Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/powerpc/powermac/smu.c
39536 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2009 Nathan Whitehorn
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
*
16
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26
* SUCH DAMAGE.
27
*
28
*/
29
30
#include <sys/param.h>
31
#include <sys/bus.h>
32
#include <sys/eventhandler.h>
33
#include <sys/systm.h>
34
#include <sys/module.h>
35
#include <sys/conf.h>
36
#include <sys/cpu.h>
37
#include <sys/clock.h>
38
#include <sys/ctype.h>
39
#include <sys/kernel.h>
40
#include <sys/kthread.h>
41
#include <sys/lock.h>
42
#include <sys/mutex.h>
43
#include <sys/reboot.h>
44
#include <sys/rman.h>
45
#include <sys/sysctl.h>
46
#include <sys/unistd.h>
47
48
#include <machine/bus.h>
49
#include <machine/intr_machdep.h>
50
#include <machine/md_var.h>
51
52
#include <dev/iicbus/iicbus.h>
53
#include <dev/iicbus/iiconf.h>
54
#include <dev/led/led.h>
55
#include <dev/ofw/openfirm.h>
56
#include <dev/ofw/ofw_bus.h>
57
#include <dev/ofw/ofw_bus_subr.h>
58
#include <powerpc/powermac/macgpiovar.h>
59
#include <powerpc/powermac/powermac_thermal.h>
60
61
#include "clock_if.h"
62
#include "iicbus_if.h"
63
64
struct smu_cmd {
65
volatile uint8_t cmd;
66
uint8_t len;
67
uint8_t data[254];
68
69
STAILQ_ENTRY(smu_cmd) cmd_q;
70
};
71
72
STAILQ_HEAD(smu_cmdq, smu_cmd);
73
74
struct smu_fan {
75
struct pmac_fan fan;
76
device_t dev;
77
cell_t reg;
78
79
enum {
80
SMU_FAN_RPM,
81
SMU_FAN_PWM
82
} type;
83
int setpoint;
84
int old_style;
85
int rpm;
86
};
87
88
/* We can read the PWM and the RPM from a PWM controlled fan.
89
* Offer both values via sysctl.
90
*/
91
enum {
92
SMU_PWM_SYSCTL_PWM = 1 << 8,
93
SMU_PWM_SYSCTL_RPM = 2 << 8
94
};
95
96
struct smu_sensor {
97
struct pmac_therm therm;
98
device_t dev;
99
100
cell_t reg;
101
enum {
102
SMU_CURRENT_SENSOR,
103
SMU_VOLTAGE_SENSOR,
104
SMU_POWER_SENSOR,
105
SMU_TEMP_SENSOR
106
} type;
107
};
108
109
struct smu_softc {
110
device_t sc_dev;
111
struct mtx sc_mtx;
112
113
struct resource *sc_memr;
114
int sc_memrid;
115
int sc_u3;
116
117
bus_dma_tag_t sc_dmatag;
118
bus_space_tag_t sc_bt;
119
bus_space_handle_t sc_mailbox;
120
121
struct smu_cmd *sc_cmd, *sc_cur_cmd;
122
bus_addr_t sc_cmd_phys;
123
bus_dmamap_t sc_cmd_dmamap;
124
struct smu_cmdq sc_cmdq;
125
126
struct smu_fan *sc_fans;
127
int sc_nfans;
128
int old_style_fans;
129
struct smu_sensor *sc_sensors;
130
int sc_nsensors;
131
132
int sc_doorbellirqid;
133
struct resource *sc_doorbellirq;
134
void *sc_doorbellirqcookie;
135
136
struct proc *sc_fanmgt_proc;
137
time_t sc_lastuserchange;
138
139
/* Calibration data */
140
uint16_t sc_cpu_diode_scale;
141
int16_t sc_cpu_diode_offset;
142
143
uint16_t sc_cpu_volt_scale;
144
int16_t sc_cpu_volt_offset;
145
uint16_t sc_cpu_curr_scale;
146
int16_t sc_cpu_curr_offset;
147
148
uint16_t sc_slots_pow_scale;
149
int16_t sc_slots_pow_offset;
150
151
struct cdev *sc_leddev;
152
};
153
154
/* regular bus attachment functions */
155
156
static int smu_probe(device_t);
157
static int smu_attach(device_t);
158
static const struct ofw_bus_devinfo *
159
smu_get_devinfo(device_t bus, device_t dev);
160
161
/* cpufreq notification hooks */
162
163
static void smu_cpufreq_pre_change(device_t, const struct cf_level *level);
164
static void smu_cpufreq_post_change(device_t, const struct cf_level *level);
165
166
/* clock interface */
167
static int smu_gettime(device_t dev, struct timespec *ts);
168
static int smu_settime(device_t dev, struct timespec *ts);
169
170
/* utility functions */
171
static int smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait);
172
static int smu_get_datablock(device_t dev, int8_t id, uint8_t *buf,
173
size_t len);
174
static void smu_attach_i2c(device_t dev, phandle_t i2croot);
175
static void smu_attach_fans(device_t dev, phandle_t fanroot);
176
static void smu_attach_sensors(device_t dev, phandle_t sensroot);
177
static void smu_set_sleepled(void *xdev, int onoff);
178
static int smu_server_mode(SYSCTL_HANDLER_ARGS);
179
static void smu_doorbell_intr(void *xdev);
180
static void smu_shutdown(void *xdev, int howto);
181
182
/* where to find the doorbell GPIO */
183
184
static device_t smu_doorbell = NULL;
185
186
static device_method_t smu_methods[] = {
187
/* Device interface */
188
DEVMETHOD(device_probe, smu_probe),
189
DEVMETHOD(device_attach, smu_attach),
190
191
/* Clock interface */
192
DEVMETHOD(clock_gettime, smu_gettime),
193
DEVMETHOD(clock_settime, smu_settime),
194
195
/* ofw_bus interface */
196
DEVMETHOD(bus_child_pnpinfo, ofw_bus_gen_child_pnpinfo),
197
DEVMETHOD(ofw_bus_get_devinfo, smu_get_devinfo),
198
DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat),
199
DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model),
200
DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name),
201
DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node),
202
DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type),
203
204
{ 0, 0 },
205
};
206
207
static driver_t smu_driver = {
208
"smu",
209
smu_methods,
210
sizeof(struct smu_softc)
211
};
212
213
DRIVER_MODULE(smu, ofwbus, smu_driver, 0, 0);
214
static MALLOC_DEFINE(M_SMU, "smu", "SMU Sensor Information");
215
216
#define SMU_MAILBOX 0x8000860c
217
#define SMU_FANMGT_INTERVAL 1000 /* ms */
218
219
/* Command types */
220
#define SMU_ADC 0xd8
221
#define SMU_FAN 0x4a
222
#define SMU_RPM_STATUS 0x01
223
#define SMU_RPM_SETPOINT 0x02
224
#define SMU_PWM_STATUS 0x11
225
#define SMU_PWM_SETPOINT 0x12
226
#define SMU_I2C 0x9a
227
#define SMU_I2C_SIMPLE 0x00
228
#define SMU_I2C_NORMAL 0x01
229
#define SMU_I2C_COMBINED 0x02
230
#define SMU_MISC 0xee
231
#define SMU_MISC_GET_DATA 0x02
232
#define SMU_MISC_LED_CTRL 0x04
233
#define SMU_POWER 0xaa
234
#define SMU_POWER_EVENTS 0x8f
235
#define SMU_PWR_GET_POWERUP 0x00
236
#define SMU_PWR_SET_POWERUP 0x01
237
#define SMU_PWR_CLR_POWERUP 0x02
238
#define SMU_RTC 0x8e
239
#define SMU_RTC_GET 0x81
240
#define SMU_RTC_SET 0x80
241
242
/* Power event types */
243
#define SMU_WAKEUP_KEYPRESS 0x01
244
#define SMU_WAKEUP_AC_INSERT 0x02
245
#define SMU_WAKEUP_AC_CHANGE 0x04
246
#define SMU_WAKEUP_RING 0x10
247
248
/* Data blocks */
249
#define SMU_CPUTEMP_CAL 0x18
250
#define SMU_CPUVOLT_CAL 0x21
251
#define SMU_SLOTPW_CAL 0x78
252
253
/* Partitions */
254
#define SMU_PARTITION 0x3e
255
#define SMU_PARTITION_LATEST 0x01
256
#define SMU_PARTITION_BASE 0x02
257
#define SMU_PARTITION_UPDATE 0x03
258
259
static int
260
smu_probe(device_t dev)
261
{
262
const char *name = ofw_bus_get_name(dev);
263
264
if (strcmp(name, "smu") != 0)
265
return (ENXIO);
266
267
device_set_desc(dev, "Apple System Management Unit");
268
return (0);
269
}
270
271
static void
272
smu_phys_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
273
{
274
struct smu_softc *sc = xsc;
275
276
sc->sc_cmd_phys = segs[0].ds_addr;
277
}
278
279
static int
280
smu_attach(device_t dev)
281
{
282
struct smu_softc *sc;
283
phandle_t node, child;
284
uint8_t data[12];
285
286
sc = device_get_softc(dev);
287
288
mtx_init(&sc->sc_mtx, "smu", NULL, MTX_DEF);
289
sc->sc_cur_cmd = NULL;
290
sc->sc_doorbellirqid = -1;
291
292
sc->sc_u3 = 0;
293
if (OF_finddevice("/u3") != -1)
294
sc->sc_u3 = 1;
295
296
/*
297
* Map the mailbox area. This should be determined from firmware,
298
* but I have not found a simple way to do that.
299
*/
300
bus_dma_tag_create(NULL, 16, 0, BUS_SPACE_MAXADDR_32BIT,
301
BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 1, PAGE_SIZE, 0, NULL,
302
NULL, &(sc->sc_dmatag));
303
sc->sc_bt = &bs_le_tag;
304
bus_space_map(sc->sc_bt, SMU_MAILBOX, 4, 0, &sc->sc_mailbox);
305
306
/*
307
* Allocate the command buffer. This can be anywhere in the low 4 GB
308
* of memory.
309
*/
310
bus_dmamem_alloc(sc->sc_dmatag, (void **)&sc->sc_cmd, BUS_DMA_WAITOK |
311
BUS_DMA_ZERO, &sc->sc_cmd_dmamap);
312
bus_dmamap_load(sc->sc_dmatag, sc->sc_cmd_dmamap,
313
sc->sc_cmd, PAGE_SIZE, smu_phys_callback, sc, 0);
314
STAILQ_INIT(&sc->sc_cmdq);
315
316
/*
317
* Set up handlers to change CPU voltage when CPU frequency is changed.
318
*/
319
EVENTHANDLER_REGISTER(cpufreq_pre_change, smu_cpufreq_pre_change, dev,
320
EVENTHANDLER_PRI_ANY);
321
EVENTHANDLER_REGISTER(cpufreq_post_change, smu_cpufreq_post_change, dev,
322
EVENTHANDLER_PRI_ANY);
323
324
node = ofw_bus_get_node(dev);
325
326
/* Some SMUs have RPM and PWM controlled fans which do not sit
327
* under the same node. So we have to attach them separately.
328
*/
329
smu_attach_fans(dev, node);
330
331
/*
332
* Now detect and attach the other child devices.
333
*/
334
for (child = OF_child(node); child != 0; child = OF_peer(child)) {
335
char name[32];
336
memset(name, 0, sizeof(name));
337
OF_getprop(child, "name", name, sizeof(name));
338
339
if (strncmp(name, "sensors", 8) == 0)
340
smu_attach_sensors(dev, child);
341
342
if (strncmp(name, "smu-i2c-control", 15) == 0)
343
smu_attach_i2c(dev, child);
344
}
345
346
/* Some SMUs have the I2C children directly under the bus. */
347
smu_attach_i2c(dev, node);
348
349
/*
350
* Collect calibration constants.
351
*/
352
smu_get_datablock(dev, SMU_CPUTEMP_CAL, data, sizeof(data));
353
sc->sc_cpu_diode_scale = (data[4] << 8) + data[5];
354
sc->sc_cpu_diode_offset = (data[6] << 8) + data[7];
355
356
smu_get_datablock(dev, SMU_CPUVOLT_CAL, data, sizeof(data));
357
sc->sc_cpu_volt_scale = (data[4] << 8) + data[5];
358
sc->sc_cpu_volt_offset = (data[6] << 8) + data[7];
359
sc->sc_cpu_curr_scale = (data[8] << 8) + data[9];
360
sc->sc_cpu_curr_offset = (data[10] << 8) + data[11];
361
362
smu_get_datablock(dev, SMU_SLOTPW_CAL, data, sizeof(data));
363
sc->sc_slots_pow_scale = (data[4] << 8) + data[5];
364
sc->sc_slots_pow_offset = (data[6] << 8) + data[7];
365
366
/*
367
* Set up LED interface
368
*/
369
sc->sc_leddev = led_create(smu_set_sleepled, dev, "sleepled");
370
371
/*
372
* Reset on power loss behavior
373
*/
374
375
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
376
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
377
"server_mode", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, dev,
378
0, smu_server_mode, "I", "Enable reboot after power failure");
379
380
/*
381
* Set up doorbell interrupt.
382
*/
383
sc->sc_doorbellirqid = 0;
384
sc->sc_doorbellirq = bus_alloc_resource_any(smu_doorbell, SYS_RES_IRQ,
385
&sc->sc_doorbellirqid, RF_ACTIVE);
386
bus_setup_intr(smu_doorbell, sc->sc_doorbellirq,
387
INTR_TYPE_MISC | INTR_MPSAFE, NULL, smu_doorbell_intr, dev,
388
&sc->sc_doorbellirqcookie);
389
powerpc_config_intr(rman_get_start(sc->sc_doorbellirq),
390
INTR_TRIGGER_EDGE, INTR_POLARITY_LOW);
391
392
/*
393
* Connect RTC interface.
394
*/
395
clock_register(dev, 1000);
396
397
/*
398
* Learn about shutdown events
399
*/
400
EVENTHANDLER_REGISTER(shutdown_final, smu_shutdown, dev,
401
SHUTDOWN_PRI_LAST);
402
403
bus_attach_children(dev);
404
return (0);
405
}
406
407
static const struct ofw_bus_devinfo *
408
smu_get_devinfo(device_t bus, device_t dev)
409
{
410
411
return (device_get_ivars(dev));
412
}
413
414
static void
415
smu_send_cmd(device_t dev, struct smu_cmd *cmd)
416
{
417
struct smu_softc *sc;
418
419
sc = device_get_softc(dev);
420
421
mtx_assert(&sc->sc_mtx, MA_OWNED);
422
423
if (sc->sc_u3)
424
powerpc_pow_enabled = 0; /* SMU cannot work if we go to NAP */
425
426
sc->sc_cur_cmd = cmd;
427
428
/* Copy the command to the mailbox */
429
sc->sc_cmd->cmd = cmd->cmd;
430
sc->sc_cmd->len = cmd->len;
431
memcpy(sc->sc_cmd->data, cmd->data, sizeof(cmd->data));
432
bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_PREWRITE);
433
bus_space_write_4(sc->sc_bt, sc->sc_mailbox, 0, sc->sc_cmd_phys);
434
435
/* Flush the cacheline it is in -- SMU bypasses the cache */
436
__asm __volatile("sync; dcbf 0,%0; sync" :: "r"(sc->sc_cmd): "memory");
437
438
/* Ring SMU doorbell */
439
macgpio_write(smu_doorbell, GPIO_DDR_OUTPUT);
440
}
441
442
static void
443
smu_doorbell_intr(void *xdev)
444
{
445
device_t smu;
446
struct smu_softc *sc;
447
int doorbell_ack;
448
449
smu = xdev;
450
doorbell_ack = macgpio_read(smu_doorbell);
451
sc = device_get_softc(smu);
452
453
if (doorbell_ack != (GPIO_DDR_OUTPUT | GPIO_LEVEL_RO | GPIO_DATA))
454
return;
455
456
mtx_lock(&sc->sc_mtx);
457
458
if (sc->sc_cur_cmd == NULL) /* spurious */
459
goto done;
460
461
/* Check result. First invalidate the cache again... */
462
__asm __volatile("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory");
463
464
bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_POSTREAD);
465
466
sc->sc_cur_cmd->cmd = sc->sc_cmd->cmd;
467
sc->sc_cur_cmd->len = sc->sc_cmd->len;
468
memcpy(sc->sc_cur_cmd->data, sc->sc_cmd->data,
469
sizeof(sc->sc_cmd->data));
470
wakeup(sc->sc_cur_cmd);
471
sc->sc_cur_cmd = NULL;
472
if (sc->sc_u3)
473
powerpc_pow_enabled = 1;
474
475
done:
476
/* Queue next command if one is pending */
477
if (STAILQ_FIRST(&sc->sc_cmdq) != NULL) {
478
sc->sc_cur_cmd = STAILQ_FIRST(&sc->sc_cmdq);
479
STAILQ_REMOVE_HEAD(&sc->sc_cmdq, cmd_q);
480
smu_send_cmd(smu, sc->sc_cur_cmd);
481
}
482
483
mtx_unlock(&sc->sc_mtx);
484
}
485
486
static int
487
smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait)
488
{
489
struct smu_softc *sc;
490
uint8_t cmd_code;
491
int error;
492
493
sc = device_get_softc(dev);
494
cmd_code = cmd->cmd;
495
496
mtx_lock(&sc->sc_mtx);
497
if (sc->sc_cur_cmd != NULL) {
498
STAILQ_INSERT_TAIL(&sc->sc_cmdq, cmd, cmd_q);
499
} else
500
smu_send_cmd(dev, cmd);
501
mtx_unlock(&sc->sc_mtx);
502
503
if (!wait)
504
return (0);
505
506
if (sc->sc_doorbellirqid < 0) {
507
/* Poll if the IRQ has not been set up yet */
508
do {
509
DELAY(50);
510
smu_doorbell_intr(dev);
511
} while (sc->sc_cur_cmd != NULL);
512
} else {
513
/* smu_doorbell_intr will wake us when the command is ACK'ed */
514
error = tsleep(cmd, 0, "smu", 800 * hz / 1000);
515
if (error != 0)
516
smu_doorbell_intr(dev); /* One last chance */
517
518
if (error != 0) {
519
mtx_lock(&sc->sc_mtx);
520
if (cmd->cmd == cmd_code) { /* Never processed */
521
/* Abort this command if we timed out */
522
if (sc->sc_cur_cmd == cmd)
523
sc->sc_cur_cmd = NULL;
524
else
525
STAILQ_REMOVE(&sc->sc_cmdq, cmd, smu_cmd,
526
cmd_q);
527
mtx_unlock(&sc->sc_mtx);
528
return (error);
529
}
530
error = 0;
531
mtx_unlock(&sc->sc_mtx);
532
}
533
}
534
535
/* SMU acks the command by inverting the command bits */
536
if (cmd->cmd == ((~cmd_code) & 0xff))
537
error = 0;
538
else
539
error = EIO;
540
541
return (error);
542
}
543
544
static int
545
smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, size_t len)
546
{
547
struct smu_cmd cmd;
548
uint8_t addr[4];
549
550
cmd.cmd = SMU_PARTITION;
551
cmd.len = 2;
552
cmd.data[0] = SMU_PARTITION_LATEST;
553
cmd.data[1] = id;
554
555
smu_run_cmd(dev, &cmd, 1);
556
557
addr[0] = addr[1] = 0;
558
addr[2] = cmd.data[0];
559
addr[3] = cmd.data[1];
560
561
cmd.cmd = SMU_MISC;
562
cmd.len = 7;
563
cmd.data[0] = SMU_MISC_GET_DATA;
564
cmd.data[1] = sizeof(addr);
565
memcpy(&cmd.data[2], addr, sizeof(addr));
566
cmd.data[6] = len;
567
568
smu_run_cmd(dev, &cmd, 1);
569
memcpy(buf, cmd.data, len);
570
return (0);
571
}
572
573
static void
574
smu_slew_cpu_voltage(device_t dev, int to)
575
{
576
struct smu_cmd cmd;
577
578
cmd.cmd = SMU_POWER;
579
cmd.len = 8;
580
cmd.data[0] = 'V';
581
cmd.data[1] = 'S';
582
cmd.data[2] = 'L';
583
cmd.data[3] = 'E';
584
cmd.data[4] = 'W';
585
cmd.data[5] = 0xff;
586
cmd.data[6] = 1;
587
cmd.data[7] = to;
588
589
smu_run_cmd(dev, &cmd, 1);
590
}
591
592
static void
593
smu_cpufreq_pre_change(device_t dev, const struct cf_level *level)
594
{
595
/*
596
* Make sure the CPU voltage is raised before we raise
597
* the clock.
598
*/
599
600
if (level->rel_set[0].freq == 10000 /* max */)
601
smu_slew_cpu_voltage(dev, 0);
602
}
603
604
static void
605
smu_cpufreq_post_change(device_t dev, const struct cf_level *level)
606
{
607
/* We are safe to reduce CPU voltage after a downward transition */
608
609
if (level->rel_set[0].freq < 10000 /* max */)
610
smu_slew_cpu_voltage(dev, 1); /* XXX: 1/4 voltage for 970MP? */
611
}
612
613
/* Routines for probing the SMU doorbell GPIO */
614
static int doorbell_probe(device_t dev);
615
static int doorbell_attach(device_t dev);
616
617
static device_method_t doorbell_methods[] = {
618
/* Device interface */
619
DEVMETHOD(device_probe, doorbell_probe),
620
DEVMETHOD(device_attach, doorbell_attach),
621
{ 0, 0 },
622
};
623
624
static driver_t doorbell_driver = {
625
"smudoorbell",
626
doorbell_methods,
627
0
628
};
629
630
EARLY_DRIVER_MODULE(smudoorbell, macgpio, doorbell_driver, 0, 0,
631
BUS_PASS_SUPPORTDEV);
632
633
static int
634
doorbell_probe(device_t dev)
635
{
636
const char *name = ofw_bus_get_name(dev);
637
638
if (strcmp(name, "smu-doorbell") != 0)
639
return (ENXIO);
640
641
device_set_desc(dev, "SMU Doorbell GPIO");
642
device_quiet(dev);
643
return (0);
644
}
645
646
static int
647
doorbell_attach(device_t dev)
648
{
649
smu_doorbell = dev;
650
return (0);
651
}
652
653
/*
654
* Sensor and fan management
655
*/
656
657
static int
658
smu_fan_check_old_style(struct smu_fan *fan)
659
{
660
device_t smu = fan->dev;
661
struct smu_softc *sc = device_get_softc(smu);
662
struct smu_cmd cmd;
663
int error;
664
665
if (sc->old_style_fans != -1)
666
return (sc->old_style_fans);
667
668
/*
669
* Apple has two fan control mechanisms. We can't distinguish
670
* them except by seeing if the new one fails. If the new one
671
* fails, use the old one.
672
*/
673
674
cmd.cmd = SMU_FAN;
675
cmd.len = 2;
676
cmd.data[0] = 0x31;
677
cmd.data[1] = fan->reg;
678
679
do {
680
error = smu_run_cmd(smu, &cmd, 1);
681
} while (error == EWOULDBLOCK);
682
683
sc->old_style_fans = (error != 0);
684
685
return (sc->old_style_fans);
686
}
687
688
static int
689
smu_fan_set_rpm(struct smu_fan *fan, int rpm)
690
{
691
device_t smu = fan->dev;
692
struct smu_cmd cmd;
693
int error;
694
695
cmd.cmd = SMU_FAN;
696
error = EIO;
697
698
/* Clamp to allowed range */
699
rpm = max(fan->fan.min_rpm, rpm);
700
rpm = min(fan->fan.max_rpm, rpm);
701
702
smu_fan_check_old_style(fan);
703
704
if (!fan->old_style) {
705
cmd.len = 4;
706
cmd.data[0] = 0x30;
707
cmd.data[1] = fan->reg;
708
cmd.data[2] = (rpm >> 8) & 0xff;
709
cmd.data[3] = rpm & 0xff;
710
711
error = smu_run_cmd(smu, &cmd, 1);
712
if (error && error != EWOULDBLOCK)
713
fan->old_style = 1;
714
} else {
715
cmd.len = 14;
716
cmd.data[0] = 0x00; /* RPM fan. */
717
cmd.data[1] = 1 << fan->reg;
718
cmd.data[2 + 2*fan->reg] = (rpm >> 8) & 0xff;
719
cmd.data[3 + 2*fan->reg] = rpm & 0xff;
720
error = smu_run_cmd(smu, &cmd, 1);
721
}
722
723
if (error == 0)
724
fan->setpoint = rpm;
725
726
return (error);
727
}
728
729
static int
730
smu_fan_read_rpm(struct smu_fan *fan)
731
{
732
device_t smu = fan->dev;
733
struct smu_cmd cmd;
734
int rpm, error;
735
736
smu_fan_check_old_style(fan);
737
738
if (!fan->old_style) {
739
cmd.cmd = SMU_FAN;
740
cmd.len = 2;
741
cmd.data[0] = 0x31;
742
cmd.data[1] = fan->reg;
743
744
error = smu_run_cmd(smu, &cmd, 1);
745
if (error && error != EWOULDBLOCK)
746
fan->old_style = 1;
747
748
rpm = (cmd.data[0] << 8) | cmd.data[1];
749
}
750
751
if (fan->old_style) {
752
cmd.cmd = SMU_FAN;
753
cmd.len = 1;
754
cmd.data[0] = SMU_RPM_STATUS;
755
756
error = smu_run_cmd(smu, &cmd, 1);
757
if (error)
758
return (error);
759
760
rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
761
}
762
763
return (rpm);
764
}
765
static int
766
smu_fan_set_pwm(struct smu_fan *fan, int pwm)
767
{
768
device_t smu = fan->dev;
769
struct smu_cmd cmd;
770
int error;
771
772
cmd.cmd = SMU_FAN;
773
error = EIO;
774
775
/* Clamp to allowed range */
776
pwm = max(fan->fan.min_rpm, pwm);
777
pwm = min(fan->fan.max_rpm, pwm);
778
779
/*
780
* Apple has two fan control mechanisms. We can't distinguish
781
* them except by seeing if the new one fails. If the new one
782
* fails, use the old one.
783
*/
784
785
if (!fan->old_style) {
786
cmd.len = 4;
787
cmd.data[0] = 0x30;
788
cmd.data[1] = fan->reg;
789
cmd.data[2] = (pwm >> 8) & 0xff;
790
cmd.data[3] = pwm & 0xff;
791
792
error = smu_run_cmd(smu, &cmd, 1);
793
if (error && error != EWOULDBLOCK)
794
fan->old_style = 1;
795
}
796
797
if (fan->old_style) {
798
cmd.len = 14;
799
cmd.data[0] = 0x10; /* PWM fan. */
800
cmd.data[1] = 1 << fan->reg;
801
cmd.data[2 + 2*fan->reg] = (pwm >> 8) & 0xff;
802
cmd.data[3 + 2*fan->reg] = pwm & 0xff;
803
error = smu_run_cmd(smu, &cmd, 1);
804
}
805
806
if (error == 0)
807
fan->setpoint = pwm;
808
809
return (error);
810
}
811
812
static int
813
smu_fan_read_pwm(struct smu_fan *fan, int *pwm, int *rpm)
814
{
815
device_t smu = fan->dev;
816
struct smu_cmd cmd;
817
int error;
818
819
if (!fan->old_style) {
820
cmd.cmd = SMU_FAN;
821
cmd.len = 2;
822
cmd.data[0] = 0x31;
823
cmd.data[1] = fan->reg;
824
825
error = smu_run_cmd(smu, &cmd, 1);
826
if (error && error != EWOULDBLOCK)
827
fan->old_style = 1;
828
829
*rpm = (cmd.data[0] << 8) | cmd.data[1];
830
}
831
832
if (fan->old_style) {
833
cmd.cmd = SMU_FAN;
834
cmd.len = 1;
835
cmd.data[0] = SMU_PWM_STATUS;
836
837
error = smu_run_cmd(smu, &cmd, 1);
838
if (error)
839
return (error);
840
841
*rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
842
}
843
if (fan->old_style) {
844
cmd.cmd = SMU_FAN;
845
cmd.len = 14;
846
cmd.data[0] = SMU_PWM_SETPOINT;
847
cmd.data[1] = 1 << fan->reg;
848
849
error = smu_run_cmd(smu, &cmd, 1);
850
if (error)
851
return (error);
852
853
*pwm = cmd.data[fan->reg*2+2];
854
}
855
return (0);
856
}
857
858
static int
859
smu_fanrpm_sysctl(SYSCTL_HANDLER_ARGS)
860
{
861
device_t smu;
862
struct smu_softc *sc;
863
struct smu_fan *fan;
864
int pwm = 0, rpm, error = 0;
865
866
smu = arg1;
867
sc = device_get_softc(smu);
868
fan = &sc->sc_fans[arg2 & 0xff];
869
870
if (fan->type == SMU_FAN_RPM) {
871
rpm = smu_fan_read_rpm(fan);
872
if (rpm < 0)
873
return (rpm);
874
875
error = sysctl_handle_int(oidp, &rpm, 0, req);
876
} else {
877
error = smu_fan_read_pwm(fan, &pwm, &rpm);
878
if (error < 0)
879
return (EIO);
880
881
switch (arg2 & 0xff00) {
882
case SMU_PWM_SYSCTL_PWM:
883
error = sysctl_handle_int(oidp, &pwm, 0, req);
884
break;
885
case SMU_PWM_SYSCTL_RPM:
886
error = sysctl_handle_int(oidp, &rpm, 0, req);
887
break;
888
default:
889
/* This should never happen */
890
return (EINVAL);
891
}
892
}
893
/* We can only read the RPM from a PWM controlled fan, so return. */
894
if ((arg2 & 0xff00) == SMU_PWM_SYSCTL_RPM)
895
return (0);
896
897
if (error || !req->newptr)
898
return (error);
899
900
sc->sc_lastuserchange = time_uptime;
901
902
if (fan->type == SMU_FAN_RPM)
903
return (smu_fan_set_rpm(fan, rpm));
904
else
905
return (smu_fan_set_pwm(fan, pwm));
906
}
907
908
static void
909
smu_fill_fan_prop(device_t dev, phandle_t child, int id)
910
{
911
struct smu_fan *fan;
912
struct smu_softc *sc;
913
char type[32];
914
915
sc = device_get_softc(dev);
916
fan = &sc->sc_fans[id];
917
918
OF_getprop(child, "device_type", type, sizeof(type));
919
/* We have either RPM or PWM controlled fans. */
920
if (strcmp(type, "fan-rpm-control") == 0)
921
fan->type = SMU_FAN_RPM;
922
else
923
fan->type = SMU_FAN_PWM;
924
925
fan->dev = dev;
926
fan->old_style = 0;
927
OF_getprop(child, "reg", &fan->reg,
928
sizeof(cell_t));
929
OF_getprop(child, "min-value", &fan->fan.min_rpm,
930
sizeof(int));
931
OF_getprop(child, "max-value", &fan->fan.max_rpm,
932
sizeof(int));
933
OF_getprop(child, "zone", &fan->fan.zone,
934
sizeof(int));
935
936
if (OF_getprop(child, "unmanaged-value",
937
&fan->fan.default_rpm,
938
sizeof(int)) != sizeof(int))
939
fan->fan.default_rpm = fan->fan.max_rpm;
940
941
OF_getprop(child, "location", fan->fan.name,
942
sizeof(fan->fan.name));
943
944
if (fan->type == SMU_FAN_RPM)
945
fan->setpoint = smu_fan_read_rpm(fan);
946
else
947
smu_fan_read_pwm(fan, &fan->setpoint, &fan->rpm);
948
}
949
950
/* On the first call count the number of fans. In the second call,
951
* after allocating the fan struct, fill the properties of the fans.
952
*/
953
static int
954
smu_count_fans(device_t dev)
955
{
956
struct smu_softc *sc;
957
phandle_t child, node, root;
958
int nfans = 0;
959
960
node = ofw_bus_get_node(dev);
961
sc = device_get_softc(dev);
962
963
/* First find the fanroots and count the number of fans. */
964
for (root = OF_child(node); root != 0; root = OF_peer(root)) {
965
char name[32];
966
memset(name, 0, sizeof(name));
967
OF_getprop(root, "name", name, sizeof(name));
968
if (strncmp(name, "rpm-fans", 9) == 0 ||
969
strncmp(name, "pwm-fans", 9) == 0 ||
970
strncmp(name, "fans", 5) == 0)
971
for (child = OF_child(root); child != 0;
972
child = OF_peer(child)) {
973
nfans++;
974
/* When allocated, fill the fan properties. */
975
if (sc->sc_fans != NULL) {
976
smu_fill_fan_prop(dev, child,
977
nfans - 1);
978
}
979
}
980
}
981
if (nfans == 0) {
982
device_printf(dev, "WARNING: No fans detected!\n");
983
return (0);
984
}
985
return (nfans);
986
}
987
988
static void
989
smu_attach_fans(device_t dev, phandle_t fanroot)
990
{
991
struct smu_fan *fan;
992
struct smu_softc *sc;
993
struct sysctl_oid *oid, *fanroot_oid;
994
struct sysctl_ctx_list *ctx;
995
char sysctl_name[32];
996
int i, j;
997
998
sc = device_get_softc(dev);
999
1000
/* Get the number of fans. */
1001
sc->sc_nfans = smu_count_fans(dev);
1002
if (sc->sc_nfans == 0)
1003
return;
1004
1005
/* Now we're able to allocate memory for the fans struct. */
1006
sc->sc_fans = malloc(sc->sc_nfans * sizeof(struct smu_fan), M_SMU,
1007
M_WAITOK | M_ZERO);
1008
1009
/* Now fill in the properties. */
1010
smu_count_fans(dev);
1011
1012
/* Register fans with pmac_thermal */
1013
for (i = 0; i < sc->sc_nfans; i++)
1014
pmac_thermal_fan_register(&sc->sc_fans[i].fan);
1015
1016
ctx = device_get_sysctl_ctx(dev);
1017
fanroot_oid = SYSCTL_ADD_NODE(ctx,
1018
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fans",
1019
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Fan Information");
1020
1021
/* Add sysctls */
1022
for (i = 0; i < sc->sc_nfans; i++) {
1023
fan = &sc->sc_fans[i];
1024
for (j = 0; j < strlen(fan->fan.name); j++) {
1025
sysctl_name[j] = tolower(fan->fan.name[j]);
1026
if (isspace(sysctl_name[j]))
1027
sysctl_name[j] = '_';
1028
}
1029
sysctl_name[j] = 0;
1030
if (fan->type == SMU_FAN_RPM) {
1031
oid = SYSCTL_ADD_NODE(ctx,
1032
SYSCTL_CHILDREN(fanroot_oid), OID_AUTO,
1033
sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1034
"Fan Information");
1035
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1036
"minrpm", CTLFLAG_RD,
1037
&fan->fan.min_rpm, 0,
1038
"Minimum allowed RPM");
1039
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1040
"maxrpm", CTLFLAG_RD,
1041
&fan->fan.max_rpm, 0,
1042
"Maximum allowed RPM");
1043
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1044
"rpm",CTLTYPE_INT | CTLFLAG_RW |
1045
CTLFLAG_MPSAFE, dev, i,
1046
smu_fanrpm_sysctl, "I", "Fan RPM");
1047
1048
fan->fan.read = (int (*)(struct pmac_fan *))smu_fan_read_rpm;
1049
fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_rpm;
1050
1051
} else {
1052
oid = SYSCTL_ADD_NODE(ctx,
1053
SYSCTL_CHILDREN(fanroot_oid), OID_AUTO,
1054
sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1055
"Fan Information");
1056
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1057
"minpwm", CTLFLAG_RD,
1058
&fan->fan.min_rpm, 0,
1059
"Minimum allowed PWM in %");
1060
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1061
"maxpwm", CTLFLAG_RD,
1062
&fan->fan.max_rpm, 0,
1063
"Maximum allowed PWM in %");
1064
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1065
"pwm",CTLTYPE_INT | CTLFLAG_RW |
1066
CTLFLAG_MPSAFE, dev,
1067
SMU_PWM_SYSCTL_PWM | i,
1068
smu_fanrpm_sysctl, "I", "Fan PWM in %");
1069
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1070
"rpm",CTLTYPE_INT | CTLFLAG_RD |
1071
CTLFLAG_MPSAFE, dev,
1072
SMU_PWM_SYSCTL_RPM | i,
1073
smu_fanrpm_sysctl, "I", "Fan RPM");
1074
fan->fan.read = NULL;
1075
fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_pwm;
1076
}
1077
if (bootverbose)
1078
device_printf(dev, "Fan: %s type: %d\n",
1079
fan->fan.name, fan->type);
1080
}
1081
}
1082
1083
static int
1084
smu_sensor_read(struct smu_sensor *sens)
1085
{
1086
device_t smu = sens->dev;
1087
struct smu_cmd cmd;
1088
struct smu_softc *sc;
1089
int64_t value;
1090
int error;
1091
1092
cmd.cmd = SMU_ADC;
1093
cmd.len = 1;
1094
cmd.data[0] = sens->reg;
1095
error = 0;
1096
1097
error = smu_run_cmd(smu, &cmd, 1);
1098
if (error != 0)
1099
return (-1);
1100
1101
sc = device_get_softc(smu);
1102
value = (cmd.data[0] << 8) | cmd.data[1];
1103
1104
switch (sens->type) {
1105
case SMU_TEMP_SENSOR:
1106
value *= sc->sc_cpu_diode_scale;
1107
value >>= 3;
1108
value += ((int64_t)sc->sc_cpu_diode_offset) << 9;
1109
value <<= 1;
1110
1111
/* Convert from 16.16 fixed point degC into integer 0.1 K. */
1112
value = 10*(value >> 16) + ((10*(value & 0xffff)) >> 16) + 2731;
1113
break;
1114
case SMU_VOLTAGE_SENSOR:
1115
value *= sc->sc_cpu_volt_scale;
1116
value += sc->sc_cpu_volt_offset;
1117
value <<= 4;
1118
1119
/* Convert from 16.16 fixed point V into mV. */
1120
value *= 15625;
1121
value /= 1024;
1122
value /= 1000;
1123
break;
1124
case SMU_CURRENT_SENSOR:
1125
value *= sc->sc_cpu_curr_scale;
1126
value += sc->sc_cpu_curr_offset;
1127
value <<= 4;
1128
1129
/* Convert from 16.16 fixed point A into mA. */
1130
value *= 15625;
1131
value /= 1024;
1132
value /= 1000;
1133
break;
1134
case SMU_POWER_SENSOR:
1135
value *= sc->sc_slots_pow_scale;
1136
value += sc->sc_slots_pow_offset;
1137
value <<= 4;
1138
1139
/* Convert from 16.16 fixed point W into mW. */
1140
value *= 15625;
1141
value /= 1024;
1142
value /= 1000;
1143
break;
1144
}
1145
1146
return (value);
1147
}
1148
1149
static int
1150
smu_sensor_sysctl(SYSCTL_HANDLER_ARGS)
1151
{
1152
device_t smu;
1153
struct smu_softc *sc;
1154
struct smu_sensor *sens;
1155
int value, error;
1156
1157
smu = arg1;
1158
sc = device_get_softc(smu);
1159
sens = &sc->sc_sensors[arg2];
1160
1161
value = smu_sensor_read(sens);
1162
if (value < 0)
1163
return (EBUSY);
1164
1165
error = sysctl_handle_int(oidp, &value, 0, req);
1166
1167
return (error);
1168
}
1169
1170
static void
1171
smu_attach_sensors(device_t dev, phandle_t sensroot)
1172
{
1173
struct smu_sensor *sens;
1174
struct smu_softc *sc;
1175
struct sysctl_oid *sensroot_oid;
1176
struct sysctl_ctx_list *ctx;
1177
phandle_t child;
1178
char type[32];
1179
int i;
1180
1181
sc = device_get_softc(dev);
1182
sc->sc_nsensors = 0;
1183
1184
for (child = OF_child(sensroot); child != 0; child = OF_peer(child))
1185
sc->sc_nsensors++;
1186
1187
if (sc->sc_nsensors == 0) {
1188
device_printf(dev, "WARNING: No sensors detected!\n");
1189
return;
1190
}
1191
1192
sc->sc_sensors = malloc(sc->sc_nsensors * sizeof(struct smu_sensor),
1193
M_SMU, M_WAITOK | M_ZERO);
1194
1195
sens = sc->sc_sensors;
1196
sc->sc_nsensors = 0;
1197
1198
ctx = device_get_sysctl_ctx(dev);
1199
sensroot_oid = SYSCTL_ADD_NODE(ctx,
1200
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "sensors",
1201
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Sensor Information");
1202
1203
for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) {
1204
char sysctl_name[40], sysctl_desc[40];
1205
const char *units;
1206
1207
sens->dev = dev;
1208
OF_getprop(child, "device_type", type, sizeof(type));
1209
1210
if (strcmp(type, "current-sensor") == 0) {
1211
sens->type = SMU_CURRENT_SENSOR;
1212
units = "mA";
1213
} else if (strcmp(type, "temp-sensor") == 0) {
1214
sens->type = SMU_TEMP_SENSOR;
1215
units = "C";
1216
} else if (strcmp(type, "voltage-sensor") == 0) {
1217
sens->type = SMU_VOLTAGE_SENSOR;
1218
units = "mV";
1219
} else if (strcmp(type, "power-sensor") == 0) {
1220
sens->type = SMU_POWER_SENSOR;
1221
units = "mW";
1222
} else {
1223
continue;
1224
}
1225
1226
OF_getprop(child, "reg", &sens->reg, sizeof(cell_t));
1227
OF_getprop(child, "zone", &sens->therm.zone, sizeof(int));
1228
OF_getprop(child, "location", sens->therm.name,
1229
sizeof(sens->therm.name));
1230
1231
for (i = 0; i < strlen(sens->therm.name); i++) {
1232
sysctl_name[i] = tolower(sens->therm.name[i]);
1233
if (isspace(sysctl_name[i]))
1234
sysctl_name[i] = '_';
1235
}
1236
sysctl_name[i] = 0;
1237
1238
sprintf(sysctl_desc,"%s (%s)", sens->therm.name, units);
1239
1240
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(sensroot_oid), OID_AUTO,
1241
sysctl_name, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE,
1242
dev, sc->sc_nsensors, smu_sensor_sysctl,
1243
(sens->type == SMU_TEMP_SENSOR) ? "IK" : "I", sysctl_desc);
1244
1245
if (sens->type == SMU_TEMP_SENSOR) {
1246
/* Make up some numbers */
1247
sens->therm.target_temp = 500 + 2731; /* 50 C */
1248
sens->therm.max_temp = 900 + 2731; /* 90 C */
1249
1250
sens->therm.read =
1251
(int (*)(struct pmac_therm *))smu_sensor_read;
1252
pmac_thermal_sensor_register(&sens->therm);
1253
}
1254
1255
sens++;
1256
sc->sc_nsensors++;
1257
}
1258
}
1259
1260
static void
1261
smu_set_sleepled(void *xdev, int onoff)
1262
{
1263
static struct smu_cmd cmd;
1264
device_t smu = xdev;
1265
1266
cmd.cmd = SMU_MISC;
1267
cmd.len = 3;
1268
cmd.data[0] = SMU_MISC_LED_CTRL;
1269
cmd.data[1] = 0;
1270
cmd.data[2] = onoff;
1271
1272
smu_run_cmd(smu, &cmd, 0);
1273
}
1274
1275
static int
1276
smu_server_mode(SYSCTL_HANDLER_ARGS)
1277
{
1278
struct smu_cmd cmd;
1279
u_int server_mode;
1280
device_t smu = arg1;
1281
int error;
1282
1283
cmd.cmd = SMU_POWER_EVENTS;
1284
cmd.len = 1;
1285
cmd.data[0] = SMU_PWR_GET_POWERUP;
1286
1287
error = smu_run_cmd(smu, &cmd, 1);
1288
1289
if (error)
1290
return (error);
1291
1292
server_mode = (cmd.data[1] & SMU_WAKEUP_AC_INSERT) ? 1 : 0;
1293
1294
error = sysctl_handle_int(oidp, &server_mode, 0, req);
1295
1296
if (error || !req->newptr)
1297
return (error);
1298
1299
if (server_mode == 1)
1300
cmd.data[0] = SMU_PWR_SET_POWERUP;
1301
else if (server_mode == 0)
1302
cmd.data[0] = SMU_PWR_CLR_POWERUP;
1303
else
1304
return (EINVAL);
1305
1306
cmd.len = 3;
1307
cmd.data[1] = 0;
1308
cmd.data[2] = SMU_WAKEUP_AC_INSERT;
1309
1310
return (smu_run_cmd(smu, &cmd, 1));
1311
}
1312
1313
static void
1314
smu_shutdown(void *xdev, int howto)
1315
{
1316
device_t smu = xdev;
1317
struct smu_cmd cmd;
1318
1319
cmd.cmd = SMU_POWER;
1320
if ((howto & RB_POWEROFF) != 0)
1321
strcpy(cmd.data, "SHUTDOWN");
1322
else if ((howto & RB_HALT) == 0)
1323
strcpy(cmd.data, "RESTART");
1324
else
1325
return;
1326
1327
cmd.len = strlen(cmd.data);
1328
1329
smu_run_cmd(smu, &cmd, 1);
1330
1331
for (;;);
1332
}
1333
1334
static int
1335
smu_gettime(device_t dev, struct timespec *ts)
1336
{
1337
struct smu_cmd cmd;
1338
struct clocktime ct;
1339
1340
cmd.cmd = SMU_RTC;
1341
cmd.len = 1;
1342
cmd.data[0] = SMU_RTC_GET;
1343
1344
if (smu_run_cmd(dev, &cmd, 1) != 0)
1345
return (ENXIO);
1346
1347
ct.nsec = 0;
1348
ct.sec = bcd2bin(cmd.data[0]);
1349
ct.min = bcd2bin(cmd.data[1]);
1350
ct.hour = bcd2bin(cmd.data[2]);
1351
ct.dow = bcd2bin(cmd.data[3]);
1352
ct.day = bcd2bin(cmd.data[4]);
1353
ct.mon = bcd2bin(cmd.data[5]);
1354
ct.year = bcd2bin(cmd.data[6]) + 2000;
1355
1356
return (clock_ct_to_ts(&ct, ts));
1357
}
1358
1359
static int
1360
smu_settime(device_t dev, struct timespec *ts)
1361
{
1362
static struct smu_cmd cmd;
1363
struct clocktime ct;
1364
1365
cmd.cmd = SMU_RTC;
1366
cmd.len = 8;
1367
cmd.data[0] = SMU_RTC_SET;
1368
1369
clock_ts_to_ct(ts, &ct);
1370
1371
cmd.data[1] = bin2bcd(ct.sec);
1372
cmd.data[2] = bin2bcd(ct.min);
1373
cmd.data[3] = bin2bcd(ct.hour);
1374
cmd.data[4] = bin2bcd(ct.dow);
1375
cmd.data[5] = bin2bcd(ct.day);
1376
cmd.data[6] = bin2bcd(ct.mon);
1377
cmd.data[7] = bin2bcd(ct.year - 2000);
1378
1379
return (smu_run_cmd(dev, &cmd, 0));
1380
}
1381
1382
/* SMU I2C Interface */
1383
1384
static int smuiic_probe(device_t dev);
1385
static int smuiic_attach(device_t dev);
1386
static int smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs);
1387
static phandle_t smuiic_get_node(device_t bus, device_t dev);
1388
1389
static device_method_t smuiic_methods[] = {
1390
/* device interface */
1391
DEVMETHOD(device_probe, smuiic_probe),
1392
DEVMETHOD(device_attach, smuiic_attach),
1393
1394
/* iicbus interface */
1395
DEVMETHOD(iicbus_callback, iicbus_null_callback),
1396
DEVMETHOD(iicbus_transfer, smuiic_transfer),
1397
1398
/* ofw_bus interface */
1399
DEVMETHOD(ofw_bus_get_node, smuiic_get_node),
1400
{ 0, 0 }
1401
};
1402
1403
struct smuiic_softc {
1404
struct mtx sc_mtx;
1405
volatile int sc_iic_inuse;
1406
int sc_busno;
1407
};
1408
1409
static driver_t smuiic_driver = {
1410
"iichb",
1411
smuiic_methods,
1412
sizeof(struct smuiic_softc)
1413
};
1414
1415
DRIVER_MODULE(smuiic, smu, smuiic_driver, 0, 0);
1416
1417
static void
1418
smu_attach_i2c(device_t smu, phandle_t i2croot)
1419
{
1420
phandle_t child;
1421
device_t cdev;
1422
struct ofw_bus_devinfo *dinfo;
1423
char name[32];
1424
1425
for (child = OF_child(i2croot); child != 0; child = OF_peer(child)) {
1426
if (OF_getprop(child, "name", name, sizeof(name)) <= 0)
1427
continue;
1428
1429
if (strcmp(name, "i2c-bus") != 0 && strcmp(name, "i2c") != 0)
1430
continue;
1431
1432
dinfo = malloc(sizeof(struct ofw_bus_devinfo), M_SMU,
1433
M_WAITOK | M_ZERO);
1434
if (ofw_bus_gen_setup_devinfo(dinfo, child) != 0) {
1435
free(dinfo, M_SMU);
1436
continue;
1437
}
1438
1439
cdev = device_add_child(smu, NULL, DEVICE_UNIT_ANY);
1440
if (cdev == NULL) {
1441
device_printf(smu, "<%s>: device_add_child failed\n",
1442
dinfo->obd_name);
1443
ofw_bus_gen_destroy_devinfo(dinfo);
1444
free(dinfo, M_SMU);
1445
continue;
1446
}
1447
device_set_ivars(cdev, dinfo);
1448
}
1449
}
1450
1451
static int
1452
smuiic_probe(device_t dev)
1453
{
1454
const char *name;
1455
1456
name = ofw_bus_get_name(dev);
1457
if (name == NULL)
1458
return (ENXIO);
1459
1460
if (strcmp(name, "i2c-bus") == 0 || strcmp(name, "i2c") == 0) {
1461
device_set_desc(dev, "SMU I2C controller");
1462
return (0);
1463
}
1464
1465
return (ENXIO);
1466
}
1467
1468
static int
1469
smuiic_attach(device_t dev)
1470
{
1471
struct smuiic_softc *sc = device_get_softc(dev);
1472
mtx_init(&sc->sc_mtx, "smuiic", NULL, MTX_DEF);
1473
sc->sc_iic_inuse = 0;
1474
1475
/* Get our bus number */
1476
OF_getprop(ofw_bus_get_node(dev), "reg", &sc->sc_busno,
1477
sizeof(sc->sc_busno));
1478
1479
/* Add the IIC bus layer */
1480
device_add_child(dev, "iicbus", DEVICE_UNIT_ANY);
1481
1482
bus_attach_children(dev);
1483
return (0);
1484
}
1485
1486
static int
1487
smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
1488
{
1489
struct smuiic_softc *sc = device_get_softc(dev);
1490
struct smu_cmd cmd;
1491
int i, j, error;
1492
1493
mtx_lock(&sc->sc_mtx);
1494
while (sc->sc_iic_inuse)
1495
mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 100);
1496
1497
sc->sc_iic_inuse = 1;
1498
error = 0;
1499
1500
for (i = 0; i < nmsgs; i++) {
1501
cmd.cmd = SMU_I2C;
1502
cmd.data[0] = sc->sc_busno;
1503
if (msgs[i].flags & IIC_M_NOSTOP)
1504
cmd.data[1] = SMU_I2C_COMBINED;
1505
else
1506
cmd.data[1] = SMU_I2C_SIMPLE;
1507
1508
cmd.data[2] = msgs[i].slave;
1509
if (msgs[i].flags & IIC_M_RD)
1510
cmd.data[2] |= 1;
1511
1512
if (msgs[i].flags & IIC_M_NOSTOP) {
1513
KASSERT(msgs[i].len < 4,
1514
("oversize I2C combined message"));
1515
1516
cmd.data[3] = min(msgs[i].len, 3);
1517
memcpy(&cmd.data[4], msgs[i].buf, min(msgs[i].len, 3));
1518
i++; /* Advance to next part of message */
1519
} else {
1520
cmd.data[3] = 0;
1521
memset(&cmd.data[4], 0, 3);
1522
}
1523
1524
cmd.data[7] = msgs[i].slave;
1525
if (msgs[i].flags & IIC_M_RD)
1526
cmd.data[7] |= 1;
1527
1528
cmd.data[8] = msgs[i].len;
1529
if (msgs[i].flags & IIC_M_RD) {
1530
memset(&cmd.data[9], 0xff, msgs[i].len);
1531
cmd.len = 9;
1532
} else {
1533
memcpy(&cmd.data[9], msgs[i].buf, msgs[i].len);
1534
cmd.len = 9 + msgs[i].len;
1535
}
1536
1537
mtx_unlock(&sc->sc_mtx);
1538
smu_run_cmd(device_get_parent(dev), &cmd, 1);
1539
mtx_lock(&sc->sc_mtx);
1540
1541
for (j = 0; j < 10; j++) {
1542
cmd.cmd = SMU_I2C;
1543
cmd.len = 1;
1544
cmd.data[0] = 0;
1545
memset(&cmd.data[1], 0xff, msgs[i].len);
1546
1547
mtx_unlock(&sc->sc_mtx);
1548
smu_run_cmd(device_get_parent(dev), &cmd, 1);
1549
mtx_lock(&sc->sc_mtx);
1550
1551
if (!(cmd.data[0] & 0x80))
1552
break;
1553
1554
mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 10);
1555
}
1556
1557
if (cmd.data[0] & 0x80) {
1558
error = EIO;
1559
msgs[i].len = 0;
1560
goto exit;
1561
}
1562
memcpy(msgs[i].buf, &cmd.data[1], msgs[i].len);
1563
msgs[i].len = cmd.len - 1;
1564
}
1565
1566
exit:
1567
sc->sc_iic_inuse = 0;
1568
mtx_unlock(&sc->sc_mtx);
1569
wakeup(sc);
1570
return (error);
1571
}
1572
1573
static phandle_t
1574
smuiic_get_node(device_t bus, device_t dev)
1575
{
1576
1577
return (ofw_bus_get_node(bus));
1578
}
1579
1580