Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/powerpc/aim/mmu_radix.c
39507 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2018 Matthew Macy
5
*
6
* Redistribution and use in source and binary forms, with or without
7
* modification, are permitted provided that the following conditions
8
* are met:
9
*
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
*
16
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
*/
27
28
#include "opt_platform.h"
29
30
#include <sys/param.h>
31
#include <sys/kernel.h>
32
#include <sys/systm.h>
33
#include <sys/conf.h>
34
#include <sys/bitstring.h>
35
#include <sys/queue.h>
36
#include <sys/cpuset.h>
37
#include <sys/endian.h>
38
#include <sys/kerneldump.h>
39
#include <sys/ktr.h>
40
#include <sys/lock.h>
41
#include <sys/syslog.h>
42
#include <sys/msgbuf.h>
43
#include <sys/malloc.h>
44
#include <sys/mman.h>
45
#include <sys/mutex.h>
46
#include <sys/proc.h>
47
#include <sys/rwlock.h>
48
#include <sys/sched.h>
49
#include <sys/sysctl.h>
50
#include <sys/systm.h>
51
#include <sys/vmem.h>
52
#include <sys/vmmeter.h>
53
#include <sys/smp.h>
54
55
#include <sys/kdb.h>
56
57
#include <dev/ofw/openfirm.h>
58
59
#include <vm/vm.h>
60
#include <vm/pmap.h>
61
#include <vm/vm_param.h>
62
#include <vm/vm_kern.h>
63
#include <vm/vm_page.h>
64
#include <vm/vm_map.h>
65
#include <vm/vm_object.h>
66
#include <vm/vm_extern.h>
67
#include <vm/vm_pageout.h>
68
#include <vm/vm_phys.h>
69
#include <vm/vm_radix.h>
70
#include <vm/vm_reserv.h>
71
#include <vm/vm_dumpset.h>
72
#include <vm/uma.h>
73
74
#include <machine/_inttypes.h>
75
#include <machine/cpu.h>
76
#include <machine/platform.h>
77
#include <machine/frame.h>
78
#include <machine/md_var.h>
79
#include <machine/psl.h>
80
#include <machine/bat.h>
81
#include <machine/hid.h>
82
#include <machine/pte.h>
83
#include <machine/sr.h>
84
#include <machine/trap.h>
85
#include <machine/mmuvar.h>
86
87
/* For pseries bit. */
88
#include <powerpc/pseries/phyp-hvcall.h>
89
90
#ifdef INVARIANTS
91
#include <vm/uma_dbg.h>
92
#endif
93
94
#define PPC_BITLSHIFT(bit) (sizeof(long)*NBBY - 1 - (bit))
95
#define PPC_BIT(bit) (1UL << PPC_BITLSHIFT(bit))
96
#define PPC_BITLSHIFT_VAL(val, bit) ((val) << PPC_BITLSHIFT(bit))
97
98
#include "opt_ddb.h"
99
100
#ifdef DDB
101
static void pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va);
102
#endif
103
104
#define PG_W RPTE_WIRED
105
#define PG_V RPTE_VALID
106
#define PG_MANAGED RPTE_MANAGED
107
#define PG_PROMOTED RPTE_PROMOTED
108
#define PG_M RPTE_C
109
#define PG_A RPTE_R
110
#define PG_X RPTE_EAA_X
111
#define PG_RW RPTE_EAA_W
112
#define PG_PTE_CACHE RPTE_ATTR_MASK
113
114
#define RPTE_SHIFT 9
115
#define NLS_MASK ((1UL<<5)-1)
116
#define RPTE_ENTRIES (1UL<<RPTE_SHIFT)
117
#define RPTE_MASK (RPTE_ENTRIES-1)
118
119
#define NLB_SHIFT 0
120
#define NLB_MASK (((1UL<<52)-1) << 8)
121
122
extern int nkpt;
123
extern caddr_t crashdumpmap;
124
125
#define RIC_FLUSH_TLB 0
126
#define RIC_FLUSH_PWC 1
127
#define RIC_FLUSH_ALL 2
128
129
#define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
130
131
#define PPC_INST_TLBIE 0x7c000264
132
#define PPC_INST_TLBIEL 0x7c000224
133
#define PPC_INST_SLBIA 0x7c0003e4
134
135
#define ___PPC_RA(a) (((a) & 0x1f) << 16)
136
#define ___PPC_RB(b) (((b) & 0x1f) << 11)
137
#define ___PPC_RS(s) (((s) & 0x1f) << 21)
138
#define ___PPC_RT(t) ___PPC_RS(t)
139
#define ___PPC_R(r) (((r) & 0x1) << 16)
140
#define ___PPC_PRS(prs) (((prs) & 0x1) << 17)
141
#define ___PPC_RIC(ric) (((ric) & 0x3) << 18)
142
143
#define PPC_SLBIA(IH) __XSTRING(.long PPC_INST_SLBIA | \
144
((IH & 0x7) << 21))
145
#define PPC_TLBIE_5(rb,rs,ric,prs,r) \
146
__XSTRING(.long PPC_INST_TLBIE | \
147
___PPC_RB(rb) | ___PPC_RS(rs) | \
148
___PPC_RIC(ric) | ___PPC_PRS(prs) | \
149
___PPC_R(r))
150
151
#define PPC_TLBIEL(rb,rs,ric,prs,r) \
152
__XSTRING(.long PPC_INST_TLBIEL | \
153
___PPC_RB(rb) | ___PPC_RS(rs) | \
154
___PPC_RIC(ric) | ___PPC_PRS(prs) | \
155
___PPC_R(r))
156
157
#define PPC_INVALIDATE_ERAT PPC_SLBIA(7)
158
159
static __inline void
160
ttusync(void)
161
{
162
__asm __volatile("eieio; tlbsync; ptesync" ::: "memory");
163
}
164
165
#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
166
#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
167
#define TLBIEL_INVAL_SET_PID 0x400 /* invalidate a set for the current PID */
168
#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
169
#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
170
171
#define TLBIE_ACTUAL_PAGE_MASK 0xe0
172
#define TLBIE_ACTUAL_PAGE_4K 0x00
173
#define TLBIE_ACTUAL_PAGE_64K 0xa0
174
#define TLBIE_ACTUAL_PAGE_2M 0x20
175
#define TLBIE_ACTUAL_PAGE_1G 0x40
176
177
#define TLBIE_PRS_PARTITION_SCOPE 0x0
178
#define TLBIE_PRS_PROCESS_SCOPE 0x1
179
180
#define TLBIE_RIC_INVALIDATE_TLB 0x0 /* Invalidate just TLB */
181
#define TLBIE_RIC_INVALIDATE_PWC 0x1 /* Invalidate just PWC */
182
#define TLBIE_RIC_INVALIDATE_ALL 0x2 /* Invalidate TLB, PWC,
183
* cached {proc, part}tab entries
184
*/
185
#define TLBIE_RIC_INVALIDATE_SEQ 0x3 /* HPT - only:
186
* Invalidate a range of translations
187
*/
188
189
static __always_inline void
190
radix_tlbie(uint8_t ric, uint8_t prs, uint16_t is, uint32_t pid, uint32_t lpid,
191
vm_offset_t va, uint16_t ap)
192
{
193
uint64_t rb, rs;
194
195
MPASS((va & PAGE_MASK) == 0);
196
197
rs = ((uint64_t)pid << 32) | lpid;
198
rb = va | is | ap;
199
__asm __volatile(PPC_TLBIE_5(%0, %1, %2, %3, 1) : :
200
"r" (rb), "r" (rs), "i" (ric), "i" (prs) : "memory");
201
}
202
203
static __inline void
204
radix_tlbie_fixup(uint32_t pid, vm_offset_t va, int ap)
205
{
206
207
__asm __volatile("ptesync" ::: "memory");
208
radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
209
TLBIEL_INVAL_PAGE, 0, 0, va, ap);
210
__asm __volatile("ptesync" ::: "memory");
211
radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
212
TLBIEL_INVAL_PAGE, pid, 0, va, ap);
213
}
214
215
static __inline void
216
radix_tlbie_invlpg_user_4k(uint32_t pid, vm_offset_t va)
217
{
218
219
radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
220
TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_4K);
221
radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_4K);
222
}
223
224
static __inline void
225
radix_tlbie_invlpg_user_2m(uint32_t pid, vm_offset_t va)
226
{
227
228
radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
229
TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_2M);
230
radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_2M);
231
}
232
233
static __inline void
234
radix_tlbie_invlpwc_user(uint32_t pid)
235
{
236
237
radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
238
TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
239
}
240
241
static __inline void
242
radix_tlbie_flush_user(uint32_t pid)
243
{
244
245
radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
246
TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
247
}
248
249
static __inline void
250
radix_tlbie_invlpg_kernel_4k(vm_offset_t va)
251
{
252
253
radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
254
TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_4K);
255
radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_4K);
256
}
257
258
static __inline void
259
radix_tlbie_invlpg_kernel_2m(vm_offset_t va)
260
{
261
262
radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
263
TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_2M);
264
radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_2M);
265
}
266
267
/* 1GB pages aren't currently supported. */
268
static __inline __unused void
269
radix_tlbie_invlpg_kernel_1g(vm_offset_t va)
270
{
271
272
radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
273
TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_1G);
274
radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_1G);
275
}
276
277
static __inline void
278
radix_tlbie_invlpwc_kernel(void)
279
{
280
281
radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
282
TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
283
}
284
285
static __inline void
286
radix_tlbie_flush_kernel(void)
287
{
288
289
radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
290
TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
291
}
292
293
static __inline vm_pindex_t
294
pmap_l3e_pindex(vm_offset_t va)
295
{
296
return ((va & PG_FRAME) >> L3_PAGE_SIZE_SHIFT);
297
}
298
299
static __inline vm_pindex_t
300
pmap_pml3e_index(vm_offset_t va)
301
{
302
303
return ((va >> L3_PAGE_SIZE_SHIFT) & RPTE_MASK);
304
}
305
306
static __inline vm_pindex_t
307
pmap_pml2e_index(vm_offset_t va)
308
{
309
return ((va >> L2_PAGE_SIZE_SHIFT) & RPTE_MASK);
310
}
311
312
static __inline vm_pindex_t
313
pmap_pml1e_index(vm_offset_t va)
314
{
315
return ((va & PG_FRAME) >> L1_PAGE_SIZE_SHIFT);
316
}
317
318
/* Return various clipped indexes for a given VA */
319
static __inline vm_pindex_t
320
pmap_pte_index(vm_offset_t va)
321
{
322
323
return ((va >> PAGE_SHIFT) & RPTE_MASK);
324
}
325
326
/* Return a pointer to the PT slot that corresponds to a VA */
327
static __inline pt_entry_t *
328
pmap_l3e_to_pte(pt_entry_t *l3e, vm_offset_t va)
329
{
330
pt_entry_t *pte;
331
vm_paddr_t ptepa;
332
333
ptepa = (be64toh(*l3e) & NLB_MASK);
334
pte = (pt_entry_t *)PHYS_TO_DMAP(ptepa);
335
return (&pte[pmap_pte_index(va)]);
336
}
337
338
/* Return a pointer to the PD slot that corresponds to a VA */
339
static __inline pt_entry_t *
340
pmap_l2e_to_l3e(pt_entry_t *l2e, vm_offset_t va)
341
{
342
pt_entry_t *l3e;
343
vm_paddr_t l3pa;
344
345
l3pa = (be64toh(*l2e) & NLB_MASK);
346
l3e = (pml3_entry_t *)PHYS_TO_DMAP(l3pa);
347
return (&l3e[pmap_pml3e_index(va)]);
348
}
349
350
/* Return a pointer to the PD slot that corresponds to a VA */
351
static __inline pt_entry_t *
352
pmap_l1e_to_l2e(pt_entry_t *l1e, vm_offset_t va)
353
{
354
pt_entry_t *l2e;
355
vm_paddr_t l2pa;
356
357
l2pa = (be64toh(*l1e) & NLB_MASK);
358
359
l2e = (pml2_entry_t *)PHYS_TO_DMAP(l2pa);
360
return (&l2e[pmap_pml2e_index(va)]);
361
}
362
363
static __inline pml1_entry_t *
364
pmap_pml1e(pmap_t pmap, vm_offset_t va)
365
{
366
367
return (&pmap->pm_pml1[pmap_pml1e_index(va)]);
368
}
369
370
static pt_entry_t *
371
pmap_pml2e(pmap_t pmap, vm_offset_t va)
372
{
373
pt_entry_t *l1e;
374
375
l1e = pmap_pml1e(pmap, va);
376
if (l1e == NULL || (be64toh(*l1e) & RPTE_VALID) == 0)
377
return (NULL);
378
return (pmap_l1e_to_l2e(l1e, va));
379
}
380
381
static __inline pt_entry_t *
382
pmap_pml3e(pmap_t pmap, vm_offset_t va)
383
{
384
pt_entry_t *l2e;
385
386
l2e = pmap_pml2e(pmap, va);
387
if (l2e == NULL || (be64toh(*l2e) & RPTE_VALID) == 0)
388
return (NULL);
389
return (pmap_l2e_to_l3e(l2e, va));
390
}
391
392
static __inline pt_entry_t *
393
pmap_pte(pmap_t pmap, vm_offset_t va)
394
{
395
pt_entry_t *l3e;
396
397
l3e = pmap_pml3e(pmap, va);
398
if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0)
399
return (NULL);
400
return (pmap_l3e_to_pte(l3e, va));
401
}
402
403
int nkpt = 64;
404
SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
405
"Number of kernel page table pages allocated on bootup");
406
407
vm_paddr_t dmaplimit;
408
409
SYSCTL_DECL(_vm_pmap);
410
411
#ifdef INVARIANTS
412
#define VERBOSE_PMAP 0
413
#define VERBOSE_PROTECT 0
414
static int pmap_logging;
415
SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_logging, CTLFLAG_RWTUN,
416
&pmap_logging, 0, "verbose debug logging");
417
#endif
418
419
static u_int64_t KPTphys; /* phys addr of kernel level 1 */
420
421
//static vm_paddr_t KERNend; /* phys addr of end of bootstrap data */
422
423
static vm_offset_t qframe = 0;
424
static struct mtx qframe_mtx;
425
426
void mmu_radix_activate(struct thread *);
427
void mmu_radix_advise(pmap_t, vm_offset_t, vm_offset_t, int);
428
void mmu_radix_align_superpage(vm_object_t, vm_ooffset_t, vm_offset_t *,
429
vm_size_t);
430
void mmu_radix_clear_modify(vm_page_t);
431
void mmu_radix_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t);
432
int mmu_radix_decode_kernel_ptr(vm_offset_t, int *, vm_offset_t *);
433
int mmu_radix_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, int8_t);
434
void mmu_radix_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
435
vm_prot_t);
436
void mmu_radix_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
437
vm_paddr_t mmu_radix_extract(pmap_t pmap, vm_offset_t va);
438
vm_page_t mmu_radix_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
439
void mmu_radix_kenter(vm_offset_t, vm_paddr_t);
440
vm_paddr_t mmu_radix_kextract(vm_offset_t);
441
void mmu_radix_kremove(vm_offset_t);
442
bool mmu_radix_is_modified(vm_page_t);
443
bool mmu_radix_is_prefaultable(pmap_t, vm_offset_t);
444
bool mmu_radix_is_referenced(vm_page_t);
445
void mmu_radix_object_init_pt(pmap_t, vm_offset_t, vm_object_t,
446
vm_pindex_t, vm_size_t);
447
bool mmu_radix_page_exists_quick(pmap_t, vm_page_t);
448
void mmu_radix_page_init(vm_page_t);
449
bool mmu_radix_page_is_mapped(vm_page_t m);
450
void mmu_radix_page_set_memattr(vm_page_t, vm_memattr_t);
451
int mmu_radix_page_wired_mappings(vm_page_t);
452
int mmu_radix_pinit(pmap_t);
453
void mmu_radix_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
454
bool mmu_radix_ps_enabled(pmap_t);
455
void mmu_radix_qenter(vm_offset_t, vm_page_t *, int);
456
void mmu_radix_qremove(vm_offset_t, int);
457
vm_offset_t mmu_radix_quick_enter_page(vm_page_t);
458
void mmu_radix_quick_remove_page(vm_offset_t);
459
int mmu_radix_ts_referenced(vm_page_t);
460
void mmu_radix_release(pmap_t);
461
void mmu_radix_remove(pmap_t, vm_offset_t, vm_offset_t);
462
void mmu_radix_remove_all(vm_page_t);
463
void mmu_radix_remove_pages(pmap_t);
464
void mmu_radix_remove_write(vm_page_t);
465
void mmu_radix_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz);
466
void mmu_radix_unwire(pmap_t, vm_offset_t, vm_offset_t);
467
void mmu_radix_zero_page(vm_page_t);
468
void mmu_radix_zero_page_area(vm_page_t, int, int);
469
int mmu_radix_change_attr(vm_offset_t, vm_size_t, vm_memattr_t);
470
void mmu_radix_page_array_startup(long pages);
471
472
#include "mmu_oea64.h"
473
474
/*
475
* Kernel MMU interface
476
*/
477
478
static void mmu_radix_bootstrap(vm_offset_t, vm_offset_t);
479
480
static void mmu_radix_copy_page(vm_page_t, vm_page_t);
481
static void mmu_radix_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
482
vm_page_t *mb, vm_offset_t b_offset, int xfersize);
483
static int mmu_radix_growkernel(vm_offset_t);
484
static void mmu_radix_init(void);
485
static int mmu_radix_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
486
static vm_offset_t mmu_radix_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
487
static void mmu_radix_pinit0(pmap_t);
488
489
static void *mmu_radix_mapdev(vm_paddr_t, vm_size_t);
490
static void *mmu_radix_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
491
static void mmu_radix_unmapdev(void *, vm_size_t);
492
static void mmu_radix_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
493
static int mmu_radix_dev_direct_mapped(vm_paddr_t, vm_size_t);
494
static void mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
495
static void mmu_radix_scan_init(void);
496
static void mmu_radix_cpu_bootstrap(int ap);
497
static void mmu_radix_tlbie_all(void);
498
499
static struct pmap_funcs mmu_radix_methods = {
500
.bootstrap = mmu_radix_bootstrap,
501
.copy_page = mmu_radix_copy_page,
502
.copy_pages = mmu_radix_copy_pages,
503
.cpu_bootstrap = mmu_radix_cpu_bootstrap,
504
.growkernel_nopanic = mmu_radix_growkernel,
505
.init = mmu_radix_init,
506
.map = mmu_radix_map,
507
.mincore = mmu_radix_mincore,
508
.pinit = mmu_radix_pinit,
509
.pinit0 = mmu_radix_pinit0,
510
511
.mapdev = mmu_radix_mapdev,
512
.mapdev_attr = mmu_radix_mapdev_attr,
513
.unmapdev = mmu_radix_unmapdev,
514
.kenter_attr = mmu_radix_kenter_attr,
515
.dev_direct_mapped = mmu_radix_dev_direct_mapped,
516
.dumpsys_pa_init = mmu_radix_scan_init,
517
.dumpsys_map_chunk = mmu_radix_dumpsys_map,
518
.page_is_mapped = mmu_radix_page_is_mapped,
519
.ps_enabled = mmu_radix_ps_enabled,
520
.align_superpage = mmu_radix_align_superpage,
521
.object_init_pt = mmu_radix_object_init_pt,
522
.protect = mmu_radix_protect,
523
/* pmap dispatcher interface */
524
.clear_modify = mmu_radix_clear_modify,
525
.copy = mmu_radix_copy,
526
.enter = mmu_radix_enter,
527
.enter_object = mmu_radix_enter_object,
528
.enter_quick = mmu_radix_enter_quick,
529
.extract = mmu_radix_extract,
530
.extract_and_hold = mmu_radix_extract_and_hold,
531
.is_modified = mmu_radix_is_modified,
532
.is_prefaultable = mmu_radix_is_prefaultable,
533
.is_referenced = mmu_radix_is_referenced,
534
.ts_referenced = mmu_radix_ts_referenced,
535
.page_exists_quick = mmu_radix_page_exists_quick,
536
.page_init = mmu_radix_page_init,
537
.page_wired_mappings = mmu_radix_page_wired_mappings,
538
.qenter = mmu_radix_qenter,
539
.qremove = mmu_radix_qremove,
540
.release = mmu_radix_release,
541
.remove = mmu_radix_remove,
542
.remove_all = mmu_radix_remove_all,
543
.remove_write = mmu_radix_remove_write,
544
.sync_icache = mmu_radix_sync_icache,
545
.unwire = mmu_radix_unwire,
546
.zero_page = mmu_radix_zero_page,
547
.zero_page_area = mmu_radix_zero_page_area,
548
.activate = mmu_radix_activate,
549
.quick_enter_page = mmu_radix_quick_enter_page,
550
.quick_remove_page = mmu_radix_quick_remove_page,
551
.page_set_memattr = mmu_radix_page_set_memattr,
552
.page_array_startup = mmu_radix_page_array_startup,
553
554
/* Internal interfaces */
555
.kenter = mmu_radix_kenter,
556
.kextract = mmu_radix_kextract,
557
.kremove = mmu_radix_kremove,
558
.change_attr = mmu_radix_change_attr,
559
.decode_kernel_ptr = mmu_radix_decode_kernel_ptr,
560
561
.tlbie_all = mmu_radix_tlbie_all,
562
};
563
564
MMU_DEF(mmu_radix, MMU_TYPE_RADIX, mmu_radix_methods);
565
566
static bool pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
567
struct rwlock **lockp);
568
static bool pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va);
569
static int pmap_unuse_pt(pmap_t, vm_offset_t, pml3_entry_t, struct spglist *);
570
static int pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
571
struct spglist *free, struct rwlock **lockp);
572
static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
573
pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
574
static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
575
static bool pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *pde,
576
struct spglist *free);
577
static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
578
pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp);
579
580
static bool pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e,
581
u_int flags, struct rwlock **lockp);
582
#if VM_NRESERVLEVEL > 0
583
static void pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
584
struct rwlock **lockp);
585
#endif
586
static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
587
static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
588
static vm_page_t mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
589
vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate);
590
591
static bool pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
592
vm_prot_t prot, struct rwlock **lockp);
593
static int pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde,
594
u_int flags, vm_page_t m, struct rwlock **lockp);
595
596
static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
597
static void free_pv_chunk(struct pv_chunk *pc);
598
static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp);
599
static vm_page_t pmap_allocl3e(pmap_t pmap, vm_offset_t va,
600
struct rwlock **lockp);
601
static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
602
struct rwlock **lockp);
603
static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
604
struct spglist *free);
605
static bool pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free);
606
607
static void pmap_invalidate_page(pmap_t pmap, vm_offset_t start);
608
static void pmap_invalidate_all(pmap_t pmap);
609
static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush);
610
static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
611
612
/*
613
* Internal flags for pmap_enter()'s helper functions.
614
*/
615
#define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
616
#define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
617
618
#define UNIMPLEMENTED() panic("%s not implemented", __func__)
619
#define UNTESTED() panic("%s not yet tested", __func__)
620
621
/* Number of supported PID bits */
622
static unsigned int isa3_pid_bits;
623
624
/* PID to start allocating from */
625
static unsigned int isa3_base_pid;
626
627
#define PROCTAB_SIZE_SHIFT (isa3_pid_bits + 4)
628
#define PROCTAB_ENTRIES (1ul << isa3_pid_bits)
629
630
/*
631
* Map of physical memory regions.
632
*/
633
static struct mem_region *regions, *pregions;
634
static struct numa_mem_region *numa_pregions;
635
static u_int phys_avail_count;
636
static int regions_sz, pregions_sz, numa_pregions_sz;
637
static struct pate *isa3_parttab;
638
static struct prte *isa3_proctab;
639
static vmem_t *asid_arena;
640
641
extern void bs_remap_earlyboot(void);
642
643
#define RADIX_PGD_SIZE_SHIFT 16
644
#define RADIX_PGD_SIZE (1UL << RADIX_PGD_SIZE_SHIFT)
645
646
#define RADIX_PGD_INDEX_SHIFT (RADIX_PGD_SIZE_SHIFT-3)
647
#define NL2EPG (PAGE_SIZE/sizeof(pml2_entry_t))
648
#define NL3EPG (PAGE_SIZE/sizeof(pml3_entry_t))
649
650
#define NUPML1E (RADIX_PGD_SIZE/sizeof(uint64_t)) /* number of userland PML1 pages */
651
#define NUPDPE (NUPML1E * NL2EPG)/* number of userland PDP pages */
652
#define NUPDE (NUPDPE * NL3EPG) /* number of userland PD entries */
653
654
/* POWER9 only permits a 64k partition table size. */
655
#define PARTTAB_SIZE_SHIFT 16
656
#define PARTTAB_SIZE (1UL << PARTTAB_SIZE_SHIFT)
657
658
#define PARTTAB_HR (1UL << 63) /* host uses radix */
659
#define PARTTAB_GR (1UL << 63) /* guest uses radix must match host */
660
661
/* TLB flush actions. Used as argument to tlbiel_flush() */
662
enum {
663
TLB_INVAL_SCOPE_LPID = 2, /* invalidate TLBs for current LPID */
664
TLB_INVAL_SCOPE_GLOBAL = 3, /* invalidate all TLBs */
665
};
666
667
#define NPV_LIST_LOCKS MAXCPU
668
static int pmap_initialized;
669
static vm_paddr_t proctab0pa;
670
static vm_paddr_t parttab_phys;
671
CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
672
673
/*
674
* Data for the pv entry allocation mechanism.
675
* Updates to pv_invl_gen are protected by the pv_list_locks[]
676
* elements, but reads are not.
677
*/
678
static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
679
static struct mtx __exclusive_cache_line pv_chunks_mutex;
680
static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
681
static struct md_page *pv_table;
682
static struct md_page pv_dummy;
683
684
#ifdef PV_STATS
685
#define PV_STAT(x) do { x ; } while (0)
686
#else
687
#define PV_STAT(x) do { } while (0)
688
#endif
689
690
#define pa_radix_index(pa) ((pa) >> L3_PAGE_SIZE_SHIFT)
691
#define pa_to_pvh(pa) (&pv_table[pa_radix_index(pa)])
692
693
#define PHYS_TO_PV_LIST_LOCK(pa) \
694
(&pv_list_locks[pa_radix_index(pa) % NPV_LIST_LOCKS])
695
696
#define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) do { \
697
struct rwlock **_lockp = (lockp); \
698
struct rwlock *_new_lock; \
699
\
700
_new_lock = PHYS_TO_PV_LIST_LOCK(pa); \
701
if (_new_lock != *_lockp) { \
702
if (*_lockp != NULL) \
703
rw_wunlock(*_lockp); \
704
*_lockp = _new_lock; \
705
rw_wlock(*_lockp); \
706
} \
707
} while (0)
708
709
#define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \
710
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
711
712
#define RELEASE_PV_LIST_LOCK(lockp) do { \
713
struct rwlock **_lockp = (lockp); \
714
\
715
if (*_lockp != NULL) { \
716
rw_wunlock(*_lockp); \
717
*_lockp = NULL; \
718
} \
719
} while (0)
720
721
#define VM_PAGE_TO_PV_LIST_LOCK(m) \
722
PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
723
724
/*
725
* We support 52 bits, hence:
726
* bits 52 - 31 = 21, 0b10101
727
* RTS encoding details
728
* bits 0 - 3 of rts -> bits 6 - 8 unsigned long
729
* bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
730
*/
731
#define RTS_SIZE ((0x2UL << 61) | (0x5UL << 5))
732
733
static int powernv_enabled = 1;
734
735
static __always_inline void
736
tlbiel_radix_set_isa300(uint32_t set, uint32_t is,
737
uint32_t pid, uint32_t ric, uint32_t prs)
738
{
739
uint64_t rb;
740
uint64_t rs;
741
742
rb = PPC_BITLSHIFT_VAL(set, 51) | PPC_BITLSHIFT_VAL(is, 53);
743
rs = PPC_BITLSHIFT_VAL((uint64_t)pid, 31);
744
745
__asm __volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
746
: : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
747
: "memory");
748
}
749
750
static void
751
tlbiel_flush_isa3(uint32_t num_sets, uint32_t is)
752
{
753
uint32_t set;
754
755
__asm __volatile("ptesync": : :"memory");
756
757
/*
758
* Flush the first set of the TLB, and the entire Page Walk Cache
759
* and partition table entries. Then flush the remaining sets of the
760
* TLB.
761
*/
762
if (is == TLB_INVAL_SCOPE_GLOBAL) {
763
tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
764
for (set = 1; set < num_sets; set++)
765
tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
766
}
767
768
/* Do the same for process scoped entries. */
769
tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
770
for (set = 1; set < num_sets; set++)
771
tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
772
773
__asm __volatile("ptesync": : :"memory");
774
}
775
776
static void
777
mmu_radix_tlbiel_flush(int scope)
778
{
779
MPASS(scope == TLB_INVAL_SCOPE_LPID ||
780
scope == TLB_INVAL_SCOPE_GLOBAL);
781
782
tlbiel_flush_isa3(POWER9_TLB_SETS_RADIX, scope);
783
__asm __volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
784
}
785
786
static void
787
mmu_radix_tlbie_all(void)
788
{
789
if (powernv_enabled)
790
mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
791
else
792
mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
793
}
794
795
static void
796
mmu_radix_init_amor(void)
797
{
798
/*
799
* In HV mode, we init AMOR (Authority Mask Override Register) so that
800
* the hypervisor and guest can setup IAMR (Instruction Authority Mask
801
* Register), enable key 0 and set it to 1.
802
*
803
* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
804
*/
805
mtspr(SPR_AMOR, (3ul << 62));
806
}
807
808
static void
809
mmu_radix_init_iamr(void)
810
{
811
/*
812
* Radix always uses key0 of the IAMR to determine if an access is
813
* allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
814
* fetch.
815
*/
816
mtspr(SPR_IAMR, (1ul << 62));
817
}
818
819
static void
820
mmu_radix_pid_set(pmap_t pmap)
821
{
822
823
mtspr(SPR_PID, pmap->pm_pid);
824
isync();
825
}
826
827
/* Quick sort callout for comparing physical addresses. */
828
static int
829
pa_cmp(const void *a, const void *b)
830
{
831
const vm_paddr_t *pa = a, *pb = b;
832
833
if (*pa < *pb)
834
return (-1);
835
else if (*pa > *pb)
836
return (1);
837
else
838
return (0);
839
}
840
841
#define pte_load_store(ptep, pte) atomic_swap_long(ptep, pte)
842
#define pte_load_clear(ptep) atomic_swap_long(ptep, 0)
843
#define pte_store(ptep, pte) do { \
844
MPASS((pte) & (RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_X)); \
845
*(u_long *)(ptep) = htobe64((u_long)((pte) | PG_V | RPTE_LEAF)); \
846
} while (0)
847
/*
848
* NB: should only be used for adding directories - not for direct mappings
849
*/
850
#define pde_store(ptep, pa) do { \
851
*(u_long *)(ptep) = htobe64((u_long)(pa|RPTE_VALID|RPTE_SHIFT)); \
852
} while (0)
853
854
#define pte_clear(ptep) do { \
855
*(u_long *)(ptep) = (u_long)(0); \
856
} while (0)
857
858
#define PMAP_PDE_SUPERPAGE (1 << 8) /* supports 2MB superpages */
859
860
/*
861
* Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
862
* (PTE) page mappings have identical settings for the following fields:
863
*/
864
#define PG_PTE_PROMOTE (PG_X | PG_MANAGED | PG_W | PG_PTE_CACHE | \
865
PG_M | PG_A | RPTE_EAA_MASK | PG_V)
866
867
static __inline void
868
pmap_resident_count_inc(pmap_t pmap, int count)
869
{
870
871
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
872
pmap->pm_stats.resident_count += count;
873
}
874
875
static __inline void
876
pmap_resident_count_dec(pmap_t pmap, int count)
877
{
878
879
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
880
KASSERT(pmap->pm_stats.resident_count >= count,
881
("pmap %p resident count underflow %ld %d", pmap,
882
pmap->pm_stats.resident_count, count));
883
pmap->pm_stats.resident_count -= count;
884
}
885
886
static void
887
pagezero(vm_offset_t va)
888
{
889
va = trunc_page(va);
890
891
bzero((void *)va, PAGE_SIZE);
892
}
893
894
static uint64_t
895
allocpages(int n)
896
{
897
u_int64_t ret;
898
899
ret = moea64_bootstrap_alloc(n * PAGE_SIZE, PAGE_SIZE);
900
for (int i = 0; i < n; i++)
901
pagezero(PHYS_TO_DMAP(ret + i * PAGE_SIZE));
902
return (ret);
903
}
904
905
static pt_entry_t *
906
kvtopte(vm_offset_t va)
907
{
908
pt_entry_t *l3e;
909
910
l3e = pmap_pml3e(kernel_pmap, va);
911
if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0)
912
return (NULL);
913
return (pmap_l3e_to_pte(l3e, va));
914
}
915
916
void
917
mmu_radix_kenter(vm_offset_t va, vm_paddr_t pa)
918
{
919
pt_entry_t *pte;
920
921
pte = kvtopte(va);
922
MPASS(pte != NULL);
923
*pte = htobe64(pa | RPTE_VALID | RPTE_LEAF | RPTE_EAA_R | \
924
RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A);
925
}
926
927
bool
928
mmu_radix_ps_enabled(pmap_t pmap)
929
{
930
return (superpages_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
931
}
932
933
static pt_entry_t *
934
pmap_nofault_pte(pmap_t pmap, vm_offset_t va, int *is_l3e)
935
{
936
pml3_entry_t *l3e;
937
pt_entry_t *pte;
938
939
va &= PG_PS_FRAME;
940
l3e = pmap_pml3e(pmap, va);
941
if (l3e == NULL || (be64toh(*l3e) & PG_V) == 0)
942
return (NULL);
943
944
if (be64toh(*l3e) & RPTE_LEAF) {
945
*is_l3e = 1;
946
return (l3e);
947
}
948
*is_l3e = 0;
949
va &= PG_FRAME;
950
pte = pmap_l3e_to_pte(l3e, va);
951
if (pte == NULL || (be64toh(*pte) & PG_V) == 0)
952
return (NULL);
953
return (pte);
954
}
955
956
int
957
pmap_nofault(pmap_t pmap, vm_offset_t va, vm_prot_t flags)
958
{
959
pt_entry_t *pte;
960
pt_entry_t startpte, origpte, newpte;
961
vm_page_t m;
962
int is_l3e;
963
964
startpte = 0;
965
retry:
966
if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL)
967
return (KERN_INVALID_ADDRESS);
968
origpte = newpte = be64toh(*pte);
969
if (startpte == 0) {
970
startpte = origpte;
971
if (((flags & VM_PROT_WRITE) && (startpte & PG_M)) ||
972
((flags & VM_PROT_READ) && (startpte & PG_A))) {
973
pmap_invalidate_all(pmap);
974
#ifdef INVARIANTS
975
if (VERBOSE_PMAP || pmap_logging)
976
printf("%s(%p, %#lx, %#x) (%#lx) -- invalidate all\n",
977
__func__, pmap, va, flags, origpte);
978
#endif
979
return (KERN_FAILURE);
980
}
981
}
982
#ifdef INVARIANTS
983
if (VERBOSE_PMAP || pmap_logging)
984
printf("%s(%p, %#lx, %#x) (%#lx)\n", __func__, pmap, va,
985
flags, origpte);
986
#endif
987
PMAP_LOCK(pmap);
988
if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL ||
989
be64toh(*pte) != origpte) {
990
PMAP_UNLOCK(pmap);
991
return (KERN_FAILURE);
992
}
993
m = PHYS_TO_VM_PAGE(newpte & PG_FRAME);
994
MPASS(m != NULL);
995
switch (flags) {
996
case VM_PROT_READ:
997
if ((newpte & (RPTE_EAA_R|RPTE_EAA_X)) == 0)
998
goto protfail;
999
newpte |= PG_A;
1000
vm_page_aflag_set(m, PGA_REFERENCED);
1001
break;
1002
case VM_PROT_WRITE:
1003
if ((newpte & RPTE_EAA_W) == 0)
1004
goto protfail;
1005
if (is_l3e)
1006
goto protfail;
1007
newpte |= PG_M;
1008
vm_page_dirty(m);
1009
break;
1010
case VM_PROT_EXECUTE:
1011
if ((newpte & RPTE_EAA_X) == 0)
1012
goto protfail;
1013
newpte |= PG_A;
1014
vm_page_aflag_set(m, PGA_REFERENCED);
1015
break;
1016
}
1017
1018
if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
1019
goto retry;
1020
ptesync();
1021
PMAP_UNLOCK(pmap);
1022
if (startpte == newpte)
1023
return (KERN_FAILURE);
1024
return (0);
1025
protfail:
1026
PMAP_UNLOCK(pmap);
1027
return (KERN_PROTECTION_FAILURE);
1028
}
1029
1030
/*
1031
* Returns true if the given page is mapped individually or as part of
1032
* a 2mpage. Otherwise, returns false.
1033
*/
1034
bool
1035
mmu_radix_page_is_mapped(vm_page_t m)
1036
{
1037
struct rwlock *lock;
1038
bool rv;
1039
1040
if ((m->oflags & VPO_UNMANAGED) != 0)
1041
return (false);
1042
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
1043
rw_rlock(lock);
1044
rv = !TAILQ_EMPTY(&m->md.pv_list) ||
1045
((m->flags & PG_FICTITIOUS) == 0 &&
1046
!TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
1047
rw_runlock(lock);
1048
return (rv);
1049
}
1050
1051
/*
1052
* Determine the appropriate bits to set in a PTE or PDE for a specified
1053
* caching mode.
1054
*/
1055
static int
1056
pmap_cache_bits(vm_memattr_t ma)
1057
{
1058
if (ma != VM_MEMATTR_DEFAULT) {
1059
switch (ma) {
1060
case VM_MEMATTR_UNCACHEABLE:
1061
return (RPTE_ATTR_GUARDEDIO);
1062
case VM_MEMATTR_CACHEABLE:
1063
return (RPTE_ATTR_MEM);
1064
case VM_MEMATTR_WRITE_BACK:
1065
case VM_MEMATTR_PREFETCHABLE:
1066
case VM_MEMATTR_WRITE_COMBINING:
1067
return (RPTE_ATTR_UNGUARDEDIO);
1068
}
1069
}
1070
return (0);
1071
}
1072
1073
static void
1074
pmap_invalidate_page(pmap_t pmap, vm_offset_t start)
1075
{
1076
ptesync();
1077
if (pmap == kernel_pmap)
1078
radix_tlbie_invlpg_kernel_4k(start);
1079
else
1080
radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1081
ttusync();
1082
}
1083
1084
static void
1085
pmap_invalidate_page_2m(pmap_t pmap, vm_offset_t start)
1086
{
1087
ptesync();
1088
if (pmap == kernel_pmap)
1089
radix_tlbie_invlpg_kernel_2m(start);
1090
else
1091
radix_tlbie_invlpg_user_2m(pmap->pm_pid, start);
1092
ttusync();
1093
}
1094
1095
static void
1096
pmap_invalidate_pwc(pmap_t pmap)
1097
{
1098
ptesync();
1099
if (pmap == kernel_pmap)
1100
radix_tlbie_invlpwc_kernel();
1101
else
1102
radix_tlbie_invlpwc_user(pmap->pm_pid);
1103
ttusync();
1104
}
1105
1106
static void
1107
pmap_invalidate_range(pmap_t pmap, vm_offset_t start, vm_offset_t end)
1108
{
1109
if (((start - end) >> PAGE_SHIFT) > 8) {
1110
pmap_invalidate_all(pmap);
1111
return;
1112
}
1113
ptesync();
1114
if (pmap == kernel_pmap) {
1115
while (start < end) {
1116
radix_tlbie_invlpg_kernel_4k(start);
1117
start += PAGE_SIZE;
1118
}
1119
} else {
1120
while (start < end) {
1121
radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1122
start += PAGE_SIZE;
1123
}
1124
}
1125
ttusync();
1126
}
1127
1128
static void
1129
pmap_invalidate_all(pmap_t pmap)
1130
{
1131
ptesync();
1132
if (pmap == kernel_pmap)
1133
radix_tlbie_flush_kernel();
1134
else
1135
radix_tlbie_flush_user(pmap->pm_pid);
1136
ttusync();
1137
}
1138
1139
static void
1140
pmap_invalidate_l3e_page(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e)
1141
{
1142
1143
/*
1144
* When the PDE has PG_PROMOTED set, the 2MB page mapping was created
1145
* by a promotion that did not invalidate the 512 4KB page mappings
1146
* that might exist in the TLB. Consequently, at this point, the TLB
1147
* may hold both 4KB and 2MB page mappings for the address range [va,
1148
* va + L3_PAGE_SIZE). Therefore, the entire range must be invalidated here.
1149
* In contrast, when PG_PROMOTED is clear, the TLB will not hold any
1150
* 4KB page mappings for the address range [va, va + L3_PAGE_SIZE), and so a
1151
* single INVLPG suffices to invalidate the 2MB page mapping from the
1152
* TLB.
1153
*/
1154
ptesync();
1155
if ((l3e & PG_PROMOTED) != 0)
1156
pmap_invalidate_range(pmap, va, va + L3_PAGE_SIZE - 1);
1157
else
1158
pmap_invalidate_page_2m(pmap, va);
1159
1160
pmap_invalidate_pwc(pmap);
1161
}
1162
1163
static __inline struct pv_chunk *
1164
pv_to_chunk(pv_entry_t pv)
1165
{
1166
1167
return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1168
}
1169
1170
#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1171
1172
#define PC_FREE0 0xfffffffffffffffful
1173
#define PC_FREE1 ((1ul << (_NPCPV % 64)) - 1)
1174
1175
static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1 };
1176
1177
/*
1178
* Ensure that the number of spare PV entries in the specified pmap meets or
1179
* exceeds the given count, "needed".
1180
*
1181
* The given PV list lock may be released.
1182
*/
1183
static void
1184
reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
1185
{
1186
struct pch new_tail;
1187
struct pv_chunk *pc;
1188
vm_page_t m;
1189
int avail, free;
1190
bool reclaimed;
1191
1192
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1193
KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
1194
1195
/*
1196
* Newly allocated PV chunks must be stored in a private list until
1197
* the required number of PV chunks have been allocated. Otherwise,
1198
* reclaim_pv_chunk() could recycle one of these chunks. In
1199
* contrast, these chunks must be added to the pmap upon allocation.
1200
*/
1201
TAILQ_INIT(&new_tail);
1202
retry:
1203
avail = 0;
1204
TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
1205
// if ((cpu_feature2 & CPUID2_POPCNT) == 0)
1206
bit_count((bitstr_t *)pc->pc_map, 0,
1207
sizeof(pc->pc_map) * NBBY, &free);
1208
#if 0
1209
free = popcnt_pc_map_pq(pc->pc_map);
1210
#endif
1211
if (free == 0)
1212
break;
1213
avail += free;
1214
if (avail >= needed)
1215
break;
1216
}
1217
for (reclaimed = false; avail < needed; avail += _NPCPV) {
1218
m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
1219
if (m == NULL) {
1220
m = reclaim_pv_chunk(pmap, lockp);
1221
if (m == NULL)
1222
goto retry;
1223
reclaimed = true;
1224
}
1225
PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1226
PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1227
dump_add_page(m->phys_addr);
1228
pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1229
pc->pc_pmap = pmap;
1230
pc->pc_map[0] = PC_FREE0;
1231
pc->pc_map[1] = PC_FREE1;
1232
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1233
TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
1234
PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
1235
1236
/*
1237
* The reclaim might have freed a chunk from the current pmap.
1238
* If that chunk contained available entries, we need to
1239
* re-count the number of available entries.
1240
*/
1241
if (reclaimed)
1242
goto retry;
1243
}
1244
if (!TAILQ_EMPTY(&new_tail)) {
1245
mtx_lock(&pv_chunks_mutex);
1246
TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
1247
mtx_unlock(&pv_chunks_mutex);
1248
}
1249
}
1250
1251
/*
1252
* First find and then remove the pv entry for the specified pmap and virtual
1253
* address from the specified pv list. Returns the pv entry if found and NULL
1254
* otherwise. This operation can be performed on pv lists for either 4KB or
1255
* 2MB page mappings.
1256
*/
1257
static __inline pv_entry_t
1258
pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1259
{
1260
pv_entry_t pv;
1261
1262
TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
1263
#ifdef INVARIANTS
1264
if (PV_PMAP(pv) == NULL) {
1265
printf("corrupted pv_chunk/pv %p\n", pv);
1266
printf("pv_chunk: %64D\n", pv_to_chunk(pv), ":");
1267
}
1268
MPASS(PV_PMAP(pv) != NULL);
1269
MPASS(pv->pv_va != 0);
1270
#endif
1271
if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1272
TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
1273
pvh->pv_gen++;
1274
break;
1275
}
1276
}
1277
return (pv);
1278
}
1279
1280
/*
1281
* After demotion from a 2MB page mapping to 512 4KB page mappings,
1282
* destroy the pv entry for the 2MB page mapping and reinstantiate the pv
1283
* entries for each of the 4KB page mappings.
1284
*/
1285
static void
1286
pmap_pv_demote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1287
struct rwlock **lockp)
1288
{
1289
struct md_page *pvh;
1290
struct pv_chunk *pc;
1291
pv_entry_t pv;
1292
vm_offset_t va_last;
1293
vm_page_t m;
1294
int bit, field;
1295
1296
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1297
KASSERT((pa & L3_PAGE_MASK) == 0,
1298
("pmap_pv_demote_pde: pa is not 2mpage aligned"));
1299
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1300
1301
/*
1302
* Transfer the 2mpage's pv entry for this mapping to the first
1303
* page's pv list. Once this transfer begins, the pv list lock
1304
* must not be released until the last pv entry is reinstantiated.
1305
*/
1306
pvh = pa_to_pvh(pa);
1307
va = trunc_2mpage(va);
1308
pv = pmap_pvh_remove(pvh, pmap, va);
1309
KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
1310
m = PHYS_TO_VM_PAGE(pa);
1311
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1312
1313
m->md.pv_gen++;
1314
/* Instantiate the remaining NPTEPG - 1 pv entries. */
1315
PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
1316
va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1317
for (;;) {
1318
pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1319
KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0
1320
, ("pmap_pv_demote_pde: missing spare"));
1321
for (field = 0; field < _NPCM; field++) {
1322
while (pc->pc_map[field]) {
1323
bit = cnttzd(pc->pc_map[field]);
1324
pc->pc_map[field] &= ~(1ul << bit);
1325
pv = &pc->pc_pventry[field * 64 + bit];
1326
va += PAGE_SIZE;
1327
pv->pv_va = va;
1328
m++;
1329
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1330
("pmap_pv_demote_pde: page %p is not managed", m));
1331
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1332
1333
m->md.pv_gen++;
1334
if (va == va_last)
1335
goto out;
1336
}
1337
}
1338
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1339
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1340
}
1341
out:
1342
if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1343
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1344
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1345
}
1346
PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
1347
PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
1348
}
1349
1350
static void
1351
reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap)
1352
{
1353
1354
if (pmap == NULL)
1355
return;
1356
pmap_invalidate_all(pmap);
1357
if (pmap != locked_pmap)
1358
PMAP_UNLOCK(pmap);
1359
}
1360
1361
/*
1362
* We are in a serious low memory condition. Resort to
1363
* drastic measures to free some pages so we can allocate
1364
* another pv entry chunk.
1365
*
1366
* Returns NULL if PV entries were reclaimed from the specified pmap.
1367
*
1368
* We do not, however, unmap 2mpages because subsequent accesses will
1369
* allocate per-page pv entries until repromotion occurs, thereby
1370
* exacerbating the shortage of free pv entries.
1371
*/
1372
static int active_reclaims = 0;
1373
static vm_page_t
1374
reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1375
{
1376
struct pv_chunk *pc, *pc_marker, *pc_marker_end;
1377
struct pv_chunk_header pc_marker_b, pc_marker_end_b;
1378
struct md_page *pvh;
1379
pml3_entry_t *l3e;
1380
pmap_t next_pmap, pmap;
1381
pt_entry_t *pte, tpte;
1382
pv_entry_t pv;
1383
vm_offset_t va;
1384
vm_page_t m, m_pc;
1385
struct spglist free;
1386
uint64_t inuse;
1387
int bit, field, freed;
1388
1389
PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1390
KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
1391
pmap = NULL;
1392
m_pc = NULL;
1393
SLIST_INIT(&free);
1394
bzero(&pc_marker_b, sizeof(pc_marker_b));
1395
bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
1396
pc_marker = (struct pv_chunk *)&pc_marker_b;
1397
pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
1398
1399
mtx_lock(&pv_chunks_mutex);
1400
active_reclaims++;
1401
TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
1402
TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
1403
while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
1404
SLIST_EMPTY(&free)) {
1405
next_pmap = pc->pc_pmap;
1406
if (next_pmap == NULL) {
1407
/*
1408
* The next chunk is a marker. However, it is
1409
* not our marker, so active_reclaims must be
1410
* > 1. Consequently, the next_chunk code
1411
* will not rotate the pv_chunks list.
1412
*/
1413
goto next_chunk;
1414
}
1415
mtx_unlock(&pv_chunks_mutex);
1416
1417
/*
1418
* A pv_chunk can only be removed from the pc_lru list
1419
* when both pc_chunks_mutex is owned and the
1420
* corresponding pmap is locked.
1421
*/
1422
if (pmap != next_pmap) {
1423
reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1424
pmap = next_pmap;
1425
/* Avoid deadlock and lock recursion. */
1426
if (pmap > locked_pmap) {
1427
RELEASE_PV_LIST_LOCK(lockp);
1428
PMAP_LOCK(pmap);
1429
mtx_lock(&pv_chunks_mutex);
1430
continue;
1431
} else if (pmap != locked_pmap) {
1432
if (PMAP_TRYLOCK(pmap)) {
1433
mtx_lock(&pv_chunks_mutex);
1434
continue;
1435
} else {
1436
pmap = NULL; /* pmap is not locked */
1437
mtx_lock(&pv_chunks_mutex);
1438
pc = TAILQ_NEXT(pc_marker, pc_lru);
1439
if (pc == NULL ||
1440
pc->pc_pmap != next_pmap)
1441
continue;
1442
goto next_chunk;
1443
}
1444
}
1445
}
1446
1447
/*
1448
* Destroy every non-wired, 4 KB page mapping in the chunk.
1449
*/
1450
freed = 0;
1451
for (field = 0; field < _NPCM; field++) {
1452
for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1453
inuse != 0; inuse &= ~(1UL << bit)) {
1454
bit = cnttzd(inuse);
1455
pv = &pc->pc_pventry[field * 64 + bit];
1456
va = pv->pv_va;
1457
l3e = pmap_pml3e(pmap, va);
1458
if ((be64toh(*l3e) & RPTE_LEAF) != 0)
1459
continue;
1460
pte = pmap_l3e_to_pte(l3e, va);
1461
if ((be64toh(*pte) & PG_W) != 0)
1462
continue;
1463
tpte = be64toh(pte_load_clear(pte));
1464
m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
1465
if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1466
vm_page_dirty(m);
1467
if ((tpte & PG_A) != 0)
1468
vm_page_aflag_set(m, PGA_REFERENCED);
1469
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1470
TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
1471
1472
m->md.pv_gen++;
1473
if (TAILQ_EMPTY(&m->md.pv_list) &&
1474
(m->flags & PG_FICTITIOUS) == 0) {
1475
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1476
if (TAILQ_EMPTY(&pvh->pv_list)) {
1477
vm_page_aflag_clear(m,
1478
PGA_WRITEABLE);
1479
}
1480
}
1481
pc->pc_map[field] |= 1UL << bit;
1482
pmap_unuse_pt(pmap, va, be64toh(*l3e), &free);
1483
freed++;
1484
}
1485
}
1486
if (freed == 0) {
1487
mtx_lock(&pv_chunks_mutex);
1488
goto next_chunk;
1489
}
1490
/* Every freed mapping is for a 4 KB page. */
1491
pmap_resident_count_dec(pmap, freed);
1492
PV_STAT(atomic_add_long(&pv_entry_frees, freed));
1493
PV_STAT(atomic_add_int(&pv_entry_spare, freed));
1494
PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
1495
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1496
if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1) {
1497
PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1498
PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1499
PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1500
/* Entire chunk is free; return it. */
1501
m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1502
dump_drop_page(m_pc->phys_addr);
1503
mtx_lock(&pv_chunks_mutex);
1504
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1505
break;
1506
}
1507
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1508
mtx_lock(&pv_chunks_mutex);
1509
/* One freed pv entry in locked_pmap is sufficient. */
1510
if (pmap == locked_pmap)
1511
break;
1512
next_chunk:
1513
TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1514
TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
1515
if (active_reclaims == 1 && pmap != NULL) {
1516
/*
1517
* Rotate the pv chunks list so that we do not
1518
* scan the same pv chunks that could not be
1519
* freed (because they contained a wired
1520
* and/or superpage mapping) on every
1521
* invocation of reclaim_pv_chunk().
1522
*/
1523
while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
1524
MPASS(pc->pc_pmap != NULL);
1525
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1526
TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1527
}
1528
}
1529
}
1530
TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1531
TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
1532
active_reclaims--;
1533
mtx_unlock(&pv_chunks_mutex);
1534
reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1535
if (m_pc == NULL && !SLIST_EMPTY(&free)) {
1536
m_pc = SLIST_FIRST(&free);
1537
SLIST_REMOVE_HEAD(&free, plinks.s.ss);
1538
/* Recycle a freed page table page. */
1539
m_pc->ref_count = 1;
1540
}
1541
vm_page_free_pages_toq(&free, true);
1542
return (m_pc);
1543
}
1544
1545
/*
1546
* free the pv_entry back to the free list
1547
*/
1548
static void
1549
free_pv_entry(pmap_t pmap, pv_entry_t pv)
1550
{
1551
struct pv_chunk *pc;
1552
int idx, field, bit;
1553
1554
#ifdef VERBOSE_PV
1555
if (pmap != kernel_pmap)
1556
printf("%s(%p, %p)\n", __func__, pmap, pv);
1557
#endif
1558
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1559
PV_STAT(atomic_add_long(&pv_entry_frees, 1));
1560
PV_STAT(atomic_add_int(&pv_entry_spare, 1));
1561
PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
1562
pc = pv_to_chunk(pv);
1563
idx = pv - &pc->pc_pventry[0];
1564
field = idx / 64;
1565
bit = idx % 64;
1566
pc->pc_map[field] |= 1ul << bit;
1567
if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1) {
1568
/* 98% of the time, pc is already at the head of the list. */
1569
if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
1570
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1571
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1572
}
1573
return;
1574
}
1575
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1576
free_pv_chunk(pc);
1577
}
1578
1579
static void
1580
free_pv_chunk(struct pv_chunk *pc)
1581
{
1582
vm_page_t m;
1583
1584
mtx_lock(&pv_chunks_mutex);
1585
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1586
mtx_unlock(&pv_chunks_mutex);
1587
PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1588
PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1589
PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1590
/* entire chunk is free, return it */
1591
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1592
dump_drop_page(m->phys_addr);
1593
vm_page_unwire_noq(m);
1594
vm_page_free(m);
1595
}
1596
1597
/*
1598
* Returns a new PV entry, allocating a new PV chunk from the system when
1599
* needed. If this PV chunk allocation fails and a PV list lock pointer was
1600
* given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is
1601
* returned.
1602
*
1603
* The given PV list lock may be released.
1604
*/
1605
static pv_entry_t
1606
get_pv_entry(pmap_t pmap, struct rwlock **lockp)
1607
{
1608
int bit, field;
1609
pv_entry_t pv;
1610
struct pv_chunk *pc;
1611
vm_page_t m;
1612
1613
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1614
PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
1615
retry:
1616
pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1617
if (pc != NULL) {
1618
for (field = 0; field < _NPCM; field++) {
1619
if (pc->pc_map[field]) {
1620
bit = cnttzd(pc->pc_map[field]);
1621
break;
1622
}
1623
}
1624
if (field < _NPCM) {
1625
pv = &pc->pc_pventry[field * 64 + bit];
1626
pc->pc_map[field] &= ~(1ul << bit);
1627
/* If this was the last item, move it to tail */
1628
if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1629
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1630
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
1631
pc_list);
1632
}
1633
PV_STAT(atomic_add_long(&pv_entry_count, 1));
1634
PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
1635
MPASS(PV_PMAP(pv) != NULL);
1636
return (pv);
1637
}
1638
}
1639
/* No free items, allocate another chunk */
1640
m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
1641
if (m == NULL) {
1642
if (lockp == NULL) {
1643
PV_STAT(pc_chunk_tryfail++);
1644
return (NULL);
1645
}
1646
m = reclaim_pv_chunk(pmap, lockp);
1647
if (m == NULL)
1648
goto retry;
1649
}
1650
PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1651
PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1652
dump_add_page(m->phys_addr);
1653
pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1654
pc->pc_pmap = pmap;
1655
pc->pc_map[0] = PC_FREE0 & ~1ul; /* preallocated bit 0 */
1656
pc->pc_map[1] = PC_FREE1;
1657
mtx_lock(&pv_chunks_mutex);
1658
TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1659
mtx_unlock(&pv_chunks_mutex);
1660
pv = &pc->pc_pventry[0];
1661
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1662
PV_STAT(atomic_add_long(&pv_entry_count, 1));
1663
PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
1664
MPASS(PV_PMAP(pv) != NULL);
1665
return (pv);
1666
}
1667
1668
#if VM_NRESERVLEVEL > 0
1669
/*
1670
* After promotion from 512 4KB page mappings to a single 2MB page mapping,
1671
* replace the many pv entries for the 4KB page mappings by a single pv entry
1672
* for the 2MB page mapping.
1673
*/
1674
static void
1675
pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1676
struct rwlock **lockp)
1677
{
1678
struct md_page *pvh;
1679
pv_entry_t pv;
1680
vm_offset_t va_last;
1681
vm_page_t m;
1682
1683
KASSERT((pa & L3_PAGE_MASK) == 0,
1684
("pmap_pv_promote_pde: pa is not 2mpage aligned"));
1685
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1686
1687
/*
1688
* Transfer the first page's pv entry for this mapping to the 2mpage's
1689
* pv list. Aside from avoiding the cost of a call to get_pv_entry(),
1690
* a transfer avoids the possibility that get_pv_entry() calls
1691
* reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
1692
* mappings that is being promoted.
1693
*/
1694
m = PHYS_TO_VM_PAGE(pa);
1695
va = trunc_2mpage(va);
1696
pv = pmap_pvh_remove(&m->md, pmap, va);
1697
KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
1698
pvh = pa_to_pvh(pa);
1699
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
1700
pvh->pv_gen++;
1701
/* Free the remaining NPTEPG - 1 pv entries. */
1702
va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1703
do {
1704
m++;
1705
va += PAGE_SIZE;
1706
pmap_pvh_free(&m->md, pmap, va);
1707
} while (va < va_last);
1708
}
1709
#endif /* VM_NRESERVLEVEL > 0 */
1710
1711
/*
1712
* First find and then destroy the pv entry for the specified pmap and virtual
1713
* address. This operation can be performed on pv lists for either 4KB or 2MB
1714
* page mappings.
1715
*/
1716
static void
1717
pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1718
{
1719
pv_entry_t pv;
1720
1721
pv = pmap_pvh_remove(pvh, pmap, va);
1722
KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
1723
free_pv_entry(pmap, pv);
1724
}
1725
1726
/*
1727
* Conditionally create the PV entry for a 4KB page mapping if the required
1728
* memory can be allocated without resorting to reclamation.
1729
*/
1730
static bool
1731
pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
1732
struct rwlock **lockp)
1733
{
1734
pv_entry_t pv;
1735
1736
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1737
/* Pass NULL instead of the lock pointer to disable reclamation. */
1738
if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
1739
pv->pv_va = va;
1740
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1741
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1742
m->md.pv_gen++;
1743
return (true);
1744
} else
1745
return (false);
1746
}
1747
1748
vm_paddr_t phys_avail_debug[2 * VM_PHYSSEG_MAX];
1749
#ifdef INVARIANTS
1750
static void
1751
validate_addr(vm_paddr_t addr, vm_size_t size)
1752
{
1753
vm_paddr_t end = addr + size;
1754
bool found = false;
1755
1756
for (int i = 0; i < 2 * phys_avail_count; i += 2) {
1757
if (addr >= phys_avail_debug[i] &&
1758
end <= phys_avail_debug[i + 1]) {
1759
found = true;
1760
break;
1761
}
1762
}
1763
KASSERT(found, ("%#lx-%#lx outside of initial phys_avail array",
1764
addr, end));
1765
}
1766
#else
1767
static void validate_addr(vm_paddr_t addr, vm_size_t size) {}
1768
#endif
1769
#define DMAP_PAGE_BITS (RPTE_VALID | RPTE_LEAF | RPTE_EAA_MASK | PG_M | PG_A)
1770
1771
static vm_paddr_t
1772
alloc_pt_page(void)
1773
{
1774
vm_paddr_t page;
1775
1776
page = allocpages(1);
1777
pagezero(PHYS_TO_DMAP(page));
1778
return (page);
1779
}
1780
1781
static void
1782
mmu_radix_dmap_range(vm_paddr_t start, vm_paddr_t end)
1783
{
1784
pt_entry_t *pte, pteval;
1785
vm_paddr_t page;
1786
1787
if (bootverbose)
1788
printf("%s %lx -> %lx\n", __func__, start, end);
1789
while (start < end) {
1790
pteval = start | DMAP_PAGE_BITS;
1791
pte = pmap_pml1e(kernel_pmap, PHYS_TO_DMAP(start));
1792
if ((be64toh(*pte) & RPTE_VALID) == 0) {
1793
page = alloc_pt_page();
1794
pde_store(pte, page);
1795
}
1796
pte = pmap_l1e_to_l2e(pte, PHYS_TO_DMAP(start));
1797
if ((start & L2_PAGE_MASK) == 0 &&
1798
end - start >= L2_PAGE_SIZE) {
1799
start += L2_PAGE_SIZE;
1800
goto done;
1801
} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1802
page = alloc_pt_page();
1803
pde_store(pte, page);
1804
}
1805
1806
pte = pmap_l2e_to_l3e(pte, PHYS_TO_DMAP(start));
1807
if ((start & L3_PAGE_MASK) == 0 &&
1808
end - start >= L3_PAGE_SIZE) {
1809
start += L3_PAGE_SIZE;
1810
goto done;
1811
} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1812
page = alloc_pt_page();
1813
pde_store(pte, page);
1814
}
1815
pte = pmap_l3e_to_pte(pte, PHYS_TO_DMAP(start));
1816
start += PAGE_SIZE;
1817
done:
1818
pte_store(pte, pteval);
1819
}
1820
}
1821
1822
static void
1823
mmu_radix_dmap_populate(vm_size_t hwphyssz)
1824
{
1825
vm_paddr_t start, end;
1826
1827
for (int i = 0; i < pregions_sz; i++) {
1828
start = pregions[i].mr_start;
1829
end = start + pregions[i].mr_size;
1830
if (hwphyssz && start >= hwphyssz)
1831
break;
1832
if (hwphyssz && hwphyssz < end)
1833
end = hwphyssz;
1834
mmu_radix_dmap_range(start, end);
1835
}
1836
}
1837
1838
static void
1839
mmu_radix_setup_pagetables(vm_size_t hwphyssz)
1840
{
1841
vm_paddr_t ptpages, pages;
1842
pt_entry_t *pte;
1843
vm_paddr_t l1phys;
1844
1845
bzero(kernel_pmap, sizeof(struct pmap));
1846
PMAP_LOCK_INIT(kernel_pmap);
1847
vm_radix_init(&kernel_pmap->pm_radix);
1848
1849
ptpages = allocpages(3);
1850
l1phys = moea64_bootstrap_alloc(RADIX_PGD_SIZE, RADIX_PGD_SIZE);
1851
validate_addr(l1phys, RADIX_PGD_SIZE);
1852
if (bootverbose)
1853
printf("l1phys=%lx\n", l1phys);
1854
MPASS((l1phys & (RADIX_PGD_SIZE-1)) == 0);
1855
for (int i = 0; i < RADIX_PGD_SIZE/PAGE_SIZE; i++)
1856
pagezero(PHYS_TO_DMAP(l1phys + i * PAGE_SIZE));
1857
kernel_pmap->pm_pml1 = (pml1_entry_t *)PHYS_TO_DMAP(l1phys);
1858
1859
mmu_radix_dmap_populate(hwphyssz);
1860
1861
/*
1862
* Create page tables for first 128MB of KVA
1863
*/
1864
pages = ptpages;
1865
pte = pmap_pml1e(kernel_pmap, VM_MIN_KERNEL_ADDRESS);
1866
*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1867
pages += PAGE_SIZE;
1868
pte = pmap_l1e_to_l2e(pte, VM_MIN_KERNEL_ADDRESS);
1869
*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1870
pages += PAGE_SIZE;
1871
pte = pmap_l2e_to_l3e(pte, VM_MIN_KERNEL_ADDRESS);
1872
/*
1873
* the kernel page table pages need to be preserved in
1874
* phys_avail and not overlap with previous allocations
1875
*/
1876
pages = allocpages(nkpt);
1877
if (bootverbose) {
1878
printf("phys_avail after dmap populate and nkpt allocation\n");
1879
for (int j = 0; j < 2 * phys_avail_count; j+=2)
1880
printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
1881
j, phys_avail[j], j + 1, phys_avail[j + 1]);
1882
}
1883
KPTphys = pages;
1884
for (int i = 0; i < nkpt; i++, pte++, pages += PAGE_SIZE)
1885
*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1886
kernel_vm_end = VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE;
1887
if (bootverbose)
1888
printf("kernel_pmap pml1 %p\n", kernel_pmap->pm_pml1);
1889
/*
1890
* Add a physical memory segment (vm_phys_seg) corresponding to the
1891
* preallocated kernel page table pages so that vm_page structures
1892
* representing these pages will be created. The vm_page structures
1893
* are required for promotion of the corresponding kernel virtual
1894
* addresses to superpage mappings.
1895
*/
1896
vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1897
}
1898
1899
static void
1900
mmu_radix_early_bootstrap(vm_offset_t start, vm_offset_t end)
1901
{
1902
vm_paddr_t kpstart, kpend;
1903
vm_size_t physsz, hwphyssz;
1904
//uint64_t l2virt;
1905
int rm_pavail, proctab_size;
1906
int i, j;
1907
1908
kpstart = start & ~DMAP_BASE_ADDRESS;
1909
kpend = end & ~DMAP_BASE_ADDRESS;
1910
1911
/* Get physical memory regions from firmware */
1912
mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
1913
CTR0(KTR_PMAP, "mmu_radix_early_bootstrap: physical memory");
1914
1915
if (2 * VM_PHYSSEG_MAX < regions_sz)
1916
panic("mmu_radix_early_bootstrap: phys_avail too small");
1917
1918
if (bootverbose)
1919
for (int i = 0; i < regions_sz; i++)
1920
printf("regions[%d].mr_start=%lx regions[%d].mr_size=%lx\n",
1921
i, regions[i].mr_start, i, regions[i].mr_size);
1922
/*
1923
* XXX workaround a simulator bug
1924
*/
1925
for (int i = 0; i < regions_sz; i++)
1926
if (regions[i].mr_start & PAGE_MASK) {
1927
regions[i].mr_start += PAGE_MASK;
1928
regions[i].mr_start &= ~PAGE_MASK;
1929
regions[i].mr_size &= ~PAGE_MASK;
1930
}
1931
if (bootverbose)
1932
for (int i = 0; i < pregions_sz; i++)
1933
printf("pregions[%d].mr_start=%lx pregions[%d].mr_size=%lx\n",
1934
i, pregions[i].mr_start, i, pregions[i].mr_size);
1935
1936
phys_avail_count = 0;
1937
physsz = 0;
1938
hwphyssz = 0;
1939
TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1940
for (i = 0, j = 0; i < regions_sz; i++) {
1941
if (bootverbose)
1942
printf("regions[%d].mr_start=%016lx regions[%d].mr_size=%016lx\n",
1943
i, regions[i].mr_start, i, regions[i].mr_size);
1944
1945
if (regions[i].mr_size < PAGE_SIZE)
1946
continue;
1947
1948
if (hwphyssz != 0 &&
1949
(physsz + regions[i].mr_size) >= hwphyssz) {
1950
if (physsz < hwphyssz) {
1951
phys_avail[j] = regions[i].mr_start;
1952
phys_avail[j + 1] = regions[i].mr_start +
1953
(hwphyssz - physsz);
1954
physsz = hwphyssz;
1955
phys_avail_count++;
1956
dump_avail[j] = phys_avail[j];
1957
dump_avail[j + 1] = phys_avail[j + 1];
1958
}
1959
break;
1960
}
1961
phys_avail[j] = regions[i].mr_start;
1962
phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
1963
dump_avail[j] = phys_avail[j];
1964
dump_avail[j + 1] = phys_avail[j + 1];
1965
1966
phys_avail_count++;
1967
physsz += regions[i].mr_size;
1968
j += 2;
1969
}
1970
1971
/* Check for overlap with the kernel and exception vectors */
1972
rm_pavail = 0;
1973
for (j = 0; j < 2 * phys_avail_count; j+=2) {
1974
if (phys_avail[j] < EXC_LAST)
1975
phys_avail[j] += EXC_LAST;
1976
1977
if (phys_avail[j] >= kpstart &&
1978
phys_avail[j + 1] <= kpend) {
1979
phys_avail[j] = phys_avail[j + 1] = ~0;
1980
rm_pavail++;
1981
continue;
1982
}
1983
1984
if (kpstart >= phys_avail[j] &&
1985
kpstart < phys_avail[j + 1]) {
1986
if (kpend < phys_avail[j + 1]) {
1987
phys_avail[2 * phys_avail_count] =
1988
(kpend & ~PAGE_MASK) + PAGE_SIZE;
1989
phys_avail[2 * phys_avail_count + 1] =
1990
phys_avail[j + 1];
1991
phys_avail_count++;
1992
}
1993
1994
phys_avail[j + 1] = kpstart & ~PAGE_MASK;
1995
}
1996
1997
if (kpend >= phys_avail[j] &&
1998
kpend < phys_avail[j + 1]) {
1999
if (kpstart > phys_avail[j]) {
2000
phys_avail[2 * phys_avail_count] = phys_avail[j];
2001
phys_avail[2 * phys_avail_count + 1] =
2002
kpstart & ~PAGE_MASK;
2003
phys_avail_count++;
2004
}
2005
2006
phys_avail[j] = (kpend & ~PAGE_MASK) +
2007
PAGE_SIZE;
2008
}
2009
}
2010
qsort(phys_avail, 2 * phys_avail_count, sizeof(phys_avail[0]), pa_cmp);
2011
for (i = 0; i < 2 * phys_avail_count; i++)
2012
phys_avail_debug[i] = phys_avail[i];
2013
2014
/* Remove physical available regions marked for removal (~0) */
2015
if (rm_pavail) {
2016
phys_avail_count -= rm_pavail;
2017
for (i = 2 * phys_avail_count;
2018
i < 2*(phys_avail_count + rm_pavail); i+=2)
2019
phys_avail[i] = phys_avail[i + 1] = 0;
2020
}
2021
if (bootverbose) {
2022
printf("phys_avail ranges after filtering:\n");
2023
for (j = 0; j < 2 * phys_avail_count; j+=2)
2024
printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
2025
j, phys_avail[j], j + 1, phys_avail[j + 1]);
2026
}
2027
physmem = btoc(physsz);
2028
2029
/* XXX assume we're running non-virtualized and
2030
* we don't support BHYVE
2031
*/
2032
if (isa3_pid_bits == 0)
2033
isa3_pid_bits = 20;
2034
if (powernv_enabled) {
2035
parttab_phys =
2036
moea64_bootstrap_alloc(PARTTAB_SIZE, PARTTAB_SIZE);
2037
validate_addr(parttab_phys, PARTTAB_SIZE);
2038
for (int i = 0; i < PARTTAB_SIZE/PAGE_SIZE; i++)
2039
pagezero(PHYS_TO_DMAP(parttab_phys + i * PAGE_SIZE));
2040
2041
}
2042
proctab_size = 1UL << PROCTAB_SIZE_SHIFT;
2043
proctab0pa = moea64_bootstrap_alloc(proctab_size, proctab_size);
2044
validate_addr(proctab0pa, proctab_size);
2045
for (int i = 0; i < proctab_size/PAGE_SIZE; i++)
2046
pagezero(PHYS_TO_DMAP(proctab0pa + i * PAGE_SIZE));
2047
2048
mmu_radix_setup_pagetables(hwphyssz);
2049
}
2050
2051
static void
2052
mmu_radix_late_bootstrap(vm_offset_t start, vm_offset_t end)
2053
{
2054
int i;
2055
vm_paddr_t pa;
2056
void *dpcpu;
2057
vm_offset_t va;
2058
2059
/*
2060
* Set up the Open Firmware pmap and add its mappings if not in real
2061
* mode.
2062
*/
2063
if (bootverbose)
2064
printf("%s enter\n", __func__);
2065
2066
/*
2067
* Calculate the last available physical address, and reserve the
2068
* vm_page_array (upper bound).
2069
*/
2070
Maxmem = 0;
2071
for (i = 0; phys_avail[i + 1] != 0; i += 2)
2072
Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
2073
2074
/*
2075
* Remap any early IO mappings (console framebuffer, etc.)
2076
*/
2077
bs_remap_earlyboot();
2078
2079
/*
2080
* Allocate a kernel stack with a guard page for thread0 and map it
2081
* into the kernel page map.
2082
*/
2083
pa = allocpages(kstack_pages);
2084
va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
2085
virtual_avail = va + kstack_pages * PAGE_SIZE;
2086
CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
2087
thread0.td_kstack = va;
2088
for (i = 0; i < kstack_pages; i++) {
2089
mmu_radix_kenter(va, pa);
2090
pa += PAGE_SIZE;
2091
va += PAGE_SIZE;
2092
}
2093
thread0.td_kstack_pages = kstack_pages;
2094
2095
/*
2096
* Allocate virtual address space for the message buffer.
2097
*/
2098
pa = msgbuf_phys = allocpages((msgbufsize + PAGE_MASK) >> PAGE_SHIFT);
2099
msgbufp = (struct msgbuf *)PHYS_TO_DMAP(pa);
2100
2101
/*
2102
* Allocate virtual address space for the dynamic percpu area.
2103
*/
2104
pa = allocpages(DPCPU_SIZE >> PAGE_SHIFT);
2105
dpcpu = (void *)PHYS_TO_DMAP(pa);
2106
dpcpu_init(dpcpu, curcpu);
2107
2108
crashdumpmap = (caddr_t)virtual_avail;
2109
virtual_avail += MAXDUMPPGS * PAGE_SIZE;
2110
2111
/*
2112
* Reserve some special page table entries/VA space for temporary
2113
* mapping of pages.
2114
*/
2115
}
2116
2117
static void
2118
mmu_parttab_init(void)
2119
{
2120
uint64_t ptcr;
2121
2122
isa3_parttab = (struct pate *)PHYS_TO_DMAP(parttab_phys);
2123
2124
if (bootverbose)
2125
printf("%s parttab: %p\n", __func__, isa3_parttab);
2126
ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2127
if (bootverbose)
2128
printf("setting ptcr %lx\n", ptcr);
2129
mtspr(SPR_PTCR, ptcr);
2130
}
2131
2132
static void
2133
mmu_parttab_update(uint64_t lpid, uint64_t pagetab, uint64_t proctab)
2134
{
2135
uint64_t prev;
2136
2137
if (bootverbose)
2138
printf("%s isa3_parttab %p lpid %lx pagetab %lx proctab %lx\n", __func__, isa3_parttab,
2139
lpid, pagetab, proctab);
2140
prev = be64toh(isa3_parttab[lpid].pagetab);
2141
isa3_parttab[lpid].pagetab = htobe64(pagetab);
2142
isa3_parttab[lpid].proctab = htobe64(proctab);
2143
2144
if (prev & PARTTAB_HR) {
2145
__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
2146
"r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2147
__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2148
"r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2149
} else {
2150
__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
2151
"r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2152
}
2153
ttusync();
2154
}
2155
2156
static void
2157
mmu_radix_parttab_init(void)
2158
{
2159
uint64_t pagetab;
2160
2161
mmu_parttab_init();
2162
pagetab = RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) | \
2163
RADIX_PGD_INDEX_SHIFT | PARTTAB_HR;
2164
mmu_parttab_update(0, pagetab, 0);
2165
}
2166
2167
static void
2168
mmu_radix_proctab_register(vm_paddr_t proctabpa, uint64_t table_size)
2169
{
2170
uint64_t pagetab, proctab;
2171
2172
pagetab = be64toh(isa3_parttab[0].pagetab);
2173
proctab = proctabpa | table_size | PARTTAB_GR;
2174
mmu_parttab_update(0, pagetab, proctab);
2175
}
2176
2177
static void
2178
mmu_radix_proctab_init(void)
2179
{
2180
2181
isa3_base_pid = 1;
2182
2183
isa3_proctab = (void*)PHYS_TO_DMAP(proctab0pa);
2184
isa3_proctab->proctab0 =
2185
htobe64(RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) |
2186
RADIX_PGD_INDEX_SHIFT);
2187
2188
if (powernv_enabled) {
2189
mmu_radix_proctab_register(proctab0pa, PROCTAB_SIZE_SHIFT - 12);
2190
__asm __volatile("ptesync" : : : "memory");
2191
__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2192
"r" (TLBIEL_INVAL_SET_LPID), "r" (0));
2193
__asm __volatile("eieio; tlbsync; ptesync" : : : "memory");
2194
#ifdef PSERIES
2195
} else {
2196
int64_t rc;
2197
2198
rc = phyp_hcall(H_REGISTER_PROC_TBL,
2199
PROC_TABLE_NEW | PROC_TABLE_RADIX | PROC_TABLE_GTSE,
2200
proctab0pa, 0, PROCTAB_SIZE_SHIFT - 12);
2201
if (rc != H_SUCCESS)
2202
panic("mmu_radix_proctab_init: "
2203
"failed to register process table: rc=%jd",
2204
(intmax_t)rc);
2205
#endif
2206
}
2207
2208
if (bootverbose)
2209
printf("process table %p and kernel radix PDE: %p\n",
2210
isa3_proctab, kernel_pmap->pm_pml1);
2211
mtmsr(mfmsr() | PSL_DR );
2212
mtmsr(mfmsr() & ~PSL_DR);
2213
kernel_pmap->pm_pid = isa3_base_pid;
2214
isa3_base_pid++;
2215
}
2216
2217
void
2218
mmu_radix_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2219
int advice)
2220
{
2221
struct rwlock *lock;
2222
pml1_entry_t *l1e;
2223
pml2_entry_t *l2e;
2224
pml3_entry_t oldl3e, *l3e;
2225
pt_entry_t *pte;
2226
vm_offset_t va, va_next;
2227
vm_page_t m;
2228
bool anychanged;
2229
2230
if (advice != MADV_DONTNEED && advice != MADV_FREE)
2231
return;
2232
anychanged = false;
2233
PMAP_LOCK(pmap);
2234
for (; sva < eva; sva = va_next) {
2235
l1e = pmap_pml1e(pmap, sva);
2236
if ((be64toh(*l1e) & PG_V) == 0) {
2237
va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2238
if (va_next < sva)
2239
va_next = eva;
2240
continue;
2241
}
2242
l2e = pmap_l1e_to_l2e(l1e, sva);
2243
if ((be64toh(*l2e) & PG_V) == 0) {
2244
va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2245
if (va_next < sva)
2246
va_next = eva;
2247
continue;
2248
}
2249
va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2250
if (va_next < sva)
2251
va_next = eva;
2252
l3e = pmap_l2e_to_l3e(l2e, sva);
2253
oldl3e = be64toh(*l3e);
2254
if ((oldl3e & PG_V) == 0)
2255
continue;
2256
else if ((oldl3e & RPTE_LEAF) != 0) {
2257
if ((oldl3e & PG_MANAGED) == 0)
2258
continue;
2259
lock = NULL;
2260
if (!pmap_demote_l3e_locked(pmap, l3e, sva, &lock)) {
2261
if (lock != NULL)
2262
rw_wunlock(lock);
2263
2264
/*
2265
* The large page mapping was destroyed.
2266
*/
2267
continue;
2268
}
2269
2270
/*
2271
* Unless the page mappings are wired, remove the
2272
* mapping to a single page so that a subsequent
2273
* access may repromote. Choosing the last page
2274
* within the address range [sva, min(va_next, eva))
2275
* generally results in more repromotions. Since the
2276
* underlying page table page is fully populated, this
2277
* removal never frees a page table page.
2278
*/
2279
if ((oldl3e & PG_W) == 0) {
2280
va = eva;
2281
if (va > va_next)
2282
va = va_next;
2283
va -= PAGE_SIZE;
2284
KASSERT(va >= sva,
2285
("mmu_radix_advise: no address gap"));
2286
pte = pmap_l3e_to_pte(l3e, va);
2287
KASSERT((be64toh(*pte) & PG_V) != 0,
2288
("pmap_advise: invalid PTE"));
2289
pmap_remove_pte(pmap, pte, va, be64toh(*l3e), NULL,
2290
&lock);
2291
anychanged = true;
2292
}
2293
if (lock != NULL)
2294
rw_wunlock(lock);
2295
}
2296
if (va_next > eva)
2297
va_next = eva;
2298
va = va_next;
2299
for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next;
2300
pte++, sva += PAGE_SIZE) {
2301
MPASS(pte == pmap_pte(pmap, sva));
2302
2303
if ((be64toh(*pte) & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
2304
goto maybe_invlrng;
2305
else if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2306
if (advice == MADV_DONTNEED) {
2307
/*
2308
* Future calls to pmap_is_modified()
2309
* can be avoided by making the page
2310
* dirty now.
2311
*/
2312
m = PHYS_TO_VM_PAGE(be64toh(*pte) & PG_FRAME);
2313
vm_page_dirty(m);
2314
}
2315
atomic_clear_long(pte, htobe64(PG_M | PG_A));
2316
} else if ((be64toh(*pte) & PG_A) != 0)
2317
atomic_clear_long(pte, htobe64(PG_A));
2318
else
2319
goto maybe_invlrng;
2320
anychanged = true;
2321
continue;
2322
maybe_invlrng:
2323
if (va != va_next) {
2324
anychanged = true;
2325
va = va_next;
2326
}
2327
}
2328
if (va != va_next)
2329
anychanged = true;
2330
}
2331
if (anychanged)
2332
pmap_invalidate_all(pmap);
2333
PMAP_UNLOCK(pmap);
2334
}
2335
2336
/*
2337
* Routines used in machine-dependent code
2338
*/
2339
static void
2340
mmu_radix_bootstrap(vm_offset_t start, vm_offset_t end)
2341
{
2342
uint64_t lpcr;
2343
2344
if (bootverbose)
2345
printf("%s\n", __func__);
2346
hw_direct_map = 1;
2347
powernv_enabled = (mfmsr() & PSL_HV) ? 1 : 0;
2348
mmu_radix_early_bootstrap(start, end);
2349
if (bootverbose)
2350
printf("early bootstrap complete\n");
2351
if (powernv_enabled) {
2352
lpcr = mfspr(SPR_LPCR);
2353
mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2354
mmu_radix_parttab_init();
2355
mmu_radix_init_amor();
2356
if (bootverbose)
2357
printf("powernv init complete\n");
2358
}
2359
mmu_radix_init_iamr();
2360
mmu_radix_proctab_init();
2361
mmu_radix_pid_set(kernel_pmap);
2362
if (powernv_enabled)
2363
mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2364
else
2365
mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2366
2367
mmu_radix_late_bootstrap(start, end);
2368
numa_mem_regions(&numa_pregions, &numa_pregions_sz);
2369
if (bootverbose)
2370
printf("%s done\n", __func__);
2371
pmap_bootstrapped = 1;
2372
dmaplimit = roundup2(powerpc_ptob(Maxmem), L2_PAGE_SIZE);
2373
PCPU_SET(flags, PCPU_GET(flags) | PC_FLAG_NOSRS);
2374
}
2375
2376
static void
2377
mmu_radix_cpu_bootstrap(int ap)
2378
{
2379
uint64_t lpcr;
2380
uint64_t ptcr;
2381
2382
if (powernv_enabled) {
2383
lpcr = mfspr(SPR_LPCR);
2384
mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2385
2386
ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2387
mtspr(SPR_PTCR, ptcr);
2388
mmu_radix_init_amor();
2389
}
2390
mmu_radix_init_iamr();
2391
mmu_radix_pid_set(kernel_pmap);
2392
if (powernv_enabled)
2393
mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2394
else
2395
mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2396
}
2397
2398
static SYSCTL_NODE(_vm_pmap, OID_AUTO, l3e, CTLFLAG_RD, 0,
2399
"2MB page mapping counters");
2400
2401
static COUNTER_U64_DEFINE_EARLY(pmap_l3e_demotions);
2402
SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, demotions, CTLFLAG_RD,
2403
&pmap_l3e_demotions, "2MB page demotions");
2404
2405
static COUNTER_U64_DEFINE_EARLY(pmap_l3e_mappings);
2406
SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, mappings, CTLFLAG_RD,
2407
&pmap_l3e_mappings, "2MB page mappings");
2408
2409
static COUNTER_U64_DEFINE_EARLY(pmap_l3e_p_failures);
2410
SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, p_failures, CTLFLAG_RD,
2411
&pmap_l3e_p_failures, "2MB page promotion failures");
2412
2413
static COUNTER_U64_DEFINE_EARLY(pmap_l3e_promotions);
2414
SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, promotions, CTLFLAG_RD,
2415
&pmap_l3e_promotions, "2MB page promotions");
2416
2417
static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2e, CTLFLAG_RD, 0,
2418
"1GB page mapping counters");
2419
2420
static COUNTER_U64_DEFINE_EARLY(pmap_l2e_demotions);
2421
SYSCTL_COUNTER_U64(_vm_pmap_l2e, OID_AUTO, demotions, CTLFLAG_RD,
2422
&pmap_l2e_demotions, "1GB page demotions");
2423
2424
void
2425
mmu_radix_clear_modify(vm_page_t m)
2426
{
2427
struct md_page *pvh;
2428
pmap_t pmap;
2429
pv_entry_t next_pv, pv;
2430
pml3_entry_t oldl3e, *l3e;
2431
pt_entry_t oldpte, *pte;
2432
struct rwlock *lock;
2433
vm_offset_t va;
2434
int md_gen, pvh_gen;
2435
2436
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2437
("pmap_clear_modify: page %p is not managed", m));
2438
vm_page_assert_busied(m);
2439
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
2440
2441
/*
2442
* If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
2443
* If the object containing the page is locked and the page is not
2444
* exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
2445
*/
2446
if ((m->a.flags & PGA_WRITEABLE) == 0)
2447
return;
2448
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2449
pa_to_pvh(VM_PAGE_TO_PHYS(m));
2450
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2451
rw_wlock(lock);
2452
restart:
2453
TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
2454
pmap = PV_PMAP(pv);
2455
if (!PMAP_TRYLOCK(pmap)) {
2456
pvh_gen = pvh->pv_gen;
2457
rw_wunlock(lock);
2458
PMAP_LOCK(pmap);
2459
rw_wlock(lock);
2460
if (pvh_gen != pvh->pv_gen) {
2461
PMAP_UNLOCK(pmap);
2462
goto restart;
2463
}
2464
}
2465
va = pv->pv_va;
2466
l3e = pmap_pml3e(pmap, va);
2467
oldl3e = be64toh(*l3e);
2468
if ((oldl3e & PG_RW) != 0 &&
2469
pmap_demote_l3e_locked(pmap, l3e, va, &lock) &&
2470
(oldl3e & PG_W) == 0) {
2471
/*
2472
* Write protect the mapping to a
2473
* single page so that a subsequent
2474
* write access may repromote.
2475
*/
2476
va += VM_PAGE_TO_PHYS(m) - (oldl3e &
2477
PG_PS_FRAME);
2478
pte = pmap_l3e_to_pte(l3e, va);
2479
oldpte = be64toh(*pte);
2480
while (!atomic_cmpset_long(pte,
2481
htobe64(oldpte),
2482
htobe64((oldpte | RPTE_EAA_R) & ~(PG_M | PG_RW))))
2483
oldpte = be64toh(*pte);
2484
vm_page_dirty(m);
2485
pmap_invalidate_page(pmap, va);
2486
}
2487
PMAP_UNLOCK(pmap);
2488
}
2489
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2490
pmap = PV_PMAP(pv);
2491
if (!PMAP_TRYLOCK(pmap)) {
2492
md_gen = m->md.pv_gen;
2493
pvh_gen = pvh->pv_gen;
2494
rw_wunlock(lock);
2495
PMAP_LOCK(pmap);
2496
rw_wlock(lock);
2497
if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2498
PMAP_UNLOCK(pmap);
2499
goto restart;
2500
}
2501
}
2502
l3e = pmap_pml3e(pmap, pv->pv_va);
2503
KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_clear_modify: found"
2504
" a 2mpage in page %p's pv list", m));
2505
pte = pmap_l3e_to_pte(l3e, pv->pv_va);
2506
if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2507
atomic_clear_long(pte, htobe64(PG_M));
2508
pmap_invalidate_page(pmap, pv->pv_va);
2509
}
2510
PMAP_UNLOCK(pmap);
2511
}
2512
rw_wunlock(lock);
2513
}
2514
2515
void
2516
mmu_radix_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2517
vm_size_t len, vm_offset_t src_addr)
2518
{
2519
struct rwlock *lock;
2520
struct spglist free;
2521
vm_offset_t addr;
2522
vm_offset_t end_addr = src_addr + len;
2523
vm_offset_t va_next;
2524
vm_page_t dst_pdpg, dstmpte, srcmpte;
2525
bool invalidate_all;
2526
2527
CTR6(KTR_PMAP,
2528
"%s(dst_pmap=%p, src_pmap=%p, dst_addr=%lx, len=%lu, src_addr=%lx)\n",
2529
__func__, dst_pmap, src_pmap, dst_addr, len, src_addr);
2530
2531
if (dst_addr != src_addr)
2532
return;
2533
lock = NULL;
2534
invalidate_all = false;
2535
if (dst_pmap < src_pmap) {
2536
PMAP_LOCK(dst_pmap);
2537
PMAP_LOCK(src_pmap);
2538
} else {
2539
PMAP_LOCK(src_pmap);
2540
PMAP_LOCK(dst_pmap);
2541
}
2542
2543
for (addr = src_addr; addr < end_addr; addr = va_next) {
2544
pml1_entry_t *l1e;
2545
pml2_entry_t *l2e;
2546
pml3_entry_t srcptepaddr, *l3e;
2547
pt_entry_t *src_pte, *dst_pte;
2548
2549
l1e = pmap_pml1e(src_pmap, addr);
2550
if ((be64toh(*l1e) & PG_V) == 0) {
2551
va_next = (addr + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2552
if (va_next < addr)
2553
va_next = end_addr;
2554
continue;
2555
}
2556
2557
l2e = pmap_l1e_to_l2e(l1e, addr);
2558
if ((be64toh(*l2e) & PG_V) == 0) {
2559
va_next = (addr + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2560
if (va_next < addr)
2561
va_next = end_addr;
2562
continue;
2563
}
2564
2565
va_next = (addr + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2566
if (va_next < addr)
2567
va_next = end_addr;
2568
2569
l3e = pmap_l2e_to_l3e(l2e, addr);
2570
srcptepaddr = be64toh(*l3e);
2571
if (srcptepaddr == 0)
2572
continue;
2573
2574
if (srcptepaddr & RPTE_LEAF) {
2575
if ((addr & L3_PAGE_MASK) != 0 ||
2576
addr + L3_PAGE_SIZE > end_addr)
2577
continue;
2578
dst_pdpg = pmap_allocl3e(dst_pmap, addr, NULL);
2579
if (dst_pdpg == NULL)
2580
break;
2581
l3e = (pml3_entry_t *)
2582
PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dst_pdpg));
2583
l3e = &l3e[pmap_pml3e_index(addr)];
2584
if (be64toh(*l3e) == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
2585
pmap_pv_insert_l3e(dst_pmap, addr, srcptepaddr,
2586
PMAP_ENTER_NORECLAIM, &lock))) {
2587
*l3e = htobe64(srcptepaddr & ~PG_W);
2588
pmap_resident_count_inc(dst_pmap,
2589
L3_PAGE_SIZE / PAGE_SIZE);
2590
counter_u64_add(pmap_l3e_mappings, 1);
2591
} else
2592
dst_pdpg->ref_count--;
2593
continue;
2594
}
2595
2596
srcptepaddr &= PG_FRAME;
2597
srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2598
KASSERT(srcmpte->ref_count > 0,
2599
("pmap_copy: source page table page is unused"));
2600
2601
if (va_next > end_addr)
2602
va_next = end_addr;
2603
2604
src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
2605
src_pte = &src_pte[pmap_pte_index(addr)];
2606
dstmpte = NULL;
2607
while (addr < va_next) {
2608
pt_entry_t ptetemp;
2609
ptetemp = be64toh(*src_pte);
2610
/*
2611
* we only virtual copy managed pages
2612
*/
2613
if ((ptetemp & PG_MANAGED) != 0) {
2614
if (dstmpte != NULL &&
2615
dstmpte->pindex == pmap_l3e_pindex(addr))
2616
dstmpte->ref_count++;
2617
else if ((dstmpte = pmap_allocpte(dst_pmap,
2618
addr, NULL)) == NULL)
2619
goto out;
2620
dst_pte = (pt_entry_t *)
2621
PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
2622
dst_pte = &dst_pte[pmap_pte_index(addr)];
2623
if (be64toh(*dst_pte) == 0 &&
2624
pmap_try_insert_pv_entry(dst_pmap, addr,
2625
PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
2626
&lock)) {
2627
/*
2628
* Clear the wired, modified, and
2629
* accessed (referenced) bits
2630
* during the copy.
2631
*/
2632
*dst_pte = htobe64(ptetemp & ~(PG_W | PG_M |
2633
PG_A));
2634
pmap_resident_count_inc(dst_pmap, 1);
2635
} else {
2636
SLIST_INIT(&free);
2637
if (pmap_unwire_ptp(dst_pmap, addr,
2638
dstmpte, &free)) {
2639
/*
2640
* Although "addr" is not
2641
* mapped, paging-structure
2642
* caches could nonetheless
2643
* have entries that refer to
2644
* the freed page table pages.
2645
* Invalidate those entries.
2646
*/
2647
invalidate_all = true;
2648
vm_page_free_pages_toq(&free,
2649
true);
2650
}
2651
goto out;
2652
}
2653
if (dstmpte->ref_count >= srcmpte->ref_count)
2654
break;
2655
}
2656
addr += PAGE_SIZE;
2657
if (__predict_false((addr & L3_PAGE_MASK) == 0))
2658
src_pte = pmap_pte(src_pmap, addr);
2659
else
2660
src_pte++;
2661
}
2662
}
2663
out:
2664
if (invalidate_all)
2665
pmap_invalidate_all(dst_pmap);
2666
if (lock != NULL)
2667
rw_wunlock(lock);
2668
PMAP_UNLOCK(src_pmap);
2669
PMAP_UNLOCK(dst_pmap);
2670
}
2671
2672
static void
2673
mmu_radix_copy_page(vm_page_t msrc, vm_page_t mdst)
2674
{
2675
vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2676
vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2677
2678
CTR3(KTR_PMAP, "%s(%p, %p)", __func__, src, dst);
2679
/*
2680
* XXX slow
2681
*/
2682
bcopy((void *)src, (void *)dst, PAGE_SIZE);
2683
}
2684
2685
static void
2686
mmu_radix_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
2687
vm_offset_t b_offset, int xfersize)
2688
{
2689
void *a_cp, *b_cp;
2690
vm_offset_t a_pg_offset, b_pg_offset;
2691
int cnt;
2692
2693
CTR6(KTR_PMAP, "%s(%p, %#x, %p, %#x, %#x)", __func__, ma,
2694
a_offset, mb, b_offset, xfersize);
2695
2696
while (xfersize > 0) {
2697
a_pg_offset = a_offset & PAGE_MASK;
2698
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2699
a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2700
VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
2701
a_pg_offset;
2702
b_pg_offset = b_offset & PAGE_MASK;
2703
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2704
b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2705
VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
2706
b_pg_offset;
2707
bcopy(a_cp, b_cp, cnt);
2708
a_offset += cnt;
2709
b_offset += cnt;
2710
xfersize -= cnt;
2711
}
2712
}
2713
2714
#if VM_NRESERVLEVEL > 0
2715
/*
2716
* Tries to promote the 512, contiguous 4KB page mappings that are within a
2717
* single page table page (PTP) to a single 2MB page mapping. For promotion
2718
* to occur, two conditions must be met: (1) the 4KB page mappings must map
2719
* aligned, contiguous physical memory and (2) the 4KB page mappings must have
2720
* identical characteristics.
2721
*/
2722
static int
2723
pmap_promote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va,
2724
struct rwlock **lockp)
2725
{
2726
pml3_entry_t newpde;
2727
pt_entry_t *firstpte, oldpte, pa, *pte;
2728
vm_page_t mpte;
2729
2730
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2731
2732
/*
2733
* Examine the first PTE in the specified PTP. Abort if this PTE is
2734
* either invalid, unused, or does not map the first 4KB physical page
2735
* within a 2MB page.
2736
*/
2737
firstpte = (pt_entry_t *)PHYS_TO_DMAP(be64toh(*pde) & PG_FRAME);
2738
setpde:
2739
newpde = be64toh(*firstpte);
2740
if ((newpde & ((PG_FRAME & L3_PAGE_MASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
2741
CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2742
" in pmap %p", va, pmap);
2743
goto fail;
2744
}
2745
if ((newpde & (PG_M | PG_RW)) == PG_RW) {
2746
/*
2747
* When PG_M is already clear, PG_RW can be cleared without
2748
* a TLB invalidation.
2749
*/
2750
if (!atomic_cmpset_long(firstpte, htobe64(newpde), htobe64((newpde | RPTE_EAA_R) & ~RPTE_EAA_W)))
2751
goto setpde;
2752
newpde &= ~RPTE_EAA_W;
2753
}
2754
2755
/*
2756
* Examine each of the other PTEs in the specified PTP. Abort if this
2757
* PTE maps an unexpected 4KB physical page or does not have identical
2758
* characteristics to the first PTE.
2759
*/
2760
pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + L3_PAGE_SIZE - PAGE_SIZE;
2761
for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
2762
setpte:
2763
oldpte = be64toh(*pte);
2764
if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
2765
CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2766
" in pmap %p", va, pmap);
2767
goto fail;
2768
}
2769
if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2770
/*
2771
* When PG_M is already clear, PG_RW can be cleared
2772
* without a TLB invalidation.
2773
*/
2774
if (!atomic_cmpset_long(pte, htobe64(oldpte), htobe64((oldpte | RPTE_EAA_R) & ~RPTE_EAA_W)))
2775
goto setpte;
2776
oldpte &= ~RPTE_EAA_W;
2777
CTR2(KTR_PMAP, "pmap_promote_l3e: protect for va %#lx"
2778
" in pmap %p", (oldpte & PG_FRAME & L3_PAGE_MASK) |
2779
(va & ~L3_PAGE_MASK), pmap);
2780
}
2781
if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2782
CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2783
" in pmap %p", va, pmap);
2784
goto fail;
2785
}
2786
pa -= PAGE_SIZE;
2787
}
2788
2789
/*
2790
* Save the page table page in its current state until the PDE
2791
* mapping the superpage is demoted by pmap_demote_pde() or
2792
* destroyed by pmap_remove_pde().
2793
*/
2794
mpte = PHYS_TO_VM_PAGE(be64toh(*pde) & PG_FRAME);
2795
KASSERT(mpte >= vm_page_array &&
2796
mpte < &vm_page_array[vm_page_array_size],
2797
("pmap_promote_l3e: page table page is out of range"));
2798
KASSERT(mpte->pindex == pmap_l3e_pindex(va),
2799
("pmap_promote_l3e: page table page's pindex is wrong"));
2800
if (pmap_insert_pt_page(pmap, mpte)) {
2801
CTR2(KTR_PMAP,
2802
"pmap_promote_l3e: failure for va %#lx in pmap %p", va,
2803
pmap);
2804
goto fail;
2805
}
2806
2807
/*
2808
* Promote the pv entries.
2809
*/
2810
if ((newpde & PG_MANAGED) != 0)
2811
pmap_pv_promote_l3e(pmap, va, newpde & PG_PS_FRAME, lockp);
2812
2813
pte_store(pde, PG_PROMOTED | newpde);
2814
ptesync();
2815
counter_u64_add(pmap_l3e_promotions, 1);
2816
CTR2(KTR_PMAP, "pmap_promote_l3e: success for va %#lx"
2817
" in pmap %p", va, pmap);
2818
return (0);
2819
fail:
2820
counter_u64_add(pmap_l3e_p_failures, 1);
2821
return (KERN_FAILURE);
2822
}
2823
#endif /* VM_NRESERVLEVEL > 0 */
2824
2825
int
2826
mmu_radix_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
2827
vm_prot_t prot, u_int flags, int8_t psind)
2828
{
2829
struct rwlock *lock;
2830
pml3_entry_t *l3e;
2831
pt_entry_t *pte;
2832
pt_entry_t newpte, origpte;
2833
pv_entry_t pv;
2834
vm_paddr_t opa, pa;
2835
vm_page_t mpte, om;
2836
int rv, retrycount;
2837
bool nosleep, invalidate_all, invalidate_page;
2838
2839
va = trunc_page(va);
2840
retrycount = 0;
2841
invalidate_page = invalidate_all = false;
2842
CTR6(KTR_PMAP, "pmap_enter(%p, %#lx, %p, %#x, %#x, %d)", pmap, va,
2843
m, prot, flags, psind);
2844
KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2845
KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
2846
("pmap_enter: managed mapping within the clean submap"));
2847
if ((m->oflags & VPO_UNMANAGED) == 0)
2848
VM_PAGE_OBJECT_BUSY_ASSERT(m);
2849
2850
KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
2851
("pmap_enter: flags %u has reserved bits set", flags));
2852
pa = VM_PAGE_TO_PHYS(m);
2853
newpte = (pt_entry_t)(pa | PG_A | PG_V | RPTE_LEAF);
2854
if ((flags & VM_PROT_WRITE) != 0)
2855
newpte |= PG_M;
2856
if ((flags & VM_PROT_READ) != 0)
2857
newpte |= PG_A;
2858
if (prot & VM_PROT_READ)
2859
newpte |= RPTE_EAA_R;
2860
if ((prot & VM_PROT_WRITE) != 0)
2861
newpte |= RPTE_EAA_W;
2862
KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
2863
("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
2864
2865
if (prot & VM_PROT_EXECUTE)
2866
newpte |= PG_X;
2867
if ((flags & PMAP_ENTER_WIRED) != 0)
2868
newpte |= PG_W;
2869
if (va >= DMAP_MIN_ADDRESS)
2870
newpte |= RPTE_EAA_P;
2871
newpte |= pmap_cache_bits(m->md.mdpg_cache_attrs);
2872
/*
2873
* Set modified bit gratuitously for writeable mappings if
2874
* the page is unmanaged. We do not want to take a fault
2875
* to do the dirty bit accounting for these mappings.
2876
*/
2877
if ((m->oflags & VPO_UNMANAGED) != 0) {
2878
if ((newpte & PG_RW) != 0)
2879
newpte |= PG_M;
2880
} else
2881
newpte |= PG_MANAGED;
2882
2883
lock = NULL;
2884
PMAP_LOCK(pmap);
2885
if (psind == 1) {
2886
/* Assert the required virtual and physical alignment. */
2887
KASSERT((va & L3_PAGE_MASK) == 0, ("pmap_enter: va unaligned"));
2888
KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
2889
rv = pmap_enter_l3e(pmap, va, newpte | RPTE_LEAF, flags, m, &lock);
2890
goto out;
2891
}
2892
mpte = NULL;
2893
2894
/*
2895
* In the case that a page table page is not
2896
* resident, we are creating it here.
2897
*/
2898
retry:
2899
l3e = pmap_pml3e(pmap, va);
2900
if (l3e != NULL && (be64toh(*l3e) & PG_V) != 0 && ((be64toh(*l3e) & RPTE_LEAF) == 0 ||
2901
pmap_demote_l3e_locked(pmap, l3e, va, &lock))) {
2902
pte = pmap_l3e_to_pte(l3e, va);
2903
if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
2904
mpte = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
2905
mpte->ref_count++;
2906
}
2907
} else if (va < VM_MAXUSER_ADDRESS) {
2908
/*
2909
* Here if the pte page isn't mapped, or if it has been
2910
* deallocated.
2911
*/
2912
nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
2913
mpte = _pmap_allocpte(pmap, pmap_l3e_pindex(va),
2914
nosleep ? NULL : &lock);
2915
if (mpte == NULL && nosleep) {
2916
rv = KERN_RESOURCE_SHORTAGE;
2917
goto out;
2918
}
2919
if (__predict_false(retrycount++ == 6))
2920
panic("too many retries");
2921
invalidate_all = true;
2922
goto retry;
2923
} else
2924
panic("pmap_enter: invalid page directory va=%#lx", va);
2925
2926
origpte = be64toh(*pte);
2927
pv = NULL;
2928
2929
/*
2930
* Is the specified virtual address already mapped?
2931
*/
2932
if ((origpte & PG_V) != 0) {
2933
#ifdef INVARIANTS
2934
if (VERBOSE_PMAP || pmap_logging) {
2935
printf("cow fault pmap_enter(%p, %#lx, %p, %#x, %x, %d) --"
2936
" asid=%lu curpid=%d name=%s origpte0x%lx\n",
2937
pmap, va, m, prot, flags, psind, pmap->pm_pid,
2938
curproc->p_pid, curproc->p_comm, origpte);
2939
#ifdef DDB
2940
pmap_pte_walk(pmap->pm_pml1, va);
2941
#endif
2942
}
2943
#endif
2944
/*
2945
* Wiring change, just update stats. We don't worry about
2946
* wiring PT pages as they remain resident as long as there
2947
* are valid mappings in them. Hence, if a user page is wired,
2948
* the PT page will be also.
2949
*/
2950
if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
2951
pmap->pm_stats.wired_count++;
2952
else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
2953
pmap->pm_stats.wired_count--;
2954
2955
/*
2956
* Remove the extra PT page reference.
2957
*/
2958
if (mpte != NULL) {
2959
mpte->ref_count--;
2960
KASSERT(mpte->ref_count > 0,
2961
("pmap_enter: missing reference to page table page,"
2962
" va: 0x%lx", va));
2963
}
2964
2965
/*
2966
* Has the physical page changed?
2967
*/
2968
opa = origpte & PG_FRAME;
2969
if (opa == pa) {
2970
/*
2971
* No, might be a protection or wiring change.
2972
*/
2973
if ((origpte & PG_MANAGED) != 0 &&
2974
(newpte & PG_RW) != 0)
2975
vm_page_aflag_set(m, PGA_WRITEABLE);
2976
if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0) {
2977
if ((newpte & (PG_A|PG_M)) != (origpte & (PG_A|PG_M))) {
2978
if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
2979
goto retry;
2980
if ((newpte & PG_M) != (origpte & PG_M))
2981
vm_page_dirty(m);
2982
if ((newpte & PG_A) != (origpte & PG_A))
2983
vm_page_aflag_set(m, PGA_REFERENCED);
2984
ptesync();
2985
} else
2986
invalidate_all = true;
2987
if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
2988
goto unchanged;
2989
}
2990
goto validate;
2991
}
2992
2993
/*
2994
* The physical page has changed. Temporarily invalidate
2995
* the mapping. This ensures that all threads sharing the
2996
* pmap keep a consistent view of the mapping, which is
2997
* necessary for the correct handling of COW faults. It
2998
* also permits reuse of the old mapping's PV entry,
2999
* avoiding an allocation.
3000
*
3001
* For consistency, handle unmanaged mappings the same way.
3002
*/
3003
origpte = be64toh(pte_load_clear(pte));
3004
KASSERT((origpte & PG_FRAME) == opa,
3005
("pmap_enter: unexpected pa update for %#lx", va));
3006
if ((origpte & PG_MANAGED) != 0) {
3007
om = PHYS_TO_VM_PAGE(opa);
3008
3009
/*
3010
* The pmap lock is sufficient to synchronize with
3011
* concurrent calls to pmap_page_test_mappings() and
3012
* pmap_ts_referenced().
3013
*/
3014
if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3015
vm_page_dirty(om);
3016
if ((origpte & PG_A) != 0)
3017
vm_page_aflag_set(om, PGA_REFERENCED);
3018
CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
3019
pv = pmap_pvh_remove(&om->md, pmap, va);
3020
if ((newpte & PG_MANAGED) == 0)
3021
free_pv_entry(pmap, pv);
3022
#ifdef INVARIANTS
3023
else if (origpte & PG_MANAGED) {
3024
if (pv == NULL) {
3025
#ifdef DDB
3026
pmap_page_print_mappings(om);
3027
#endif
3028
MPASS(pv != NULL);
3029
}
3030
}
3031
#endif
3032
if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3033
TAILQ_EMPTY(&om->md.pv_list) &&
3034
((om->flags & PG_FICTITIOUS) != 0 ||
3035
TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3036
vm_page_aflag_clear(om, PGA_WRITEABLE);
3037
}
3038
if ((origpte & PG_A) != 0)
3039
invalidate_page = true;
3040
origpte = 0;
3041
} else {
3042
if (pmap != kernel_pmap) {
3043
#ifdef INVARIANTS
3044
if (VERBOSE_PMAP || pmap_logging)
3045
printf("pmap_enter(%p, %#lx, %p, %#x, %x, %d) -- asid=%lu curpid=%d name=%s\n",
3046
pmap, va, m, prot, flags, psind,
3047
pmap->pm_pid, curproc->p_pid,
3048
curproc->p_comm);
3049
#endif
3050
}
3051
3052
/*
3053
* Increment the counters.
3054
*/
3055
if ((newpte & PG_W) != 0)
3056
pmap->pm_stats.wired_count++;
3057
pmap_resident_count_inc(pmap, 1);
3058
}
3059
3060
/*
3061
* Enter on the PV list if part of our managed memory.
3062
*/
3063
if ((newpte & PG_MANAGED) != 0) {
3064
if (pv == NULL) {
3065
pv = get_pv_entry(pmap, &lock);
3066
pv->pv_va = va;
3067
}
3068
#ifdef VERBOSE_PV
3069
else
3070
printf("reassigning pv: %p to pmap: %p\n",
3071
pv, pmap);
3072
#endif
3073
CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3074
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3075
m->md.pv_gen++;
3076
if ((newpte & PG_RW) != 0)
3077
vm_page_aflag_set(m, PGA_WRITEABLE);
3078
}
3079
3080
/*
3081
* Update the PTE.
3082
*/
3083
if ((origpte & PG_V) != 0) {
3084
validate:
3085
origpte = be64toh(pte_load_store(pte, htobe64(newpte)));
3086
KASSERT((origpte & PG_FRAME) == pa,
3087
("pmap_enter: unexpected pa update for %#lx", va));
3088
if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3089
(PG_M | PG_RW)) {
3090
if ((origpte & PG_MANAGED) != 0)
3091
vm_page_dirty(m);
3092
invalidate_page = true;
3093
3094
/*
3095
* Although the PTE may still have PG_RW set, TLB
3096
* invalidation may nonetheless be required because
3097
* the PTE no longer has PG_M set.
3098
*/
3099
} else if ((origpte & PG_X) != 0 || (newpte & PG_X) == 0) {
3100
/*
3101
* Removing capabilities requires invalidation on POWER
3102
*/
3103
invalidate_page = true;
3104
goto unchanged;
3105
}
3106
if ((origpte & PG_A) != 0)
3107
invalidate_page = true;
3108
} else {
3109
pte_store(pte, newpte);
3110
ptesync();
3111
}
3112
unchanged:
3113
3114
#if VM_NRESERVLEVEL > 0
3115
/*
3116
* If both the page table page and the reservation are fully
3117
* populated, then attempt promotion.
3118
*/
3119
if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3120
mmu_radix_ps_enabled(pmap) &&
3121
(m->flags & PG_FICTITIOUS) == 0 &&
3122
vm_reserv_level_iffullpop(m) == 0 &&
3123
pmap_promote_l3e(pmap, l3e, va, &lock) == 0)
3124
invalidate_all = true;
3125
#endif
3126
if (invalidate_all)
3127
pmap_invalidate_all(pmap);
3128
else if (invalidate_page)
3129
pmap_invalidate_page(pmap, va);
3130
3131
rv = KERN_SUCCESS;
3132
out:
3133
if (lock != NULL)
3134
rw_wunlock(lock);
3135
PMAP_UNLOCK(pmap);
3136
3137
return (rv);
3138
}
3139
3140
/*
3141
* Release a page table page reference after a failed attempt to create a
3142
* mapping.
3143
*/
3144
static void
3145
pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t pdpg)
3146
{
3147
struct spglist free;
3148
3149
SLIST_INIT(&free);
3150
if (pmap_unwire_ptp(pmap, va, pdpg, &free)) {
3151
/*
3152
* Although "va" is not mapped, paging-
3153
* structure caches could nonetheless have
3154
* entries that refer to the freed page table
3155
* pages. Invalidate those entries.
3156
*/
3157
pmap_invalidate_page(pmap, va);
3158
vm_page_free_pages_toq(&free, true);
3159
}
3160
}
3161
3162
/*
3163
* Tries to create a read- and/or execute-only 2MB page mapping. Returns true
3164
* if successful. Returns false if (1) a page table page cannot be allocated
3165
* without sleeping, (2) a mapping already exists at the specified virtual
3166
* address, or (3) a PV entry cannot be allocated without reclaiming another
3167
* PV entry.
3168
*/
3169
static bool
3170
pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3171
struct rwlock **lockp)
3172
{
3173
pml3_entry_t newpde;
3174
3175
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3176
newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs) |
3177
RPTE_LEAF | PG_V;
3178
if ((m->oflags & VPO_UNMANAGED) == 0)
3179
newpde |= PG_MANAGED;
3180
if (prot & VM_PROT_EXECUTE)
3181
newpde |= PG_X;
3182
if (prot & VM_PROT_READ)
3183
newpde |= RPTE_EAA_R;
3184
if (va >= DMAP_MIN_ADDRESS)
3185
newpde |= RPTE_EAA_P;
3186
return (pmap_enter_l3e(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3187
PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
3188
KERN_SUCCESS);
3189
}
3190
3191
/*
3192
* Tries to create the specified 2MB page mapping. Returns KERN_SUCCESS if
3193
* the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
3194
* otherwise. Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
3195
* a mapping already exists at the specified virtual address. Returns
3196
* KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
3197
* page allocation failed. Returns KERN_RESOURCE_SHORTAGE if
3198
* PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3199
*
3200
* The parameter "m" is only used when creating a managed, writeable mapping.
3201
*/
3202
static int
3203
pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde, u_int flags,
3204
vm_page_t m, struct rwlock **lockp)
3205
{
3206
struct spglist free;
3207
pml3_entry_t oldl3e, *l3e;
3208
vm_page_t mt, pdpg;
3209
vm_page_t uwptpg;
3210
3211
KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3212
("pmap_enter_pde: newpde is missing PG_M"));
3213
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3214
3215
if ((pdpg = pmap_allocl3e(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
3216
NULL : lockp)) == NULL) {
3217
CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3218
" in pmap %p", va, pmap);
3219
return (KERN_RESOURCE_SHORTAGE);
3220
}
3221
l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
3222
l3e = &l3e[pmap_pml3e_index(va)];
3223
oldl3e = be64toh(*l3e);
3224
if ((oldl3e & PG_V) != 0) {
3225
KASSERT(pdpg->ref_count > 1,
3226
("pmap_enter_pde: pdpg's wire count is too low"));
3227
if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3228
pdpg->ref_count--;
3229
CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3230
" in pmap %p", va, pmap);
3231
return (KERN_FAILURE);
3232
}
3233
/* Break the existing mapping(s). */
3234
SLIST_INIT(&free);
3235
if ((oldl3e & RPTE_LEAF) != 0) {
3236
/*
3237
* The reference to the PD page that was acquired by
3238
* pmap_allocl3e() ensures that it won't be freed.
3239
* However, if the PDE resulted from a promotion, then
3240
* a reserved PT page could be freed.
3241
*/
3242
(void)pmap_remove_l3e(pmap, l3e, va, &free, lockp);
3243
pmap_invalidate_l3e_page(pmap, va, oldl3e);
3244
} else {
3245
if (pmap_remove_ptes(pmap, va, va + L3_PAGE_SIZE, l3e,
3246
&free, lockp))
3247
pmap_invalidate_all(pmap);
3248
}
3249
vm_page_free_pages_toq(&free, true);
3250
if (va >= VM_MAXUSER_ADDRESS) {
3251
mt = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
3252
if (pmap_insert_pt_page(pmap, mt)) {
3253
/*
3254
* XXX Currently, this can't happen because
3255
* we do not perform pmap_enter(psind == 1)
3256
* on the kernel pmap.
3257
*/
3258
panic("pmap_enter_pde: trie insert failed");
3259
}
3260
} else
3261
KASSERT(be64toh(*l3e) == 0, ("pmap_enter_pde: non-zero pde %p",
3262
l3e));
3263
}
3264
3265
/*
3266
* Allocate leaf ptpage for wired userspace pages.
3267
*/
3268
uwptpg = NULL;
3269
if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
3270
uwptpg = vm_page_alloc_noobj(VM_ALLOC_WIRED);
3271
if (uwptpg == NULL) {
3272
pmap_abort_ptp(pmap, va, pdpg);
3273
return (KERN_RESOURCE_SHORTAGE);
3274
}
3275
uwptpg->pindex = pmap_l3e_pindex(va);
3276
if (pmap_insert_pt_page(pmap, uwptpg)) {
3277
vm_page_unwire_noq(uwptpg);
3278
vm_page_free(uwptpg);
3279
pmap_abort_ptp(pmap, va, pdpg);
3280
return (KERN_RESOURCE_SHORTAGE);
3281
}
3282
pmap_resident_count_inc(pmap, 1);
3283
uwptpg->ref_count = NPTEPG;
3284
pmap_fill_ptp((pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(uwptpg)),
3285
newpde);
3286
}
3287
if ((newpde & PG_MANAGED) != 0) {
3288
/*
3289
* Abort this mapping if its PV entry could not be created.
3290
*/
3291
if (!pmap_pv_insert_l3e(pmap, va, newpde, flags, lockp)) {
3292
pmap_abort_ptp(pmap, va, pdpg);
3293
if (uwptpg != NULL) {
3294
mt = pmap_remove_pt_page(pmap, va);
3295
KASSERT(mt == uwptpg,
3296
("removed pt page %p, expected %p", mt,
3297
uwptpg));
3298
pmap_resident_count_dec(pmap, 1);
3299
uwptpg->ref_count = 1;
3300
vm_page_unwire_noq(uwptpg);
3301
vm_page_free(uwptpg);
3302
}
3303
CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3304
" in pmap %p", va, pmap);
3305
return (KERN_RESOURCE_SHORTAGE);
3306
}
3307
if ((newpde & PG_RW) != 0) {
3308
for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
3309
vm_page_aflag_set(mt, PGA_WRITEABLE);
3310
}
3311
}
3312
3313
/*
3314
* Increment counters.
3315
*/
3316
if ((newpde & PG_W) != 0)
3317
pmap->pm_stats.wired_count += L3_PAGE_SIZE / PAGE_SIZE;
3318
pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
3319
3320
/*
3321
* Map the superpage. (This is not a promoted mapping; there will not
3322
* be any lingering 4KB page mappings in the TLB.)
3323
*/
3324
pte_store(l3e, newpde);
3325
ptesync();
3326
3327
counter_u64_add(pmap_l3e_mappings, 1);
3328
CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3329
" in pmap %p", va, pmap);
3330
return (KERN_SUCCESS);
3331
}
3332
3333
void
3334
mmu_radix_enter_object(pmap_t pmap, vm_offset_t start,
3335
vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
3336
{
3337
struct pctrie_iter pages;
3338
struct rwlock *lock;
3339
vm_offset_t va;
3340
vm_page_t m, mpte;
3341
bool invalidate;
3342
3343
VM_OBJECT_ASSERT_LOCKED(m_start->object);
3344
3345
CTR6(KTR_PMAP, "%s(%p, %#x, %#x, %p, %#x)", __func__, pmap, start,
3346
end, m_start, prot);
3347
invalidate = false;
3348
mpte = NULL;
3349
vm_page_iter_limit_init(&pages, m_start->object,
3350
m_start->pindex + atop(end - start));
3351
m = vm_radix_iter_lookup(&pages, m_start->pindex);
3352
lock = NULL;
3353
PMAP_LOCK(pmap);
3354
while (m != NULL) {
3355
va = start + ptoa(m->pindex - m_start->pindex);
3356
if ((va & L3_PAGE_MASK) == 0 && va + L3_PAGE_SIZE <= end &&
3357
m->psind == 1 && mmu_radix_ps_enabled(pmap) &&
3358
pmap_enter_2mpage(pmap, va, m, prot, &lock)) {
3359
m = vm_radix_iter_jump(&pages, L3_PAGE_SIZE / PAGE_SIZE);
3360
} else {
3361
mpte = mmu_radix_enter_quick_locked(pmap, va, m, prot,
3362
mpte, &lock, &invalidate);
3363
m = vm_radix_iter_step(&pages);
3364
}
3365
}
3366
ptesync();
3367
if (lock != NULL)
3368
rw_wunlock(lock);
3369
if (invalidate)
3370
pmap_invalidate_all(pmap);
3371
PMAP_UNLOCK(pmap);
3372
}
3373
3374
static vm_page_t
3375
mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3376
vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate)
3377
{
3378
struct spglist free;
3379
pt_entry_t *pte;
3380
vm_paddr_t pa;
3381
3382
KASSERT(!VA_IS_CLEANMAP(va) ||
3383
(m->oflags & VPO_UNMANAGED) != 0,
3384
("mmu_radix_enter_quick_locked: managed mapping within the clean submap"));
3385
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3386
3387
/*
3388
* In the case that a page table page is not
3389
* resident, we are creating it here.
3390
*/
3391
if (va < VM_MAXUSER_ADDRESS) {
3392
vm_pindex_t ptepindex;
3393
pml3_entry_t *ptepa;
3394
3395
/*
3396
* Calculate pagetable page index
3397
*/
3398
ptepindex = pmap_l3e_pindex(va);
3399
if (mpte && (mpte->pindex == ptepindex)) {
3400
mpte->ref_count++;
3401
} else {
3402
/*
3403
* Get the page directory entry
3404
*/
3405
ptepa = pmap_pml3e(pmap, va);
3406
3407
/*
3408
* If the page table page is mapped, we just increment
3409
* the hold count, and activate it. Otherwise, we
3410
* attempt to allocate a page table page. If this
3411
* attempt fails, we don't retry. Instead, we give up.
3412
*/
3413
if (ptepa && (be64toh(*ptepa) & PG_V) != 0) {
3414
if (be64toh(*ptepa) & RPTE_LEAF)
3415
return (NULL);
3416
mpte = PHYS_TO_VM_PAGE(be64toh(*ptepa) & PG_FRAME);
3417
mpte->ref_count++;
3418
} else {
3419
/*
3420
* Pass NULL instead of the PV list lock
3421
* pointer, because we don't intend to sleep.
3422
*/
3423
mpte = _pmap_allocpte(pmap, ptepindex, NULL);
3424
if (mpte == NULL)
3425
return (mpte);
3426
}
3427
}
3428
pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3429
pte = &pte[pmap_pte_index(va)];
3430
} else {
3431
mpte = NULL;
3432
pte = pmap_pte(pmap, va);
3433
}
3434
if (be64toh(*pte)) {
3435
if (mpte != NULL) {
3436
mpte->ref_count--;
3437
mpte = NULL;
3438
}
3439
return (mpte);
3440
}
3441
3442
/*
3443
* Enter on the PV list if part of our managed memory.
3444
*/
3445
if ((m->oflags & VPO_UNMANAGED) == 0 &&
3446
!pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3447
if (mpte != NULL) {
3448
SLIST_INIT(&free);
3449
if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
3450
/*
3451
* Although "va" is not mapped, paging-
3452
* structure caches could nonetheless have
3453
* entries that refer to the freed page table
3454
* pages. Invalidate those entries.
3455
*/
3456
*invalidate = true;
3457
vm_page_free_pages_toq(&free, true);
3458
}
3459
mpte = NULL;
3460
}
3461
return (mpte);
3462
}
3463
3464
/*
3465
* Increment counters
3466
*/
3467
pmap_resident_count_inc(pmap, 1);
3468
3469
pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs);
3470
if (prot & VM_PROT_EXECUTE)
3471
pa |= PG_X;
3472
else
3473
pa |= RPTE_EAA_R;
3474
if ((m->oflags & VPO_UNMANAGED) == 0)
3475
pa |= PG_MANAGED;
3476
3477
pte_store(pte, pa);
3478
return (mpte);
3479
}
3480
3481
void
3482
mmu_radix_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
3483
vm_prot_t prot)
3484
{
3485
struct rwlock *lock;
3486
bool invalidate;
3487
3488
lock = NULL;
3489
invalidate = false;
3490
PMAP_LOCK(pmap);
3491
mmu_radix_enter_quick_locked(pmap, va, m, prot, NULL, &lock,
3492
&invalidate);
3493
ptesync();
3494
if (lock != NULL)
3495
rw_wunlock(lock);
3496
if (invalidate)
3497
pmap_invalidate_all(pmap);
3498
PMAP_UNLOCK(pmap);
3499
}
3500
3501
vm_paddr_t
3502
mmu_radix_extract(pmap_t pmap, vm_offset_t va)
3503
{
3504
pml3_entry_t *l3e;
3505
pt_entry_t *pte;
3506
vm_paddr_t pa;
3507
3508
l3e = pmap_pml3e(pmap, va);
3509
if (__predict_false(l3e == NULL))
3510
return (0);
3511
if (be64toh(*l3e) & RPTE_LEAF) {
3512
pa = (be64toh(*l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
3513
pa |= (va & L3_PAGE_MASK);
3514
} else {
3515
/*
3516
* Beware of a concurrent promotion that changes the
3517
* PDE at this point! For example, vtopte() must not
3518
* be used to access the PTE because it would use the
3519
* new PDE. It is, however, safe to use the old PDE
3520
* because the page table page is preserved by the
3521
* promotion.
3522
*/
3523
pte = pmap_l3e_to_pte(l3e, va);
3524
if (__predict_false(pte == NULL))
3525
return (0);
3526
pa = be64toh(*pte);
3527
pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3528
pa |= (va & PAGE_MASK);
3529
}
3530
return (pa);
3531
}
3532
3533
vm_page_t
3534
mmu_radix_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3535
{
3536
pml3_entry_t l3e, *l3ep;
3537
pt_entry_t pte;
3538
vm_page_t m;
3539
3540
m = NULL;
3541
CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, va, prot);
3542
PMAP_LOCK(pmap);
3543
l3ep = pmap_pml3e(pmap, va);
3544
if (l3ep != NULL && (l3e = be64toh(*l3ep))) {
3545
if (l3e & RPTE_LEAF) {
3546
if ((l3e & PG_RW) || (prot & VM_PROT_WRITE) == 0)
3547
m = PHYS_TO_VM_PAGE((l3e & PG_PS_FRAME) |
3548
(va & L3_PAGE_MASK));
3549
} else {
3550
/* Native endian PTE, do not pass to pmap functions */
3551
pte = be64toh(*pmap_l3e_to_pte(l3ep, va));
3552
if ((pte & PG_V) &&
3553
((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
3554
m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3555
}
3556
if (m != NULL && !vm_page_wire_mapped(m))
3557
m = NULL;
3558
}
3559
PMAP_UNLOCK(pmap);
3560
return (m);
3561
}
3562
3563
static int
3564
mmu_radix_growkernel(vm_offset_t addr)
3565
{
3566
vm_paddr_t paddr;
3567
vm_page_t nkpg;
3568
pml3_entry_t *l3e;
3569
pml2_entry_t *l2e;
3570
3571
CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
3572
if (VM_MIN_KERNEL_ADDRESS < addr &&
3573
addr < (VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE))
3574
return (KERN_SUCCESS);
3575
3576
addr = roundup2(addr, L3_PAGE_SIZE);
3577
if (addr - 1 >= vm_map_max(kernel_map))
3578
addr = vm_map_max(kernel_map);
3579
while (kernel_vm_end < addr) {
3580
l2e = pmap_pml2e(kernel_pmap, kernel_vm_end);
3581
if ((be64toh(*l2e) & PG_V) == 0) {
3582
/* We need a new PDP entry */
3583
nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
3584
VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3585
if (nkpg == NULL)
3586
return (KERN_RESOURCE_SHORTAGE);
3587
nkpg->pindex = kernel_vm_end >> L2_PAGE_SIZE_SHIFT;
3588
paddr = VM_PAGE_TO_PHYS(nkpg);
3589
pde_store(l2e, paddr);
3590
continue; /* try again */
3591
}
3592
l3e = pmap_l2e_to_l3e(l2e, kernel_vm_end);
3593
if ((be64toh(*l3e) & PG_V) != 0) {
3594
kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3595
if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3596
kernel_vm_end = vm_map_max(kernel_map);
3597
break;
3598
}
3599
continue;
3600
}
3601
3602
nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
3603
VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3604
if (nkpg == NULL)
3605
return (KERN_RESOURCE_SHORTAGE);
3606
nkpg->pindex = pmap_l3e_pindex(kernel_vm_end);
3607
paddr = VM_PAGE_TO_PHYS(nkpg);
3608
pde_store(l3e, paddr);
3609
3610
kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3611
if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3612
kernel_vm_end = vm_map_max(kernel_map);
3613
break;
3614
}
3615
}
3616
ptesync();
3617
return (KERN_SUCCESS);
3618
}
3619
3620
static MALLOC_DEFINE(M_RADIX_PGD, "radix_pgd", "radix page table root directory");
3621
static uma_zone_t zone_radix_pgd;
3622
3623
static int
3624
radix_pgd_import(void *arg __unused, void **store, int count, int domain __unused,
3625
int flags)
3626
{
3627
int req;
3628
3629
req = VM_ALLOC_WIRED | malloc2vm_flags(flags);
3630
for (int i = 0; i < count; i++) {
3631
vm_page_t m = vm_page_alloc_noobj_contig(req,
3632
RADIX_PGD_SIZE / PAGE_SIZE,
3633
0, (vm_paddr_t)-1, RADIX_PGD_SIZE, L1_PAGE_SIZE,
3634
VM_MEMATTR_DEFAULT);
3635
store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3636
}
3637
return (count);
3638
}
3639
3640
static void
3641
radix_pgd_release(void *arg __unused, void **store, int count)
3642
{
3643
vm_page_t m;
3644
struct spglist free;
3645
int page_count;
3646
3647
SLIST_INIT(&free);
3648
page_count = RADIX_PGD_SIZE/PAGE_SIZE;
3649
3650
for (int i = 0; i < count; i++) {
3651
/*
3652
* XXX selectively remove dmap and KVA entries so we don't
3653
* need to bzero
3654
*/
3655
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
3656
for (int j = page_count-1; j >= 0; j--) {
3657
vm_page_unwire_noq(&m[j]);
3658
SLIST_INSERT_HEAD(&free, &m[j], plinks.s.ss);
3659
}
3660
vm_page_free_pages_toq(&free, false);
3661
}
3662
}
3663
3664
static void
3665
mmu_radix_init(void)
3666
{
3667
vm_page_t mpte;
3668
vm_size_t s;
3669
int error, i, pv_npg;
3670
3671
/* XXX is this really needed for POWER? */
3672
/* L1TF, reserve page @0 unconditionally */
3673
vm_page_blacklist_add(0, bootverbose);
3674
3675
zone_radix_pgd = uma_zcache_create("radix_pgd_cache",
3676
RADIX_PGD_SIZE, NULL, NULL,
3677
#ifdef INVARIANTS
3678
trash_init, trash_fini,
3679
#else
3680
NULL, NULL,
3681
#endif
3682
radix_pgd_import, radix_pgd_release,
3683
NULL, UMA_ZONE_NOBUCKET);
3684
3685
/*
3686
* Initialize the vm page array entries for the kernel pmap's
3687
* page table pages.
3688
*/
3689
PMAP_LOCK(kernel_pmap);
3690
for (i = 0; i < nkpt; i++) {
3691
mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
3692
KASSERT(mpte >= vm_page_array &&
3693
mpte < &vm_page_array[vm_page_array_size],
3694
("pmap_init: page table page is out of range size: %lu",
3695
vm_page_array_size));
3696
mpte->pindex = pmap_l3e_pindex(VM_MIN_KERNEL_ADDRESS) + i;
3697
mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
3698
MPASS(PHYS_TO_VM_PAGE(mpte->phys_addr) == mpte);
3699
//pmap_insert_pt_page(kernel_pmap, mpte);
3700
mpte->ref_count = 1;
3701
}
3702
PMAP_UNLOCK(kernel_pmap);
3703
vm_wire_add(nkpt);
3704
3705
CTR1(KTR_PMAP, "%s()", __func__);
3706
TAILQ_INIT(&pv_dummy.pv_list);
3707
3708
/*
3709
* Are large page mappings enabled?
3710
*/
3711
TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
3712
if (superpages_enabled) {
3713
KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
3714
("pmap_init: can't assign to pagesizes[1]"));
3715
pagesizes[1] = L3_PAGE_SIZE;
3716
}
3717
3718
/*
3719
* Initialize the pv chunk list mutex.
3720
*/
3721
mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
3722
3723
/*
3724
* Initialize the pool of pv list locks.
3725
*/
3726
for (i = 0; i < NPV_LIST_LOCKS; i++)
3727
rw_init(&pv_list_locks[i], "pmap pv list");
3728
3729
/*
3730
* Calculate the size of the pv head table for superpages.
3731
*/
3732
pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L3_PAGE_SIZE);
3733
3734
/*
3735
* Allocate memory for the pv head table for superpages.
3736
*/
3737
s = (vm_size_t)(pv_npg * sizeof(struct md_page));
3738
s = round_page(s);
3739
pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
3740
for (i = 0; i < pv_npg; i++)
3741
TAILQ_INIT(&pv_table[i].pv_list);
3742
TAILQ_INIT(&pv_dummy.pv_list);
3743
3744
pmap_initialized = 1;
3745
mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
3746
error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3747
(vmem_addr_t *)&qframe);
3748
3749
if (error != 0)
3750
panic("qframe allocation failed");
3751
asid_arena = vmem_create("ASID", isa3_base_pid + 1, (1<<isa3_pid_bits),
3752
1, 1, M_WAITOK);
3753
}
3754
3755
static bool
3756
pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
3757
{
3758
struct rwlock *lock;
3759
pv_entry_t pv;
3760
struct md_page *pvh;
3761
pt_entry_t *pte, mask;
3762
pmap_t pmap;
3763
int md_gen, pvh_gen;
3764
bool rv;
3765
3766
rv = false;
3767
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3768
rw_rlock(lock);
3769
restart:
3770
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3771
pmap = PV_PMAP(pv);
3772
if (!PMAP_TRYLOCK(pmap)) {
3773
md_gen = m->md.pv_gen;
3774
rw_runlock(lock);
3775
PMAP_LOCK(pmap);
3776
rw_rlock(lock);
3777
if (md_gen != m->md.pv_gen) {
3778
PMAP_UNLOCK(pmap);
3779
goto restart;
3780
}
3781
}
3782
pte = pmap_pte(pmap, pv->pv_va);
3783
mask = 0;
3784
if (modified)
3785
mask |= PG_RW | PG_M;
3786
if (accessed)
3787
mask |= PG_V | PG_A;
3788
rv = (be64toh(*pte) & mask) == mask;
3789
PMAP_UNLOCK(pmap);
3790
if (rv)
3791
goto out;
3792
}
3793
if ((m->flags & PG_FICTITIOUS) == 0) {
3794
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3795
TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
3796
pmap = PV_PMAP(pv);
3797
if (!PMAP_TRYLOCK(pmap)) {
3798
md_gen = m->md.pv_gen;
3799
pvh_gen = pvh->pv_gen;
3800
rw_runlock(lock);
3801
PMAP_LOCK(pmap);
3802
rw_rlock(lock);
3803
if (md_gen != m->md.pv_gen ||
3804
pvh_gen != pvh->pv_gen) {
3805
PMAP_UNLOCK(pmap);
3806
goto restart;
3807
}
3808
}
3809
pte = pmap_pml3e(pmap, pv->pv_va);
3810
mask = 0;
3811
if (modified)
3812
mask |= PG_RW | PG_M;
3813
if (accessed)
3814
mask |= PG_V | PG_A;
3815
rv = (be64toh(*pte) & mask) == mask;
3816
PMAP_UNLOCK(pmap);
3817
if (rv)
3818
goto out;
3819
}
3820
}
3821
out:
3822
rw_runlock(lock);
3823
return (rv);
3824
}
3825
3826
/*
3827
* pmap_is_modified:
3828
*
3829
* Return whether or not the specified physical page was modified
3830
* in any physical maps.
3831
*/
3832
bool
3833
mmu_radix_is_modified(vm_page_t m)
3834
{
3835
3836
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3837
("pmap_is_modified: page %p is not managed", m));
3838
3839
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3840
/*
3841
* If the page is not busied then this check is racy.
3842
*/
3843
if (!pmap_page_is_write_mapped(m))
3844
return (false);
3845
return (pmap_page_test_mappings(m, false, true));
3846
}
3847
3848
bool
3849
mmu_radix_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3850
{
3851
pml3_entry_t *l3e;
3852
pt_entry_t *pte;
3853
bool rv;
3854
3855
CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
3856
rv = false;
3857
PMAP_LOCK(pmap);
3858
l3e = pmap_pml3e(pmap, addr);
3859
if (l3e != NULL && (be64toh(*l3e) & (RPTE_LEAF | PG_V)) == PG_V) {
3860
pte = pmap_l3e_to_pte(l3e, addr);
3861
rv = (be64toh(*pte) & PG_V) == 0;
3862
}
3863
PMAP_UNLOCK(pmap);
3864
return (rv);
3865
}
3866
3867
bool
3868
mmu_radix_is_referenced(vm_page_t m)
3869
{
3870
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3871
("pmap_is_referenced: page %p is not managed", m));
3872
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3873
return (pmap_page_test_mappings(m, true, false));
3874
}
3875
3876
/*
3877
* pmap_ts_referenced:
3878
*
3879
* Return a count of reference bits for a page, clearing those bits.
3880
* It is not necessary for every reference bit to be cleared, but it
3881
* is necessary that 0 only be returned when there are truly no
3882
* reference bits set.
3883
*
3884
* As an optimization, update the page's dirty field if a modified bit is
3885
* found while counting reference bits. This opportunistic update can be
3886
* performed at low cost and can eliminate the need for some future calls
3887
* to pmap_is_modified(). However, since this function stops after
3888
* finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
3889
* dirty pages. Those dirty pages will only be detected by a future call
3890
* to pmap_is_modified().
3891
*
3892
* A DI block is not needed within this function, because
3893
* invalidations are performed before the PV list lock is
3894
* released.
3895
*/
3896
int
3897
mmu_radix_ts_referenced(vm_page_t m)
3898
{
3899
struct md_page *pvh;
3900
pv_entry_t pv, pvf;
3901
pmap_t pmap;
3902
struct rwlock *lock;
3903
pml3_entry_t oldl3e, *l3e;
3904
pt_entry_t *pte;
3905
vm_paddr_t pa;
3906
int cleared, md_gen, not_cleared, pvh_gen;
3907
struct spglist free;
3908
3909
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3910
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3911
("pmap_ts_referenced: page %p is not managed", m));
3912
SLIST_INIT(&free);
3913
cleared = 0;
3914
pa = VM_PAGE_TO_PHYS(m);
3915
lock = PHYS_TO_PV_LIST_LOCK(pa);
3916
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
3917
rw_wlock(lock);
3918
retry:
3919
not_cleared = 0;
3920
if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
3921
goto small_mappings;
3922
pv = pvf;
3923
do {
3924
if (pvf == NULL)
3925
pvf = pv;
3926
pmap = PV_PMAP(pv);
3927
if (!PMAP_TRYLOCK(pmap)) {
3928
pvh_gen = pvh->pv_gen;
3929
rw_wunlock(lock);
3930
PMAP_LOCK(pmap);
3931
rw_wlock(lock);
3932
if (pvh_gen != pvh->pv_gen) {
3933
PMAP_UNLOCK(pmap);
3934
goto retry;
3935
}
3936
}
3937
l3e = pmap_pml3e(pmap, pv->pv_va);
3938
oldl3e = be64toh(*l3e);
3939
if ((oldl3e & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3940
/*
3941
* Although "oldpde" is mapping a 2MB page, because
3942
* this function is called at a 4KB page granularity,
3943
* we only update the 4KB page under test.
3944
*/
3945
vm_page_dirty(m);
3946
}
3947
if ((oldl3e & PG_A) != 0) {
3948
/*
3949
* Since this reference bit is shared by 512 4KB
3950
* pages, it should not be cleared every time it is
3951
* tested. Apply a simple "hash" function on the
3952
* physical page number, the virtual superpage number,
3953
* and the pmap address to select one 4KB page out of
3954
* the 512 on which testing the reference bit will
3955
* result in clearing that reference bit. This
3956
* function is designed to avoid the selection of the
3957
* same 4KB page for every 2MB page mapping.
3958
*
3959
* On demotion, a mapping that hasn't been referenced
3960
* is simply destroyed. To avoid the possibility of a
3961
* subsequent page fault on a demoted wired mapping,
3962
* always leave its reference bit set. Moreover,
3963
* since the superpage is wired, the current state of
3964
* its reference bit won't affect page replacement.
3965
*/
3966
if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L3_PAGE_SIZE_SHIFT) ^
3967
(uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
3968
(oldl3e & PG_W) == 0) {
3969
atomic_clear_long(l3e, htobe64(PG_A));
3970
pmap_invalidate_page(pmap, pv->pv_va);
3971
cleared++;
3972
KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
3973
("inconsistent pv lock %p %p for page %p",
3974
lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
3975
} else
3976
not_cleared++;
3977
}
3978
PMAP_UNLOCK(pmap);
3979
/* Rotate the PV list if it has more than one entry. */
3980
if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3981
TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
3982
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
3983
pvh->pv_gen++;
3984
}
3985
if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
3986
goto out;
3987
} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
3988
small_mappings:
3989
if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
3990
goto out;
3991
pv = pvf;
3992
do {
3993
if (pvf == NULL)
3994
pvf = pv;
3995
pmap = PV_PMAP(pv);
3996
if (!PMAP_TRYLOCK(pmap)) {
3997
pvh_gen = pvh->pv_gen;
3998
md_gen = m->md.pv_gen;
3999
rw_wunlock(lock);
4000
PMAP_LOCK(pmap);
4001
rw_wlock(lock);
4002
if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
4003
PMAP_UNLOCK(pmap);
4004
goto retry;
4005
}
4006
}
4007
l3e = pmap_pml3e(pmap, pv->pv_va);
4008
KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
4009
("pmap_ts_referenced: found a 2mpage in page %p's pv list",
4010
m));
4011
pte = pmap_l3e_to_pte(l3e, pv->pv_va);
4012
if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW))
4013
vm_page_dirty(m);
4014
if ((be64toh(*pte) & PG_A) != 0) {
4015
atomic_clear_long(pte, htobe64(PG_A));
4016
pmap_invalidate_page(pmap, pv->pv_va);
4017
cleared++;
4018
}
4019
PMAP_UNLOCK(pmap);
4020
/* Rotate the PV list if it has more than one entry. */
4021
if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
4022
TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
4023
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
4024
m->md.pv_gen++;
4025
}
4026
} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
4027
not_cleared < PMAP_TS_REFERENCED_MAX);
4028
out:
4029
rw_wunlock(lock);
4030
vm_page_free_pages_toq(&free, true);
4031
return (cleared + not_cleared);
4032
}
4033
4034
static vm_offset_t
4035
mmu_radix_map(vm_offset_t *virt __unused, vm_paddr_t start,
4036
vm_paddr_t end, int prot __unused)
4037
{
4038
4039
CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, virt, start, end,
4040
prot);
4041
return (PHYS_TO_DMAP(start));
4042
}
4043
4044
void
4045
mmu_radix_object_init_pt(pmap_t pmap, vm_offset_t addr,
4046
vm_object_t object, vm_pindex_t pindex, vm_size_t size)
4047
{
4048
struct pctrie_iter pages;
4049
pml3_entry_t *l3e;
4050
vm_paddr_t pa, ptepa;
4051
vm_page_t p, pdpg;
4052
vm_memattr_t ma;
4053
4054
CTR6(KTR_PMAP, "%s(%p, %#x, %p, %u, %#x)", __func__, pmap, addr,
4055
object, pindex, size);
4056
VM_OBJECT_ASSERT_WLOCKED(object);
4057
KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4058
("pmap_object_init_pt: non-device object"));
4059
/* NB: size can be logically ored with addr here */
4060
if ((addr & L3_PAGE_MASK) == 0 && (size & L3_PAGE_MASK) == 0) {
4061
if (!mmu_radix_ps_enabled(pmap))
4062
return;
4063
if (!vm_object_populate(object, pindex, pindex + atop(size)))
4064
return;
4065
vm_page_iter_init(&pages, object);
4066
p = vm_radix_iter_lookup(&pages, pindex);
4067
4068
KASSERT(p->valid == VM_PAGE_BITS_ALL,
4069
("pmap_object_init_pt: invalid page %p", p));
4070
ma = p->md.mdpg_cache_attrs;
4071
4072
/*
4073
* Abort the mapping if the first page is not physically
4074
* aligned to a 2MB page boundary.
4075
*/
4076
ptepa = VM_PAGE_TO_PHYS(p);
4077
if (ptepa & L3_PAGE_MASK)
4078
return;
4079
4080
/*
4081
* Skip the first page. Abort the mapping if the rest of
4082
* the pages are not physically contiguous or have differing
4083
* memory attributes.
4084
*/
4085
for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4086
pa += PAGE_SIZE) {
4087
p = vm_radix_iter_next(&pages);
4088
KASSERT(p->valid == VM_PAGE_BITS_ALL,
4089
("pmap_object_init_pt: invalid page %p", p));
4090
if (pa != VM_PAGE_TO_PHYS(p) ||
4091
ma != p->md.mdpg_cache_attrs)
4092
return;
4093
}
4094
4095
PMAP_LOCK(pmap);
4096
for (pa = ptepa | pmap_cache_bits(ma);
4097
pa < ptepa + size; pa += L3_PAGE_SIZE) {
4098
pdpg = pmap_allocl3e(pmap, addr, NULL);
4099
if (pdpg == NULL) {
4100
/*
4101
* The creation of mappings below is only an
4102
* optimization. If a page directory page
4103
* cannot be allocated without blocking,
4104
* continue on to the next mapping rather than
4105
* blocking.
4106
*/
4107
addr += L3_PAGE_SIZE;
4108
continue;
4109
}
4110
l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4111
l3e = &l3e[pmap_pml3e_index(addr)];
4112
if ((be64toh(*l3e) & PG_V) == 0) {
4113
pa |= PG_M | PG_A | PG_RW;
4114
pte_store(l3e, pa);
4115
pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
4116
counter_u64_add(pmap_l3e_mappings, 1);
4117
} else {
4118
/* Continue on if the PDE is already valid. */
4119
pdpg->ref_count--;
4120
KASSERT(pdpg->ref_count > 0,
4121
("pmap_object_init_pt: missing reference "
4122
"to page directory page, va: 0x%lx", addr));
4123
}
4124
addr += L3_PAGE_SIZE;
4125
}
4126
ptesync();
4127
PMAP_UNLOCK(pmap);
4128
}
4129
}
4130
4131
bool
4132
mmu_radix_page_exists_quick(pmap_t pmap, vm_page_t m)
4133
{
4134
struct md_page *pvh;
4135
struct rwlock *lock;
4136
pv_entry_t pv;
4137
int loops = 0;
4138
bool rv;
4139
4140
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4141
("pmap_page_exists_quick: page %p is not managed", m));
4142
CTR3(KTR_PMAP, "%s(%p, %p)", __func__, pmap, m);
4143
rv = false;
4144
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4145
rw_rlock(lock);
4146
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4147
if (PV_PMAP(pv) == pmap) {
4148
rv = true;
4149
break;
4150
}
4151
loops++;
4152
if (loops >= 16)
4153
break;
4154
}
4155
if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4156
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4157
TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4158
if (PV_PMAP(pv) == pmap) {
4159
rv = true;
4160
break;
4161
}
4162
loops++;
4163
if (loops >= 16)
4164
break;
4165
}
4166
}
4167
rw_runlock(lock);
4168
return (rv);
4169
}
4170
4171
void
4172
mmu_radix_page_init(vm_page_t m)
4173
{
4174
4175
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4176
TAILQ_INIT(&m->md.pv_list);
4177
m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
4178
}
4179
4180
int
4181
mmu_radix_page_wired_mappings(vm_page_t m)
4182
{
4183
struct rwlock *lock;
4184
struct md_page *pvh;
4185
pmap_t pmap;
4186
pt_entry_t *pte;
4187
pv_entry_t pv;
4188
int count, md_gen, pvh_gen;
4189
4190
if ((m->oflags & VPO_UNMANAGED) != 0)
4191
return (0);
4192
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4193
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4194
rw_rlock(lock);
4195
restart:
4196
count = 0;
4197
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4198
pmap = PV_PMAP(pv);
4199
if (!PMAP_TRYLOCK(pmap)) {
4200
md_gen = m->md.pv_gen;
4201
rw_runlock(lock);
4202
PMAP_LOCK(pmap);
4203
rw_rlock(lock);
4204
if (md_gen != m->md.pv_gen) {
4205
PMAP_UNLOCK(pmap);
4206
goto restart;
4207
}
4208
}
4209
pte = pmap_pte(pmap, pv->pv_va);
4210
if ((be64toh(*pte) & PG_W) != 0)
4211
count++;
4212
PMAP_UNLOCK(pmap);
4213
}
4214
if ((m->flags & PG_FICTITIOUS) == 0) {
4215
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4216
TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4217
pmap = PV_PMAP(pv);
4218
if (!PMAP_TRYLOCK(pmap)) {
4219
md_gen = m->md.pv_gen;
4220
pvh_gen = pvh->pv_gen;
4221
rw_runlock(lock);
4222
PMAP_LOCK(pmap);
4223
rw_rlock(lock);
4224
if (md_gen != m->md.pv_gen ||
4225
pvh_gen != pvh->pv_gen) {
4226
PMAP_UNLOCK(pmap);
4227
goto restart;
4228
}
4229
}
4230
pte = pmap_pml3e(pmap, pv->pv_va);
4231
if ((be64toh(*pte) & PG_W) != 0)
4232
count++;
4233
PMAP_UNLOCK(pmap);
4234
}
4235
}
4236
rw_runlock(lock);
4237
return (count);
4238
}
4239
4240
static void
4241
mmu_radix_update_proctab(int pid, pml1_entry_t l1pa)
4242
{
4243
isa3_proctab[pid].proctab0 = htobe64(RTS_SIZE | l1pa | RADIX_PGD_INDEX_SHIFT);
4244
}
4245
4246
int
4247
mmu_radix_pinit(pmap_t pmap)
4248
{
4249
vmem_addr_t pid;
4250
vm_paddr_t l1pa;
4251
4252
CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4253
4254
/*
4255
* allocate the page directory page
4256
*/
4257
pmap->pm_pml1 = uma_zalloc(zone_radix_pgd, M_WAITOK);
4258
4259
for (int j = 0; j < RADIX_PGD_SIZE_SHIFT; j++)
4260
pagezero((vm_offset_t)pmap->pm_pml1 + j * PAGE_SIZE);
4261
vm_radix_init(&pmap->pm_radix);
4262
TAILQ_INIT(&pmap->pm_pvchunk);
4263
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4264
pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4265
vmem_alloc(asid_arena, 1, M_FIRSTFIT|M_WAITOK, &pid);
4266
4267
pmap->pm_pid = pid;
4268
l1pa = DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml1);
4269
mmu_radix_update_proctab(pid, l1pa);
4270
__asm __volatile("ptesync;isync" : : : "memory");
4271
4272
return (1);
4273
}
4274
4275
/*
4276
* This routine is called if the desired page table page does not exist.
4277
*
4278
* If page table page allocation fails, this routine may sleep before
4279
* returning NULL. It sleeps only if a lock pointer was given.
4280
*
4281
* Note: If a page allocation fails at page table level two or three,
4282
* one or two pages may be held during the wait, only to be released
4283
* afterwards. This conservative approach is easily argued to avoid
4284
* race conditions.
4285
*/
4286
static vm_page_t
4287
_pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
4288
{
4289
vm_page_t m, pdppg, pdpg;
4290
4291
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4292
4293
/*
4294
* Allocate a page table page.
4295
*/
4296
if ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
4297
if (lockp != NULL) {
4298
RELEASE_PV_LIST_LOCK(lockp);
4299
PMAP_UNLOCK(pmap);
4300
vm_wait(NULL);
4301
PMAP_LOCK(pmap);
4302
}
4303
/*
4304
* Indicate the need to retry. While waiting, the page table
4305
* page may have been allocated.
4306
*/
4307
return (NULL);
4308
}
4309
m->pindex = ptepindex;
4310
4311
/*
4312
* Map the pagetable page into the process address space, if
4313
* it isn't already there.
4314
*/
4315
4316
if (ptepindex >= (NUPDE + NUPDPE)) {
4317
pml1_entry_t *l1e;
4318
vm_pindex_t pml1index;
4319
4320
/* Wire up a new PDPE page */
4321
pml1index = ptepindex - (NUPDE + NUPDPE);
4322
l1e = &pmap->pm_pml1[pml1index];
4323
KASSERT((be64toh(*l1e) & PG_V) == 0,
4324
("%s: L1 entry %#lx is valid", __func__, *l1e));
4325
pde_store(l1e, VM_PAGE_TO_PHYS(m));
4326
} else if (ptepindex >= NUPDE) {
4327
vm_pindex_t pml1index;
4328
vm_pindex_t pdpindex;
4329
pml1_entry_t *l1e;
4330
pml2_entry_t *l2e;
4331
4332
/* Wire up a new l2e page */
4333
pdpindex = ptepindex - NUPDE;
4334
pml1index = pdpindex >> RPTE_SHIFT;
4335
4336
l1e = &pmap->pm_pml1[pml1index];
4337
if ((be64toh(*l1e) & PG_V) == 0) {
4338
/* Have to allocate a new pdp, recurse */
4339
if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml1index,
4340
lockp) == NULL) {
4341
vm_page_unwire_noq(m);
4342
vm_page_free_zero(m);
4343
return (NULL);
4344
}
4345
} else {
4346
/* Add reference to l2e page */
4347
pdppg = PHYS_TO_VM_PAGE(be64toh(*l1e) & PG_FRAME);
4348
pdppg->ref_count++;
4349
}
4350
l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4351
4352
/* Now find the pdp page */
4353
l2e = &l2e[pdpindex & RPTE_MASK];
4354
KASSERT((be64toh(*l2e) & PG_V) == 0,
4355
("%s: L2 entry %#lx is valid", __func__, *l2e));
4356
pde_store(l2e, VM_PAGE_TO_PHYS(m));
4357
} else {
4358
vm_pindex_t pml1index;
4359
vm_pindex_t pdpindex;
4360
pml1_entry_t *l1e;
4361
pml2_entry_t *l2e;
4362
pml3_entry_t *l3e;
4363
4364
/* Wire up a new PTE page */
4365
pdpindex = ptepindex >> RPTE_SHIFT;
4366
pml1index = pdpindex >> RPTE_SHIFT;
4367
4368
/* First, find the pdp and check that its valid. */
4369
l1e = &pmap->pm_pml1[pml1index];
4370
if ((be64toh(*l1e) & PG_V) == 0) {
4371
/* Have to allocate a new pd, recurse */
4372
if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4373
lockp) == NULL) {
4374
vm_page_unwire_noq(m);
4375
vm_page_free_zero(m);
4376
return (NULL);
4377
}
4378
l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4379
l2e = &l2e[pdpindex & RPTE_MASK];
4380
} else {
4381
l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4382
l2e = &l2e[pdpindex & RPTE_MASK];
4383
if ((be64toh(*l2e) & PG_V) == 0) {
4384
/* Have to allocate a new pd, recurse */
4385
if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4386
lockp) == NULL) {
4387
vm_page_unwire_noq(m);
4388
vm_page_free_zero(m);
4389
return (NULL);
4390
}
4391
} else {
4392
/* Add reference to the pd page */
4393
pdpg = PHYS_TO_VM_PAGE(be64toh(*l2e) & PG_FRAME);
4394
pdpg->ref_count++;
4395
}
4396
}
4397
l3e = (pml3_entry_t *)PHYS_TO_DMAP(be64toh(*l2e) & PG_FRAME);
4398
4399
/* Now we know where the page directory page is */
4400
l3e = &l3e[ptepindex & RPTE_MASK];
4401
KASSERT((be64toh(*l3e) & PG_V) == 0,
4402
("%s: L3 entry %#lx is valid", __func__, *l3e));
4403
pde_store(l3e, VM_PAGE_TO_PHYS(m));
4404
}
4405
4406
pmap_resident_count_inc(pmap, 1);
4407
return (m);
4408
}
4409
static vm_page_t
4410
pmap_allocl3e(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4411
{
4412
vm_pindex_t pdpindex, ptepindex;
4413
pml2_entry_t *pdpe;
4414
vm_page_t pdpg;
4415
4416
retry:
4417
pdpe = pmap_pml2e(pmap, va);
4418
if (pdpe != NULL && (be64toh(*pdpe) & PG_V) != 0) {
4419
/* Add a reference to the pd page. */
4420
pdpg = PHYS_TO_VM_PAGE(be64toh(*pdpe) & PG_FRAME);
4421
pdpg->ref_count++;
4422
} else {
4423
/* Allocate a pd page. */
4424
ptepindex = pmap_l3e_pindex(va);
4425
pdpindex = ptepindex >> RPTE_SHIFT;
4426
pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
4427
if (pdpg == NULL && lockp != NULL)
4428
goto retry;
4429
}
4430
return (pdpg);
4431
}
4432
4433
static vm_page_t
4434
pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4435
{
4436
vm_pindex_t ptepindex;
4437
pml3_entry_t *pd;
4438
vm_page_t m;
4439
4440
/*
4441
* Calculate pagetable page index
4442
*/
4443
ptepindex = pmap_l3e_pindex(va);
4444
retry:
4445
/*
4446
* Get the page directory entry
4447
*/
4448
pd = pmap_pml3e(pmap, va);
4449
4450
/*
4451
* This supports switching from a 2MB page to a
4452
* normal 4K page.
4453
*/
4454
if (pd != NULL && (be64toh(*pd) & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V)) {
4455
if (!pmap_demote_l3e_locked(pmap, pd, va, lockp)) {
4456
/*
4457
* Invalidation of the 2MB page mapping may have caused
4458
* the deallocation of the underlying PD page.
4459
*/
4460
pd = NULL;
4461
}
4462
}
4463
4464
/*
4465
* If the page table page is mapped, we just increment the
4466
* hold count, and activate it.
4467
*/
4468
if (pd != NULL && (be64toh(*pd) & PG_V) != 0) {
4469
m = PHYS_TO_VM_PAGE(be64toh(*pd) & PG_FRAME);
4470
m->ref_count++;
4471
} else {
4472
/*
4473
* Here if the pte page isn't mapped, or if it has been
4474
* deallocated.
4475
*/
4476
m = _pmap_allocpte(pmap, ptepindex, lockp);
4477
if (m == NULL && lockp != NULL)
4478
goto retry;
4479
}
4480
return (m);
4481
}
4482
4483
static void
4484
mmu_radix_pinit0(pmap_t pmap)
4485
{
4486
4487
CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4488
PMAP_LOCK_INIT(pmap);
4489
pmap->pm_pml1 = kernel_pmap->pm_pml1;
4490
pmap->pm_pid = kernel_pmap->pm_pid;
4491
4492
vm_radix_init(&pmap->pm_radix);
4493
TAILQ_INIT(&pmap->pm_pvchunk);
4494
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4495
kernel_pmap->pm_flags =
4496
pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4497
}
4498
/*
4499
* pmap_protect_l3e: do the things to protect a 2mpage in a process
4500
*/
4501
static bool
4502
pmap_protect_l3e(pmap_t pmap, pt_entry_t *l3e, vm_offset_t sva, vm_prot_t prot)
4503
{
4504
pt_entry_t newpde, oldpde;
4505
vm_offset_t eva, va;
4506
vm_page_t m;
4507
bool anychanged;
4508
4509
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4510
KASSERT((sva & L3_PAGE_MASK) == 0,
4511
("pmap_protect_l3e: sva is not 2mpage aligned"));
4512
anychanged = false;
4513
retry:
4514
oldpde = newpde = be64toh(*l3e);
4515
if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
4516
(PG_MANAGED | PG_M | PG_RW)) {
4517
eva = sva + L3_PAGE_SIZE;
4518
for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
4519
va < eva; va += PAGE_SIZE, m++)
4520
vm_page_dirty(m);
4521
}
4522
if ((prot & VM_PROT_WRITE) == 0) {
4523
newpde &= ~(PG_RW | PG_M);
4524
newpde |= RPTE_EAA_R;
4525
}
4526
if (prot & VM_PROT_EXECUTE)
4527
newpde |= PG_X;
4528
if (newpde != oldpde) {
4529
/*
4530
* As an optimization to future operations on this PDE, clear
4531
* PG_PROMOTED. The impending invalidation will remove any
4532
* lingering 4KB page mappings from the TLB.
4533
*/
4534
if (!atomic_cmpset_long(l3e, htobe64(oldpde), htobe64(newpde & ~PG_PROMOTED)))
4535
goto retry;
4536
anychanged = true;
4537
}
4538
return (anychanged);
4539
}
4540
4541
void
4542
mmu_radix_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
4543
vm_prot_t prot)
4544
{
4545
vm_offset_t va_next;
4546
pml1_entry_t *l1e;
4547
pml2_entry_t *l2e;
4548
pml3_entry_t ptpaddr, *l3e;
4549
pt_entry_t *pte;
4550
bool anychanged;
4551
4552
CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, pmap, sva, eva,
4553
prot);
4554
4555
KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4556
if (prot == VM_PROT_NONE) {
4557
mmu_radix_remove(pmap, sva, eva);
4558
return;
4559
}
4560
4561
if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
4562
(VM_PROT_WRITE|VM_PROT_EXECUTE))
4563
return;
4564
4565
#ifdef INVARIANTS
4566
if (VERBOSE_PROTECT || pmap_logging)
4567
printf("pmap_protect(%p, %#lx, %#lx, %x) - asid: %lu\n",
4568
pmap, sva, eva, prot, pmap->pm_pid);
4569
#endif
4570
anychanged = false;
4571
4572
PMAP_LOCK(pmap);
4573
for (; sva < eva; sva = va_next) {
4574
l1e = pmap_pml1e(pmap, sva);
4575
if ((be64toh(*l1e) & PG_V) == 0) {
4576
va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
4577
if (va_next < sva)
4578
va_next = eva;
4579
continue;
4580
}
4581
4582
l2e = pmap_l1e_to_l2e(l1e, sva);
4583
if ((be64toh(*l2e) & PG_V) == 0) {
4584
va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
4585
if (va_next < sva)
4586
va_next = eva;
4587
continue;
4588
}
4589
4590
va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
4591
if (va_next < sva)
4592
va_next = eva;
4593
4594
l3e = pmap_l2e_to_l3e(l2e, sva);
4595
ptpaddr = be64toh(*l3e);
4596
4597
/*
4598
* Weed out invalid mappings.
4599
*/
4600
if (ptpaddr == 0)
4601
continue;
4602
4603
/*
4604
* Check for large page.
4605
*/
4606
if ((ptpaddr & RPTE_LEAF) != 0) {
4607
/*
4608
* Are we protecting the entire large page? If not,
4609
* demote the mapping and fall through.
4610
*/
4611
if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
4612
if (pmap_protect_l3e(pmap, l3e, sva, prot))
4613
anychanged = true;
4614
continue;
4615
} else if (!pmap_demote_l3e(pmap, l3e, sva)) {
4616
/*
4617
* The large page mapping was destroyed.
4618
*/
4619
continue;
4620
}
4621
}
4622
4623
if (va_next > eva)
4624
va_next = eva;
4625
4626
for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
4627
sva += PAGE_SIZE) {
4628
pt_entry_t obits, pbits;
4629
vm_page_t m;
4630
4631
retry:
4632
MPASS(pte == pmap_pte(pmap, sva));
4633
obits = pbits = be64toh(*pte);
4634
if ((pbits & PG_V) == 0)
4635
continue;
4636
4637
if ((prot & VM_PROT_WRITE) == 0) {
4638
if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
4639
(PG_MANAGED | PG_M | PG_RW)) {
4640
m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4641
vm_page_dirty(m);
4642
}
4643
pbits &= ~(PG_RW | PG_M);
4644
pbits |= RPTE_EAA_R;
4645
}
4646
if (prot & VM_PROT_EXECUTE)
4647
pbits |= PG_X;
4648
4649
if (pbits != obits) {
4650
if (!atomic_cmpset_long(pte, htobe64(obits), htobe64(pbits)))
4651
goto retry;
4652
if (obits & (PG_A|PG_M)) {
4653
anychanged = true;
4654
#ifdef INVARIANTS
4655
if (VERBOSE_PROTECT || pmap_logging)
4656
printf("%#lx %#lx -> %#lx\n",
4657
sva, obits, pbits);
4658
#endif
4659
}
4660
}
4661
}
4662
}
4663
if (anychanged)
4664
pmap_invalidate_all(pmap);
4665
PMAP_UNLOCK(pmap);
4666
}
4667
4668
void
4669
mmu_radix_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4670
{
4671
4672
CTR4(KTR_PMAP, "%s(%#x, %p, %d)", __func__, sva, ma, count);
4673
pt_entry_t oldpte, pa, *pte;
4674
vm_page_t m;
4675
uint64_t cache_bits, attr_bits;
4676
vm_offset_t va;
4677
4678
oldpte = 0;
4679
attr_bits = RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
4680
va = sva;
4681
pte = kvtopte(va);
4682
while (va < sva + PAGE_SIZE * count) {
4683
if (__predict_false((va & L3_PAGE_MASK) == 0))
4684
pte = kvtopte(va);
4685
MPASS(pte == pmap_pte(kernel_pmap, va));
4686
4687
/*
4688
* XXX there has to be a more efficient way than traversing
4689
* the page table every time - but go for correctness for
4690
* today
4691
*/
4692
4693
m = *ma++;
4694
cache_bits = pmap_cache_bits(m->md.mdpg_cache_attrs);
4695
pa = VM_PAGE_TO_PHYS(m) | cache_bits | attr_bits;
4696
if (be64toh(*pte) != pa) {
4697
oldpte |= be64toh(*pte);
4698
pte_store(pte, pa);
4699
}
4700
va += PAGE_SIZE;
4701
pte++;
4702
}
4703
if (__predict_false((oldpte & RPTE_VALID) != 0))
4704
pmap_invalidate_range(kernel_pmap, sva, sva + count *
4705
PAGE_SIZE);
4706
else
4707
ptesync();
4708
}
4709
4710
void
4711
mmu_radix_qremove(vm_offset_t sva, int count)
4712
{
4713
vm_offset_t va;
4714
pt_entry_t *pte;
4715
4716
CTR3(KTR_PMAP, "%s(%#x, %d)", __func__, sva, count);
4717
KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode or dmap va %lx", sva));
4718
4719
va = sva;
4720
pte = kvtopte(va);
4721
while (va < sva + PAGE_SIZE * count) {
4722
if (__predict_false((va & L3_PAGE_MASK) == 0))
4723
pte = kvtopte(va);
4724
pte_clear(pte);
4725
pte++;
4726
va += PAGE_SIZE;
4727
}
4728
pmap_invalidate_range(kernel_pmap, sva, va);
4729
}
4730
4731
/***************************************************
4732
* Page table page management routines.....
4733
***************************************************/
4734
/*
4735
* Schedule the specified unused page table page to be freed. Specifically,
4736
* add the page to the specified list of pages that will be released to the
4737
* physical memory manager after the TLB has been updated.
4738
*/
4739
static __inline void
4740
pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
4741
{
4742
4743
if (set_PG_ZERO)
4744
m->flags |= PG_ZERO;
4745
else
4746
m->flags &= ~PG_ZERO;
4747
SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4748
}
4749
4750
/*
4751
* Inserts the specified page table page into the specified pmap's collection
4752
* of idle page table pages. Each of a pmap's page table pages is responsible
4753
* for mapping a distinct range of virtual addresses. The pmap's collection is
4754
* ordered by this virtual address range.
4755
*/
4756
static __inline int
4757
pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
4758
{
4759
4760
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4761
return (vm_radix_insert(&pmap->pm_radix, mpte));
4762
}
4763
4764
/*
4765
* Removes the page table page mapping the specified virtual address from the
4766
* specified pmap's collection of idle page table pages, and returns it.
4767
* Otherwise, returns NULL if there is no page table page corresponding to the
4768
* specified virtual address.
4769
*/
4770
static __inline vm_page_t
4771
pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4772
{
4773
4774
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4775
return (vm_radix_remove(&pmap->pm_radix, pmap_l3e_pindex(va)));
4776
}
4777
4778
/*
4779
* Decrements a page table page's wire count, which is used to record the
4780
* number of valid page table entries within the page. If the wire count
4781
* drops to zero, then the page table page is unmapped. Returns true if the
4782
* page table page was unmapped and false otherwise.
4783
*/
4784
static inline bool
4785
pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4786
{
4787
4788
--m->ref_count;
4789
if (m->ref_count == 0) {
4790
_pmap_unwire_ptp(pmap, va, m, free);
4791
return (true);
4792
} else
4793
return (false);
4794
}
4795
4796
static void
4797
_pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4798
{
4799
4800
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4801
/*
4802
* unmap the page table page
4803
*/
4804
if (m->pindex >= NUPDE + NUPDPE) {
4805
/* PDP page */
4806
pml1_entry_t *pml1;
4807
pml1 = pmap_pml1e(pmap, va);
4808
*pml1 = 0;
4809
} else if (m->pindex >= NUPDE) {
4810
/* PD page */
4811
pml2_entry_t *l2e;
4812
l2e = pmap_pml2e(pmap, va);
4813
*l2e = 0;
4814
} else {
4815
/* PTE page */
4816
pml3_entry_t *l3e;
4817
l3e = pmap_pml3e(pmap, va);
4818
*l3e = 0;
4819
}
4820
pmap_resident_count_dec(pmap, 1);
4821
if (m->pindex < NUPDE) {
4822
/* We just released a PT, unhold the matching PD */
4823
vm_page_t pdpg;
4824
4825
pdpg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml2e(pmap, va)) & PG_FRAME);
4826
pmap_unwire_ptp(pmap, va, pdpg, free);
4827
}
4828
else if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
4829
/* We just released a PD, unhold the matching PDP */
4830
vm_page_t pdppg;
4831
4832
pdppg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml1e(pmap, va)) & PG_FRAME);
4833
pmap_unwire_ptp(pmap, va, pdppg, free);
4834
}
4835
4836
/*
4837
* Put page on a list so that it is released after
4838
* *ALL* TLB shootdown is done
4839
*/
4840
pmap_add_delayed_free_list(m, free, true);
4841
}
4842
4843
/*
4844
* After removing a page table entry, this routine is used to
4845
* conditionally free the page, and manage the hold/wire counts.
4846
*/
4847
static int
4848
pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pml3_entry_t ptepde,
4849
struct spglist *free)
4850
{
4851
vm_page_t mpte;
4852
4853
if (va >= VM_MAXUSER_ADDRESS)
4854
return (0);
4855
KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4856
mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4857
return (pmap_unwire_ptp(pmap, va, mpte, free));
4858
}
4859
4860
void
4861
mmu_radix_release(pmap_t pmap)
4862
{
4863
4864
CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4865
KASSERT(pmap->pm_stats.resident_count == 0,
4866
("pmap_release: pmap resident count %ld != 0",
4867
pmap->pm_stats.resident_count));
4868
KASSERT(vm_radix_is_empty(&pmap->pm_radix),
4869
("pmap_release: pmap has reserved page table page(s)"));
4870
4871
pmap_invalidate_all(pmap);
4872
isa3_proctab[pmap->pm_pid].proctab0 = 0;
4873
uma_zfree(zone_radix_pgd, pmap->pm_pml1);
4874
vmem_free(asid_arena, pmap->pm_pid, 1);
4875
}
4876
4877
/*
4878
* Create the PV entry for a 2MB page mapping. Always returns true unless the
4879
* flag PMAP_ENTER_NORECLAIM is specified. If that flag is specified, returns
4880
* false if the PV entry cannot be allocated without resorting to reclamation.
4881
*/
4882
static bool
4883
pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t pde, u_int flags,
4884
struct rwlock **lockp)
4885
{
4886
struct md_page *pvh;
4887
pv_entry_t pv;
4888
vm_paddr_t pa;
4889
4890
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4891
/* Pass NULL instead of the lock pointer to disable reclamation. */
4892
if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
4893
NULL : lockp)) == NULL)
4894
return (false);
4895
pv->pv_va = va;
4896
pa = pde & PG_PS_FRAME;
4897
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
4898
pvh = pa_to_pvh(pa);
4899
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
4900
pvh->pv_gen++;
4901
return (true);
4902
}
4903
4904
/*
4905
* Fills a page table page with mappings to consecutive physical pages.
4906
*/
4907
static void
4908
pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
4909
{
4910
pt_entry_t *pte;
4911
4912
for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
4913
*pte = htobe64(newpte);
4914
newpte += PAGE_SIZE;
4915
}
4916
}
4917
4918
static bool
4919
pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va)
4920
{
4921
struct rwlock *lock;
4922
bool rv;
4923
4924
lock = NULL;
4925
rv = pmap_demote_l3e_locked(pmap, pde, va, &lock);
4926
if (lock != NULL)
4927
rw_wunlock(lock);
4928
return (rv);
4929
}
4930
4931
static bool
4932
pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
4933
struct rwlock **lockp)
4934
{
4935
pml3_entry_t oldpde;
4936
pt_entry_t *firstpte;
4937
vm_paddr_t mptepa;
4938
vm_page_t mpte;
4939
struct spglist free;
4940
vm_offset_t sva;
4941
4942
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4943
oldpde = be64toh(*l3e);
4944
KASSERT((oldpde & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
4945
("pmap_demote_l3e: oldpde is missing RPTE_LEAF and/or PG_V %lx",
4946
oldpde));
4947
if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
4948
NULL) {
4949
KASSERT((oldpde & PG_W) == 0,
4950
("pmap_demote_l3e: page table page for a wired mapping"
4951
" is missing"));
4952
4953
/*
4954
* Invalidate the 2MB page mapping and return "failure" if the
4955
* mapping was never accessed or the allocation of the new
4956
* page table page fails. If the 2MB page mapping belongs to
4957
* the direct map region of the kernel's address space, then
4958
* the page allocation request specifies the highest possible
4959
* priority (VM_ALLOC_INTERRUPT). Otherwise, the priority is
4960
* normal. Page table pages are preallocated for every other
4961
* part of the kernel address space, so the direct map region
4962
* is the only part of the kernel address space that must be
4963
* handled here.
4964
*/
4965
if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc_noobj(
4966
(va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS ?
4967
VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED)) == NULL) {
4968
SLIST_INIT(&free);
4969
sva = trunc_2mpage(va);
4970
pmap_remove_l3e(pmap, l3e, sva, &free, lockp);
4971
pmap_invalidate_l3e_page(pmap, sva, oldpde);
4972
vm_page_free_pages_toq(&free, true);
4973
CTR2(KTR_PMAP, "pmap_demote_l3e: failure for va %#lx"
4974
" in pmap %p", va, pmap);
4975
return (false);
4976
}
4977
mpte->pindex = pmap_l3e_pindex(va);
4978
if (va < VM_MAXUSER_ADDRESS)
4979
pmap_resident_count_inc(pmap, 1);
4980
}
4981
mptepa = VM_PAGE_TO_PHYS(mpte);
4982
firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
4983
KASSERT((oldpde & PG_A) != 0,
4984
("pmap_demote_l3e: oldpde is missing PG_A"));
4985
KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
4986
("pmap_demote_l3e: oldpde is missing PG_M"));
4987
4988
/*
4989
* If the page table page is new, initialize it.
4990
*/
4991
if (mpte->ref_count == 1) {
4992
mpte->ref_count = NPTEPG;
4993
pmap_fill_ptp(firstpte, oldpde);
4994
}
4995
4996
KASSERT((be64toh(*firstpte) & PG_FRAME) == (oldpde & PG_FRAME),
4997
("pmap_demote_l3e: firstpte and newpte map different physical"
4998
" addresses"));
4999
5000
/*
5001
* If the mapping has changed attributes, update the page table
5002
* entries.
5003
*/
5004
if ((be64toh(*firstpte) & PG_PTE_PROMOTE) != (oldpde & PG_PTE_PROMOTE))
5005
pmap_fill_ptp(firstpte, oldpde);
5006
5007
/*
5008
* The spare PV entries must be reserved prior to demoting the
5009
* mapping, that is, prior to changing the PDE. Otherwise, the state
5010
* of the PDE and the PV lists will be inconsistent, which can result
5011
* in reclaim_pv_chunk() attempting to remove a PV entry from the
5012
* wrong PV list and pmap_pv_demote_l3e() failing to find the expected
5013
* PV entry for the 2MB page mapping that is being demoted.
5014
*/
5015
if ((oldpde & PG_MANAGED) != 0)
5016
reserve_pv_entries(pmap, NPTEPG - 1, lockp);
5017
5018
/*
5019
* Demote the mapping. This pmap is locked. The old PDE has
5020
* PG_A set. If the old PDE has PG_RW set, it also has PG_M
5021
* set. Thus, there is no danger of a race with another
5022
* processor changing the setting of PG_A and/or PG_M between
5023
* the read above and the store below.
5024
*/
5025
pde_store(l3e, mptepa);
5026
pmap_invalidate_l3e_page(pmap, trunc_2mpage(va), oldpde);
5027
/*
5028
* Demote the PV entry.
5029
*/
5030
if ((oldpde & PG_MANAGED) != 0)
5031
pmap_pv_demote_l3e(pmap, va, oldpde & PG_PS_FRAME, lockp);
5032
5033
counter_u64_add(pmap_l3e_demotions, 1);
5034
CTR2(KTR_PMAP, "pmap_demote_l3e: success for va %#lx"
5035
" in pmap %p", va, pmap);
5036
return (true);
5037
}
5038
5039
/*
5040
* pmap_remove_kernel_pde: Remove a kernel superpage mapping.
5041
*/
5042
static void
5043
pmap_remove_kernel_l3e(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va)
5044
{
5045
vm_paddr_t mptepa;
5046
vm_page_t mpte;
5047
5048
KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
5049
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5050
mpte = pmap_remove_pt_page(pmap, va);
5051
if (mpte == NULL)
5052
panic("pmap_remove_kernel_pde: Missing pt page.");
5053
5054
mptepa = VM_PAGE_TO_PHYS(mpte);
5055
5056
/*
5057
* Initialize the page table page.
5058
*/
5059
pagezero(PHYS_TO_DMAP(mptepa));
5060
5061
/*
5062
* Demote the mapping.
5063
*/
5064
pde_store(l3e, mptepa);
5065
ptesync();
5066
}
5067
5068
/*
5069
* pmap_remove_l3e: do the things to unmap a superpage in a process
5070
*/
5071
static int
5072
pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
5073
struct spglist *free, struct rwlock **lockp)
5074
{
5075
struct md_page *pvh;
5076
pml3_entry_t oldpde;
5077
vm_offset_t eva, va;
5078
vm_page_t m, mpte;
5079
5080
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5081
KASSERT((sva & L3_PAGE_MASK) == 0,
5082
("pmap_remove_l3e: sva is not 2mpage aligned"));
5083
oldpde = be64toh(pte_load_clear(pdq));
5084
if (oldpde & PG_W)
5085
pmap->pm_stats.wired_count -= (L3_PAGE_SIZE / PAGE_SIZE);
5086
pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5087
if (oldpde & PG_MANAGED) {
5088
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
5089
pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
5090
pmap_pvh_free(pvh, pmap, sva);
5091
eva = sva + L3_PAGE_SIZE;
5092
for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
5093
va < eva; va += PAGE_SIZE, m++) {
5094
if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
5095
vm_page_dirty(m);
5096
if (oldpde & PG_A)
5097
vm_page_aflag_set(m, PGA_REFERENCED);
5098
if (TAILQ_EMPTY(&m->md.pv_list) &&
5099
TAILQ_EMPTY(&pvh->pv_list))
5100
vm_page_aflag_clear(m, PGA_WRITEABLE);
5101
}
5102
}
5103
if (pmap == kernel_pmap) {
5104
pmap_remove_kernel_l3e(pmap, pdq, sva);
5105
} else {
5106
mpte = pmap_remove_pt_page(pmap, sva);
5107
if (mpte != NULL) {
5108
pmap_resident_count_dec(pmap, 1);
5109
KASSERT(mpte->ref_count == NPTEPG,
5110
("pmap_remove_l3e: pte page wire count error"));
5111
mpte->ref_count = 0;
5112
pmap_add_delayed_free_list(mpte, free, false);
5113
}
5114
}
5115
return (pmap_unuse_pt(pmap, sva, be64toh(*pmap_pml2e(pmap, sva)), free));
5116
}
5117
5118
/*
5119
* pmap_remove_pte: do the things to unmap a page in a process
5120
*/
5121
static int
5122
pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
5123
pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
5124
{
5125
struct md_page *pvh;
5126
pt_entry_t oldpte;
5127
vm_page_t m;
5128
5129
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5130
oldpte = be64toh(pte_load_clear(ptq));
5131
if (oldpte & RPTE_WIRED)
5132
pmap->pm_stats.wired_count -= 1;
5133
pmap_resident_count_dec(pmap, 1);
5134
if (oldpte & RPTE_MANAGED) {
5135
m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
5136
if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5137
vm_page_dirty(m);
5138
if (oldpte & PG_A)
5139
vm_page_aflag_set(m, PGA_REFERENCED);
5140
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5141
pmap_pvh_free(&m->md, pmap, va);
5142
if (TAILQ_EMPTY(&m->md.pv_list) &&
5143
(m->flags & PG_FICTITIOUS) == 0) {
5144
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5145
if (TAILQ_EMPTY(&pvh->pv_list))
5146
vm_page_aflag_clear(m, PGA_WRITEABLE);
5147
}
5148
}
5149
return (pmap_unuse_pt(pmap, va, ptepde, free));
5150
}
5151
5152
/*
5153
* Remove a single page from a process address space
5154
*/
5155
static bool
5156
pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *l3e,
5157
struct spglist *free)
5158
{
5159
struct rwlock *lock;
5160
pt_entry_t *pte;
5161
bool invalidate_all;
5162
5163
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5164
if ((be64toh(*l3e) & RPTE_VALID) == 0) {
5165
return (false);
5166
}
5167
pte = pmap_l3e_to_pte(l3e, va);
5168
if ((be64toh(*pte) & RPTE_VALID) == 0) {
5169
return (false);
5170
}
5171
lock = NULL;
5172
5173
invalidate_all = pmap_remove_pte(pmap, pte, va, be64toh(*l3e), free, &lock);
5174
if (lock != NULL)
5175
rw_wunlock(lock);
5176
if (!invalidate_all)
5177
pmap_invalidate_page(pmap, va);
5178
return (invalidate_all);
5179
}
5180
5181
/*
5182
* Removes the specified range of addresses from the page table page.
5183
*/
5184
static bool
5185
pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5186
pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp)
5187
{
5188
pt_entry_t *pte;
5189
vm_offset_t va;
5190
bool anyvalid;
5191
5192
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5193
anyvalid = false;
5194
va = eva;
5195
for (pte = pmap_l3e_to_pte(l3e, sva); sva != eva; pte++,
5196
sva += PAGE_SIZE) {
5197
MPASS(pte == pmap_pte(pmap, sva));
5198
if (*pte == 0) {
5199
if (va != eva) {
5200
anyvalid = true;
5201
va = eva;
5202
}
5203
continue;
5204
}
5205
if (va == eva)
5206
va = sva;
5207
if (pmap_remove_pte(pmap, pte, sva, be64toh(*l3e), free, lockp)) {
5208
anyvalid = true;
5209
sva += PAGE_SIZE;
5210
break;
5211
}
5212
}
5213
if (anyvalid)
5214
pmap_invalidate_all(pmap);
5215
else if (va != eva)
5216
pmap_invalidate_range(pmap, va, sva);
5217
return (anyvalid);
5218
}
5219
5220
void
5221
mmu_radix_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5222
{
5223
struct rwlock *lock;
5224
vm_offset_t va_next;
5225
pml1_entry_t *l1e;
5226
pml2_entry_t *l2e;
5227
pml3_entry_t ptpaddr, *l3e;
5228
struct spglist free;
5229
bool anyvalid;
5230
5231
CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5232
5233
/*
5234
* Perform an unsynchronized read. This is, however, safe.
5235
*/
5236
if (pmap->pm_stats.resident_count == 0)
5237
return;
5238
5239
anyvalid = false;
5240
SLIST_INIT(&free);
5241
5242
/* XXX something fishy here */
5243
sva = (sva + PAGE_MASK) & ~PAGE_MASK;
5244
eva = (eva + PAGE_MASK) & ~PAGE_MASK;
5245
5246
PMAP_LOCK(pmap);
5247
5248
/*
5249
* special handling of removing one page. a very
5250
* common operation and easy to short circuit some
5251
* code.
5252
*/
5253
if (sva + PAGE_SIZE == eva) {
5254
l3e = pmap_pml3e(pmap, sva);
5255
if (l3e && (be64toh(*l3e) & RPTE_LEAF) == 0) {
5256
anyvalid = pmap_remove_page(pmap, sva, l3e, &free);
5257
goto out;
5258
}
5259
}
5260
5261
lock = NULL;
5262
for (; sva < eva; sva = va_next) {
5263
if (pmap->pm_stats.resident_count == 0)
5264
break;
5265
l1e = pmap_pml1e(pmap, sva);
5266
if (l1e == NULL || (be64toh(*l1e) & PG_V) == 0) {
5267
va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5268
if (va_next < sva)
5269
va_next = eva;
5270
continue;
5271
}
5272
5273
l2e = pmap_l1e_to_l2e(l1e, sva);
5274
if (l2e == NULL || (be64toh(*l2e) & PG_V) == 0) {
5275
va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5276
if (va_next < sva)
5277
va_next = eva;
5278
continue;
5279
}
5280
5281
/*
5282
* Calculate index for next page table.
5283
*/
5284
va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5285
if (va_next < sva)
5286
va_next = eva;
5287
5288
l3e = pmap_l2e_to_l3e(l2e, sva);
5289
ptpaddr = be64toh(*l3e);
5290
5291
/*
5292
* Weed out invalid mappings.
5293
*/
5294
if (ptpaddr == 0)
5295
continue;
5296
5297
/*
5298
* Check for large page.
5299
*/
5300
if ((ptpaddr & RPTE_LEAF) != 0) {
5301
/*
5302
* Are we removing the entire large page? If not,
5303
* demote the mapping and fall through.
5304
*/
5305
if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5306
pmap_remove_l3e(pmap, l3e, sva, &free, &lock);
5307
anyvalid = true;
5308
continue;
5309
} else if (!pmap_demote_l3e_locked(pmap, l3e, sva,
5310
&lock)) {
5311
/* The large page mapping was destroyed. */
5312
continue;
5313
} else
5314
ptpaddr = be64toh(*l3e);
5315
}
5316
5317
/*
5318
* Limit our scan to either the end of the va represented
5319
* by the current page table page, or to the end of the
5320
* range being removed.
5321
*/
5322
if (va_next > eva)
5323
va_next = eva;
5324
5325
if (pmap_remove_ptes(pmap, sva, va_next, l3e, &free, &lock))
5326
anyvalid = true;
5327
}
5328
if (lock != NULL)
5329
rw_wunlock(lock);
5330
out:
5331
if (anyvalid)
5332
pmap_invalidate_all(pmap);
5333
PMAP_UNLOCK(pmap);
5334
vm_page_free_pages_toq(&free, true);
5335
}
5336
5337
void
5338
mmu_radix_remove_all(vm_page_t m)
5339
{
5340
struct md_page *pvh;
5341
pv_entry_t pv;
5342
pmap_t pmap;
5343
struct rwlock *lock;
5344
pt_entry_t *pte, tpte;
5345
pml3_entry_t *l3e;
5346
vm_offset_t va;
5347
struct spglist free;
5348
int pvh_gen, md_gen;
5349
5350
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5351
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5352
("pmap_remove_all: page %p is not managed", m));
5353
SLIST_INIT(&free);
5354
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5355
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5356
pa_to_pvh(VM_PAGE_TO_PHYS(m));
5357
retry:
5358
rw_wlock(lock);
5359
while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
5360
pmap = PV_PMAP(pv);
5361
if (!PMAP_TRYLOCK(pmap)) {
5362
pvh_gen = pvh->pv_gen;
5363
rw_wunlock(lock);
5364
PMAP_LOCK(pmap);
5365
rw_wlock(lock);
5366
if (pvh_gen != pvh->pv_gen) {
5367
rw_wunlock(lock);
5368
PMAP_UNLOCK(pmap);
5369
goto retry;
5370
}
5371
}
5372
va = pv->pv_va;
5373
l3e = pmap_pml3e(pmap, va);
5374
(void)pmap_demote_l3e_locked(pmap, l3e, va, &lock);
5375
PMAP_UNLOCK(pmap);
5376
}
5377
while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
5378
pmap = PV_PMAP(pv);
5379
if (!PMAP_TRYLOCK(pmap)) {
5380
pvh_gen = pvh->pv_gen;
5381
md_gen = m->md.pv_gen;
5382
rw_wunlock(lock);
5383
PMAP_LOCK(pmap);
5384
rw_wlock(lock);
5385
if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5386
rw_wunlock(lock);
5387
PMAP_UNLOCK(pmap);
5388
goto retry;
5389
}
5390
}
5391
pmap_resident_count_dec(pmap, 1);
5392
l3e = pmap_pml3e(pmap, pv->pv_va);
5393
KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_remove_all: found"
5394
" a 2mpage in page %p's pv list", m));
5395
pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5396
tpte = be64toh(pte_load_clear(pte));
5397
if (tpte & PG_W)
5398
pmap->pm_stats.wired_count--;
5399
if (tpte & PG_A)
5400
vm_page_aflag_set(m, PGA_REFERENCED);
5401
5402
/*
5403
* Update the vm_page_t clean and reference bits.
5404
*/
5405
if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5406
vm_page_dirty(m);
5407
pmap_unuse_pt(pmap, pv->pv_va, be64toh(*l3e), &free);
5408
pmap_invalidate_page(pmap, pv->pv_va);
5409
TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5410
m->md.pv_gen++;
5411
free_pv_entry(pmap, pv);
5412
PMAP_UNLOCK(pmap);
5413
}
5414
vm_page_aflag_clear(m, PGA_WRITEABLE);
5415
rw_wunlock(lock);
5416
vm_page_free_pages_toq(&free, true);
5417
}
5418
5419
/*
5420
* Destroy all managed, non-wired mappings in the given user-space
5421
* pmap. This pmap cannot be active on any processor besides the
5422
* caller.
5423
*
5424
* This function cannot be applied to the kernel pmap. Moreover, it
5425
* is not intended for general use. It is only to be used during
5426
* process termination. Consequently, it can be implemented in ways
5427
* that make it faster than pmap_remove(). First, it can more quickly
5428
* destroy mappings by iterating over the pmap's collection of PV
5429
* entries, rather than searching the page table. Second, it doesn't
5430
* have to test and clear the page table entries atomically, because
5431
* no processor is currently accessing the user address space. In
5432
* particular, a page table entry's dirty bit won't change state once
5433
* this function starts.
5434
*
5435
* Although this function destroys all of the pmap's managed,
5436
* non-wired mappings, it can delay and batch the invalidation of TLB
5437
* entries without calling pmap_delayed_invl_started() and
5438
* pmap_delayed_invl_finished(). Because the pmap is not active on
5439
* any other processor, none of these TLB entries will ever be used
5440
* before their eventual invalidation. Consequently, there is no need
5441
* for either pmap_remove_all() or pmap_remove_write() to wait for
5442
* that eventual TLB invalidation.
5443
*/
5444
5445
void
5446
mmu_radix_remove_pages(pmap_t pmap)
5447
{
5448
5449
CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
5450
pml3_entry_t ptel3e;
5451
pt_entry_t *pte, tpte;
5452
struct spglist free;
5453
vm_page_t m, mpte, mt;
5454
pv_entry_t pv;
5455
struct md_page *pvh;
5456
struct pv_chunk *pc, *npc;
5457
struct rwlock *lock;
5458
int64_t bit;
5459
uint64_t inuse, bitmask;
5460
int allfree, field, idx;
5461
#ifdef PV_STATS
5462
int freed;
5463
#endif
5464
bool superpage;
5465
vm_paddr_t pa;
5466
5467
/*
5468
* Assert that the given pmap is only active on the current
5469
* CPU. Unfortunately, we cannot block another CPU from
5470
* activating the pmap while this function is executing.
5471
*/
5472
KASSERT(pmap->pm_pid == mfspr(SPR_PID),
5473
("non-current asid %lu - expected %lu", pmap->pm_pid,
5474
mfspr(SPR_PID)));
5475
5476
lock = NULL;
5477
5478
SLIST_INIT(&free);
5479
PMAP_LOCK(pmap);
5480
TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
5481
allfree = 1;
5482
#ifdef PV_STATS
5483
freed = 0;
5484
#endif
5485
for (field = 0; field < _NPCM; field++) {
5486
inuse = ~pc->pc_map[field] & pc_freemask[field];
5487
while (inuse != 0) {
5488
bit = cnttzd(inuse);
5489
bitmask = 1UL << bit;
5490
idx = field * 64 + bit;
5491
pv = &pc->pc_pventry[idx];
5492
inuse &= ~bitmask;
5493
5494
pte = pmap_pml2e(pmap, pv->pv_va);
5495
ptel3e = be64toh(*pte);
5496
pte = pmap_l2e_to_l3e(pte, pv->pv_va);
5497
tpte = be64toh(*pte);
5498
if ((tpte & (RPTE_LEAF | PG_V)) == PG_V) {
5499
superpage = false;
5500
ptel3e = tpte;
5501
pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
5502
PG_FRAME);
5503
pte = &pte[pmap_pte_index(pv->pv_va)];
5504
tpte = be64toh(*pte);
5505
} else {
5506
/*
5507
* Keep track whether 'tpte' is a
5508
* superpage explicitly instead of
5509
* relying on RPTE_LEAF being set.
5510
*
5511
* This is because RPTE_LEAF is numerically
5512
* identical to PG_PTE_PAT and thus a
5513
* regular page could be mistaken for
5514
* a superpage.
5515
*/
5516
superpage = true;
5517
}
5518
5519
if ((tpte & PG_V) == 0) {
5520
panic("bad pte va %lx pte %lx",
5521
pv->pv_va, tpte);
5522
}
5523
5524
/*
5525
* We cannot remove wired pages from a process' mapping at this time
5526
*/
5527
if (tpte & PG_W) {
5528
allfree = 0;
5529
continue;
5530
}
5531
5532
if (superpage)
5533
pa = tpte & PG_PS_FRAME;
5534
else
5535
pa = tpte & PG_FRAME;
5536
5537
m = PHYS_TO_VM_PAGE(pa);
5538
KASSERT(m->phys_addr == pa,
5539
("vm_page_t %p phys_addr mismatch %016jx %016jx",
5540
m, (uintmax_t)m->phys_addr,
5541
(uintmax_t)tpte));
5542
5543
KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
5544
m < &vm_page_array[vm_page_array_size],
5545
("pmap_remove_pages: bad tpte %#jx",
5546
(uintmax_t)tpte));
5547
5548
pte_clear(pte);
5549
5550
/*
5551
* Update the vm_page_t clean/reference bits.
5552
*/
5553
if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5554
if (superpage) {
5555
for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5556
vm_page_dirty(mt);
5557
} else
5558
vm_page_dirty(m);
5559
}
5560
5561
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5562
5563
/* Mark free */
5564
pc->pc_map[field] |= bitmask;
5565
if (superpage) {
5566
pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5567
pvh = pa_to_pvh(tpte & PG_PS_FRAME);
5568
TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
5569
pvh->pv_gen++;
5570
if (TAILQ_EMPTY(&pvh->pv_list)) {
5571
for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5572
if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
5573
TAILQ_EMPTY(&mt->md.pv_list))
5574
vm_page_aflag_clear(mt, PGA_WRITEABLE);
5575
}
5576
mpte = pmap_remove_pt_page(pmap, pv->pv_va);
5577
if (mpte != NULL) {
5578
pmap_resident_count_dec(pmap, 1);
5579
KASSERT(mpte->ref_count == NPTEPG,
5580
("pmap_remove_pages: pte page wire count error"));
5581
mpte->ref_count = 0;
5582
pmap_add_delayed_free_list(mpte, &free, false);
5583
}
5584
} else {
5585
pmap_resident_count_dec(pmap, 1);
5586
#ifdef VERBOSE_PV
5587
printf("freeing pv (%p, %p)\n",
5588
pmap, pv);
5589
#endif
5590
TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5591
m->md.pv_gen++;
5592
if ((m->a.flags & PGA_WRITEABLE) != 0 &&
5593
TAILQ_EMPTY(&m->md.pv_list) &&
5594
(m->flags & PG_FICTITIOUS) == 0) {
5595
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5596
if (TAILQ_EMPTY(&pvh->pv_list))
5597
vm_page_aflag_clear(m, PGA_WRITEABLE);
5598
}
5599
}
5600
pmap_unuse_pt(pmap, pv->pv_va, ptel3e, &free);
5601
#ifdef PV_STATS
5602
freed++;
5603
#endif
5604
}
5605
}
5606
PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5607
PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5608
PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5609
if (allfree) {
5610
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5611
free_pv_chunk(pc);
5612
}
5613
}
5614
if (lock != NULL)
5615
rw_wunlock(lock);
5616
pmap_invalidate_all(pmap);
5617
PMAP_UNLOCK(pmap);
5618
vm_page_free_pages_toq(&free, true);
5619
}
5620
5621
void
5622
mmu_radix_remove_write(vm_page_t m)
5623
{
5624
struct md_page *pvh;
5625
pmap_t pmap;
5626
struct rwlock *lock;
5627
pv_entry_t next_pv, pv;
5628
pml3_entry_t *l3e;
5629
pt_entry_t oldpte, *pte;
5630
int pvh_gen, md_gen;
5631
5632
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5633
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5634
("pmap_remove_write: page %p is not managed", m));
5635
vm_page_assert_busied(m);
5636
5637
if (!pmap_page_is_write_mapped(m))
5638
return;
5639
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5640
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5641
pa_to_pvh(VM_PAGE_TO_PHYS(m));
5642
retry_pv_loop:
5643
rw_wlock(lock);
5644
TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
5645
pmap = PV_PMAP(pv);
5646
if (!PMAP_TRYLOCK(pmap)) {
5647
pvh_gen = pvh->pv_gen;
5648
rw_wunlock(lock);
5649
PMAP_LOCK(pmap);
5650
rw_wlock(lock);
5651
if (pvh_gen != pvh->pv_gen) {
5652
PMAP_UNLOCK(pmap);
5653
rw_wunlock(lock);
5654
goto retry_pv_loop;
5655
}
5656
}
5657
l3e = pmap_pml3e(pmap, pv->pv_va);
5658
if ((be64toh(*l3e) & PG_RW) != 0)
5659
(void)pmap_demote_l3e_locked(pmap, l3e, pv->pv_va, &lock);
5660
KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5661
("inconsistent pv lock %p %p for page %p",
5662
lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5663
PMAP_UNLOCK(pmap);
5664
}
5665
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
5666
pmap = PV_PMAP(pv);
5667
if (!PMAP_TRYLOCK(pmap)) {
5668
pvh_gen = pvh->pv_gen;
5669
md_gen = m->md.pv_gen;
5670
rw_wunlock(lock);
5671
PMAP_LOCK(pmap);
5672
rw_wlock(lock);
5673
if (pvh_gen != pvh->pv_gen ||
5674
md_gen != m->md.pv_gen) {
5675
PMAP_UNLOCK(pmap);
5676
rw_wunlock(lock);
5677
goto retry_pv_loop;
5678
}
5679
}
5680
l3e = pmap_pml3e(pmap, pv->pv_va);
5681
KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
5682
("pmap_remove_write: found a 2mpage in page %p's pv list",
5683
m));
5684
pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5685
retry:
5686
oldpte = be64toh(*pte);
5687
if (oldpte & PG_RW) {
5688
if (!atomic_cmpset_long(pte, htobe64(oldpte),
5689
htobe64((oldpte | RPTE_EAA_R) & ~(PG_RW | PG_M))))
5690
goto retry;
5691
if ((oldpte & PG_M) != 0)
5692
vm_page_dirty(m);
5693
pmap_invalidate_page(pmap, pv->pv_va);
5694
}
5695
PMAP_UNLOCK(pmap);
5696
}
5697
rw_wunlock(lock);
5698
vm_page_aflag_clear(m, PGA_WRITEABLE);
5699
}
5700
5701
/*
5702
* Clear the wired attribute from the mappings for the specified range of
5703
* addresses in the given pmap. Every valid mapping within that range
5704
* must have the wired attribute set. In contrast, invalid mappings
5705
* cannot have the wired attribute set, so they are ignored.
5706
*
5707
* The wired attribute of the page table entry is not a hardware
5708
* feature, so there is no need to invalidate any TLB entries.
5709
* Since pmap_demote_l3e() for the wired entry must never fail,
5710
* pmap_delayed_invl_started()/finished() calls around the
5711
* function are not needed.
5712
*/
5713
void
5714
mmu_radix_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5715
{
5716
vm_offset_t va_next;
5717
pml1_entry_t *l1e;
5718
pml2_entry_t *l2e;
5719
pml3_entry_t *l3e;
5720
pt_entry_t *pte;
5721
5722
CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5723
PMAP_LOCK(pmap);
5724
for (; sva < eva; sva = va_next) {
5725
l1e = pmap_pml1e(pmap, sva);
5726
if ((be64toh(*l1e) & PG_V) == 0) {
5727
va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5728
if (va_next < sva)
5729
va_next = eva;
5730
continue;
5731
}
5732
l2e = pmap_l1e_to_l2e(l1e, sva);
5733
if ((be64toh(*l2e) & PG_V) == 0) {
5734
va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5735
if (va_next < sva)
5736
va_next = eva;
5737
continue;
5738
}
5739
va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5740
if (va_next < sva)
5741
va_next = eva;
5742
l3e = pmap_l2e_to_l3e(l2e, sva);
5743
if ((be64toh(*l3e) & PG_V) == 0)
5744
continue;
5745
if ((be64toh(*l3e) & RPTE_LEAF) != 0) {
5746
if ((be64toh(*l3e) & PG_W) == 0)
5747
panic("pmap_unwire: pde %#jx is missing PG_W",
5748
(uintmax_t)(be64toh(*l3e)));
5749
5750
/*
5751
* Are we unwiring the entire large page? If not,
5752
* demote the mapping and fall through.
5753
*/
5754
if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5755
atomic_clear_long(l3e, htobe64(PG_W));
5756
pmap->pm_stats.wired_count -= L3_PAGE_SIZE /
5757
PAGE_SIZE;
5758
continue;
5759
} else if (!pmap_demote_l3e(pmap, l3e, sva))
5760
panic("pmap_unwire: demotion failed");
5761
}
5762
if (va_next > eva)
5763
va_next = eva;
5764
for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
5765
sva += PAGE_SIZE) {
5766
MPASS(pte == pmap_pte(pmap, sva));
5767
if ((be64toh(*pte) & PG_V) == 0)
5768
continue;
5769
if ((be64toh(*pte) & PG_W) == 0)
5770
panic("pmap_unwire: pte %#jx is missing PG_W",
5771
(uintmax_t)(be64toh(*pte)));
5772
5773
/*
5774
* PG_W must be cleared atomically. Although the pmap
5775
* lock synchronizes access to PG_W, another processor
5776
* could be setting PG_M and/or PG_A concurrently.
5777
*/
5778
atomic_clear_long(pte, htobe64(PG_W));
5779
pmap->pm_stats.wired_count--;
5780
}
5781
}
5782
PMAP_UNLOCK(pmap);
5783
}
5784
5785
void
5786
mmu_radix_zero_page(vm_page_t m)
5787
{
5788
vm_offset_t addr;
5789
5790
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5791
addr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5792
pagezero(addr);
5793
}
5794
5795
void
5796
mmu_radix_zero_page_area(vm_page_t m, int off, int size)
5797
{
5798
caddr_t addr;
5799
5800
CTR4(KTR_PMAP, "%s(%p, %d, %d)", __func__, m, off, size);
5801
MPASS(off + size <= PAGE_SIZE);
5802
addr = (caddr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5803
memset(addr + off, 0, size);
5804
}
5805
5806
static int
5807
mmu_radix_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5808
{
5809
pml3_entry_t *l3ep;
5810
pt_entry_t pte;
5811
vm_paddr_t pa;
5812
int val;
5813
5814
CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
5815
PMAP_LOCK(pmap);
5816
5817
l3ep = pmap_pml3e(pmap, addr);
5818
if (l3ep != NULL && (be64toh(*l3ep) & PG_V)) {
5819
if (be64toh(*l3ep) & RPTE_LEAF) {
5820
pte = be64toh(*l3ep);
5821
/* Compute the physical address of the 4KB page. */
5822
pa = ((be64toh(*l3ep) & PG_PS_FRAME) | (addr & L3_PAGE_MASK)) &
5823
PG_FRAME;
5824
val = MINCORE_PSIND(1);
5825
} else {
5826
/* Native endian PTE, do not pass to functions */
5827
pte = be64toh(*pmap_l3e_to_pte(l3ep, addr));
5828
pa = pte & PG_FRAME;
5829
val = 0;
5830
}
5831
} else {
5832
pte = 0;
5833
pa = 0;
5834
val = 0;
5835
}
5836
if ((pte & PG_V) != 0) {
5837
val |= MINCORE_INCORE;
5838
if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5839
val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5840
if ((pte & PG_A) != 0)
5841
val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5842
}
5843
if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5844
(MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5845
(pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5846
*locked_pa = pa;
5847
}
5848
PMAP_UNLOCK(pmap);
5849
return (val);
5850
}
5851
5852
void
5853
mmu_radix_activate(struct thread *td)
5854
{
5855
pmap_t pmap;
5856
uint32_t curpid;
5857
5858
CTR2(KTR_PMAP, "%s(%p)", __func__, td);
5859
critical_enter();
5860
pmap = vmspace_pmap(td->td_proc->p_vmspace);
5861
curpid = mfspr(SPR_PID);
5862
if (pmap->pm_pid > isa3_base_pid &&
5863
curpid != pmap->pm_pid) {
5864
mmu_radix_pid_set(pmap);
5865
}
5866
critical_exit();
5867
}
5868
5869
/*
5870
* Increase the starting virtual address of the given mapping if a
5871
* different alignment might result in more superpage mappings.
5872
*/
5873
void
5874
mmu_radix_align_superpage(vm_object_t object, vm_ooffset_t offset,
5875
vm_offset_t *addr, vm_size_t size)
5876
{
5877
5878
CTR5(KTR_PMAP, "%s(%p, %#x, %p, %#x)", __func__, object, offset, addr,
5879
size);
5880
vm_offset_t superpage_offset;
5881
5882
if (size < L3_PAGE_SIZE)
5883
return;
5884
if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5885
offset += ptoa(object->pg_color);
5886
superpage_offset = offset & L3_PAGE_MASK;
5887
if (size - ((L3_PAGE_SIZE - superpage_offset) & L3_PAGE_MASK) < L3_PAGE_SIZE ||
5888
(*addr & L3_PAGE_MASK) == superpage_offset)
5889
return;
5890
if ((*addr & L3_PAGE_MASK) < superpage_offset)
5891
*addr = (*addr & ~L3_PAGE_MASK) + superpage_offset;
5892
else
5893
*addr = ((*addr + L3_PAGE_MASK) & ~L3_PAGE_MASK) + superpage_offset;
5894
}
5895
5896
static void *
5897
mmu_radix_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t attr)
5898
{
5899
vm_offset_t va, tmpva, ppa, offset;
5900
5901
ppa = trunc_page(pa);
5902
offset = pa & PAGE_MASK;
5903
size = roundup2(offset + size, PAGE_SIZE);
5904
if (pa < powerpc_ptob(Maxmem))
5905
panic("bad pa: %#lx less than Maxmem %#lx\n",
5906
pa, powerpc_ptob(Maxmem));
5907
va = kva_alloc(size);
5908
if (bootverbose)
5909
printf("%s(%#lx, %lu, %d)\n", __func__, pa, size, attr);
5910
KASSERT(size > 0, ("%s(%#lx, %lu, %d)", __func__, pa, size, attr));
5911
5912
if (!va)
5913
panic("%s: Couldn't alloc kernel virtual memory", __func__);
5914
5915
for (tmpva = va; size > 0;) {
5916
mmu_radix_kenter_attr(tmpva, ppa, attr);
5917
size -= PAGE_SIZE;
5918
tmpva += PAGE_SIZE;
5919
ppa += PAGE_SIZE;
5920
}
5921
ptesync();
5922
5923
return ((void *)(va + offset));
5924
}
5925
5926
static void *
5927
mmu_radix_mapdev(vm_paddr_t pa, vm_size_t size)
5928
{
5929
5930
CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
5931
5932
return (mmu_radix_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
5933
}
5934
5935
void
5936
mmu_radix_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5937
{
5938
5939
CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, m, ma);
5940
5941
if (m->md.mdpg_cache_attrs == ma)
5942
return;
5943
5944
m->md.mdpg_cache_attrs = ma;
5945
5946
/*
5947
* If "m" is a normal page, update its direct mapping. This update
5948
* can be relied upon to perform any cache operations that are
5949
* required for data coherence.
5950
*/
5951
if ((m->flags & PG_FICTITIOUS) == 0 &&
5952
mmu_radix_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
5953
PAGE_SIZE, m->md.mdpg_cache_attrs))
5954
panic("memory attribute change on the direct map failed");
5955
}
5956
5957
static void
5958
mmu_radix_unmapdev(void *p, vm_size_t size)
5959
{
5960
vm_offset_t offset, va;
5961
5962
CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, p, size);
5963
5964
/* If we gave a direct map region in pmap_mapdev, do nothing */
5965
va = (vm_offset_t)p;
5966
if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
5967
return;
5968
5969
offset = va & PAGE_MASK;
5970
size = round_page(offset + size);
5971
va = trunc_page(va);
5972
5973
if (pmap_initialized) {
5974
mmu_radix_qremove(va, atop(size));
5975
kva_free(va, size);
5976
}
5977
}
5978
5979
void
5980
mmu_radix_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5981
{
5982
vm_paddr_t pa = 0;
5983
int sync_sz;
5984
5985
if (__predict_false(pm == NULL))
5986
pm = &curthread->td_proc->p_vmspace->vm_pmap;
5987
5988
while (sz > 0) {
5989
pa = pmap_extract(pm, va);
5990
sync_sz = PAGE_SIZE - (va & PAGE_MASK);
5991
sync_sz = min(sync_sz, sz);
5992
if (pa != 0) {
5993
pa += (va & PAGE_MASK);
5994
__syncicache((void *)PHYS_TO_DMAP(pa), sync_sz);
5995
}
5996
va += sync_sz;
5997
sz -= sync_sz;
5998
}
5999
}
6000
6001
static __inline void
6002
pmap_pte_attr(pt_entry_t *pte, uint64_t cache_bits, uint64_t mask)
6003
{
6004
uint64_t opte, npte;
6005
6006
/*
6007
* The cache mode bits are all in the low 32-bits of the
6008
* PTE, so we can just spin on updating the low 32-bits.
6009
*/
6010
do {
6011
opte = be64toh(*pte);
6012
npte = opte & ~mask;
6013
npte |= cache_bits;
6014
} while (npte != opte && !atomic_cmpset_long(pte, htobe64(opte), htobe64(npte)));
6015
}
6016
6017
/*
6018
* Tries to demote a 1GB page mapping.
6019
*/
6020
static bool
6021
pmap_demote_l2e(pmap_t pmap, pml2_entry_t *l2e, vm_offset_t va)
6022
{
6023
pml2_entry_t oldpdpe;
6024
pml3_entry_t *firstpde, newpde, *pde;
6025
vm_paddr_t pdpgpa;
6026
vm_page_t pdpg;
6027
6028
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6029
oldpdpe = be64toh(*l2e);
6030
KASSERT((oldpdpe & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
6031
("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
6032
pdpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
6033
if (pdpg == NULL) {
6034
CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
6035
" in pmap %p", va, pmap);
6036
return (false);
6037
}
6038
pdpg->pindex = va >> L2_PAGE_SIZE_SHIFT;
6039
pdpgpa = VM_PAGE_TO_PHYS(pdpg);
6040
firstpde = (pml3_entry_t *)PHYS_TO_DMAP(pdpgpa);
6041
KASSERT((oldpdpe & PG_A) != 0,
6042
("pmap_demote_pdpe: oldpdpe is missing PG_A"));
6043
KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
6044
("pmap_demote_pdpe: oldpdpe is missing PG_M"));
6045
newpde = oldpdpe;
6046
6047
/*
6048
* Initialize the page directory page.
6049
*/
6050
for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
6051
*pde = htobe64(newpde);
6052
newpde += L3_PAGE_SIZE;
6053
}
6054
6055
/*
6056
* Demote the mapping.
6057
*/
6058
pde_store(l2e, pdpgpa);
6059
6060
/*
6061
* Flush PWC --- XXX revisit
6062
*/
6063
pmap_invalidate_all(pmap);
6064
6065
counter_u64_add(pmap_l2e_demotions, 1);
6066
CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
6067
" in pmap %p", va, pmap);
6068
return (true);
6069
}
6070
6071
vm_paddr_t
6072
mmu_radix_kextract(vm_offset_t va)
6073
{
6074
pml3_entry_t l3e;
6075
vm_paddr_t pa;
6076
6077
CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6078
if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
6079
pa = DMAP_TO_PHYS(va);
6080
} else {
6081
/* Big-endian PTE on stack */
6082
l3e = *pmap_pml3e(kernel_pmap, va);
6083
if (be64toh(l3e) & RPTE_LEAF) {
6084
pa = (be64toh(l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
6085
pa |= (va & L3_PAGE_MASK);
6086
} else {
6087
/*
6088
* Beware of a concurrent promotion that changes the
6089
* PDE at this point! For example, vtopte() must not
6090
* be used to access the PTE because it would use the
6091
* new PDE. It is, however, safe to use the old PDE
6092
* because the page table page is preserved by the
6093
* promotion.
6094
*/
6095
pa = be64toh(*pmap_l3e_to_pte(&l3e, va));
6096
pa = (pa & PG_FRAME) | (va & PAGE_MASK);
6097
pa |= (va & PAGE_MASK);
6098
}
6099
}
6100
return (pa);
6101
}
6102
6103
static pt_entry_t
6104
mmu_radix_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
6105
{
6106
6107
if (ma != VM_MEMATTR_DEFAULT) {
6108
return pmap_cache_bits(ma);
6109
}
6110
6111
/*
6112
* Assume the page is cache inhibited and access is guarded unless
6113
* it's in our available memory array.
6114
*/
6115
for (int i = 0; i < pregions_sz; i++) {
6116
if ((pa >= pregions[i].mr_start) &&
6117
(pa < (pregions[i].mr_start + pregions[i].mr_size)))
6118
return (RPTE_ATTR_MEM);
6119
}
6120
return (RPTE_ATTR_GUARDEDIO);
6121
}
6122
6123
static void
6124
mmu_radix_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
6125
{
6126
pt_entry_t *pte, pteval;
6127
uint64_t cache_bits;
6128
6129
pte = kvtopte(va);
6130
MPASS(pte != NULL);
6131
pteval = pa | RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
6132
cache_bits = mmu_radix_calc_wimg(pa, ma);
6133
pte_store(pte, pteval | cache_bits);
6134
}
6135
6136
void
6137
mmu_radix_kremove(vm_offset_t va)
6138
{
6139
pt_entry_t *pte;
6140
6141
CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6142
6143
pte = kvtopte(va);
6144
pte_clear(pte);
6145
}
6146
6147
int
6148
mmu_radix_decode_kernel_ptr(vm_offset_t addr,
6149
int *is_user, vm_offset_t *decoded)
6150
{
6151
6152
CTR2(KTR_PMAP, "%s(%#jx)", __func__, (uintmax_t)addr);
6153
*decoded = addr;
6154
*is_user = (addr < VM_MAXUSER_ADDRESS);
6155
return (0);
6156
}
6157
6158
static int
6159
mmu_radix_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
6160
{
6161
6162
CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
6163
return (mem_valid(pa, size));
6164
}
6165
6166
static void
6167
mmu_radix_scan_init(void)
6168
{
6169
6170
CTR1(KTR_PMAP, "%s()", __func__);
6171
UNIMPLEMENTED();
6172
}
6173
6174
static void
6175
mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz,
6176
void **va)
6177
{
6178
CTR4(KTR_PMAP, "%s(%#jx, %#zx, %p)", __func__, (uintmax_t)pa, sz, va);
6179
UNIMPLEMENTED();
6180
}
6181
6182
vm_offset_t
6183
mmu_radix_quick_enter_page(vm_page_t m)
6184
{
6185
vm_paddr_t paddr;
6186
6187
CTR2(KTR_PMAP, "%s(%p)", __func__, m);
6188
paddr = VM_PAGE_TO_PHYS(m);
6189
return (PHYS_TO_DMAP(paddr));
6190
}
6191
6192
void
6193
mmu_radix_quick_remove_page(vm_offset_t addr __unused)
6194
{
6195
/* no work to do here */
6196
CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
6197
}
6198
6199
static void
6200
pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
6201
{
6202
cpu_flush_dcache((void *)sva, eva - sva);
6203
}
6204
6205
int
6206
mmu_radix_change_attr(vm_offset_t va, vm_size_t size,
6207
vm_memattr_t mode)
6208
{
6209
int error;
6210
6211
CTR4(KTR_PMAP, "%s(%#x, %#zx, %d)", __func__, va, size, mode);
6212
PMAP_LOCK(kernel_pmap);
6213
error = pmap_change_attr_locked(va, size, mode, true);
6214
PMAP_UNLOCK(kernel_pmap);
6215
return (error);
6216
}
6217
6218
static int
6219
pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush)
6220
{
6221
vm_offset_t base, offset, tmpva;
6222
vm_paddr_t pa_start, pa_end, pa_end1;
6223
pml2_entry_t *l2e;
6224
pml3_entry_t *l3e;
6225
pt_entry_t *pte;
6226
int cache_bits, error;
6227
bool changed;
6228
6229
PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
6230
base = trunc_page(va);
6231
offset = va & PAGE_MASK;
6232
size = round_page(offset + size);
6233
6234
/*
6235
* Only supported on kernel virtual addresses, including the direct
6236
* map but excluding the recursive map.
6237
*/
6238
if (base < DMAP_MIN_ADDRESS)
6239
return (EINVAL);
6240
6241
cache_bits = pmap_cache_bits(mode);
6242
changed = false;
6243
6244
/*
6245
* Pages that aren't mapped aren't supported. Also break down 2MB pages
6246
* into 4KB pages if required.
6247
*/
6248
for (tmpva = base; tmpva < base + size; ) {
6249
l2e = pmap_pml2e(kernel_pmap, tmpva);
6250
if (l2e == NULL || *l2e == 0)
6251
return (EINVAL);
6252
if (be64toh(*l2e) & RPTE_LEAF) {
6253
/*
6254
* If the current 1GB page already has the required
6255
* memory type, then we need not demote this page. Just
6256
* increment tmpva to the next 1GB page frame.
6257
*/
6258
if ((be64toh(*l2e) & RPTE_ATTR_MASK) == cache_bits) {
6259
tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6260
continue;
6261
}
6262
6263
/*
6264
* If the current offset aligns with a 1GB page frame
6265
* and there is at least 1GB left within the range, then
6266
* we need not break down this page into 2MB pages.
6267
*/
6268
if ((tmpva & L2_PAGE_MASK) == 0 &&
6269
tmpva + L2_PAGE_MASK < base + size) {
6270
tmpva += L2_PAGE_MASK;
6271
continue;
6272
}
6273
if (!pmap_demote_l2e(kernel_pmap, l2e, tmpva))
6274
return (ENOMEM);
6275
}
6276
l3e = pmap_l2e_to_l3e(l2e, tmpva);
6277
KASSERT(l3e != NULL, ("no l3e entry for %#lx in %p\n",
6278
tmpva, l2e));
6279
if (*l3e == 0)
6280
return (EINVAL);
6281
if (be64toh(*l3e) & RPTE_LEAF) {
6282
/*
6283
* If the current 2MB page already has the required
6284
* memory type, then we need not demote this page. Just
6285
* increment tmpva to the next 2MB page frame.
6286
*/
6287
if ((be64toh(*l3e) & RPTE_ATTR_MASK) == cache_bits) {
6288
tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6289
continue;
6290
}
6291
6292
/*
6293
* If the current offset aligns with a 2MB page frame
6294
* and there is at least 2MB left within the range, then
6295
* we need not break down this page into 4KB pages.
6296
*/
6297
if ((tmpva & L3_PAGE_MASK) == 0 &&
6298
tmpva + L3_PAGE_MASK < base + size) {
6299
tmpva += L3_PAGE_SIZE;
6300
continue;
6301
}
6302
if (!pmap_demote_l3e(kernel_pmap, l3e, tmpva))
6303
return (ENOMEM);
6304
}
6305
pte = pmap_l3e_to_pte(l3e, tmpva);
6306
if (*pte == 0)
6307
return (EINVAL);
6308
tmpva += PAGE_SIZE;
6309
}
6310
error = 0;
6311
6312
/*
6313
* Ok, all the pages exist, so run through them updating their
6314
* cache mode if required.
6315
*/
6316
pa_start = pa_end = 0;
6317
for (tmpva = base; tmpva < base + size; ) {
6318
l2e = pmap_pml2e(kernel_pmap, tmpva);
6319
if (be64toh(*l2e) & RPTE_LEAF) {
6320
if ((be64toh(*l2e) & RPTE_ATTR_MASK) != cache_bits) {
6321
pmap_pte_attr(l2e, cache_bits,
6322
RPTE_ATTR_MASK);
6323
changed = true;
6324
}
6325
if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6326
(*l2e & PG_PS_FRAME) < dmaplimit) {
6327
if (pa_start == pa_end) {
6328
/* Start physical address run. */
6329
pa_start = be64toh(*l2e) & PG_PS_FRAME;
6330
pa_end = pa_start + L2_PAGE_SIZE;
6331
} else if (pa_end == (be64toh(*l2e) & PG_PS_FRAME))
6332
pa_end += L2_PAGE_SIZE;
6333
else {
6334
/* Run ended, update direct map. */
6335
error = pmap_change_attr_locked(
6336
PHYS_TO_DMAP(pa_start),
6337
pa_end - pa_start, mode, flush);
6338
if (error != 0)
6339
break;
6340
/* Start physical address run. */
6341
pa_start = be64toh(*l2e) & PG_PS_FRAME;
6342
pa_end = pa_start + L2_PAGE_SIZE;
6343
}
6344
}
6345
tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6346
continue;
6347
}
6348
l3e = pmap_l2e_to_l3e(l2e, tmpva);
6349
if (be64toh(*l3e) & RPTE_LEAF) {
6350
if ((be64toh(*l3e) & RPTE_ATTR_MASK) != cache_bits) {
6351
pmap_pte_attr(l3e, cache_bits,
6352
RPTE_ATTR_MASK);
6353
changed = true;
6354
}
6355
if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6356
(be64toh(*l3e) & PG_PS_FRAME) < dmaplimit) {
6357
if (pa_start == pa_end) {
6358
/* Start physical address run. */
6359
pa_start = be64toh(*l3e) & PG_PS_FRAME;
6360
pa_end = pa_start + L3_PAGE_SIZE;
6361
} else if (pa_end == (be64toh(*l3e) & PG_PS_FRAME))
6362
pa_end += L3_PAGE_SIZE;
6363
else {
6364
/* Run ended, update direct map. */
6365
error = pmap_change_attr_locked(
6366
PHYS_TO_DMAP(pa_start),
6367
pa_end - pa_start, mode, flush);
6368
if (error != 0)
6369
break;
6370
/* Start physical address run. */
6371
pa_start = be64toh(*l3e) & PG_PS_FRAME;
6372
pa_end = pa_start + L3_PAGE_SIZE;
6373
}
6374
}
6375
tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6376
} else {
6377
pte = pmap_l3e_to_pte(l3e, tmpva);
6378
if ((be64toh(*pte) & RPTE_ATTR_MASK) != cache_bits) {
6379
pmap_pte_attr(pte, cache_bits,
6380
RPTE_ATTR_MASK);
6381
changed = true;
6382
}
6383
if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6384
(be64toh(*pte) & PG_FRAME) < dmaplimit) {
6385
if (pa_start == pa_end) {
6386
/* Start physical address run. */
6387
pa_start = be64toh(*pte) & PG_FRAME;
6388
pa_end = pa_start + PAGE_SIZE;
6389
} else if (pa_end == (be64toh(*pte) & PG_FRAME))
6390
pa_end += PAGE_SIZE;
6391
else {
6392
/* Run ended, update direct map. */
6393
error = pmap_change_attr_locked(
6394
PHYS_TO_DMAP(pa_start),
6395
pa_end - pa_start, mode, flush);
6396
if (error != 0)
6397
break;
6398
/* Start physical address run. */
6399
pa_start = be64toh(*pte) & PG_FRAME;
6400
pa_end = pa_start + PAGE_SIZE;
6401
}
6402
}
6403
tmpva += PAGE_SIZE;
6404
}
6405
}
6406
if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
6407
pa_end1 = MIN(pa_end, dmaplimit);
6408
if (pa_start != pa_end1)
6409
error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
6410
pa_end1 - pa_start, mode, flush);
6411
}
6412
6413
/*
6414
* Flush CPU caches if required to make sure any data isn't cached that
6415
* shouldn't be, etc.
6416
*/
6417
if (changed) {
6418
pmap_invalidate_all(kernel_pmap);
6419
6420
if (flush)
6421
pmap_invalidate_cache_range(base, tmpva);
6422
}
6423
return (error);
6424
}
6425
6426
/*
6427
* Allocate physical memory for the vm_page array and map it into KVA,
6428
* attempting to back the vm_pages with domain-local memory.
6429
*/
6430
void
6431
mmu_radix_page_array_startup(long pages)
6432
{
6433
#ifdef notyet
6434
pml2_entry_t *l2e;
6435
pml3_entry_t *pde;
6436
pml3_entry_t newl3;
6437
vm_offset_t va;
6438
long pfn;
6439
int domain, i;
6440
#endif
6441
vm_paddr_t pa;
6442
vm_offset_t start, end;
6443
6444
vm_page_array_size = pages;
6445
6446
start = VM_MIN_KERNEL_ADDRESS;
6447
end = start + pages * sizeof(struct vm_page);
6448
6449
pa = vm_phys_early_alloc(-1, end - start);
6450
6451
start = mmu_radix_map(&start, pa, end - start, VM_MEMATTR_DEFAULT);
6452
#ifdef notyet
6453
/* TODO: NUMA vm_page_array. Blocked out until then (copied from amd64). */
6454
for (va = start; va < end; va += L3_PAGE_SIZE) {
6455
pfn = first_page + (va - start) / sizeof(struct vm_page);
6456
domain = vm_phys_domain(ptoa(pfn));
6457
l2e = pmap_pml2e(kernel_pmap, va);
6458
if ((be64toh(*l2e) & PG_V) == 0) {
6459
pa = vm_phys_early_alloc(domain, PAGE_SIZE);
6460
dump_add_page(pa);
6461
pagezero(PHYS_TO_DMAP(pa));
6462
pde_store(l2e, (pml2_entry_t)pa);
6463
}
6464
pde = pmap_l2e_to_l3e(l2e, va);
6465
if ((be64toh(*pde) & PG_V) != 0)
6466
panic("Unexpected pde %p", pde);
6467
pa = vm_phys_early_alloc(domain, L3_PAGE_SIZE);
6468
for (i = 0; i < NPDEPG; i++)
6469
dump_add_page(pa + i * PAGE_SIZE);
6470
newl3 = (pml3_entry_t)(pa | RPTE_EAA_P | RPTE_EAA_R | RPTE_EAA_W);
6471
pte_store(pde, newl3);
6472
}
6473
#endif
6474
vm_page_array = (vm_page_t)start;
6475
}
6476
6477
#ifdef DDB
6478
#include <sys/kdb.h>
6479
#include <ddb/ddb.h>
6480
6481
static void
6482
pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va)
6483
{
6484
pml1_entry_t *l1e;
6485
pml2_entry_t *l2e;
6486
pml3_entry_t *l3e;
6487
pt_entry_t *pte;
6488
6489
l1e = &l1[pmap_pml1e_index(va)];
6490
db_printf("VA %#016lx l1e %#016lx", va, be64toh(*l1e));
6491
if ((be64toh(*l1e) & PG_V) == 0) {
6492
db_printf("\n");
6493
return;
6494
}
6495
l2e = pmap_l1e_to_l2e(l1e, va);
6496
db_printf(" l2e %#016lx", be64toh(*l2e));
6497
if ((be64toh(*l2e) & PG_V) == 0 || (be64toh(*l2e) & RPTE_LEAF) != 0) {
6498
db_printf("\n");
6499
return;
6500
}
6501
l3e = pmap_l2e_to_l3e(l2e, va);
6502
db_printf(" l3e %#016lx", be64toh(*l3e));
6503
if ((be64toh(*l3e) & PG_V) == 0 || (be64toh(*l3e) & RPTE_LEAF) != 0) {
6504
db_printf("\n");
6505
return;
6506
}
6507
pte = pmap_l3e_to_pte(l3e, va);
6508
db_printf(" pte %#016lx\n", be64toh(*pte));
6509
}
6510
6511
void
6512
pmap_page_print_mappings(vm_page_t m)
6513
{
6514
pmap_t pmap;
6515
pv_entry_t pv;
6516
6517
db_printf("page %p(%lx)\n", m, m->phys_addr);
6518
/* need to elide locks if running in ddb */
6519
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
6520
db_printf("pv: %p ", pv);
6521
db_printf("va: %#016lx ", pv->pv_va);
6522
pmap = PV_PMAP(pv);
6523
db_printf("pmap %p ", pmap);
6524
if (pmap != NULL) {
6525
db_printf("asid: %lu\n", pmap->pm_pid);
6526
pmap_pte_walk(pmap->pm_pml1, pv->pv_va);
6527
}
6528
}
6529
}
6530
6531
DB_SHOW_COMMAND(pte, pmap_print_pte)
6532
{
6533
vm_offset_t va;
6534
pmap_t pmap;
6535
6536
if (!have_addr) {
6537
db_printf("show pte addr\n");
6538
return;
6539
}
6540
va = (vm_offset_t)addr;
6541
6542
if (va >= DMAP_MIN_ADDRESS)
6543
pmap = kernel_pmap;
6544
else if (kdb_thread != NULL)
6545
pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
6546
else
6547
pmap = vmspace_pmap(curthread->td_proc->p_vmspace);
6548
6549
pmap_pte_walk(pmap->pm_pml1, va);
6550
}
6551
6552
#endif
6553
6554