN, m);
155
}
156
157
static int
158
nat64_direct_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
159
struct nat64_counters *stats, void *logdata)
160
{
161
int error;
162
163
if (logdata != NULL)
164
nat64_log(logdata, m, dst->sa_family);
165
error = (*ifp->if_output)(ifp, m, dst, NULL);
166
if (error != 0)
167
NAT64STAT_INC(stats, oerrors);
168
return (error);
169
}
170
171
static int
172
nat64_direct_output_one(struct mbuf *m, struct nat64_counters *stats,
173
void *logdata)
174
{
175
struct nhop_object *nh4 = NULL;
176
struct nhop_object *nh6 = NULL;
177
struct sockaddr_in6 dst6;
178
struct sockaddr_in dst4;
179
struct sockaddr *dst;
180
struct ip6_hdr *ip6;
181
struct ip *ip4;
182
struct ifnet *ifp;
183
int error;
184
185
ip4 = mtod(m, struct ip *);
186
error = 0;
187
switch (ip4->ip_v) {
188
case IPVERSION:
189
dst4.sin_addr = ip4->ip_dst;
190
nh4 = nat64_find_route4(&dst4, m);
191
if (nh4 == NULL) {
192
NAT64STAT_INC(stats, noroute4);
193
error = EHOSTUNREACH;
194
} else {
195
ifp = nh4->nh_ifp;
196
dst = (struct sockaddr *)&dst4;
197
}
198
break;
199
case (IPV6_VERSION >> 4):
200
ip6 = mtod(m, struct ip6_hdr *);
201
dst6.sin6_addr = ip6->ip6_dst;
202
nh6 = nat64_find_route6(&dst6, m);
203
if (nh6 == NULL) {
204
NAT64STAT_INC(stats, noroute6);
205
error = EHOSTUNREACH;
206
} else {
207
ifp = nh6->nh_ifp;
208
dst = (struct sockaddr *)&dst6;
209
}
210
break;
211
default:
212
m_freem(m);
213
NAT64STAT_INC(stats, dropped);
214
DPRINTF(DP_DROPS, "dropped due to unknown IP version");
215
return (EAFNOSUPPORT);
216
}
217
if (error != 0) {
218
m_freem(m);
219
return (EHOSTUNREACH);
220
}
221
if (logdata != NULL)
222
nat64_log(logdata, m, dst->sa_family);
223
error = (*ifp->if_output)(ifp, m, dst, NULL);
224
if (error != 0)
225
NAT64STAT_INC(stats, oerrors);
226
return (error);
227
}
228
229
static int
230
nat64_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
231
struct nat64_counters *stats, void *logdata)
232
{
233
struct ip *ip4;
234
int ret, af;
235
236
ip4 = mtod(m, struct ip *);
237
switch (ip4->ip_v) {
238
case IPVERSION:
239
af = AF_INET;
240
ret = NETISR_IP;
241
break;
242
case (IPV6_VERSION >> 4):
243
af = AF_INET6;
244
ret = NETISR_IPV6;
245
break;
246
default:
247
m_freem(m);
248
NAT64STAT_INC(stats, dropped);
249
DPRINTF(DP_DROPS, "unknown IP version");
250
return (EAFNOSUPPORT);
251
}
252
if (logdata != NULL)
253
nat64_log(logdata, m, af);
254
if (m->m_pkthdr.rcvif == NULL)
255
m->m_pkthdr.rcvif = V_loif;
256
ret = netisr_queue(ret, m);
257
if (ret != 0)
258
NAT64STAT_INC(stats, oerrors);
259
return (ret);
260
}
261
262
static int
263
nat64_output_one(struct mbuf *m, struct nat64_counters *stats, void *logdata)
264
{
265
266
return (nat64_output(NULL, m, NULL, stats, logdata));
267
}
268
269
/*
270
* Check the given IPv6 prefix and length according to RFC6052:
271
* The prefixes can only have one of the following lengths:
272
* 32, 40, 48, 56, 64, or 96 (The Well-Known Prefix is 96 bits long).
273
* Returns zero on success, otherwise EINVAL.
274
*/
275
int
276
nat64_check_prefixlen(int length)
277
{
278
279
switch (length) {
280
case 32:
281
case 40:
282
case 48:
283
case 56:
284
case 64:
285
case 96:
286
return (0);
287
}
288
return (EINVAL);
289
}
290
291
int
292
nat64_check_prefix6(const struct in6_addr *prefix, int length)
293
{
294
295
if (nat64_check_prefixlen(length) != 0)
296
return (EINVAL);
297
298
/* Well-known prefix has 96 prefix length */
299
if (IN6_IS_ADDR_WKPFX(prefix) && length != 96)
300
return (EINVAL);
301
302
/* Bits 64 to 71 must be set to zero */
303
if (prefix->__u6_addr.__u6_addr8[8] != 0)
304
return (EINVAL);
305
306
/* Some extra checks */
307
if (IN6_IS_ADDR_MULTICAST(prefix) ||
308
IN6_IS_ADDR_UNSPECIFIED(prefix) ||
309
IN6_IS_ADDR_LOOPBACK(prefix))
310
return (EINVAL);
311
return (0);
312
}
313
314
int
315
nat64_check_private_ip4(const struct nat64_config *cfg, in_addr_t ia)
316
{
317
318
if (cfg->flags & NAT64_ALLOW_PRIVATE)
319
return (0);
320
321
/* WKPFX must not be used to represent non-global IPv4 addresses */
322
if (cfg->flags & NAT64_WKPFX) {
323
/* IN_PRIVATE */
324
if ((ia & htonl(0xff000000)) == htonl(0x0a000000) ||
325
(ia & htonl(0xfff00000)) == htonl(0xac100000) ||
326
(ia & htonl(0xffff0000)) == htonl(0xc0a80000))
327
return (1);
328
/*
329
* RFC 5735:
330
* 192.0.0.0/24 - reserved for IETF protocol assignments
331
* 192.88.99.0/24 - for use as 6to4 relay anycast addresses
332
* 198.18.0.0/15 - for use in benchmark tests
333
* 192.0.2.0/24, 198.51.100.0/24, 203.0.113.0/24 - for use
334
* in documentation and example code
335
*/
336
if ((ia & htonl(0xffffff00)) == htonl(0xc0000000) ||
337
(ia & htonl(0xffffff00)) == htonl(0xc0586300) ||
338
(ia & htonl(0xfffffe00)) == htonl(0xc6120000) ||
339
(ia & htonl(0xffffff00)) == htonl(0xc0000200) ||
340
(ia & htonl(0xfffffe00)) == htonl(0xc6336400) ||
341
(ia & htonl(0xffffff00)) == htonl(0xcb007100))
342
return (1);
343
}
344
return (0);
345
}
346
347
/*
348
* Embed @ia IPv4 address into @ip6 IPv6 address.
349
* Place to embedding determined from prefix length @plen.
350
*/
351
void
352
nat64_embed_ip4(struct in6_addr *ip6, int plen, in_addr_t ia)
353
{
354
355
switch (plen) {
356
case 32:
357
case 96:
358
ip6->s6_addr32[plen / 32] = ia;
359
break;
360
case 40:
361
case 48:
362
case 56:
363
/*
364
* Preserve prefix bits.
365
* Since suffix bits should be zero and reserved for future
366
* use, we just overwrite the whole word, where they are.
367
*/
368
ip6->s6_addr32[1] &= 0xffffffff << (32 - plen % 32);
369
#if BYTE_ORDER == BIG_ENDIAN
370
ip6->s6_addr32[1] |= ia >> (plen % 32);
371
ip6->s6_addr32[2] = ia << (24 - plen % 32);
372
#elif BYTE_ORDER == LITTLE_ENDIAN
373
ip6->s6_addr32[1] |= ia << (plen % 32);
374
ip6->s6_addr32[2] = ia >> (24 - plen % 32);
375
#endif
376
break;
377
case 64:
378
#if BYTE_ORDER == BIG_ENDIAN
379
ip6->s6_addr32[2] = ia >> 8;
380
ip6->s6_addr32[3] = ia << 24;
381
#elif BYTE_ORDER == LITTLE_ENDIAN
382
ip6->s6_addr32[2] = ia << 8;
383
ip6->s6_addr32[3] = ia >> 24;
384
#endif
385
break;
386
default:
387
panic("Wrong plen: %d", plen);
388
};
389
/*
390
* Bits 64 to 71 of the address are reserved for compatibility
391
* with the host identifier format defined in the IPv6 addressing
392
* architecture [RFC4291]. These bits MUST be set to zero.
393
*/
394
ip6->s6_addr8[8] = 0;
395
}
396
397
in_addr_t
398
nat64_extract_ip4(const struct in6_addr *ip6, int plen)
399
{
400
in_addr_t ia;
401
402
/*
403
* According to RFC 6052 p2.2:
404
* IPv4-embedded IPv6 addresses are composed of a variable-length
405
* prefix, the embedded IPv4 address, and a variable length suffix.
406
* The suffix bits are reserved for future extensions and SHOULD
407
* be set to zero.
408
*/
409
switch (plen) {
410
case 32:
411
if (ip6->s6_addr32[3] != 0 || ip6->s6_addr32[2] != 0)
412
goto badip6;
413
break;
414
case 40:
415
if (ip6->s6_addr32[3] != 0 ||
416
(ip6->s6_addr32[2] & htonl(0xff00ffff)) != 0)
417
goto badip6;
418
break;
419
case 48:
420
if (ip6->s6_addr32[3] != 0 ||
421
(ip6->s6_addr32[2] & htonl(0xff0000ff)) != 0)
422
goto badip6;
423
break;
424
case 56:
425
if (ip6->s6_addr32[3] != 0 || ip6->s6_addr8[8] != 0)
426
goto badip6;
427
break;
428
case 64:
429
if (ip6->s6_addr8[8] != 0 ||
430
(ip6->s6_addr32[3] & htonl(0x00ffffff)) != 0)
431
goto badip6;
432
};
433
switch (plen) {
434
case 32:
435
case 96:
436
ia = ip6->s6_addr32[plen / 32];
437
break;
438
case 40:
439
case 48:
440
case 56:
441
#if BYTE_ORDER == BIG_ENDIAN
442
ia = (ip6->s6_addr32[1] << (plen % 32)) |
443
(ip6->s6_addr32[2] >> (24 - plen % 32));
444
#elif BYTE_ORDER == LITTLE_ENDIAN
445
ia = (ip6->s6_addr32[1] >> (plen % 32)) |
446
(ip6->s6_addr32[2] << (24 - plen % 32));
447
#endif
448
break;
449
case 64:
450
#if BYTE_ORDER == BIG_ENDIAN
451
ia = (ip6->s6_addr32[2] << 8) | (ip6->s6_addr32[3] >> 24);
452
#elif BYTE_ORDER == LITTLE_ENDIAN
453
ia = (ip6->s6_addr32[2] >> 8) | (ip6->s6_addr32[3] << 24);
454
#endif
455
break;
456
default:
457
return (0);
458
};
459
if (nat64_check_ip4(ia) == 0)
460
return (ia);
461
462
DPRINTF(DP_GENERIC | DP_DROPS,
463
"invalid destination address: %08x", ia);
464
return (0);
465
badip6:
466
DPRINTF(DP_GENERIC | DP_DROPS, "invalid IPv4-embedded IPv6 address");
467
return (0);
468
}
469
470
/*
471
* According to RFC 1624 the equation for incremental checksum update is:
472
* HC' = ~(~HC + ~m + m') -- [Eqn. 3]
473
* HC' = HC - ~m - m' -- [Eqn. 4]
474
* So, when we are replacing IPv4 addresses to IPv6, we
475
* can assume, that new bytes previously were zeros, and vise versa -
476
* when we replacing IPv6 addresses to IPv4, now unused bytes become
477
* zeros. The payload length in pseudo header has bigger size, but one
478
* half of it should be zero. Using the equation 4 we get:
479
* HC' = HC - (~m0 + m0') -- m0 is first changed word
480
* HC' = (HC - (~m0 + m0')) - (~m1 + m1') -- m1 is second changed word
481
* HC' = HC - ~m0 - m0' - ~m1 - m1' - ... =
482
* = HC - sum(~m[i] + m'[i])
483
*
484
* The function result should be used as follows:
485
* IPv6 to IPv4: HC' = cksum_add(HC, result)
486
* IPv4 to IPv6: HC' = cksum_add(HC, ~result)
487
*/
488
static uint16_t
489
nat64_cksum_convert(struct ip6_hdr *ip6, struct ip *ip)
490
{
491
uint32_t sum;
492
uint16_t *p;
493
494
sum = ~ip->ip_src.s_addr >> 16;
495
sum += ~ip->ip_src.s_addr & 0xffff;
496
sum += ~ip->ip_dst.s_addr >> 16;
497
sum += ~ip->ip_dst.s_addr & 0xffff;
498
499
for (p = (uint16_t *)&ip6->ip6_src;
500
p < (uint16_t *)(&ip6->ip6_src + 2); p++)
501
sum += *p;
502
503
while (sum >> 16)
504
sum = (sum & 0xffff) + (sum >> 16);
505
return (sum);
506
}
507
508
static void
509
nat64_init_ip4hdr(const struct ip6_hdr *ip6, const struct ip6_frag *frag,
510
uint16_t plen, uint8_t proto, struct ip *ip)
511
{
512
513
/* assume addresses are already initialized */
514
ip->ip_v = IPVERSION;
515
ip->ip_hl = sizeof(*ip) >> 2;
516
ip->ip_tos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
517
ip->ip_len = htons(sizeof(*ip) + plen);
518
ip->ip_ttl = ip6->ip6_hlim;
519
if (*V_nat64ip6stealth == 0)
520
ip->ip_ttl -= IPV6_HLIMDEC;
521
ip->ip_sum = 0;
522
ip->ip_p = (proto == IPPROTO_ICMPV6) ? IPPROTO_ICMP: proto;
523
ip_fillid(ip, V_ip_random_id);
524
if (frag != NULL) {
525
ip->ip_off = htons(ntohs(frag->ip6f_offlg) >> 3);
526
if (frag->ip6f_offlg & IP6F_MORE_FRAG)
527
ip->ip_off |= htons(IP_MF);
528
} else {
529
ip->ip_off = htons(IP_DF);
530
}
531
ip->ip_sum = in_cksum_hdr(ip);
532
}
533
534
#define FRAGSZ(mtu) ((mtu) - sizeof(struct ip6_hdr) - sizeof(struct ip6_frag))
535
static NAT64NOINLINE int
536
nat64_fragment6(struct nat64_counters *stats, struct ip6_hdr *ip6,
537
struct mbufq *mq, struct mbuf *m, uint32_t mtu, uint16_t ip_id,
538
uint16_t ip_off)
539
{
540
struct ip6_frag ip6f;
541
struct mbuf *n;
542
uint16_t hlen, len, offset;
543
int plen;
544
545
plen = ntohs(ip6->ip6_plen);
546
hlen = sizeof(struct ip6_hdr);
547
548
/* Fragmentation isn't needed */
549
if (ip_off == 0 && plen <= mtu - hlen) {
550
M_PREPEND(m, hlen, M_NOWAIT);
551
if (m == NULL) {
552
NAT64STAT_INC(stats, nomem);
553
return (ENOMEM);
554
}
555
bcopy(ip6, mtod(m, void *), hlen);
556
if (mbufq_enqueue(mq, m) != 0) {
557
m_freem(m);
558
NAT64STAT_INC(stats, dropped);
559
DPRINTF(DP_DROPS, "dropped due to mbufq overflow");
560
return (ENOBUFS);
561
}
562
return (0);
563
}
564
565
hlen += sizeof(struct ip6_frag);
566
ip6f.ip6f_reserved = 0;
567
ip6f.ip6f_nxt = ip6->ip6_nxt;
568
ip6->ip6_nxt = IPPROTO_FRAGMENT;
569
if (ip_off != 0) {
570
/*
571
* We have got an IPv4 fragment.
572
* Use offset value and ip_id from original fragment.
573
*/
574
ip6f.ip6f_ident = htonl(ntohs(ip_id));
575
offset = (ntohs(ip_off) & IP_OFFMASK) << 3;
576
NAT64STAT_INC(stats, ifrags);
577
} else {
578
/* The packet size exceeds interface MTU */
579
ip6f.ip6f_ident = htonl(ip6_randomid());
580
offset = 0; /* First fragment*/
581
}
582
while (plen > 0 && m != NULL) {
583
n = NULL;
584
len = FRAGSZ(mtu) & ~7;
585
if (len > plen)
586
len = plen;
587
ip6->ip6_plen = htons(len + sizeof(ip6f));
588
ip6f.ip6f_offlg = ntohs(offset);
589
if (len < plen || (ip_off & htons(IP_MF)) != 0)
590
ip6f.ip6f_offlg |= IP6F_MORE_FRAG;
591
offset += len;
592
plen -= len;
593
if (plen > 0) {
594
n = m_split(m, len, M_NOWAIT);
595
if (n == NULL)
596
goto fail;
597
}
598
M_PREPEND(m, hlen, M_NOWAIT);
599
if (m == NULL)
600
goto fail;
601
bcopy(ip6, mtod(m, void *), sizeof(struct ip6_hdr));
602
bcopy(&ip6f, mtodo(m, sizeof(struct ip6_hdr)),
603
sizeof(struct ip6_frag));
604
if (mbufq_enqueue(mq, m) != 0)
605
goto fail;
606
m = n;
607
}
608
NAT64STAT_ADD(stats, ofrags, mbufq_len(mq));
609
return (0);
610
fail:
611
if (m != NULL)
612
m_freem(m);
613
if (n != NULL)
614
m_freem(n);
615
mbufq_drain(mq);
616
NAT64STAT_INC(stats, nomem);
617
return (ENOMEM);
618
}
619
620
static struct nhop_object *
621
nat64_find_route6(struct sockaddr_in6 *dst, struct mbuf *m)
622
{
623
struct nhop_object *nh;
624
625
NET_EPOCH_ASSERT();
626
nh = fib6_lookup(M_GETFIB(m), &dst->sin6_addr, 0, NHR_NONE, 0);
627
if (nh == NULL)
628
return (NULL);
629
if (nh->nh_flags & (NHF_BLACKHOLE | NHF_REJECT))
630
return (NULL);
631
632
dst->sin6_family = AF_INET6;
633
dst->sin6_len = sizeof(*dst);
634
if (nh->nh_flags & NHF_GATEWAY)
635
dst->sin6_addr = nh->gw6_sa.sin6_addr;
636
dst->sin6_port = 0;
637
dst->sin6_scope_id = 0;
638
dst->sin6_flowinfo = 0;
639
return (nh);
640
}
641
642
#define NAT64_ICMP6_PLEN 64
643
static NAT64NOINLINE void
644
nat64_icmp6_reflect(struct mbuf *m, uint8_t type, uint8_t code, uint32_t mtu,
645
struct nat64_counters *stats, void *logdata)
646
{
647
struct icmp6_hdr *icmp6;
648
struct ip6_hdr *ip6, *oip6;
649
struct mbuf *n;
650
int len, plen, proto;
651
652
len = 0;
653
proto = nat64_getlasthdr(m, &len);
654
if (proto < 0) {
655
DPRINTF(DP_DROPS, "mbuf isn't contigious");
656
goto freeit;
657
}
658
/*
659
* Do not send ICMPv6 in reply to ICMPv6 errors.
660
*/
661
if (proto == IPPROTO_ICMPV6) {
662
if (m->m_len < len + sizeof(*icmp6)) {
663
DPRINTF(DP_DROPS, "mbuf isn't contigious");
664
goto freeit;
665
}
666
icmp6 = mtodo(m, len);
667
if (icmp6->icmp6_type < ICMP6_ECHO_REQUEST ||
668
icmp6->icmp6_type == ND_REDIRECT) {
669
DPRINTF(DP_DROPS, "do not send ICMPv6 in reply to "
670
"ICMPv6 errors");
671
goto freeit;
672
}
673
/*
674
* If there are extra headers between IPv6 and ICMPv6,
675
* strip off them.
676
*/
677
if (len > sizeof(struct ip6_hdr)) {
678
/*
679
* NOTE: ipfw_chk already did m_pullup() and it is
680
* expected that data is contigious from the start
681
* of IPv6 header up to the end of ICMPv6 header.
682
*/
683
bcopy(mtod(m, caddr_t),
684
mtodo(m, len - sizeof(struct ip6_hdr)),
685
sizeof(struct ip6_hdr));
686
m_adj(m, len - sizeof(struct ip6_hdr));
687
}
688
}
689
/*
690
if (icmp6_ratelimit(&ip6->ip6_src, type, code))
691
goto freeit;
692
*/
693
ip6 = mtod(m, struct ip6_hdr *);
694
switch (type) {
695
case ICMP6_DST_UNREACH:
696
case ICMP6_PACKET_TOO_BIG:
697
case ICMP6_TIME_EXCEEDED:
698
case ICMP6_PARAM_PROB:
699
break;
700
default:
701
goto freeit;
702
}
703
/* Calculate length of ICMPv6 payload */
704
len = (m->m_pkthdr.len > NAT64_ICMP6_PLEN) ? NAT64_ICMP6_PLEN:
705
m->m_pkthdr.len;
706
707
/* Create new ICMPv6 datagram */
708
plen = len + sizeof(struct icmp6_hdr);
709
n = m_get2(sizeof(struct ip6_hdr) + plen + max_hdr, M_NOWAIT,
710
MT_HEADER, M_PKTHDR);
711
if (n == NULL) {
712
NAT64STAT_INC(stats, nomem);
713
m_freem(m);
714
return;
715
}
716
/*
717
* Move pkthdr from original mbuf. We should have initialized some
718
* fields, because we can reinject this mbuf to netisr and it will
719
* go through input path (it requires at least rcvif should be set).
720
* Also do M_ALIGN() to reduce chances of need to allocate new mbuf
721
* in the chain, when we will do M_PREPEND() or make some type of
722
* tunneling.
723
*/
724
m_move_pkthdr(n, m);
725
M_ALIGN(n, sizeof(struct ip6_hdr) + plen + max_hdr);
726
727
n->m_len = n->m_pkthdr.len = sizeof(struct ip6_hdr) + plen;
728
oip6 = mtod(n, struct ip6_hdr *);
729
/*
730
* Make IPv6 source address selection for reflected datagram.
731
* nat64_check_ip6() doesn't allow scoped addresses, therefore
732
* we use zero scopeid.
733
*/
734
if (in6_selectsrc_addr(M_GETFIB(n), &ip6->ip6_src, 0,
735
n->m_pkthdr.rcvif, &oip6->ip6_src, NULL) != 0) {
736
/*
737
* Failed to find proper source address, drop the packet.
738
*/
739
m_freem(n);
740
goto freeit;
741
}
742
oip6->ip6_dst = ip6->ip6_src;
743
oip6->ip6_nxt = IPPROTO_ICMPV6;
744
oip6->ip6_flow = 0;
745
oip6->ip6_vfc |= IPV6_VERSION;
746
oip6->ip6_hlim = V_ip6_defhlim;
747
oip6->ip6_plen = htons(plen);
748
749
icmp6 = mtodo(n, sizeof(struct ip6_hdr));
750
icmp6->icmp6_cksum = 0;
751
icmp6->icmp6_type = type;
752
icmp6->icmp6_code = code;
753
icmp6->icmp6_mtu = htonl(mtu);
754
755
m_copydata(m, 0, len, mtodo(n, sizeof(struct ip6_hdr) +
756
sizeof(struct icmp6_hdr)));
757
icmp6->icmp6_cksum = in6_cksum(n, IPPROTO_ICMPV6,
758
sizeof(struct ip6_hdr), plen);
759
m_freem(m);
760
V_nat64out->output_one(n, stats, logdata);
761
return;
762
freeit:
763
NAT64STAT_INC(stats, dropped);
764
m_freem(m);
765
}
766
767
static struct nhop_object *
768
nat64_find_route4(struct sockaddr_in *dst, struct mbuf *m)
769
{
770
struct nhop_object *nh;
771
772
NET_EPOCH_ASSERT();
773
nh = fib4_lookup(M_GETFIB(m), dst->sin_addr, 0, NHR_NONE, 0);
774
if (nh == NULL)
775
return (NULL);
776
if (nh->nh_flags & (NHF_BLACKHOLE | NHF_BROADCAST | NHF_REJECT))
777
return (NULL);
778
779
dst->sin_family = AF_INET;
780
dst->sin_len = sizeof(*dst);
781
if (nh->nh_flags & NHF_GATEWAY)
782
dst->sin_addr = nh->gw4_sa.sin_addr;
783
dst->sin_port = 0;
784
return (nh);
785
}
786
787
#define NAT64_ICMP_PLEN 64
788
static NAT64NOINLINE void
789
nat64_icmp_reflect(struct mbuf *m, uint8_t type,
790
uint8_t code, uint16_t mtu, struct nat64_counters *stats, void *logdata)
791
{
792
struct icmp *icmp;
793
struct ip *ip, *oip;
794
struct mbuf *n;
795
int len, plen;
796
797
ip = mtod(m, struct ip *);
798
/* Do not send ICMP error if packet is not the first fragment */
799
if (ip->ip_off & ~ntohs(IP_MF|IP_DF)) {
800
DPRINTF(DP_DROPS, "not first fragment");
801
goto freeit;
802
}
803
/* Do not send ICMP in reply to ICMP errors */
804
if (ip->ip_p == IPPROTO_ICMP) {
805
if (m->m_len < (ip->ip_hl << 2)) {
806
DPRINTF(DP_DROPS, "mbuf isn't contigious");
807
goto freeit;
808
}
809
icmp = mtodo(m, ip->ip_hl << 2);
810
if (!ICMP_INFOTYPE(icmp->icmp_type)) {
811
DPRINTF(DP_DROPS, "do not send ICMP in reply to "
812
"ICMP errors");
813
goto freeit;
814
}
815
}
816
switch (type) {
817
case ICMP_UNREACH:
818
case ICMP_TIMXCEED:
819
case ICMP_PARAMPROB:
820
break;
821
default:
822
goto freeit;
823
}
824
/* Calculate length of ICMP payload */
825
len = (m->m_pkthdr.len > NAT64_ICMP_PLEN) ? (ip->ip_hl << 2) + 8:
826
m->m_pkthdr.len;
827
828
/* Create new ICMPv4 datagram */
829
plen = len + sizeof(struct icmphdr) + sizeof(uint32_t);
830
n = m_get2(sizeof(struct ip) + plen + max_hdr, M_NOWAIT,
831
MT_HEADER, M_PKTHDR);
832
if (n == NULL) {
833
NAT64STAT_INC(stats, nomem);
834
m_freem(m);
835
return;
836
}
837
m_move_pkthdr(n, m);
838
M_ALIGN(n, sizeof(struct ip) + plen + max_hdr);
839
840
n->m_len = n->m_pkthdr.len = sizeof(struct ip) + plen;
841
oip = mtod(n, struct ip *);
842
oip->ip_v = IPVERSION;
843
oip->ip_hl = sizeof(struct ip) >> 2;
844
oip->ip_tos = 0;
845
oip->ip_len = htons(n->m_pkthdr.len);
846
oip->ip_ttl = V_ip_defttl;
847
oip->ip_p = IPPROTO_ICMP;
848
ip_fillid(oip, V_ip_random_id);
849
oip->ip_off = htons(IP_DF);
850
oip->ip_src = ip->ip_dst;
851
oip->ip_dst = ip->ip_src;
852
oip->ip_sum = 0;
853
oip->ip_sum = in_cksum_hdr(oip);
854
855
icmp = mtodo(n, sizeof(struct ip));
856
icmp->icmp_type = type;
857
icmp->icmp_code = code;
858
icmp->icmp_cksum = 0;
859
icmp->icmp_pmvoid = 0;
860
icmp->icmp_nextmtu = htons(mtu);
861
m_copydata(m, 0, len, mtodo(n, sizeof(struct ip) +
862
sizeof(struct icmphdr) + sizeof(uint32_t)));
863
icmp->icmp_cksum = in_cksum_skip(n, sizeof(struct ip) + plen,
864
sizeof(struct ip));
865
m_freem(m);
866
V_nat64out->output_one(n, stats, logdata);
867
return;
868
freeit:
869
NAT64STAT_INC(stats, dropped);
870
m_freem(m);
871
}
872
873
/* Translate ICMP echo request/reply into ICMPv6 */
874
static void
875
nat64_icmp_handle_echo(struct ip6_hdr *ip6, struct icmp6_hdr *icmp6,
876
uint16_t id, uint8_t type)
877
{
878
uint16_t old;
879
880
old = *(uint16_t *)icmp6; /* save type+code in one word */
881
icmp6->icmp6_type = type;
882
/* Reflect ICMPv6 -> ICMPv4 type translation in the cksum */
883
icmp6->icmp6_cksum = cksum_adjust(icmp6->icmp6_cksum,
884
old, *(uint16_t *)icmp6);
885
if (id != 0) {
886
old = icmp6->icmp6_id;
887
icmp6->icmp6_id = id;
888
/* Reflect ICMP id translation in the cksum */
889
icmp6->icmp6_cksum = cksum_adjust(icmp6->icmp6_cksum,
890
old, id);
891
}
892
/* Reflect IPv6 pseudo header in the cksum */
893
icmp6->icmp6_cksum = ~in6_cksum_pseudo(ip6, ntohs(ip6->ip6_plen),
894
IPPROTO_ICMPV6, ~icmp6->icmp6_cksum);
895
}
896
897
static NAT64NOINLINE struct mbuf *
898
nat64_icmp_translate(struct mbuf *m, struct ip6_hdr *ip6, uint16_t icmpid,
899
int offset, struct nat64_config *cfg)
900
{
901
struct ip ip;
902
struct icmp *icmp;
903
struct tcphdr *tcp;
904
struct udphdr *udp;
905
struct ip6_hdr *eip6;
906
struct mbuf *n;
907
uint32_t mtu;
908
int len, hlen, plen;
909
uint8_t type, code;
910
911
if (m->m_len < offset + ICMP_MINLEN)
912
m = m_pullup(m, offset + ICMP_MINLEN);
913
if (m == NULL) {
914
NAT64STAT_INC(&cfg->stats, nomem);
915
return (m);
916
}
917
mtu = 0;
918
icmp = mtodo(m, offset);
919
/* RFC 7915 p4.2 */
920
switch (icmp->icmp_type) {
921
case ICMP_ECHOREPLY:
922
type = ICMP6_ECHO_REPLY;
923
code = 0;
924
break;
925
case ICMP_UNREACH:
926
type = ICMP6_DST_UNREACH;
927
switch (icmp->icmp_code) {
928
case ICMP_UNREACH_NET:
929
case ICMP_UNREACH_HOST:
930
case ICMP_UNREACH_SRCFAIL:
931
case ICMP_UNREACH_NET_UNKNOWN:
932
case ICMP_UNREACH_HOST_UNKNOWN:
933
case ICMP_UNREACH_TOSNET:
934
case ICMP_UNREACH_TOSHOST:
935
code = ICMP6_DST_UNREACH_NOROUTE;
936
break;
937
case ICMP_UNREACH_PROTOCOL:
938
type = ICMP6_PARAM_PROB;
939
code = ICMP6_PARAMPROB_NEXTHEADER;
940
break;
941
case ICMP_UNREACH_PORT:
942
code = ICMP6_DST_UNREACH_NOPORT;
943
break;
944
case ICMP_UNREACH_NEEDFRAG:
945
type = ICMP6_PACKET_TOO_BIG;
946
code = 0;
947
/* XXX: needs an additional look */
948
mtu = max(IPV6_MMTU, ntohs(icmp->icmp_nextmtu) + 20);
949
break;
950
case ICMP_UNREACH_NET_PROHIB:
951
case ICMP_UNREACH_HOST_PROHIB:
952
case ICMP_UNREACH_FILTER_PROHIB:
953
case ICMP_UNREACH_PRECEDENCE_CUTOFF:
954
code = ICMP6_DST_UNREACH_ADMIN;
955
break;
956
default:
957
DPRINTF(DP_DROPS, "Unsupported ICMP type %d, code %d",
958
icmp->icmp_type, icmp->icmp_code);
959
goto freeit;
960
}
961
break;
962
case ICMP_TIMXCEED:
963
type = ICMP6_TIME_EXCEEDED;
964
code = icmp->icmp_code;
965
break;
966
case ICMP_ECHO:
967
type = ICMP6_ECHO_REQUEST;
968
code = 0;
969
break;
970
case ICMP_PARAMPROB:
971
type = ICMP6_PARAM_PROB;
972
switch (icmp->icmp_code) {
973
case ICMP_PARAMPROB_ERRATPTR:
974
case ICMP_PARAMPROB_LENGTH:
975
code = ICMP6_PARAMPROB_HEADER;
976
switch (icmp->icmp_pptr) {
977
case 0: /* Version/IHL */
978
case 1: /* Type Of Service */
979
mtu = icmp->icmp_pptr;
980
break;
981
case 2: /* Total Length */
982
case 3: mtu = 4; /* Payload Length */
983
break;
984
case 8: /* Time to Live */
985
mtu = 7; /* Hop Limit */
986
break;
987
case 9: /* Protocol */
988
mtu = 6; /* Next Header */
989
break;
990
case 12: /* Source address */
991
case 13:
992
case 14:
993
case 15:
994
mtu = 8;
995
break;
996
case 16: /* Destination address */
997
case 17:
998
case 18:
999
case 19:
1000
mtu = 24;
1001
break;
1002
default: /* Silently drop */
1003
DPRINTF(DP_DROPS, "Unsupported ICMP type %d,"
1004
" code %d, pptr %d", icmp->icmp_type,
1005
icmp->icmp_code, icmp->icmp_pptr);
1006
goto freeit;
1007
}
1008
break;
1009
default:
1010
DPRINTF(DP_DROPS, "Unsupported ICMP type %d,"
1011
" code %d, pptr %d", icmp->icmp_type,
1012
icmp->icmp_code, icmp->icmp_pptr);
1013
goto freeit;
1014
}
1015
break;
1016
default:
1017
DPRINTF(DP_DROPS, "Unsupported ICMP type %d, code %d",
1018
icmp->icmp_type, icmp->icmp_code);
1019
goto freeit;
1020
}
1021
/*
1022
* For echo request/reply we can use original payload,
1023
* but we need adjust icmp_cksum, because ICMPv6 cksum covers
1024
* IPv6 pseudo header and ICMPv6 types differs from ICMPv4.
1025
*/
1026
if (type == ICMP6_ECHO_REQUEST || type == ICMP6_ECHO_REPLY) {
1027
nat64_icmp_handle_echo(ip6, ICMP6(icmp), icmpid, type);
1028
return (m);
1029
}
1030
/*
1031
* For other types of ICMP messages we need to translate inner
1032
* IPv4 header to IPv6 header.
1033
* Assume ICMP src is the same as payload dst
1034
* E.g. we have ( GWsrc1 , NATIP1 ) in outer header
1035
* and ( NATIP1, Hostdst1 ) in ICMP copy header.
1036
* In that case, we already have map for NATIP1 and GWsrc1.
1037
* The only thing we need is to copy IPv6 map prefix to
1038
* Hostdst1.
1039
*/
1040
hlen = offset + ICMP_MINLEN;
1041
if (m->m_pkthdr.len < hlen + sizeof(struct ip) + ICMP_MINLEN) {
1042
DPRINTF(DP_DROPS, "Message is too short %d",
1043
m->m_pkthdr.len);
1044
goto freeit;
1045
}
1046
m_copydata(m, hlen, sizeof(struct ip), (char *)&ip);
1047
if (ip.ip_v != IPVERSION) {
1048
DPRINTF(DP_DROPS, "Wrong IP version %d", ip.ip_v);
1049
goto freeit;
1050
}
1051
hlen += ip.ip_hl << 2; /* Skip inner IP header */
1052
if (nat64_check_ip4(ip.ip_src.s_addr) != 0 ||
1053
nat64_check_ip4(ip.ip_dst.s_addr) != 0 ||
1054
nat64_check_private_ip4(cfg, ip.ip_src.s_addr) != 0 ||
1055
nat64_check_private_ip4(cfg, ip.ip_dst.s_addr) != 0) {
1056
DPRINTF(DP_DROPS, "IP addresses checks failed %04x -> %04x",
1057
ntohl(ip.ip_src.s_addr), ntohl(ip.ip_dst.s_addr));
1058
goto freeit;
1059
}
1060
if (m->m_pkthdr.len < hlen + ICMP_MINLEN) {
1061
DPRINTF(DP_DROPS, "Message is too short %d",
1062
m->m_pkthdr.len);
1063
goto freeit;
1064
}
1065
#if 0
1066
/*
1067
* Check that inner source matches the outer destination.
1068
* XXX: We need some method to convert IPv4 into IPv6 address here,
1069
* and compare IPv6 addresses.
1070
*/
1071
if (ip.ip_src.s_addr != nat64_get_ip4(&ip6->ip6_dst)) {
1072
DPRINTF(DP_GENERIC, "Inner source doesn't match destination ",
1073
"%04x vs %04x", ip.ip_src.s_addr,
1074
nat64_get_ip4(&ip6->ip6_dst));
1075
goto freeit;
1076
}
1077
#endif
1078
/*
1079
* Create new mbuf for ICMPv6 datagram.
1080
* NOTE: len is data length just after inner IP header.
1081
*/
1082
len = m->m_pkthdr.len - hlen;
1083
if (sizeof(struct ip6_hdr) +
1084
sizeof(struct icmp6_hdr) + len > NAT64_ICMP6_PLEN)
1085
len = NAT64_ICMP6_PLEN - sizeof(struct icmp6_hdr) -
1086
sizeof(struct ip6_hdr);
1087
plen = sizeof(struct icmp6_hdr) + sizeof(struct ip6_hdr) + len;
1088
n = m_get2(offset + plen + max_hdr, M_NOWAIT, MT_HEADER, M_PKTHDR);
1089
if (n == NULL) {
1090
NAT64STAT_INC(&cfg->stats, nomem);
1091
m_freem(m);
1092
return (NULL);
1093
}
1094
m_move_pkthdr(n, m);
1095
M_ALIGN(n, offset + plen + max_hdr);
1096
n->m_len = n->m_pkthdr.len = offset + plen;
1097
/* Adjust ip6_plen in outer header */
1098
ip6->ip6_plen = htons(plen);
1099
/* Construct new inner IPv6 header */
1100
eip6 = mtodo(n, offset + sizeof(struct icmp6_hdr));
1101
eip6->ip6_src = ip6->ip6_dst;
1102
1103
/* Use the same prefix that we have in outer header */
1104
eip6->ip6_dst = ip6->ip6_src;
1105
MPASS(cfg->flags & NAT64_PLATPFX);
1106
nat64_embed_ip4(&eip6->ip6_dst, cfg->plat_plen, ip.ip_dst.s_addr);
1107
1108
eip6->ip6_flow = htonl(ip.ip_tos << 20);
1109
eip6->ip6_vfc |= IPV6_VERSION;
1110
eip6->ip6_hlim = ip.ip_ttl;
1111
eip6->ip6_plen = htons(ntohs(ip.ip_len) - (ip.ip_hl << 2));
1112
eip6->ip6_nxt = (ip.ip_p == IPPROTO_ICMP) ? IPPROTO_ICMPV6: ip.ip_p;
1113
m_copydata(m, hlen, len, (char *)(eip6 + 1));
1114
/*
1115
* We need to translate source port in the inner ULP header,
1116
* and adjust ULP checksum.
1117
*/
1118
switch (ip.ip_p) {
1119
case IPPROTO_TCP:
1120
if (len < offsetof(struct tcphdr, th_sum))
1121
break;
1122
tcp = TCP(eip6 + 1);
1123
if (icmpid != 0) {
1124
tcp->th_sum = cksum_adjust(tcp->th_sum,
1125
tcp->th_sport, icmpid);
1126
tcp->th_sport = icmpid;
1127
}
1128
tcp->th_sum = cksum_add(tcp->th_sum,
1129
~nat64_cksum_convert(eip6, &ip));
1130
break;
1131
case IPPROTO_UDP:
1132
if (len < offsetof(struct udphdr, uh_sum))
1133
break;
1134
udp = UDP(eip6 + 1);
1135
if (icmpid != 0) {
1136
udp->uh_sum = cksum_adjust(udp->uh_sum,
1137
udp->uh_sport, icmpid);
1138
udp->uh_sport = icmpid;
1139
}
1140
udp->uh_sum = cksum_add(udp->uh_sum,
1141
~nat64_cksum_convert(eip6, &ip));
1142
break;
1143
case IPPROTO_ICMP:
1144
/*
1145
* Check if this is an ICMP error message for echo request
1146
* that we sent. I.e. ULP in the data containing invoking
1147
* packet is IPPROTO_ICMP and its type is ICMP_ECHO.
1148
*/
1149
icmp = (struct icmp *)(eip6 + 1);
1150
if (icmp->icmp_type != ICMP_ECHO) {
1151
m_freem(n);
1152
goto freeit;
1153
}
1154
/*
1155
* For our client this original datagram should looks
1156
* like it was ICMPv6 datagram with type ICMP6_ECHO_REQUEST.
1157
* Thus we need adjust icmp_cksum and convert type from
1158
* ICMP_ECHO to ICMP6_ECHO_REQUEST.
1159
*/
1160
nat64_icmp_handle_echo(eip6, ICMP6(icmp), icmpid,
1161
ICMP6_ECHO_REQUEST);
1162
}
1163
m_freem(m);
1164
/* Convert ICMPv4 into ICMPv6 header */
1165
icmp = mtodo(n, offset);
1166
ICMP6(icmp)->icmp6_type = type;
1167
ICMP6(icmp)->icmp6_code = code;
1168
ICMP6(icmp)->icmp6_mtu = htonl(mtu);
1169
ICMP6(icmp)->icmp6_cksum = 0;
1170
ICMP6(icmp)->icmp6_cksum = cksum_add(
1171
~in6_cksum_pseudo(ip6, plen, IPPROTO_ICMPV6, 0),
1172
in_cksum_skip(n, n->m_pkthdr.len, offset));
1173
return (n);
1174
freeit:
1175
m_freem(m);
1176
NAT64STAT_INC(&cfg->stats, dropped);
1177
return (NULL);
1178
}
1179
1180
int
1181
nat64_getlasthdr(struct mbuf *m, int *offset)
1182
{
1183
struct ip6_hdr *ip6;
1184
struct ip6_hbh *hbh;
1185
int proto, hlen;
1186
1187
if (offset != NULL)
1188
hlen = *offset;
1189
else
1190
hlen = 0;
1191
1192
if (m->m_len < hlen + sizeof(*ip6))
1193
return (-1);
1194
1195
ip6 = mtodo(m, hlen);
1196
hlen += sizeof(*ip6);
1197
proto = ip6->ip6_nxt;
1198
/* Skip extension headers */
1199
while (proto == IPPROTO_HOPOPTS || proto == IPPROTO_ROUTING ||
1200
proto == IPPROTO_DSTOPTS) {
1201
hbh = mtodo(m, hlen);
1202
/*
1203
* We expect mbuf has contigious data up to
1204
* upper level header.
1205
*/
1206
if (m->m_len < hlen)
1207
return (-1);
1208
/*
1209
* We doesn't support Jumbo payload option,
1210
* so return error.
1211
*/
1212
if (proto == IPPROTO_HOPOPTS && ip6->ip6_plen == 0)
1213
return (-1);
1214
proto = hbh->ip6h_nxt;
1215
hlen += (hbh->ip6h_len + 1) << 3;
1216
}
1217
if (offset != NULL)
1218
*offset = hlen;
1219
return (proto);
1220
}
1221
1222
int
1223
nat64_do_handle_ip4(struct mbuf *m, struct in6_addr *saddr,
1224
struct in6_addr *daddr, uint16_t lport, struct nat64_config *cfg,
1225
void *logdata)
1226
{
1227
struct nhop_object *nh;
1228
struct ip6_hdr ip6;
1229
struct sockaddr_in6 dst;
1230
struct ip *ip;
1231
struct mbufq mq;
1232
uint16_t ip_id, ip_off;
1233
uint16_t *csum;
1234
int plen, hlen;
1235
uint8_t proto;
1236
1237
ip = mtod(m, struct ip*);
1238
1239
if (*V_nat64ipstealth == 0 && ip->ip_ttl <= IPTTLDEC) {
1240
nat64_icmp_reflect(m, ICMP_TIMXCEED,
1241
ICMP_TIMXCEED_INTRANS, 0, &cfg->stats, logdata);
1242
return (NAT64RETURN);
1243
}
1244
1245
ip6.ip6_dst = *daddr;
1246
ip6.ip6_src = *saddr;
1247
1248
hlen = ip->ip_hl << 2;
1249
plen = ntohs(ip->ip_len) - hlen;
1250
proto = ip->ip_p;
1251
1252
/* Save ip_id and ip_off, both are in network byte order */
1253
ip_id = ip->ip_id;
1254
ip_off = ip->ip_off & htons(IP_OFFMASK | IP_MF);
1255
1256
/* Fragment length must be multiple of 8 octets */
1257
if ((ip->ip_off & htons(IP_MF)) != 0 && (plen & 0x7) != 0) {
1258
nat64_icmp_reflect(m, ICMP_PARAMPROB,
1259
ICMP_PARAMPROB_LENGTH, 0, &cfg->stats, logdata);
1260
return (NAT64RETURN);
1261
}
1262
/* Fragmented ICMP is unsupported */
1263
if (proto == IPPROTO_ICMP && ip_off != 0) {
1264
DPRINTF(DP_DROPS, "dropped due to fragmented ICMP");
1265
NAT64STAT_INC(&cfg->stats, dropped);
1266
return (NAT64MFREE);
1267
}
1268
1269
dst.sin6_addr = ip6.ip6_dst;
1270
nh = nat64_find_route6(&dst, m);
1271
if (nh == NULL) {
1272
NAT64STAT_INC(&cfg->stats, noroute6);
1273
nat64_icmp_reflect(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0,
1274
&cfg->stats, logdata);
1275
return (NAT64RETURN);
1276
}
1277
if (nh->nh_mtu < plen + sizeof(ip6) &&
1278
(ip->ip_off & htons(IP_DF)) != 0) {
1279
nat64_icmp_reflect(m, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
1280
FRAGSZ(nh->nh_mtu) + sizeof(struct ip), &cfg->stats, logdata);
1281
return (NAT64RETURN);
1282
}
1283
1284
ip6.ip6_flow = htonl(ip->ip_tos << 20);
1285
ip6.ip6_vfc |= IPV6_VERSION;
1286
ip6.ip6_hlim = ip->ip_ttl;
1287
if (*V_nat64ipstealth == 0)
1288
ip6.ip6_hlim -= IPTTLDEC;
1289
ip6.ip6_plen = htons(plen);
1290
ip6.ip6_nxt = (proto == IPPROTO_ICMP) ? IPPROTO_ICMPV6: proto;
1291
1292
/* Handle delayed checksums if needed. */
1293
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1294
in_delayed_cksum(m);
1295
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1296
}
1297
/* Convert checksums. */
1298
switch (proto) {
1299
case IPPROTO_TCP:
1300
csum = &TCP(mtodo(m, hlen))->th_sum;
1301
if (lport != 0) {
1302
struct tcphdr *tcp = TCP(mtodo(m, hlen));
1303
*csum = cksum_adjust(*csum, tcp->th_dport, lport);
1304
tcp->th_dport = lport;
1305
}
1306
*csum = cksum_add(*csum, ~nat64_cksum_convert(&ip6, ip));
1307
break;
1308
case IPPROTO_UDP:
1309
csum = &UDP(mtodo(m, hlen))->uh_sum;
1310
if (lport != 0) {
1311
struct udphdr *udp = UDP(mtodo(m, hlen));
1312
*csum = cksum_adjust(*csum, udp->uh_dport, lport);
1313
udp->uh_dport = lport;
1314
}
1315
*csum = cksum_add(*csum, ~nat64_cksum_convert(&ip6, ip));
1316
break;
1317
case IPPROTO_ICMP:
1318
m = nat64_icmp_translate(m, &ip6, lport, hlen, cfg);
1319
if (m == NULL) /* stats already accounted */
1320
return (NAT64RETURN);
1321
}
1322
1323
m_adj(m, hlen);
1324
mbufq_init(&mq, 255);
1325
nat64_fragment6(&cfg->stats, &ip6, &mq, m, nh->nh_mtu, ip_id, ip_off);
1326
while ((m = mbufq_dequeue(&mq)) != NULL) {
1327
if (V_nat64out->output(nh->nh_ifp, m, (struct sockaddr *)&dst,
1328
&cfg->stats, logdata) != 0)
1329
break;
1330
NAT64STAT_INC(&cfg->stats, opcnt46);
1331
}
1332
mbufq_drain(&mq);
1333
return (NAT64RETURN);
1334
}
1335
1336
int
1337
nat64_handle_icmp6(struct mbuf *m, int hlen, uint32_t aaddr, uint16_t aport,
1338
struct nat64_config *cfg, void *logdata)
1339
{
1340
struct ip ip;
1341
struct icmp6_hdr *icmp6;
1342
struct ip6_frag *ip6f;
1343
struct ip6_hdr *ip6, *ip6i;
1344
uint32_t mtu;
1345
int plen, proto;
1346
uint8_t type, code;
1347
1348
if (hlen == 0) {
1349
ip6 = mtod(m, struct ip6_hdr *);
1350
if (nat64_check_ip6(&ip6->ip6_src) != 0 ||
1351
nat64_check_ip6(&ip6->ip6_dst) != 0)
1352
return (NAT64SKIP);
1353
1354
proto = nat64_getlasthdr(m, &hlen);
1355
if (proto != IPPROTO_ICMPV6) {
1356
DPRINTF(DP_DROPS,
1357
"dropped due to mbuf isn't contigious");
1358
NAT64STAT_INC(&cfg->stats, dropped);
1359
return (NAT64MFREE);
1360
}
1361
}
1362
1363
/*
1364
* Translate ICMPv6 type and code to ICMPv4 (RFC7915).
1365
* NOTE: ICMPv6 echo handled by nat64_do_handle_ip6().
1366
*/
1367
icmp6 = mtodo(m, hlen);
1368
mtu = 0;
1369
switch (icmp6->icmp6_type) {
1370
case ICMP6_DST_UNREACH:
1371
type = ICMP_UNREACH;
1372
switch (icmp6->icmp6_code) {
1373
case ICMP6_DST_UNREACH_NOROUTE:
1374
case ICMP6_DST_UNREACH_BEYONDSCOPE:
1375
case ICMP6_DST_UNREACH_ADDR:
1376
code = ICMP_UNREACH_HOST;
1377
break;
1378
case ICMP6_DST_UNREACH_ADMIN:
1379
code = ICMP_UNREACH_HOST_PROHIB;
1380
break;
1381
case ICMP6_DST_UNREACH_NOPORT:
1382
code = ICMP_UNREACH_PORT;
1383
break;
1384
default:
1385
DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d,"
1386
" code %d", icmp6->icmp6_type,
1387
icmp6->icmp6_code);
1388
NAT64STAT_INC(&cfg->stats, dropped);
1389
return (NAT64MFREE);
1390
}
1391
break;
1392
case ICMP6_PACKET_TOO_BIG:
1393
type = ICMP_UNREACH;
1394
code = ICMP_UNREACH_NEEDFRAG;
1395
mtu = ntohl(icmp6->icmp6_mtu);
1396
if (mtu < IPV6_MMTU) {
1397
DPRINTF(DP_DROPS, "Wrong MTU %d in ICMPv6 type %d,"
1398
" code %d", mtu, icmp6->icmp6_type,
1399
icmp6->icmp6_code);
1400
NAT64STAT_INC(&cfg->stats, dropped);
1401
return (NAT64MFREE);
1402
}
1403
/*
1404
* Adjust MTU to reflect difference between
1405
* IPv6 an IPv4 headers.
1406
*/
1407
mtu -= sizeof(struct ip6_hdr) - sizeof(struct ip);
1408
break;
1409
case ICMP6_TIME_EXCEEDED:
1410
type = ICMP_TIMXCEED;
1411
code = icmp6->icmp6_code;
1412
break;
1413
case ICMP6_PARAM_PROB:
1414
switch (icmp6->icmp6_code) {
1415
case ICMP6_PARAMPROB_HEADER:
1416
type = ICMP_PARAMPROB;
1417
code = ICMP_PARAMPROB_ERRATPTR;
1418
mtu = ntohl(icmp6->icmp6_pptr);
1419
switch (mtu) {
1420
case 0: /* Version/Traffic Class */
1421
case 1: /* Traffic Class/Flow Label */
1422
break;
1423
case 4: /* Payload Length */
1424
case 5:
1425
mtu = 2;
1426
break;
1427
case 6: /* Next Header */
1428
mtu = 9;
1429
break;
1430
case 7: /* Hop Limit */
1431
mtu = 8;
1432
break;
1433
default:
1434
if (mtu >= 8 && mtu <= 23) {
1435
mtu = 12; /* Source address */
1436
break;
1437
}
1438
if (mtu >= 24 && mtu <= 39) {
1439
mtu = 16; /* Destination address */
1440
break;
1441
}
1442
DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d,"
1443
" code %d, pptr %d", icmp6->icmp6_type,
1444
icmp6->icmp6_code, mtu);
1445
NAT64STAT_INC(&cfg->stats, dropped);
1446
return (NAT64MFREE);
1447
}
1448
case ICMP6_PARAMPROB_NEXTHEADER:
1449
type = ICMP_UNREACH;
1450
code = ICMP_UNREACH_PROTOCOL;
1451
break;
1452
default:
1453
DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d,"
1454
" code %d, pptr %d", icmp6->icmp6_type,
1455
icmp6->icmp6_code, ntohl(icmp6->icmp6_pptr));
1456
NAT64STAT_INC(&cfg->stats, dropped);
1457
return (NAT64MFREE);
1458
}
1459
break;
1460
default:
1461
DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d, code %d",
1462
icmp6->icmp6_type, icmp6->icmp6_code);
1463
NAT64STAT_INC(&cfg->stats, dropped);
1464
return (NAT64MFREE);
1465
}
1466
1467
hlen += sizeof(struct icmp6_hdr);
1468
if (m->m_pkthdr.len < hlen + sizeof(struct ip6_hdr) + ICMP_MINLEN) {
1469
NAT64STAT_INC(&cfg->stats, dropped);
1470
DPRINTF(DP_DROPS, "Message is too short %d",
1471
m->m_pkthdr.len);
1472
return (NAT64MFREE);
1473
}
1474
/*
1475
* We need at least ICMP_MINLEN bytes of original datagram payload
1476
* to generate ICMP message. It is nice that ICMP_MINLEN is equal
1477
* to sizeof(struct ip6_frag). So, if embedded datagram had a fragment
1478
* header we will not have to do m_pullup() again.
1479
*
1480
* What we have here:
1481
* Outer header: (IPv6iGW, v4mapPRefix+v4exthost)
1482
* Inner header: (v4mapPRefix+v4host, IPv6iHost) [sport, dport]
1483
* We need to translate it to:
1484
*
1485
* Outer header: (alias_host, v4exthost)
1486
* Inner header: (v4exthost, alias_host) [sport, alias_port]
1487
*
1488
* Assume caller function has checked if v4mapPRefix+v4host
1489
* matches configured prefix.
1490
* The only two things we should be provided with are mapping between
1491
* IPv6iHost <> alias_host and between dport and alias_port.
1492
*/
1493
if (m->m_len < hlen + sizeof(struct ip6_hdr) + ICMP_MINLEN)
1494
m = m_pullup(m, hlen + sizeof(struct ip6_hdr) + ICMP_MINLEN);
1495
if (m == NULL) {
1496
NAT64STAT_INC(&cfg->stats, nomem);
1497
return (NAT64RETURN);
1498
}
1499
ip6 = mtod(m, struct ip6_hdr *);
1500
ip6i = mtodo(m, hlen);
1501
ip6f = NULL;
1502
proto = ip6i->ip6_nxt;
1503
plen = ntohs(ip6i->ip6_plen);
1504
hlen += sizeof(struct ip6_hdr);
1505
if (proto == IPPROTO_FRAGMENT) {
1506
if (m->m_pkthdr.len < hlen + sizeof(struct ip6_frag) +
1507
ICMP_MINLEN)
1508
goto fail;
1509
ip6f = mtodo(m, hlen);
1510
proto = ip6f->ip6f_nxt;
1511
plen -= sizeof(struct ip6_frag);
1512
hlen += sizeof(struct ip6_frag);
1513
/* Ajust MTU to reflect frag header size */
1514
if (type == ICMP_UNREACH && code == ICMP_UNREACH_NEEDFRAG)
1515
mtu -= sizeof(struct ip6_frag);
1516
}
1517
if (proto != IPPROTO_TCP && proto != IPPROTO_UDP) {
1518
DPRINTF(DP_DROPS, "Unsupported proto %d in the inner header",
1519
proto);
1520
goto fail;
1521
}
1522
if (nat64_check_ip6(&ip6i->ip6_src) != 0 ||
1523
nat64_check_ip6(&ip6i->ip6_dst) != 0) {
1524
DPRINTF(DP_DROPS, "Inner addresses do not passes the check");
1525
goto fail;
1526
}
1527
/* Check if outer dst is the same as inner src */
1528
if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6i->ip6_src)) {
1529
DPRINTF(DP_DROPS, "Inner src doesn't match outer dst");
1530
goto fail;
1531
}
1532
1533
/* Now we need to make a fake IPv4 packet to generate ICMP message */
1534
ip.ip_dst.s_addr = aaddr;
1535
ip.ip_src.s_addr = nat64_extract_ip4(&ip6i->ip6_src, cfg->plat_plen);
1536
if (ip.ip_src.s_addr == 0)
1537
goto fail;
1538
/* XXX: Make fake ulp header */
1539
if (V_nat64out == &nat64_direct) /* init_ip4hdr will decrement it */
1540
ip6i->ip6_hlim += IPV6_HLIMDEC;
1541
nat64_init_ip4hdr(ip6i, ip6f, plen, proto, &ip);
1542
m_adj(m, hlen - sizeof(struct ip));
1543
bcopy(&ip, mtod(m, void *), sizeof(ip));
1544
nat64_icmp_reflect(m, type, code, (uint16_t)mtu, &cfg->stats,
1545
logdata);
1546
return (NAT64RETURN);
1547
fail:
1548
/*
1549
* We must call m_freem() because mbuf pointer could be
1550
* changed with m_pullup().
1551
*/
1552
m_freem(m);
1553
NAT64STAT_INC(&cfg->stats, dropped);
1554
return (NAT64RETURN);
1555
}
1556
1557
int
1558
nat64_do_handle_ip6(struct mbuf *m, uint32_t aaddr, uint16_t aport,
1559
struct nat64_config *cfg, void *logdata)
1560
{
1561
struct ip ip;
1562
struct nhop_object *nh;
1563
struct sockaddr_in dst;
1564
struct ip6_frag *frag;
1565
struct ip6_hdr *ip6;
1566
struct icmp6_hdr *icmp6;
1567
uint16_t *csum;
1568
int plen, hlen, proto;
1569
1570
/*
1571
* XXX: we expect ipfw_chk() did m_pullup() up to upper level
1572
* protocol's headers. Also we skip some checks, that ip6_input(),
1573
* ip6_forward(), ip6_fastfwd() and ipfw_chk() already did.
1574
*/
1575
ip6 = mtod(m, struct ip6_hdr *);
1576
if (nat64_check_ip6(&ip6->ip6_src) != 0 ||
1577
nat64_check_ip6(&ip6->ip6_dst) != 0) {
1578
return (NAT64SKIP);
1579
}
1580
1581
/* Starting from this point we must not return zero */
1582
ip.ip_src.s_addr = aaddr;
1583
if (nat64_check_ip4(ip.ip_src.s_addr) != 0) {
1584
DPRINTF(DP_GENERIC | DP_DROPS, "invalid source address: %08x",
1585
ip.ip_src.s_addr);
1586
NAT64STAT_INC(&cfg->stats, dropped);
1587
return (NAT64MFREE);
1588
}
1589
1590
ip.ip_dst.s_addr = nat64_extract_ip4(&ip6->ip6_dst, cfg->plat_plen);
1591
if (ip.ip_dst.s_addr == 0) {
1592
NAT64STAT_INC(&cfg->stats, dropped);
1593
return (NAT64MFREE);
1594
}
1595
1596
if (*V_nat64ip6stealth == 0 && ip6->ip6_hlim <= IPV6_HLIMDEC) {
1597
nat64_icmp6_reflect(m, ICMP6_TIME_EXCEEDED,
1598
ICMP6_TIME_EXCEED_TRANSIT, 0, &cfg->stats, logdata);
1599
return (NAT64RETURN);
1600
}
1601
1602
hlen = 0;
1603
plen = ntohs(ip6->ip6_plen);
1604
proto = nat64_getlasthdr(m, &hlen);
1605
if (proto < 0) {
1606
DPRINTF(DP_DROPS, "dropped due to mbuf isn't contigious");
1607
NAT64STAT_INC(&cfg->stats, dropped);
1608
return (NAT64MFREE);
1609
}
1610
frag = NULL;
1611
if (proto == IPPROTO_FRAGMENT) {
1612
/* ipfw_chk should m_pullup up to frag header */
1613
if (m->m_len < hlen + sizeof(*frag)) {
1614
DPRINTF(DP_DROPS,
1615
"dropped due to mbuf isn't contigious");
1616
NAT64STAT_INC(&cfg->stats, dropped);
1617
return (NAT64MFREE);
1618
}
1619
frag = mtodo(m, hlen);
1620
proto = frag->ip6f_nxt;
1621
hlen += sizeof(*frag);
1622
/* Fragmented ICMPv6 is unsupported */
1623
if (proto == IPPROTO_ICMPV6) {
1624
DPRINTF(DP_DROPS, "dropped due to fragmented ICMPv6");
1625
NAT64STAT_INC(&cfg->stats, dropped);
1626
return (NAT64MFREE);
1627
}
1628
/* Fragment length must be multiple of 8 octets */
1629
if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0 &&
1630
((plen + sizeof(struct ip6_hdr) - hlen) & 0x7) != 0) {
1631
nat64_icmp6_reflect(m, ICMP6_PARAM_PROB,
1632
ICMP6_PARAMPROB_HEADER,
1633
offsetof(struct ip6_hdr, ip6_plen), &cfg->stats,
1634
logdata);
1635
return (NAT64RETURN);
1636
}
1637
}
1638
plen -= hlen - sizeof(struct ip6_hdr);
1639
if (plen < 0 || m->m_pkthdr.len < plen + hlen) {
1640
DPRINTF(DP_DROPS, "plen %d, pkthdr.len %d, hlen %d",
1641
plen, m->m_pkthdr.len, hlen);
1642
NAT64STAT_INC(&cfg->stats, dropped);
1643
return (NAT64MFREE);
1644
}
1645
1646
icmp6 = NULL; /* Make gcc happy */
1647
if (proto == IPPROTO_ICMPV6) {
1648
icmp6 = mtodo(m, hlen);
1649
if (icmp6->icmp6_type != ICMP6_ECHO_REQUEST &&
1650
icmp6->icmp6_type != ICMP6_ECHO_REPLY)
1651
return (nat64_handle_icmp6(m, hlen, aaddr, aport,
1652
cfg, logdata));
1653
}
1654
dst.sin_addr.s_addr = ip.ip_dst.s_addr;
1655
nh = nat64_find_route4(&dst, m);
1656
if (nh == NULL) {
1657
NAT64STAT_INC(&cfg->stats, noroute4);
1658
nat64_icmp6_reflect(m, ICMP6_DST_UNREACH,
1659
ICMP6_DST_UNREACH_NOROUTE, 0, &cfg->stats, logdata);
1660
return (NAT64RETURN);
1661
}
1662
if (nh->nh_mtu < plen + sizeof(ip)) {
1663
nat64_icmp6_reflect(m, ICMP6_PACKET_TOO_BIG, 0, nh->nh_mtu,
1664
&cfg->stats, logdata);
1665
return (NAT64RETURN);
1666
}
1667
nat64_init_ip4hdr(ip6, frag, plen, proto, &ip);
1668
1669
/* Handle delayed checksums if needed. */
1670
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
1671
in6_delayed_cksum(m, plen, hlen);
1672
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
1673
}
1674
/* Convert checksums. */
1675
switch (proto) {
1676
case IPPROTO_TCP:
1677
csum = &TCP(mtodo(m, hlen))->th_sum;
1678
if (aport != 0) {
1679
struct tcphdr *tcp = TCP(mtodo(m, hlen));
1680
*csum = cksum_adjust(*csum, tcp->th_sport, aport);
1681
tcp->th_sport = aport;
1682
}
1683
*csum = cksum_add(*csum, nat64_cksum_convert(ip6, &ip));
1684
break;
1685
case IPPROTO_UDP:
1686
csum = &UDP(mtodo(m, hlen))->uh_sum;
1687
if (aport != 0) {
1688
struct udphdr *udp = UDP(mtodo(m, hlen));
1689
*csum = cksum_adjust(*csum, udp->uh_sport, aport);
1690
udp->uh_sport = aport;
1691
}
1692
*csum = cksum_add(*csum, nat64_cksum_convert(ip6, &ip));
1693
break;
1694
case IPPROTO_ICMPV6:
1695
/* Checksum in ICMPv6 covers pseudo header */
1696
csum = &icmp6->icmp6_cksum;
1697
*csum = cksum_add(*csum, in6_cksum_pseudo(ip6, plen,
1698
IPPROTO_ICMPV6, 0));
1699
/* Convert ICMPv6 types to ICMP */
1700
proto = *(uint16_t *)icmp6; /* save old word for cksum_adjust */
1701
if (icmp6->icmp6_type == ICMP6_ECHO_REQUEST)
1702
icmp6->icmp6_type = ICMP_ECHO;
1703
else /* ICMP6_ECHO_REPLY */
1704
icmp6->icmp6_type = ICMP_ECHOREPLY;
1705
*csum = cksum_adjust(*csum, (uint16_t)proto,
1706
*(uint16_t *)icmp6);
1707
if (aport != 0) {
1708
uint16_t old_id = icmp6->icmp6_id;
1709
icmp6->icmp6_id = aport;
1710
*csum = cksum_adjust(*csum, old_id, aport);
1711
}
1712
break;
1713
};
1714
1715
m_adj(m, hlen - sizeof(ip));
1716
bcopy(&ip, mtod(m, void *), sizeof(ip));
1717
if (V_nat64out->output(nh->nh_ifp, m, (struct sockaddr *)&dst,
1718
&cfg->stats, logdata) == 0)
1719
NAT64STAT_INC(&cfg->stats, opcnt64);
1720
return (NAT64RETURN);
1721
}
1722
1723