Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/rpc/svc_vc.c
39475 views
1
/* $NetBSD: svc_vc.c,v 1.7 2000/08/03 00:01:53 fvdl Exp $ */
2
3
/*-
4
* SPDX-License-Identifier: BSD-3-Clause
5
*
6
* Copyright (c) 2009, Sun Microsystems, Inc.
7
* All rights reserved.
8
*
9
* Redistribution and use in source and binary forms, with or without
10
* modification, are permitted provided that the following conditions are met:
11
* - Redistributions of source code must retain the above copyright notice,
12
* this list of conditions and the following disclaimer.
13
* - Redistributions in binary form must reproduce the above copyright notice,
14
* this list of conditions and the following disclaimer in the documentation
15
* and/or other materials provided with the distribution.
16
* - Neither the name of Sun Microsystems, Inc. nor the names of its
17
* contributors may be used to endorse or promote products derived
18
* from this software without specific prior written permission.
19
*
20
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
24
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30
* POSSIBILITY OF SUCH DAMAGE.
31
*/
32
33
#include <sys/cdefs.h>
34
/*
35
* svc_vc.c, Server side for Connection Oriented based RPC.
36
*
37
* Actually implements two flavors of transporter -
38
* a tcp rendezvouser (a listener and connection establisher)
39
* and a record/tcp stream.
40
*/
41
42
#include "opt_kern_tls.h"
43
44
#include <sys/param.h>
45
#include <sys/limits.h>
46
#include <sys/lock.h>
47
#include <sys/kernel.h>
48
#include <sys/ktls.h>
49
#include <sys/malloc.h>
50
#include <sys/mbuf.h>
51
#include <sys/mutex.h>
52
#include <sys/proc.h>
53
#include <sys/protosw.h>
54
#include <sys/queue.h>
55
#include <sys/socket.h>
56
#include <sys/socketvar.h>
57
#include <sys/sx.h>
58
#include <sys/systm.h>
59
#include <sys/uio.h>
60
61
#include <net/vnet.h>
62
63
#include <netinet/tcp.h>
64
65
#include <rpc/rpc.h>
66
#include <rpc/rpcsec_tls.h>
67
68
#include <rpc/krpc.h>
69
#include <rpc/rpc_com.h>
70
71
#include <security/mac/mac_framework.h>
72
73
SYSCTL_NODE(_kern, OID_AUTO, rpc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
74
"RPC");
75
SYSCTL_NODE(_kern_rpc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
76
"TLS");
77
SYSCTL_NODE(_kern_rpc, OID_AUTO, unenc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
78
"unencrypted");
79
80
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_rx_msgbytes) = 0;
81
SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, rx_msgbytes, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
82
&KRPC_VNET_NAME(svc_vc_rx_msgbytes), 0, "Count of non-TLS rx bytes");
83
84
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_rx_msgcnt) = 0;
85
SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, rx_msgcnt, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
86
&KRPC_VNET_NAME(svc_vc_rx_msgcnt), 0, "Count of non-TLS rx messages");
87
88
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tx_msgbytes) = 0;
89
SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, tx_msgbytes, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
90
&KRPC_VNET_NAME(svc_vc_tx_msgbytes), 0, "Count of non-TLS tx bytes");
91
92
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tx_msgcnt) = 0;
93
SYSCTL_U64(_kern_rpc_unenc, OID_AUTO, tx_msgcnt, CTLFLAG_KRPC_VNET | CTLFLAG_RW,
94
&KRPC_VNET_NAME(svc_vc_tx_msgcnt), 0, "Count of non-TLS tx messages");
95
96
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_alerts) = 0;
97
SYSCTL_U64(_kern_rpc_tls, OID_AUTO, alerts,
98
CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_alerts), 0,
99
"Count of TLS alert messages");
100
101
KRPC_VNET_DEFINE(uint64_t, svc_vc_tls_handshake_failed) = 0;
102
SYSCTL_U64(_kern_rpc_tls, OID_AUTO, handshake_failed,
103
CTLFLAG_KRPC_VNET | CTLFLAG_RW,
104
&KRPC_VNET_NAME(svc_vc_tls_handshake_failed), 0,
105
"Count of TLS failed handshakes");
106
107
KRPC_VNET_DEFINE(uint64_t, svc_vc_tls_handshake_success) = 0;
108
SYSCTL_U64(_kern_rpc_tls, OID_AUTO, handshake_success,
109
CTLFLAG_KRPC_VNET | CTLFLAG_RW,
110
&KRPC_VNET_NAME(svc_vc_tls_handshake_success), 0,
111
"Count of TLS successful handshakes");
112
113
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_rx_msgbytes) = 0;
114
SYSCTL_U64(_kern_rpc_tls, OID_AUTO, rx_msgbytes,
115
CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_rx_msgbytes), 0,
116
"Count of TLS rx bytes");
117
118
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_rx_msgcnt) = 0;
119
SYSCTL_U64(_kern_rpc_tls, OID_AUTO, rx_msgcnt,
120
CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_rx_msgcnt), 0,
121
"Count of TLS rx messages");
122
123
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_tx_msgbytes) = 0;
124
SYSCTL_U64(_kern_rpc_tls, OID_AUTO, tx_msgbytes,
125
CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_tx_msgbytes), 0,
126
"Count of TLS tx bytes");
127
128
KRPC_VNET_DEFINE_STATIC(uint64_t, svc_vc_tls_tx_msgcnt) = 0;
129
SYSCTL_U64(_kern_rpc_tls, OID_AUTO, tx_msgcnt,
130
CTLFLAG_KRPC_VNET | CTLFLAG_RW, &KRPC_VNET_NAME(svc_vc_tls_tx_msgcnt), 0,
131
"Count of TLS tx messages");
132
133
static bool_t svc_vc_rendezvous_recv(SVCXPRT *, struct rpc_msg *,
134
struct sockaddr **, struct mbuf **);
135
static enum xprt_stat svc_vc_rendezvous_stat(SVCXPRT *);
136
static void svc_vc_rendezvous_destroy(SVCXPRT *);
137
static bool_t svc_vc_null(void);
138
static void svc_vc_destroy(SVCXPRT *);
139
static enum xprt_stat svc_vc_stat(SVCXPRT *);
140
static bool_t svc_vc_ack(SVCXPRT *, uint32_t *);
141
static bool_t svc_vc_recv(SVCXPRT *, struct rpc_msg *,
142
struct sockaddr **, struct mbuf **);
143
static bool_t svc_vc_reply(SVCXPRT *, struct rpc_msg *,
144
struct sockaddr *, struct mbuf *, uint32_t *seq);
145
static bool_t svc_vc_control(SVCXPRT *xprt, const u_int rq, void *in);
146
static bool_t svc_vc_rendezvous_control (SVCXPRT *xprt, const u_int rq,
147
void *in);
148
static void svc_vc_backchannel_destroy(SVCXPRT *);
149
static enum xprt_stat svc_vc_backchannel_stat(SVCXPRT *);
150
static bool_t svc_vc_backchannel_recv(SVCXPRT *, struct rpc_msg *,
151
struct sockaddr **, struct mbuf **);
152
static bool_t svc_vc_backchannel_reply(SVCXPRT *, struct rpc_msg *,
153
struct sockaddr *, struct mbuf *, uint32_t *);
154
static bool_t svc_vc_backchannel_control(SVCXPRT *xprt, const u_int rq,
155
void *in);
156
static SVCXPRT *svc_vc_create_conn(SVCPOOL *pool, struct socket *so,
157
struct sockaddr *raddr);
158
static int svc_vc_accept(struct socket *head, struct socket **sop);
159
static int svc_vc_soupcall(struct socket *so, void *arg, int waitflag);
160
static int svc_vc_rendezvous_soupcall(struct socket *, void *, int);
161
162
static const struct xp_ops svc_vc_rendezvous_ops = {
163
.xp_recv = svc_vc_rendezvous_recv,
164
.xp_stat = svc_vc_rendezvous_stat,
165
.xp_reply = (bool_t (*)(SVCXPRT *, struct rpc_msg *,
166
struct sockaddr *, struct mbuf *, uint32_t *))svc_vc_null,
167
.xp_destroy = svc_vc_rendezvous_destroy,
168
.xp_control = svc_vc_rendezvous_control
169
};
170
171
static const struct xp_ops svc_vc_ops = {
172
.xp_recv = svc_vc_recv,
173
.xp_stat = svc_vc_stat,
174
.xp_ack = svc_vc_ack,
175
.xp_reply = svc_vc_reply,
176
.xp_destroy = svc_vc_destroy,
177
.xp_control = svc_vc_control
178
};
179
180
static const struct xp_ops svc_vc_backchannel_ops = {
181
.xp_recv = svc_vc_backchannel_recv,
182
.xp_stat = svc_vc_backchannel_stat,
183
.xp_reply = svc_vc_backchannel_reply,
184
.xp_destroy = svc_vc_backchannel_destroy,
185
.xp_control = svc_vc_backchannel_control
186
};
187
188
/*
189
* Usage:
190
* xprt = svc_vc_create(sock, send_buf_size, recv_buf_size);
191
*
192
* Creates, registers, and returns a (rpc) tcp based transporter.
193
* Once *xprt is initialized, it is registered as a transporter
194
* see (svc.h, xprt_register). This routine returns
195
* a NULL if a problem occurred.
196
*
197
* The filedescriptor passed in is expected to refer to a bound, but
198
* not yet connected socket.
199
*
200
* Since streams do buffered io similar to stdio, the caller can specify
201
* how big the send and receive buffers are via the second and third parms;
202
* 0 => use the system default.
203
*/
204
SVCXPRT *
205
svc_vc_create(SVCPOOL *pool, struct socket *so, size_t sendsize,
206
size_t recvsize)
207
{
208
SVCXPRT *xprt;
209
int error;
210
211
SOCK_LOCK(so);
212
if (so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED)) {
213
struct sockaddr_storage ss = { .ss_len = sizeof(ss) };
214
215
SOCK_UNLOCK(so);
216
error = sopeeraddr(so, (struct sockaddr *)&ss);
217
if (error)
218
return (NULL);
219
xprt = svc_vc_create_conn(pool, so, (struct sockaddr *)&ss);
220
return (xprt);
221
}
222
SOCK_UNLOCK(so);
223
224
xprt = svc_xprt_alloc();
225
sx_init(&xprt->xp_lock, "xprt->xp_lock");
226
xprt->xp_pool = pool;
227
xprt->xp_socket = so;
228
xprt->xp_p1 = NULL;
229
xprt->xp_p2 = NULL;
230
xprt->xp_ops = &svc_vc_rendezvous_ops;
231
232
xprt->xp_ltaddr.ss_len = sizeof(xprt->xp_ltaddr);
233
error = sosockaddr(so, (struct sockaddr *)&xprt->xp_ltaddr);
234
if (error) {
235
goto cleanup_svc_vc_create;
236
}
237
238
xprt_register(xprt);
239
240
solisten(so, -1, curthread);
241
242
SOLISTEN_LOCK(so);
243
xprt->xp_upcallset = 1;
244
solisten_upcall_set(so, svc_vc_rendezvous_soupcall, xprt);
245
SOLISTEN_UNLOCK(so);
246
247
return (xprt);
248
249
cleanup_svc_vc_create:
250
sx_destroy(&xprt->xp_lock);
251
svc_xprt_free(xprt);
252
253
return (NULL);
254
}
255
256
/*
257
* Create a new transport for a socket optained via soaccept().
258
*/
259
SVCXPRT *
260
svc_vc_create_conn(SVCPOOL *pool, struct socket *so, struct sockaddr *raddr)
261
{
262
SVCXPRT *xprt;
263
struct cf_conn *cd;
264
struct sockopt opt;
265
int one = 1;
266
int error;
267
268
bzero(&opt, sizeof(struct sockopt));
269
opt.sopt_dir = SOPT_SET;
270
opt.sopt_level = SOL_SOCKET;
271
opt.sopt_name = SO_KEEPALIVE;
272
opt.sopt_val = &one;
273
opt.sopt_valsize = sizeof(one);
274
error = sosetopt(so, &opt);
275
if (error) {
276
return (NULL);
277
}
278
279
if (so->so_proto->pr_protocol == IPPROTO_TCP) {
280
bzero(&opt, sizeof(struct sockopt));
281
opt.sopt_dir = SOPT_SET;
282
opt.sopt_level = IPPROTO_TCP;
283
opt.sopt_name = TCP_NODELAY;
284
opt.sopt_val = &one;
285
opt.sopt_valsize = sizeof(one);
286
error = sosetopt(so, &opt);
287
if (error) {
288
return (NULL);
289
}
290
}
291
292
cd = mem_alloc(sizeof(*cd));
293
cd->strm_stat = XPRT_IDLE;
294
295
xprt = svc_xprt_alloc();
296
sx_init(&xprt->xp_lock, "xprt->xp_lock");
297
xprt->xp_pool = pool;
298
xprt->xp_socket = so;
299
xprt->xp_p1 = cd;
300
xprt->xp_p2 = NULL;
301
xprt->xp_ops = &svc_vc_ops;
302
303
/*
304
* See http://www.connectathon.org/talks96/nfstcp.pdf - client
305
* has a 5 minute timer, server has a 6 minute timer.
306
*/
307
xprt->xp_idletimeout = 6 * 60;
308
309
memcpy(&xprt->xp_rtaddr, raddr, raddr->sa_len);
310
311
xprt->xp_ltaddr.ss_len = sizeof(xprt->xp_ltaddr);
312
error = sosockaddr(so, (struct sockaddr *)&xprt->xp_ltaddr);
313
if (error)
314
goto cleanup_svc_vc_create;
315
316
xprt_register(xprt);
317
318
SOCK_RECVBUF_LOCK(so);
319
xprt->xp_upcallset = 1;
320
soupcall_set(so, SO_RCV, svc_vc_soupcall, xprt);
321
SOCK_RECVBUF_UNLOCK(so);
322
323
/*
324
* Throw the transport into the active list in case it already
325
* has some data buffered.
326
*/
327
sx_xlock(&xprt->xp_lock);
328
xprt_active(xprt);
329
sx_xunlock(&xprt->xp_lock);
330
331
return (xprt);
332
cleanup_svc_vc_create:
333
sx_destroy(&xprt->xp_lock);
334
svc_xprt_free(xprt);
335
mem_free(cd, sizeof(*cd));
336
337
return (NULL);
338
}
339
340
/*
341
* Create a new transport for a backchannel on a clnt_vc socket.
342
*/
343
SVCXPRT *
344
svc_vc_create_backchannel(SVCPOOL *pool)
345
{
346
SVCXPRT *xprt = NULL;
347
struct cf_conn *cd = NULL;
348
349
cd = mem_alloc(sizeof(*cd));
350
cd->strm_stat = XPRT_IDLE;
351
352
xprt = svc_xprt_alloc();
353
sx_init(&xprt->xp_lock, "xprt->xp_lock");
354
xprt->xp_pool = pool;
355
xprt->xp_socket = NULL;
356
xprt->xp_p1 = cd;
357
xprt->xp_p2 = NULL;
358
xprt->xp_ops = &svc_vc_backchannel_ops;
359
return (xprt);
360
}
361
362
/*
363
* This does all of the accept except the final call to soaccept. The
364
* caller will call soaccept after dropping its locks (soaccept may
365
* call malloc).
366
*/
367
int
368
svc_vc_accept(struct socket *head, struct socket **sop)
369
{
370
struct socket *so;
371
int error = 0;
372
short nbio;
373
374
KASSERT(SOLISTENING(head),
375
("%s: socket %p is not listening", __func__, head));
376
377
#ifdef MAC
378
error = mac_socket_check_accept(curthread->td_ucred, head);
379
if (error != 0)
380
goto done;
381
#endif
382
/*
383
* XXXGL: we want non-blocking semantics. The socket could be a
384
* socket created by kernel as well as socket shared with userland,
385
* so we can't be sure about presense of SS_NBIO. We also shall not
386
* toggle it on the socket, since that may surprise userland. So we
387
* set SS_NBIO only temporarily.
388
*/
389
SOLISTEN_LOCK(head);
390
nbio = head->so_state & SS_NBIO;
391
head->so_state |= SS_NBIO;
392
error = solisten_dequeue(head, &so, 0);
393
head->so_state &= (nbio & ~SS_NBIO);
394
if (error)
395
goto done;
396
397
so->so_state |= nbio;
398
*sop = so;
399
400
/* connection has been removed from the listen queue */
401
KNOTE_UNLOCKED(&head->so_rdsel.si_note, 0);
402
done:
403
return (error);
404
}
405
406
/*ARGSUSED*/
407
static bool_t
408
svc_vc_rendezvous_recv(SVCXPRT *xprt, struct rpc_msg *msg,
409
struct sockaddr **addrp, struct mbuf **mp)
410
{
411
struct socket *so = NULL;
412
struct sockaddr_storage ss = { .ss_len = sizeof(ss) };
413
int error;
414
SVCXPRT *new_xprt;
415
416
/*
417
* The socket upcall calls xprt_active() which will eventually
418
* cause the server to call us here. We attempt to accept a
419
* connection from the socket and turn it into a new
420
* transport. If the accept fails, we have drained all pending
421
* connections so we call xprt_inactive().
422
*/
423
sx_xlock(&xprt->xp_lock);
424
425
error = svc_vc_accept(xprt->xp_socket, &so);
426
427
if (error == EWOULDBLOCK) {
428
/*
429
* We must re-test for new connections after taking
430
* the lock to protect us in the case where a new
431
* connection arrives after our call to accept fails
432
* with EWOULDBLOCK.
433
*/
434
SOLISTEN_LOCK(xprt->xp_socket);
435
if (TAILQ_EMPTY(&xprt->xp_socket->sol_comp))
436
xprt_inactive_self(xprt);
437
SOLISTEN_UNLOCK(xprt->xp_socket);
438
sx_xunlock(&xprt->xp_lock);
439
return (FALSE);
440
}
441
442
if (error) {
443
SOLISTEN_LOCK(xprt->xp_socket);
444
if (xprt->xp_upcallset) {
445
xprt->xp_upcallset = 0;
446
soupcall_clear(xprt->xp_socket, SO_RCV);
447
}
448
SOLISTEN_UNLOCK(xprt->xp_socket);
449
xprt_inactive_self(xprt);
450
sx_xunlock(&xprt->xp_lock);
451
return (FALSE);
452
}
453
454
sx_xunlock(&xprt->xp_lock);
455
456
error = soaccept(so, (struct sockaddr *)&ss);
457
458
if (error) {
459
/*
460
* XXX not sure if I need to call sofree or soclose here.
461
*/
462
return (FALSE);
463
}
464
465
/*
466
* svc_vc_create_conn will call xprt_register - we don't need
467
* to do anything with the new connection except derefence it.
468
*/
469
new_xprt = svc_vc_create_conn(xprt->xp_pool, so,
470
(struct sockaddr *)&ss);
471
if (!new_xprt) {
472
soclose(so);
473
} else {
474
SVC_RELEASE(new_xprt);
475
}
476
477
return (FALSE); /* there is never an rpc msg to be processed */
478
}
479
480
/*ARGSUSED*/
481
static enum xprt_stat
482
svc_vc_rendezvous_stat(SVCXPRT *xprt)
483
{
484
485
return (XPRT_IDLE);
486
}
487
488
static void
489
svc_vc_destroy_common(SVCXPRT *xprt)
490
{
491
uint32_t reterr;
492
493
if (xprt->xp_socket) {
494
if ((xprt->xp_tls & (RPCTLS_FLAGS_HANDSHAKE |
495
RPCTLS_FLAGS_HANDSHFAIL)) != 0) {
496
CURVNET_SET(xprt->xp_socket->so_vnet);
497
if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0) {
498
/*
499
* If the upcall fails, the socket has
500
* probably been closed via the rpctlssd
501
* daemon having crashed or been
502
* restarted, so just ignore returned stat.
503
*/
504
rpctls_srv_disconnect(xprt->xp_socket, &reterr);
505
}
506
/* Must sorele() to get rid of reference. */
507
sorele(xprt->xp_socket);
508
CURVNET_RESTORE();
509
} else
510
(void)soclose(xprt->xp_socket);
511
}
512
513
if (xprt->xp_netid)
514
(void) mem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
515
svc_xprt_free(xprt);
516
}
517
518
static void
519
svc_vc_rendezvous_destroy(SVCXPRT *xprt)
520
{
521
522
SOLISTEN_LOCK(xprt->xp_socket);
523
if (xprt->xp_upcallset) {
524
xprt->xp_upcallset = 0;
525
solisten_upcall_set(xprt->xp_socket, NULL, NULL);
526
}
527
SOLISTEN_UNLOCK(xprt->xp_socket);
528
529
svc_vc_destroy_common(xprt);
530
}
531
532
static void
533
svc_vc_destroy(SVCXPRT *xprt)
534
{
535
struct cf_conn *cd = (struct cf_conn *)xprt->xp_p1;
536
CLIENT *cl = (CLIENT *)xprt->xp_p2;
537
538
SOCK_RECVBUF_LOCK(xprt->xp_socket);
539
if (xprt->xp_upcallset) {
540
xprt->xp_upcallset = 0;
541
if (xprt->xp_socket->so_rcv.sb_upcall != NULL)
542
soupcall_clear(xprt->xp_socket, SO_RCV);
543
}
544
SOCK_RECVBUF_UNLOCK(xprt->xp_socket);
545
546
if (cl != NULL)
547
CLNT_RELEASE(cl);
548
549
svc_vc_destroy_common(xprt);
550
551
if (cd->mreq)
552
m_freem(cd->mreq);
553
if (cd->mpending)
554
m_freem(cd->mpending);
555
mem_free(cd, sizeof(*cd));
556
}
557
558
static void
559
svc_vc_backchannel_destroy(SVCXPRT *xprt)
560
{
561
struct cf_conn *cd = (struct cf_conn *)xprt->xp_p1;
562
struct mbuf *m, *m2;
563
564
svc_xprt_free(xprt);
565
m = cd->mreq;
566
while (m != NULL) {
567
m2 = m;
568
m = m->m_nextpkt;
569
m_freem(m2);
570
}
571
mem_free(cd, sizeof(*cd));
572
}
573
574
/*ARGSUSED*/
575
static bool_t
576
svc_vc_control(SVCXPRT *xprt, const u_int rq, void *in)
577
{
578
return (FALSE);
579
}
580
581
static bool_t
582
svc_vc_rendezvous_control(SVCXPRT *xprt, const u_int rq, void *in)
583
{
584
585
return (FALSE);
586
}
587
588
static bool_t
589
svc_vc_backchannel_control(SVCXPRT *xprt, const u_int rq, void *in)
590
{
591
592
return (FALSE);
593
}
594
595
static enum xprt_stat
596
svc_vc_stat(SVCXPRT *xprt)
597
{
598
struct cf_conn *cd;
599
600
cd = (struct cf_conn *)(xprt->xp_p1);
601
602
if (cd->strm_stat == XPRT_DIED)
603
return (XPRT_DIED);
604
605
if (cd->mreq != NULL && cd->resid == 0 && cd->eor)
606
return (XPRT_MOREREQS);
607
608
if (soreadable(xprt->xp_socket))
609
return (XPRT_MOREREQS);
610
611
return (XPRT_IDLE);
612
}
613
614
static bool_t
615
svc_vc_ack(SVCXPRT *xprt, uint32_t *ack)
616
{
617
618
*ack = atomic_load_acq_32(&xprt->xp_snt_cnt);
619
*ack -= sbused(&xprt->xp_socket->so_snd);
620
return (TRUE);
621
}
622
623
static enum xprt_stat
624
svc_vc_backchannel_stat(SVCXPRT *xprt)
625
{
626
struct cf_conn *cd;
627
628
cd = (struct cf_conn *)(xprt->xp_p1);
629
630
if (cd->mreq != NULL)
631
return (XPRT_MOREREQS);
632
633
return (XPRT_IDLE);
634
}
635
636
/*
637
* If we have an mbuf chain in cd->mpending, try to parse a record from it,
638
* leaving the result in cd->mreq. If we don't have a complete record, leave
639
* the partial result in cd->mreq and try to read more from the socket.
640
*/
641
static int
642
svc_vc_process_pending(SVCXPRT *xprt)
643
{
644
struct cf_conn *cd = (struct cf_conn *) xprt->xp_p1;
645
struct socket *so = xprt->xp_socket;
646
struct mbuf *m;
647
648
/*
649
* If cd->resid is non-zero, we have part of the
650
* record already, otherwise we are expecting a record
651
* marker.
652
*/
653
if (!cd->resid && cd->mpending) {
654
/*
655
* See if there is enough data buffered to
656
* make up a record marker. Make sure we can
657
* handle the case where the record marker is
658
* split across more than one mbuf.
659
*/
660
size_t n = 0;
661
uint32_t header;
662
663
m = cd->mpending;
664
while (n < sizeof(uint32_t) && m) {
665
n += m->m_len;
666
m = m->m_next;
667
}
668
if (n < sizeof(uint32_t)) {
669
so->so_rcv.sb_lowat = sizeof(uint32_t) - n;
670
return (FALSE);
671
}
672
m_copydata(cd->mpending, 0, sizeof(header),
673
(char *)&header);
674
header = ntohl(header);
675
cd->eor = (header & 0x80000000) != 0;
676
cd->resid = header & 0x7fffffff;
677
m_adj(cd->mpending, sizeof(uint32_t));
678
}
679
680
/*
681
* Start pulling off mbufs from cd->mpending
682
* until we either have a complete record or
683
* we run out of data. We use m_split to pull
684
* data - it will pull as much as possible and
685
* split the last mbuf if necessary.
686
*/
687
while (cd->mpending && cd->resid) {
688
m = cd->mpending;
689
if (cd->mpending->m_next
690
|| cd->mpending->m_len > cd->resid)
691
cd->mpending = m_split(cd->mpending,
692
cd->resid, M_WAITOK);
693
else
694
cd->mpending = NULL;
695
if (cd->mreq)
696
m_last(cd->mreq)->m_next = m;
697
else
698
cd->mreq = m;
699
while (m) {
700
cd->resid -= m->m_len;
701
m = m->m_next;
702
}
703
}
704
705
/*
706
* Block receive upcalls if we have more data pending,
707
* otherwise report our need.
708
*/
709
if (cd->mpending)
710
so->so_rcv.sb_lowat = INT_MAX;
711
else
712
so->so_rcv.sb_lowat =
713
imax(1, imin(cd->resid, so->so_rcv.sb_hiwat / 2));
714
return (TRUE);
715
}
716
717
static bool_t
718
svc_vc_recv(SVCXPRT *xprt, struct rpc_msg *msg,
719
struct sockaddr **addrp, struct mbuf **mp)
720
{
721
struct cf_conn *cd = (struct cf_conn *) xprt->xp_p1;
722
struct uio uio;
723
struct mbuf *m, *ctrl;
724
struct socket* so = xprt->xp_socket;
725
XDR xdrs;
726
int error, rcvflag;
727
uint32_t reterr, xid_plus_direction[2];
728
struct cmsghdr *cmsg;
729
struct tls_get_record tgr;
730
enum clnt_stat ret;
731
732
/*
733
* Serialise access to the socket and our own record parsing
734
* state.
735
*/
736
sx_xlock(&xprt->xp_lock);
737
738
for (;;) {
739
/* If we have no request ready, check pending queue. */
740
while (cd->mpending &&
741
(cd->mreq == NULL || cd->resid != 0 || !cd->eor)) {
742
if (!svc_vc_process_pending(xprt))
743
break;
744
}
745
746
/* Process and return complete request in cd->mreq. */
747
if (cd->mreq != NULL && cd->resid == 0 && cd->eor) {
748
749
/*
750
* Now, check for a backchannel reply.
751
* The XID is in the first uint32_t of the reply
752
* and the message direction is the second one.
753
*/
754
if ((cd->mreq->m_len >= sizeof(xid_plus_direction) ||
755
m_length(cd->mreq, NULL) >=
756
sizeof(xid_plus_direction)) &&
757
xprt->xp_p2 != NULL) {
758
m_copydata(cd->mreq, 0,
759
sizeof(xid_plus_direction),
760
(char *)xid_plus_direction);
761
xid_plus_direction[0] =
762
ntohl(xid_plus_direction[0]);
763
xid_plus_direction[1] =
764
ntohl(xid_plus_direction[1]);
765
/* Check message direction. */
766
if (xid_plus_direction[1] == REPLY) {
767
clnt_bck_svccall(xprt->xp_p2,
768
cd->mreq,
769
xid_plus_direction[0]);
770
cd->mreq = NULL;
771
continue;
772
}
773
}
774
775
xdrmbuf_create(&xdrs, cd->mreq, XDR_DECODE);
776
cd->mreq = NULL;
777
778
/* Check for next request in a pending queue. */
779
svc_vc_process_pending(xprt);
780
if (cd->mreq == NULL || cd->resid != 0) {
781
SOCK_RECVBUF_LOCK(so);
782
if (!soreadable(so))
783
xprt_inactive_self(xprt);
784
SOCK_RECVBUF_UNLOCK(so);
785
}
786
787
sx_xunlock(&xprt->xp_lock);
788
789
if (! xdr_callmsg(&xdrs, msg)) {
790
XDR_DESTROY(&xdrs);
791
return (FALSE);
792
}
793
794
*addrp = NULL;
795
*mp = xdrmbuf_getall(&xdrs);
796
XDR_DESTROY(&xdrs);
797
798
return (TRUE);
799
}
800
801
/*
802
* If receiving is disabled so that a TLS handshake can be
803
* done by the rpctlssd daemon, return FALSE here.
804
*/
805
rcvflag = MSG_DONTWAIT;
806
if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0)
807
rcvflag |= MSG_TLSAPPDATA;
808
tryagain:
809
if (xprt->xp_dontrcv) {
810
sx_xunlock(&xprt->xp_lock);
811
return (FALSE);
812
}
813
814
/*
815
* The socket upcall calls xprt_active() which will eventually
816
* cause the server to call us here. We attempt to
817
* read as much as possible from the socket and put
818
* the result in cd->mpending. If the read fails,
819
* we have drained both cd->mpending and the socket so
820
* we can call xprt_inactive().
821
*/
822
uio.uio_resid = 1000000000;
823
uio.uio_td = curthread;
824
ctrl = m = NULL;
825
error = soreceive(so, NULL, &uio, &m, &ctrl, &rcvflag);
826
827
if (error == EWOULDBLOCK) {
828
/*
829
* We must re-test for readability after
830
* taking the lock to protect us in the case
831
* where a new packet arrives on the socket
832
* after our call to soreceive fails with
833
* EWOULDBLOCK.
834
*/
835
SOCK_RECVBUF_LOCK(so);
836
if (!soreadable(so))
837
xprt_inactive_self(xprt);
838
SOCK_RECVBUF_UNLOCK(so);
839
sx_xunlock(&xprt->xp_lock);
840
return (FALSE);
841
}
842
843
/*
844
* A return of ENXIO indicates that there is an
845
* alert record at the head of the
846
* socket's receive queue, for TLS connections.
847
* This record needs to be handled in userland
848
* via an SSL_read() call, so do an upcall to the daemon.
849
*/
850
KRPC_CURVNET_SET(so->so_vnet);
851
if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0 &&
852
error == ENXIO) {
853
KRPC_VNET(svc_vc_tls_alerts)++;
854
/* Disable reception. */
855
xprt->xp_dontrcv = TRUE;
856
sx_xunlock(&xprt->xp_lock);
857
ret = rpctls_srv_handlerecord(so, &reterr);
858
KRPC_CURVNET_RESTORE();
859
sx_xlock(&xprt->xp_lock);
860
xprt->xp_dontrcv = FALSE;
861
if (ret != RPC_SUCCESS || reterr != RPCTLSERR_OK) {
862
/*
863
* All we can do is soreceive() it and
864
* then toss it.
865
*/
866
rcvflag = MSG_DONTWAIT;
867
goto tryagain;
868
}
869
sx_xunlock(&xprt->xp_lock);
870
xprt_active(xprt); /* Harmless if already active. */
871
return (FALSE);
872
}
873
874
if (error) {
875
KRPC_CURVNET_RESTORE();
876
SOCK_RECVBUF_LOCK(so);
877
if (xprt->xp_upcallset) {
878
xprt->xp_upcallset = 0;
879
soupcall_clear(so, SO_RCV);
880
}
881
SOCK_RECVBUF_UNLOCK(so);
882
xprt_inactive_self(xprt);
883
cd->strm_stat = XPRT_DIED;
884
sx_xunlock(&xprt->xp_lock);
885
return (FALSE);
886
}
887
888
if (!m) {
889
KRPC_CURVNET_RESTORE();
890
/*
891
* EOF - the other end has closed the socket.
892
*/
893
xprt_inactive_self(xprt);
894
cd->strm_stat = XPRT_DIED;
895
sx_xunlock(&xprt->xp_lock);
896
return (FALSE);
897
}
898
899
/* Process any record header(s). */
900
if (ctrl != NULL) {
901
cmsg = mtod(ctrl, struct cmsghdr *);
902
if (cmsg->cmsg_type == TLS_GET_RECORD &&
903
cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
904
memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
905
/*
906
* TLS_RLTYPE_ALERT records should be handled
907
* since soreceive() would have returned
908
* ENXIO. Just throw any other
909
* non-TLS_RLTYPE_APP records away.
910
*/
911
if (tgr.tls_type != TLS_RLTYPE_APP) {
912
m_freem(m);
913
m_free(ctrl);
914
rcvflag = MSG_DONTWAIT | MSG_TLSAPPDATA;
915
KRPC_CURVNET_RESTORE();
916
goto tryagain;
917
}
918
KRPC_VNET(svc_vc_tls_rx_msgcnt)++;
919
KRPC_VNET(svc_vc_tls_rx_msgbytes) +=
920
1000000000 - uio.uio_resid;
921
}
922
m_free(ctrl);
923
} else {
924
KRPC_VNET(svc_vc_rx_msgcnt)++;
925
KRPC_VNET(svc_vc_rx_msgbytes) += 1000000000 -
926
uio.uio_resid;
927
}
928
KRPC_CURVNET_RESTORE();
929
930
if (cd->mpending)
931
m_last(cd->mpending)->m_next = m;
932
else
933
cd->mpending = m;
934
}
935
}
936
937
static bool_t
938
svc_vc_backchannel_recv(SVCXPRT *xprt, struct rpc_msg *msg,
939
struct sockaddr **addrp, struct mbuf **mp)
940
{
941
struct cf_conn *cd = (struct cf_conn *) xprt->xp_p1;
942
struct ct_data *ct;
943
struct mbuf *m;
944
XDR xdrs;
945
946
sx_xlock(&xprt->xp_lock);
947
ct = (struct ct_data *)xprt->xp_p2;
948
if (ct == NULL) {
949
sx_xunlock(&xprt->xp_lock);
950
return (FALSE);
951
}
952
mtx_lock(&ct->ct_lock);
953
m = cd->mreq;
954
if (m == NULL) {
955
xprt_inactive_self(xprt);
956
mtx_unlock(&ct->ct_lock);
957
sx_xunlock(&xprt->xp_lock);
958
return (FALSE);
959
}
960
cd->mreq = m->m_nextpkt;
961
mtx_unlock(&ct->ct_lock);
962
sx_xunlock(&xprt->xp_lock);
963
964
xdrmbuf_create(&xdrs, m, XDR_DECODE);
965
if (! xdr_callmsg(&xdrs, msg)) {
966
XDR_DESTROY(&xdrs);
967
return (FALSE);
968
}
969
*addrp = NULL;
970
*mp = xdrmbuf_getall(&xdrs);
971
XDR_DESTROY(&xdrs);
972
return (TRUE);
973
}
974
975
static bool_t
976
svc_vc_reply(SVCXPRT *xprt, struct rpc_msg *msg,
977
struct sockaddr *addr, struct mbuf *m, uint32_t *seq)
978
{
979
XDR xdrs;
980
struct mbuf *mrep;
981
bool_t stat = TRUE;
982
int error, len, maxextsiz;
983
#ifdef KERN_TLS
984
u_int maxlen;
985
#endif
986
987
/*
988
* Leave space for record mark.
989
*/
990
mrep = m_gethdr(M_WAITOK, MT_DATA);
991
mrep->m_data += sizeof(uint32_t);
992
993
xdrmbuf_create(&xdrs, mrep, XDR_ENCODE);
994
995
if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
996
msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
997
if (!xdr_replymsg(&xdrs, msg))
998
stat = FALSE;
999
else
1000
(void)xdr_putmbuf(&xdrs, m);
1001
} else {
1002
stat = xdr_replymsg(&xdrs, msg);
1003
}
1004
1005
if (stat) {
1006
m_fixhdr(mrep);
1007
1008
/*
1009
* Prepend a record marker containing the reply length.
1010
*/
1011
M_PREPEND(mrep, sizeof(uint32_t), M_WAITOK);
1012
len = mrep->m_pkthdr.len;
1013
*mtod(mrep, uint32_t *) =
1014
htonl(0x80000000 | (len - sizeof(uint32_t)));
1015
1016
/* For RPC-over-TLS, copy mrep to a chain of ext_pgs. */
1017
KRPC_CURVNET_SET(xprt->xp_socket->so_vnet);
1018
if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0) {
1019
/*
1020
* Copy the mbuf chain to a chain of
1021
* ext_pgs mbuf(s) as required by KERN_TLS.
1022
*/
1023
maxextsiz = TLS_MAX_MSG_SIZE_V10_2;
1024
#ifdef KERN_TLS
1025
if (rpctls_getinfo(&maxlen, false, false))
1026
maxextsiz = min(maxextsiz, maxlen);
1027
#endif
1028
mrep = _rpc_copym_into_ext_pgs(mrep, maxextsiz);
1029
KRPC_VNET(svc_vc_tls_tx_msgcnt)++;
1030
KRPC_VNET(svc_vc_tls_tx_msgbytes) += len;
1031
} else {
1032
KRPC_VNET(svc_vc_tx_msgcnt)++;
1033
KRPC_VNET(svc_vc_tx_msgbytes) += len;
1034
}
1035
KRPC_CURVNET_RESTORE();
1036
atomic_add_32(&xprt->xp_snd_cnt, len);
1037
/*
1038
* sosend consumes mreq.
1039
*/
1040
error = sosend(xprt->xp_socket, NULL, NULL, mrep, NULL,
1041
0, curthread);
1042
if (!error) {
1043
atomic_add_rel_32(&xprt->xp_snt_cnt, len);
1044
if (seq)
1045
*seq = xprt->xp_snd_cnt;
1046
stat = TRUE;
1047
} else
1048
atomic_subtract_32(&xprt->xp_snd_cnt, len);
1049
} else {
1050
m_freem(mrep);
1051
}
1052
1053
XDR_DESTROY(&xdrs);
1054
1055
return (stat);
1056
}
1057
1058
static bool_t
1059
svc_vc_backchannel_reply(SVCXPRT *xprt, struct rpc_msg *msg,
1060
struct sockaddr *addr, struct mbuf *m, uint32_t *seq)
1061
{
1062
struct ct_data *ct;
1063
XDR xdrs;
1064
struct mbuf *mrep;
1065
bool_t stat = TRUE;
1066
int error, maxextsiz;
1067
#ifdef KERN_TLS
1068
u_int maxlen;
1069
#endif
1070
1071
/*
1072
* Leave space for record mark.
1073
*/
1074
mrep = m_gethdr(M_WAITOK, MT_DATA);
1075
mrep->m_data += sizeof(uint32_t);
1076
1077
xdrmbuf_create(&xdrs, mrep, XDR_ENCODE);
1078
1079
if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
1080
msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
1081
if (!xdr_replymsg(&xdrs, msg))
1082
stat = FALSE;
1083
else
1084
(void)xdr_putmbuf(&xdrs, m);
1085
} else {
1086
stat = xdr_replymsg(&xdrs, msg);
1087
}
1088
1089
if (stat) {
1090
m_fixhdr(mrep);
1091
1092
/*
1093
* Prepend a record marker containing the reply length.
1094
*/
1095
M_PREPEND(mrep, sizeof(uint32_t), M_WAITOK);
1096
*mtod(mrep, uint32_t *) =
1097
htonl(0x80000000 | (mrep->m_pkthdr.len
1098
- sizeof(uint32_t)));
1099
1100
/* For RPC-over-TLS, copy mrep to a chain of ext_pgs. */
1101
if ((xprt->xp_tls & RPCTLS_FLAGS_HANDSHAKE) != 0) {
1102
/*
1103
* Copy the mbuf chain to a chain of
1104
* ext_pgs mbuf(s) as required by KERN_TLS.
1105
*/
1106
maxextsiz = TLS_MAX_MSG_SIZE_V10_2;
1107
#ifdef KERN_TLS
1108
if (rpctls_getinfo(&maxlen, false, false))
1109
maxextsiz = min(maxextsiz, maxlen);
1110
#endif
1111
mrep = _rpc_copym_into_ext_pgs(mrep, maxextsiz);
1112
}
1113
sx_xlock(&xprt->xp_lock);
1114
ct = (struct ct_data *)xprt->xp_p2;
1115
if (ct != NULL)
1116
error = sosend(ct->ct_socket, NULL, NULL, mrep, NULL,
1117
0, curthread);
1118
else
1119
error = EPIPE;
1120
sx_xunlock(&xprt->xp_lock);
1121
if (!error) {
1122
stat = TRUE;
1123
}
1124
} else {
1125
m_freem(mrep);
1126
}
1127
1128
XDR_DESTROY(&xdrs);
1129
1130
return (stat);
1131
}
1132
1133
static bool_t
1134
svc_vc_null(void)
1135
{
1136
1137
return (FALSE);
1138
}
1139
1140
static int
1141
svc_vc_soupcall(struct socket *so, void *arg, int waitflag)
1142
{
1143
SVCXPRT *xprt = (SVCXPRT *) arg;
1144
1145
if (soreadable(xprt->xp_socket))
1146
xprt_active(xprt);
1147
return (SU_OK);
1148
}
1149
1150
static int
1151
svc_vc_rendezvous_soupcall(struct socket *head, void *arg, int waitflag)
1152
{
1153
SVCXPRT *xprt = (SVCXPRT *) arg;
1154
1155
if (!TAILQ_EMPTY(&head->sol_comp))
1156
xprt_active(xprt);
1157
return (SU_OK);
1158
}
1159
1160
#if 0
1161
/*
1162
* Get the effective UID of the sending process. Used by rpcbind, keyserv
1163
* and rpc.yppasswdd on AF_LOCAL.
1164
*/
1165
int
1166
__rpc_get_local_uid(SVCXPRT *transp, uid_t *uid) {
1167
int sock, ret;
1168
gid_t egid;
1169
uid_t euid;
1170
struct sockaddr *sa;
1171
1172
sock = transp->xp_fd;
1173
sa = (struct sockaddr *)transp->xp_rtaddr;
1174
if (sa->sa_family == AF_LOCAL) {
1175
ret = getpeereid(sock, &euid, &egid);
1176
if (ret == 0)
1177
*uid = euid;
1178
return (ret);
1179
} else
1180
return (-1);
1181
}
1182
#endif
1183
1184