Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/ufs/ffs/ffs_inode.c
39478 views
1
/*-
2
* SPDX-License-Identifier: BSD-3-Clause
3
*
4
* Copyright (c) 1982, 1986, 1989, 1993
5
* The Regents of the University of California. All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
* 3. Neither the name of the University nor the names of its contributors
16
* may be used to endorse or promote products derived from this software
17
* without specific prior written permission.
18
*
19
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29
* SUCH DAMAGE.
30
*/
31
32
#include <sys/cdefs.h>
33
#include "opt_ufs.h"
34
#include "opt_quota.h"
35
36
#include <sys/param.h>
37
#include <sys/systm.h>
38
#include <sys/bio.h>
39
#include <sys/buf.h>
40
#include <sys/malloc.h>
41
#include <sys/mount.h>
42
#include <sys/proc.h>
43
#include <sys/racct.h>
44
#include <sys/random.h>
45
#include <sys/resourcevar.h>
46
#include <sys/rwlock.h>
47
#include <sys/stat.h>
48
#include <sys/vmmeter.h>
49
#include <sys/vnode.h>
50
51
#include <vm/vm.h>
52
#include <vm/vm_extern.h>
53
#include <vm/vm_object.h>
54
55
#include <ufs/ufs/extattr.h>
56
#include <ufs/ufs/quota.h>
57
#include <ufs/ufs/ufsmount.h>
58
#include <ufs/ufs/inode.h>
59
#include <ufs/ufs/dir.h>
60
#ifdef UFS_DIRHASH
61
#include <ufs/ufs/dirhash.h>
62
#endif
63
#include <ufs/ufs/ufs_extern.h>
64
65
#include <ufs/ffs/fs.h>
66
#include <ufs/ffs/ffs_extern.h>
67
68
static int ffs_indirtrunc(struct inode *, ufs2_daddr_t, ufs2_daddr_t,
69
ufs2_daddr_t, int, ufs2_daddr_t *);
70
71
static void
72
ffs_inode_bwrite(struct vnode *vp, struct buf *bp, int flags)
73
{
74
if ((flags & IO_SYNC) != 0)
75
bwrite(bp);
76
else if (DOINGASYNC(vp))
77
bdwrite(bp);
78
else
79
bawrite(bp);
80
}
81
82
/*
83
* Update the access, modified, and inode change times as specified by the
84
* IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. Write the inode
85
* to disk if the IN_MODIFIED flag is set (it may be set initially, or by
86
* the timestamp update). The IN_LAZYMOD flag is set to force a write
87
* later if not now. The IN_LAZYACCESS is set instead of IN_MODIFIED if the fs
88
* is currently being suspended (or is suspended) and vnode has been accessed.
89
* If we write now, then clear IN_MODIFIED, IN_LAZYACCESS and IN_LAZYMOD to
90
* reflect the presumably successful write, and if waitfor is set, then wait
91
* for the write to complete.
92
*/
93
int
94
ffs_update(struct vnode *vp, int waitfor)
95
{
96
struct fs *fs;
97
struct buf *bp;
98
struct inode *ip;
99
daddr_t bn;
100
int flags, error;
101
102
ASSERT_VOP_ELOCKED(vp, "ffs_update");
103
ufs_itimes(vp);
104
ip = VTOI(vp);
105
if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0)
106
return (0);
107
ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
108
/*
109
* The IN_SIZEMOD and IN_IBLKDATA flags indicate changes to the
110
* file size and block pointer fields in the inode. When these
111
* fields have been changed, the fsync() and fsyncdata() system
112
* calls must write the inode to ensure their semantics that the
113
* file is on stable store.
114
*
115
* The IN_SIZEMOD and IN_IBLKDATA flags cannot be cleared until
116
* a synchronous write of the inode is done. If they are cleared
117
* on an asynchronous write, then the inode may not yet have been
118
* written to the disk when an fsync() or fsyncdata() call is done.
119
* Absent these flags, these calls would not know that they needed
120
* to write the inode. Thus, these flags only can be cleared on
121
* synchronous writes of the inode. Since the inode will be locked
122
* for the duration of the I/O that writes it to disk, no fsync()
123
* or fsyncdata() will be able to run before the on-disk inode
124
* is complete.
125
*/
126
if (waitfor)
127
ip->i_flag &= ~(IN_SIZEMOD | IN_IBLKDATA);
128
fs = ITOFS(ip);
129
if (fs->fs_ronly)
130
return (0);
131
/*
132
* If we are updating a snapshot and another process is currently
133
* writing the buffer containing the inode for this snapshot then
134
* a deadlock can occur when it tries to check the snapshot to see
135
* if that block needs to be copied. Thus when updating a snapshot
136
* we check to see if the buffer is already locked, and if it is
137
* we drop the snapshot lock until the buffer has been written
138
* and is available to us. We have to grab a reference to the
139
* snapshot vnode to prevent it from being removed while we are
140
* waiting for the buffer.
141
*/
142
loop:
143
flags = 0;
144
if (IS_SNAPSHOT(ip))
145
flags = GB_LOCK_NOWAIT;
146
bn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
147
error = ffs_breadz(VFSTOUFS(vp->v_mount), ITODEVVP(ip), bn, bn,
148
(int) fs->fs_bsize, NULL, NULL, 0, NOCRED, flags, NULL, &bp);
149
if (error != 0) {
150
/*
151
* If EBUSY was returned without GB_LOCK_NOWAIT (which
152
* requests trylock for buffer lock), it is for some
153
* other reason and we should not handle it specially.
154
*/
155
if (error != EBUSY || (flags & GB_LOCK_NOWAIT) == 0)
156
return (error);
157
158
/*
159
* Wait for our inode block to become available.
160
*
161
* Hold a reference to the vnode to protect against
162
* ffs_snapgone(). Since we hold a reference, it can only
163
* get reclaimed (VIRF_DOOMED flag) in a forcible downgrade
164
* or unmount. For an unmount, the entire filesystem will be
165
* gone, so we cannot attempt to touch anything associated
166
* with it while the vnode is unlocked; all we can do is
167
* pause briefly and try again. If when we relock the vnode
168
* we discover that it has been reclaimed, updating it is no
169
* longer necessary and we can just return an error.
170
*/
171
vref(vp);
172
VOP_UNLOCK(vp);
173
pause("ffsupd", 1);
174
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
175
vrele(vp);
176
if (!IS_UFS(vp))
177
return (ENOENT);
178
179
/*
180
* Recalculate flags, because the vnode was relocked and
181
* could no longer be a snapshot.
182
*/
183
goto loop;
184
}
185
if (DOINGSOFTDEP(vp))
186
softdep_update_inodeblock(ip, bp, waitfor);
187
else if (ip->i_effnlink != ip->i_nlink)
188
panic("ffs_update: bad link cnt");
189
if (I_IS_UFS1(ip)) {
190
*((struct ufs1_dinode *)bp->b_data +
191
ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
192
/*
193
* XXX: FIX? The entropy here is desirable,
194
* but the harvesting may be expensive
195
*/
196
random_harvest_queue(&(ip->i_din1), sizeof(ip->i_din1), RANDOM_FS_ATIME);
197
} else {
198
ffs_update_dinode_ckhash(fs, ip->i_din2);
199
*((struct ufs2_dinode *)bp->b_data +
200
ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
201
/*
202
* XXX: FIX? The entropy here is desirable,
203
* but the harvesting may be expensive
204
*/
205
random_harvest_queue(&(ip->i_din2), sizeof(ip->i_din2), RANDOM_FS_ATIME);
206
}
207
if (waitfor) {
208
error = bwrite(bp);
209
if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error))
210
error = 0;
211
} else if (vm_page_count_severe() || buf_dirty_count_severe()) {
212
bawrite(bp);
213
error = 0;
214
} else {
215
if (bp->b_bufsize == fs->fs_bsize)
216
bp->b_flags |= B_CLUSTEROK;
217
bdwrite(bp);
218
error = 0;
219
}
220
return (error);
221
}
222
223
#define SINGLE 0 /* index of single indirect block */
224
#define DOUBLE 1 /* index of double indirect block */
225
#define TRIPLE 2 /* index of triple indirect block */
226
/*
227
* Truncate the inode ip to at most length size, freeing the
228
* disk blocks.
229
*/
230
int
231
ffs_truncate(struct vnode *vp,
232
off_t length,
233
int flags,
234
struct ucred *cred)
235
{
236
struct inode *ip;
237
ufs2_daddr_t bn, lbn, lastblock, lastiblock[UFS_NIADDR];
238
ufs2_daddr_t indir_lbn[UFS_NIADDR], oldblks[UFS_NDADDR + UFS_NIADDR];
239
#ifdef INVARIANTS
240
ufs2_daddr_t newblks[UFS_NDADDR + UFS_NIADDR];
241
#endif
242
ufs2_daddr_t count, blocksreleased = 0, blkno;
243
struct bufobj *bo __diagused;
244
struct fs *fs;
245
struct buf *bp;
246
struct ufsmount *ump;
247
int softdeptrunc, journaltrunc;
248
int needextclean, extblocks;
249
int offset, size, level, nblocks;
250
int i, error, allerror, indiroff, waitforupdate;
251
uint64_t key;
252
off_t osize;
253
254
ip = VTOI(vp);
255
ump = VFSTOUFS(vp->v_mount);
256
fs = ump->um_fs;
257
bo = &vp->v_bufobj;
258
259
ASSERT_VOP_LOCKED(vp, "ffs_truncate");
260
261
if (length < 0)
262
return (EINVAL);
263
if (length > fs->fs_maxfilesize)
264
return (EFBIG);
265
#ifdef QUOTA
266
error = getinoquota(ip);
267
if (error)
268
return (error);
269
#endif
270
/*
271
* Historically clients did not have to specify which data
272
* they were truncating. So, if not specified, we assume
273
* traditional behavior, e.g., just the normal data.
274
*/
275
if ((flags & (IO_EXT | IO_NORMAL)) == 0)
276
flags |= IO_NORMAL;
277
if (!DOINGSOFTDEP(vp) && !DOINGASYNC(vp))
278
flags |= IO_SYNC;
279
waitforupdate = (flags & IO_SYNC) != 0 || !DOINGASYNC(vp);
280
/*
281
* If we are truncating the extended-attributes, and cannot
282
* do it with soft updates, then do it slowly here. If we are
283
* truncating both the extended attributes and the file contents
284
* (e.g., the file is being unlinked), then pick it off with
285
* soft updates below.
286
*/
287
allerror = 0;
288
needextclean = 0;
289
softdeptrunc = 0;
290
journaltrunc = DOINGSUJ(vp);
291
journaltrunc = 0; /* XXX temp patch until bug found */
292
if (journaltrunc == 0 && DOINGSOFTDEP(vp) && length == 0)
293
softdeptrunc = !softdep_slowdown(vp);
294
extblocks = 0;
295
if (fs->fs_magic == FS_UFS2_MAGIC && ip->i_din2->di_extsize > 0) {
296
extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
297
}
298
if ((flags & IO_EXT) && extblocks > 0) {
299
if (length != 0)
300
panic("ffs_truncate: partial trunc of extdata");
301
if (softdeptrunc || journaltrunc) {
302
if ((flags & IO_NORMAL) == 0)
303
goto extclean;
304
needextclean = 1;
305
} else {
306
if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
307
return (error);
308
#ifdef QUOTA
309
(void) chkdq(ip, -extblocks, NOCRED, FORCE);
310
#endif
311
vinvalbuf(vp, V_ALT, 0, 0);
312
vn_pages_remove(vp,
313
OFF_TO_IDX(lblktosize(fs, -extblocks)), 0);
314
osize = ip->i_din2->di_extsize;
315
ip->i_din2->di_blocks -= extblocks;
316
ip->i_din2->di_extsize = 0;
317
for (i = 0; i < UFS_NXADDR; i++) {
318
oldblks[i] = ip->i_din2->di_extb[i];
319
ip->i_din2->di_extb[i] = 0;
320
}
321
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
322
if ((error = ffs_update(vp, waitforupdate)))
323
return (error);
324
for (i = 0; i < UFS_NXADDR; i++) {
325
if (oldblks[i] == 0)
326
continue;
327
ffs_blkfree(ump, fs, ITODEVVP(ip), oldblks[i],
328
sblksize(fs, osize, i), ip->i_number,
329
vp->v_type, NULL, SINGLETON_KEY);
330
}
331
}
332
}
333
if ((flags & IO_NORMAL) == 0)
334
return (0);
335
if (vp->v_type == VLNK && ip->i_size < ump->um_maxsymlinklen) {
336
#ifdef INVARIANTS
337
if (length != 0)
338
panic("ffs_truncate: partial truncate of symlink");
339
#endif
340
bzero(DIP(ip, i_shortlink), (uint64_t)ip->i_size);
341
ip->i_size = 0;
342
DIP_SET(ip, i_size, 0);
343
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
344
if (needextclean)
345
goto extclean;
346
return (ffs_update(vp, waitforupdate));
347
}
348
if (ip->i_size == length) {
349
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
350
if (needextclean)
351
goto extclean;
352
return (ffs_update(vp, 0));
353
}
354
if (fs->fs_ronly)
355
panic("ffs_truncate: read-only filesystem");
356
if (IS_SNAPSHOT(ip))
357
ffs_snapremove(vp);
358
cluster_init_vn(&ip->i_clusterw);
359
osize = ip->i_size;
360
/*
361
* Lengthen the size of the file. We must ensure that the
362
* last byte of the file is allocated. Since the smallest
363
* value of osize is 0, length will be at least 1.
364
*/
365
if (osize < length) {
366
vnode_pager_setsize(vp, length);
367
flags |= BA_CLRBUF;
368
error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp);
369
if (error) {
370
vnode_pager_setsize(vp, osize);
371
return (error);
372
}
373
ip->i_size = length;
374
DIP_SET(ip, i_size, length);
375
if (bp->b_bufsize == fs->fs_bsize)
376
bp->b_flags |= B_CLUSTEROK;
377
ffs_inode_bwrite(vp, bp, flags);
378
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
379
return (ffs_update(vp, waitforupdate));
380
}
381
/*
382
* Lookup block number for a given offset. Zero length files
383
* have no blocks, so return a blkno of -1.
384
*/
385
lbn = lblkno(fs, length - 1);
386
if (length == 0) {
387
blkno = -1;
388
} else if (lbn < UFS_NDADDR) {
389
blkno = DIP(ip, i_db[lbn]);
390
} else {
391
error = UFS_BALLOC(vp, lblktosize(fs, (off_t)lbn), fs->fs_bsize,
392
cred, BA_METAONLY, &bp);
393
if (error)
394
return (error);
395
indiroff = (lbn - UFS_NDADDR) % NINDIR(fs);
396
if (I_IS_UFS1(ip))
397
blkno = ((ufs1_daddr_t *)(bp->b_data))[indiroff];
398
else
399
blkno = ((ufs2_daddr_t *)(bp->b_data))[indiroff];
400
/*
401
* If the block number is non-zero, then the indirect block
402
* must have been previously allocated and need not be written.
403
* If the block number is zero, then we may have allocated
404
* the indirect block and hence need to write it out.
405
*/
406
if (blkno != 0)
407
brelse(bp);
408
else if (flags & IO_SYNC)
409
bwrite(bp);
410
else
411
bdwrite(bp);
412
}
413
/*
414
* If the block number at the new end of the file is zero,
415
* then we must allocate it to ensure that the last block of
416
* the file is allocated. Soft updates does not handle this
417
* case, so here we have to clean up the soft updates data
418
* structures describing the allocation past the truncation
419
* point. Finding and deallocating those structures is a lot of
420
* work. Since partial truncation with a hole at the end occurs
421
* rarely, we solve the problem by syncing the file so that it
422
* will have no soft updates data structures left.
423
*/
424
if (blkno == 0 && (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
425
return (error);
426
if (blkno != 0 && DOINGSOFTDEP(vp)) {
427
if (softdeptrunc == 0 && journaltrunc == 0) {
428
/*
429
* If soft updates cannot handle this truncation,
430
* clean up soft dependency data structures and
431
* fall through to the synchronous truncation.
432
*/
433
if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
434
return (error);
435
} else {
436
flags = IO_NORMAL | (needextclean ? IO_EXT: 0);
437
if (journaltrunc)
438
softdep_journal_freeblocks(ip, cred, length,
439
flags);
440
else
441
softdep_setup_freeblocks(ip, length, flags);
442
ASSERT_VOP_LOCKED(vp, "ffs_truncate1");
443
if (journaltrunc == 0) {
444
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
445
error = ffs_update(vp, 0);
446
}
447
return (error);
448
}
449
}
450
/*
451
* Shorten the size of the file. If the last block of the
452
* shortened file is unallocated, we must allocate it.
453
* Additionally, if the file is not being truncated to a
454
* block boundary, the contents of the partial block
455
* following the end of the file must be zero'ed in
456
* case it ever becomes accessible again because of
457
* subsequent file growth. Directories however are not
458
* zero'ed as they should grow back initialized to empty.
459
*/
460
offset = blkoff(fs, length);
461
if (blkno != 0 && offset == 0) {
462
ip->i_size = length;
463
DIP_SET(ip, i_size, length);
464
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
465
#ifdef UFS_DIRHASH
466
if (vp->v_type == VDIR && ip->i_dirhash != NULL)
467
ufsdirhash_dirtrunc(ip, length);
468
#endif
469
} else {
470
lbn = lblkno(fs, length);
471
flags |= BA_CLRBUF;
472
error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp);
473
if (error)
474
return (error);
475
ffs_inode_bwrite(vp, bp, flags);
476
477
/*
478
* When we are doing soft updates and the UFS_BALLOC
479
* above fills in a direct block hole with a full sized
480
* block that will be truncated down to a fragment below,
481
* we must flush out the block dependency with an FSYNC
482
* so that we do not get a soft updates inconsistency
483
* when we create the fragment below.
484
*/
485
if (DOINGSOFTDEP(vp) && lbn < UFS_NDADDR &&
486
fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize &&
487
(error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
488
return (error);
489
490
error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp);
491
if (error)
492
return (error);
493
ip->i_size = length;
494
DIP_SET(ip, i_size, length);
495
#ifdef UFS_DIRHASH
496
if (vp->v_type == VDIR && ip->i_dirhash != NULL)
497
ufsdirhash_dirtrunc(ip, length);
498
#endif
499
size = blksize(fs, ip, lbn);
500
if (vp->v_type != VDIR && offset != 0)
501
bzero((char *)bp->b_data + offset,
502
(uint64_t)(size - offset));
503
/* Kirk's code has reallocbuf(bp, size, 1) here */
504
allocbuf(bp, size);
505
if (bp->b_bufsize == fs->fs_bsize)
506
bp->b_flags |= B_CLUSTEROK;
507
ffs_inode_bwrite(vp, bp, flags);
508
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
509
}
510
/*
511
* Calculate index into inode's block list of
512
* last direct and indirect blocks (if any)
513
* which we want to keep. Lastblock is -1 when
514
* the file is truncated to 0.
515
*/
516
lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
517
lastiblock[SINGLE] = lastblock - UFS_NDADDR;
518
lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
519
lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
520
nblocks = btodb(fs->fs_bsize);
521
/*
522
* Update file and block pointers on disk before we start freeing
523
* blocks. If we crash before free'ing blocks below, the blocks
524
* will be returned to the free list. lastiblock values are also
525
* normalized to -1 for calls to ffs_indirtrunc below.
526
*/
527
for (level = TRIPLE; level >= SINGLE; level--) {
528
oldblks[UFS_NDADDR + level] = DIP(ip, i_ib[level]);
529
if (lastiblock[level] < 0) {
530
DIP_SET(ip, i_ib[level], 0);
531
lastiblock[level] = -1;
532
}
533
}
534
for (i = 0; i < UFS_NDADDR; i++) {
535
oldblks[i] = DIP(ip, i_db[i]);
536
if (i > lastblock)
537
DIP_SET(ip, i_db[i], 0);
538
}
539
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
540
allerror = ffs_update(vp, waitforupdate);
541
542
/*
543
* Having written the new inode to disk, save its new configuration
544
* and put back the old block pointers long enough to process them.
545
* Note that we save the new block configuration so we can check it
546
* when we are done.
547
*/
548
for (i = 0; i < UFS_NDADDR; i++) {
549
#ifdef INVARIANTS
550
newblks[i] = DIP(ip, i_db[i]);
551
#endif
552
DIP_SET(ip, i_db[i], oldblks[i]);
553
}
554
for (i = 0; i < UFS_NIADDR; i++) {
555
#ifdef INVARIANTS
556
newblks[UFS_NDADDR + i] = DIP(ip, i_ib[i]);
557
#endif
558
DIP_SET(ip, i_ib[i], oldblks[UFS_NDADDR + i]);
559
}
560
ip->i_size = osize;
561
DIP_SET(ip, i_size, osize);
562
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
563
564
error = vtruncbuf(vp, length, fs->fs_bsize);
565
if (error && (allerror == 0))
566
allerror = error;
567
568
/*
569
* Indirect blocks first.
570
*/
571
indir_lbn[SINGLE] = -UFS_NDADDR;
572
indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
573
indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
574
for (level = TRIPLE; level >= SINGLE; level--) {
575
bn = DIP(ip, i_ib[level]);
576
if (bn != 0) {
577
error = ffs_indirtrunc(ip, indir_lbn[level],
578
fsbtodb(fs, bn), lastiblock[level], level, &count);
579
if (error)
580
allerror = error;
581
blocksreleased += count;
582
if (lastiblock[level] < 0) {
583
DIP_SET(ip, i_ib[level], 0);
584
ffs_blkfree(ump, fs, ump->um_devvp, bn,
585
fs->fs_bsize, ip->i_number,
586
vp->v_type, NULL, SINGLETON_KEY);
587
blocksreleased += nblocks;
588
}
589
}
590
if (lastiblock[level] >= 0)
591
goto done;
592
}
593
594
/*
595
* All whole direct blocks or frags.
596
*/
597
key = ffs_blkrelease_start(ump, ump->um_devvp, ip->i_number);
598
for (i = UFS_NDADDR - 1; i > lastblock; i--) {
599
long bsize;
600
601
bn = DIP(ip, i_db[i]);
602
if (bn == 0)
603
continue;
604
DIP_SET(ip, i_db[i], 0);
605
bsize = blksize(fs, ip, i);
606
ffs_blkfree(ump, fs, ump->um_devvp, bn, bsize, ip->i_number,
607
vp->v_type, NULL, key);
608
blocksreleased += btodb(bsize);
609
}
610
ffs_blkrelease_finish(ump, key);
611
if (lastblock < 0)
612
goto done;
613
614
/*
615
* Finally, look for a change in size of the
616
* last direct block; release any frags.
617
*/
618
bn = DIP(ip, i_db[lastblock]);
619
if (bn != 0) {
620
long oldspace, newspace;
621
622
/*
623
* Calculate amount of space we're giving
624
* back as old block size minus new block size.
625
*/
626
oldspace = blksize(fs, ip, lastblock);
627
ip->i_size = length;
628
DIP_SET(ip, i_size, length);
629
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
630
newspace = blksize(fs, ip, lastblock);
631
if (newspace == 0)
632
panic("ffs_truncate: newspace");
633
if (oldspace - newspace > 0) {
634
/*
635
* Block number of space to be free'd is
636
* the old block # plus the number of frags
637
* required for the storage we're keeping.
638
*/
639
bn += numfrags(fs, newspace);
640
ffs_blkfree(ump, fs, ump->um_devvp, bn,
641
oldspace - newspace, ip->i_number, vp->v_type,
642
NULL, SINGLETON_KEY);
643
blocksreleased += btodb(oldspace - newspace);
644
}
645
}
646
done:
647
#ifdef INVARIANTS
648
for (level = SINGLE; level <= TRIPLE; level++)
649
if (newblks[UFS_NDADDR + level] != DIP(ip, i_ib[level]))
650
panic("ffs_truncate1: level %d newblks %jd != i_ib %jd",
651
level, (intmax_t)newblks[UFS_NDADDR + level],
652
(intmax_t)DIP(ip, i_ib[level]));
653
for (i = 0; i < UFS_NDADDR; i++)
654
if (newblks[i] != DIP(ip, i_db[i]))
655
panic("ffs_truncate2: blkno %d newblks %jd != i_db %jd",
656
i, (intmax_t)newblks[UFS_NDADDR + level],
657
(intmax_t)DIP(ip, i_ib[level]));
658
BO_LOCK(bo);
659
if (length == 0 &&
660
(fs->fs_magic != FS_UFS2_MAGIC || ip->i_din2->di_extsize == 0) &&
661
(bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
662
panic("ffs_truncate3: vp = %p, buffers: dirty = %d, clean = %d",
663
vp, bo->bo_dirty.bv_cnt, bo->bo_clean.bv_cnt);
664
BO_UNLOCK(bo);
665
#endif /* INVARIANTS */
666
/*
667
* Put back the real size.
668
*/
669
ip->i_size = length;
670
DIP_SET(ip, i_size, length);
671
if (DIP(ip, i_blocks) >= blocksreleased)
672
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - blocksreleased);
673
else /* sanity */
674
DIP_SET(ip, i_blocks, 0);
675
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
676
#ifdef QUOTA
677
(void) chkdq(ip, -blocksreleased, NOCRED, FORCE);
678
#endif
679
return (allerror);
680
681
extclean:
682
if (journaltrunc)
683
softdep_journal_freeblocks(ip, cred, length, IO_EXT);
684
else
685
softdep_setup_freeblocks(ip, length, IO_EXT);
686
return (ffs_update(vp, waitforupdate));
687
}
688
689
/*
690
* Release blocks associated with the inode ip and stored in the indirect
691
* block bn. Blocks are free'd in LIFO order up to (but not including)
692
* lastbn. If level is greater than SINGLE, the block is an indirect block
693
* and recursive calls to indirtrunc must be used to cleanse other indirect
694
* blocks.
695
*/
696
static int
697
ffs_indirtrunc(struct inode *ip,
698
ufs2_daddr_t lbn,
699
ufs2_daddr_t dbn,
700
ufs2_daddr_t lastbn,
701
int level,
702
ufs2_daddr_t *countp)
703
{
704
struct buf *bp;
705
struct fs *fs;
706
struct ufsmount *ump;
707
struct vnode *vp;
708
caddr_t copy = NULL;
709
uint64_t key;
710
int i, nblocks, error = 0, allerror = 0;
711
ufs2_daddr_t nb, nlbn, last;
712
ufs2_daddr_t blkcount, factor, blocksreleased = 0;
713
ufs1_daddr_t *bap1 = NULL;
714
ufs2_daddr_t *bap2 = NULL;
715
#define BAP(ip, i) (I_IS_UFS1(ip) ? bap1[i] : bap2[i])
716
717
fs = ITOFS(ip);
718
ump = ITOUMP(ip);
719
720
/*
721
* Calculate index in current block of last
722
* block to be kept. -1 indicates the entire
723
* block so we need not calculate the index.
724
*/
725
factor = lbn_offset(fs, level);
726
last = lastbn;
727
if (lastbn > 0)
728
last /= factor;
729
nblocks = btodb(fs->fs_bsize);
730
/*
731
* Get buffer of block pointers, zero those entries corresponding
732
* to blocks to be free'd, and update on disk copy first. Since
733
* double(triple) indirect before single(double) indirect, calls
734
* to VOP_BMAP() on these blocks will fail. However, we already
735
* have the on-disk address, so we just pass it to bread() instead
736
* of having bread() attempt to calculate it using VOP_BMAP().
737
*/
738
vp = ITOV(ip);
739
error = ffs_breadz(ump, vp, lbn, dbn, (int)fs->fs_bsize, NULL, NULL, 0,
740
NOCRED, 0, NULL, &bp);
741
if (error) {
742
*countp = 0;
743
return (error);
744
}
745
746
if (I_IS_UFS1(ip))
747
bap1 = (ufs1_daddr_t *)bp->b_data;
748
else
749
bap2 = (ufs2_daddr_t *)bp->b_data;
750
if (lastbn != -1) {
751
copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK);
752
bcopy((caddr_t)bp->b_data, copy, (uint64_t)fs->fs_bsize);
753
for (i = last + 1; i < NINDIR(fs); i++)
754
if (I_IS_UFS1(ip))
755
bap1[i] = 0;
756
else
757
bap2[i] = 0;
758
if (DOINGASYNC(vp)) {
759
bdwrite(bp);
760
} else {
761
error = bwrite(bp);
762
if (error)
763
allerror = error;
764
}
765
if (I_IS_UFS1(ip))
766
bap1 = (ufs1_daddr_t *)copy;
767
else
768
bap2 = (ufs2_daddr_t *)copy;
769
}
770
771
/*
772
* Recursively free totally unused blocks.
773
*/
774
key = ffs_blkrelease_start(ump, ITODEVVP(ip), ip->i_number);
775
for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
776
i--, nlbn += factor) {
777
nb = BAP(ip, i);
778
if (nb == 0)
779
continue;
780
if (level > SINGLE) {
781
if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
782
(ufs2_daddr_t)-1, level - 1, &blkcount)) != 0)
783
allerror = error;
784
blocksreleased += blkcount;
785
}
786
ffs_blkfree(ump, fs, ITODEVVP(ip), nb, fs->fs_bsize,
787
ip->i_number, vp->v_type, NULL, key);
788
blocksreleased += nblocks;
789
}
790
ffs_blkrelease_finish(ump, key);
791
792
/*
793
* Recursively free last partial block.
794
*/
795
if (level > SINGLE && lastbn >= 0) {
796
last = lastbn % factor;
797
nb = BAP(ip, i);
798
if (nb != 0) {
799
error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
800
last, level - 1, &blkcount);
801
if (error)
802
allerror = error;
803
blocksreleased += blkcount;
804
}
805
}
806
if (copy != NULL) {
807
free(copy, M_TEMP);
808
} else {
809
bp->b_flags |= B_INVAL | B_NOCACHE;
810
brelse(bp);
811
}
812
813
*countp = blocksreleased;
814
return (allerror);
815
}
816
817
int
818
ffs_rdonly(struct inode *ip)
819
{
820
821
return (ITOFS(ip)->fs_ronly != 0);
822
}
823
824