Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/ufs/ffs/ffs_softdep.c
39478 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright 1998, 2000 Marshall Kirk McKusick.
5
* Copyright 2009, 2010 Jeffrey W. Roberson <[email protected]>
6
* All rights reserved.
7
*
8
* The soft updates code is derived from the appendix of a University
9
* of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
10
* "Soft Updates: A Solution to the Metadata Update Problem in File
11
* Systems", CSE-TR-254-95, August 1995).
12
*
13
* Further information about soft updates can be obtained from:
14
*
15
* Marshall Kirk McKusick http://www.mckusick.com/softdep/
16
* 1614 Oxford Street [email protected]
17
* Berkeley, CA 94709-1608 +1-510-843-9542
18
* USA
19
*
20
* Redistribution and use in source and binary forms, with or without
21
* modification, are permitted provided that the following conditions
22
* are met:
23
*
24
* 1. Redistributions of source code must retain the above copyright
25
* notice, this list of conditions and the following disclaimer.
26
* 2. Redistributions in binary form must reproduce the above copyright
27
* notice, this list of conditions and the following disclaimer in the
28
* documentation and/or other materials provided with the distribution.
29
*
30
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
31
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
36
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
38
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
39
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40
*/
41
42
#include <sys/cdefs.h>
43
#include "opt_ffs.h"
44
#include "opt_quota.h"
45
#include "opt_ddb.h"
46
47
#include <sys/param.h>
48
#include <sys/kernel.h>
49
#include <sys/systm.h>
50
#include <sys/bio.h>
51
#include <sys/buf.h>
52
#include <sys/kdb.h>
53
#include <sys/kthread.h>
54
#include <sys/ktr.h>
55
#include <sys/limits.h>
56
#include <sys/lock.h>
57
#include <sys/malloc.h>
58
#include <sys/mount.h>
59
#include <sys/mutex.h>
60
#include <sys/namei.h>
61
#include <sys/priv.h>
62
#include <sys/proc.h>
63
#include <sys/racct.h>
64
#include <sys/rwlock.h>
65
#include <sys/stat.h>
66
#include <sys/sysctl.h>
67
#include <sys/syslog.h>
68
#include <sys/vnode.h>
69
#include <sys/conf.h>
70
71
#include <ufs/ufs/dir.h>
72
#include <ufs/ufs/extattr.h>
73
#include <ufs/ufs/quota.h>
74
#include <ufs/ufs/inode.h>
75
#include <ufs/ufs/ufsmount.h>
76
#include <ufs/ffs/fs.h>
77
#include <ufs/ffs/softdep.h>
78
#include <ufs/ffs/ffs_extern.h>
79
#include <ufs/ufs/ufs_extern.h>
80
81
#include <vm/vm.h>
82
#include <vm/vm_extern.h>
83
#include <vm/vm_object.h>
84
85
#include <geom/geom.h>
86
#include <geom/geom_vfs.h>
87
88
#include <ddb/ddb.h>
89
90
#define KTR_SUJ 0 /* Define to KTR_SPARE. */
91
92
#ifndef SOFTUPDATES
93
94
int
95
softdep_flushfiles(struct mount *oldmnt,
96
int flags,
97
struct thread *td)
98
{
99
100
panic("softdep_flushfiles called");
101
}
102
103
int
104
softdep_mount(struct vnode *devvp,
105
struct mount *mp,
106
struct fs *fs,
107
struct ucred *cred)
108
{
109
110
return (0);
111
}
112
113
void
114
softdep_initialize(void)
115
{
116
117
return;
118
}
119
120
void
121
softdep_uninitialize(void)
122
{
123
124
return;
125
}
126
127
void
128
softdep_unmount(struct mount *mp)
129
{
130
131
panic("softdep_unmount called");
132
}
133
134
void
135
softdep_setup_sbupdate(struct ufsmount *ump,
136
struct fs *fs,
137
struct buf *bp)
138
{
139
140
panic("softdep_setup_sbupdate called");
141
}
142
143
void
144
softdep_setup_inomapdep(struct buf *bp,
145
struct inode *ip,
146
ino_t newinum,
147
int mode)
148
{
149
150
panic("softdep_setup_inomapdep called");
151
}
152
153
void
154
softdep_setup_blkmapdep(struct buf *bp,
155
struct mount *mp,
156
ufs2_daddr_t newblkno,
157
int frags,
158
int oldfrags)
159
{
160
161
panic("softdep_setup_blkmapdep called");
162
}
163
164
void
165
softdep_setup_allocdirect(struct inode *ip,
166
ufs_lbn_t lbn,
167
ufs2_daddr_t newblkno,
168
ufs2_daddr_t oldblkno,
169
long newsize,
170
long oldsize,
171
struct buf *bp)
172
{
173
174
panic("softdep_setup_allocdirect called");
175
}
176
177
void
178
softdep_setup_allocext(struct inode *ip,
179
ufs_lbn_t lbn,
180
ufs2_daddr_t newblkno,
181
ufs2_daddr_t oldblkno,
182
long newsize,
183
long oldsize,
184
struct buf *bp)
185
{
186
187
panic("softdep_setup_allocext called");
188
}
189
190
void
191
softdep_setup_allocindir_page(struct inode *ip,
192
ufs_lbn_t lbn,
193
struct buf *bp,
194
int ptrno,
195
ufs2_daddr_t newblkno,
196
ufs2_daddr_t oldblkno,
197
struct buf *nbp)
198
{
199
200
panic("softdep_setup_allocindir_page called");
201
}
202
203
void
204
softdep_setup_allocindir_meta(struct buf *nbp,
205
struct inode *ip,
206
struct buf *bp,
207
int ptrno,
208
ufs2_daddr_t newblkno)
209
{
210
211
panic("softdep_setup_allocindir_meta called");
212
}
213
214
void
215
softdep_journal_freeblocks(struct inode *ip,
216
struct ucred *cred,
217
off_t length,
218
int flags)
219
{
220
221
panic("softdep_journal_freeblocks called");
222
}
223
224
void
225
softdep_journal_fsync(struct inode *ip)
226
{
227
228
panic("softdep_journal_fsync called");
229
}
230
231
void
232
softdep_setup_freeblocks(struct inode *ip,
233
off_t length,
234
int flags)
235
{
236
237
panic("softdep_setup_freeblocks called");
238
}
239
240
void
241
softdep_freefile(struct vnode *pvp,
242
ino_t ino,
243
int mode)
244
{
245
246
panic("softdep_freefile called");
247
}
248
249
int
250
softdep_setup_directory_add(struct buf *bp,
251
struct inode *dp,
252
off_t diroffset,
253
ino_t newinum,
254
struct buf *newdirbp,
255
int isnewblk)
256
{
257
258
panic("softdep_setup_directory_add called");
259
}
260
261
void
262
softdep_change_directoryentry_offset(struct buf *bp,
263
struct inode *dp,
264
caddr_t base,
265
caddr_t oldloc,
266
caddr_t newloc,
267
int entrysize)
268
{
269
270
panic("softdep_change_directoryentry_offset called");
271
}
272
273
void
274
softdep_setup_remove(struct buf *bp,
275
struct inode *dp,
276
struct inode *ip,
277
bool isrmdir)
278
{
279
280
panic("softdep_setup_remove called");
281
}
282
283
void
284
softdep_setup_directory_change(struct buf *bp,
285
struct inode *dp,
286
struct inode *ip,
287
ino_t newinum,
288
u_int newparent)
289
{
290
291
panic("softdep_setup_directory_change called");
292
}
293
294
void
295
softdep_setup_blkfree(struct mount *mp,
296
struct buf *bp,
297
ufs2_daddr_t blkno,
298
int frags,
299
struct workhead *wkhd,
300
bool doingrecovery)
301
{
302
303
panic("%s called", __FUNCTION__);
304
}
305
306
void
307
softdep_setup_inofree(struct mount *mp,
308
struct buf *bp,
309
ino_t ino,
310
struct workhead *wkhd,
311
bool doingrecovery)
312
{
313
314
panic("%s called", __FUNCTION__);
315
}
316
317
void
318
softdep_setup_unlink(struct inode *dp, struct inode *ip)
319
{
320
321
panic("%s called", __FUNCTION__);
322
}
323
324
void
325
softdep_setup_link(struct inode *dp, struct inode *ip)
326
{
327
328
panic("%s called", __FUNCTION__);
329
}
330
331
void
332
softdep_revert_link(struct inode *dp, struct inode *ip)
333
{
334
335
panic("%s called", __FUNCTION__);
336
}
337
338
void
339
softdep_setup_rmdir(struct inode *dp, struct inode *ip)
340
{
341
342
panic("%s called", __FUNCTION__);
343
}
344
345
void
346
softdep_revert_rmdir(struct inode *dp, struct inode *ip)
347
{
348
349
panic("%s called", __FUNCTION__);
350
}
351
352
void
353
softdep_setup_create(struct inode *dp, struct inode *ip)
354
{
355
356
panic("%s called", __FUNCTION__);
357
}
358
359
void
360
softdep_revert_create(struct inode *dp, struct inode *ip)
361
{
362
363
panic("%s called", __FUNCTION__);
364
}
365
366
void
367
softdep_setup_mkdir(struct inode *dp, struct inode *ip)
368
{
369
370
panic("%s called", __FUNCTION__);
371
}
372
373
void
374
softdep_revert_mkdir(struct inode *dp, struct inode *ip)
375
{
376
377
panic("%s called", __FUNCTION__);
378
}
379
380
void
381
softdep_setup_dotdot_link(struct inode *dp, struct inode *ip)
382
{
383
384
panic("%s called", __FUNCTION__);
385
}
386
387
int
388
softdep_prealloc(struct vnode *vp, int waitok)
389
{
390
391
panic("%s called", __FUNCTION__);
392
}
393
394
int
395
softdep_journal_lookup(struct mount *mp, struct vnode **vpp)
396
{
397
398
return (ENOENT);
399
}
400
401
void
402
softdep_change_linkcnt(struct inode *ip)
403
{
404
405
panic("softdep_change_linkcnt called");
406
}
407
408
void
409
softdep_load_inodeblock(struct inode *ip)
410
{
411
412
panic("softdep_load_inodeblock called");
413
}
414
415
void
416
softdep_update_inodeblock(struct inode *ip,
417
struct buf *bp,
418
int waitfor)
419
{
420
421
panic("softdep_update_inodeblock called");
422
}
423
424
int
425
softdep_fsync(struct vnode *vp) /* the "in_core" copy of the inode */
426
{
427
428
return (0);
429
}
430
431
void
432
softdep_fsync_mountdev(struct vnode *vp)
433
{
434
435
return;
436
}
437
438
int
439
softdep_flushworklist(struct mount *oldmnt,
440
int *countp,
441
struct thread *td)
442
{
443
444
*countp = 0;
445
return (0);
446
}
447
448
int
449
softdep_sync_metadata(struct vnode *vp)
450
{
451
452
panic("softdep_sync_metadata called");
453
}
454
455
int
456
softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
457
{
458
459
panic("softdep_sync_buf called");
460
}
461
462
int
463
softdep_slowdown(struct vnode *vp)
464
{
465
466
panic("softdep_slowdown called");
467
}
468
469
int
470
softdep_request_cleanup(struct fs *fs,
471
struct vnode *vp,
472
struct ucred *cred,
473
int resource)
474
{
475
476
return (0);
477
}
478
479
int
480
softdep_check_suspend(struct mount *mp,
481
struct vnode *devvp,
482
int softdep_depcnt,
483
int softdep_accdepcnt,
484
int secondary_writes,
485
int secondary_accwrites)
486
{
487
struct bufobj *bo;
488
int error;
489
490
(void) softdep_depcnt,
491
(void) softdep_accdepcnt;
492
493
bo = &devvp->v_bufobj;
494
ASSERT_BO_WLOCKED(bo);
495
496
MNT_ILOCK(mp);
497
while (mp->mnt_secondary_writes != 0) {
498
BO_UNLOCK(bo);
499
msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
500
PRI_MAX_KERN | PDROP, "secwr", 0);
501
BO_LOCK(bo);
502
MNT_ILOCK(mp);
503
}
504
505
/*
506
* Reasons for needing more work before suspend:
507
* - Dirty buffers on devvp.
508
* - Secondary writes occurred after start of vnode sync loop
509
*/
510
error = 0;
511
if (bo->bo_numoutput > 0 ||
512
bo->bo_dirty.bv_cnt > 0 ||
513
secondary_writes != 0 ||
514
mp->mnt_secondary_writes != 0 ||
515
secondary_accwrites != mp->mnt_secondary_accwrites)
516
error = EAGAIN;
517
BO_UNLOCK(bo);
518
return (error);
519
}
520
521
void
522
softdep_get_depcounts(struct mount *mp,
523
int *softdepactivep,
524
int *softdepactiveaccp)
525
{
526
(void) mp;
527
*softdepactivep = 0;
528
*softdepactiveaccp = 0;
529
}
530
531
void
532
softdep_buf_append(struct buf *bp, struct workhead *wkhd)
533
{
534
535
panic("softdep_buf_appendwork called");
536
}
537
538
void
539
softdep_inode_append(struct inode *ip,
540
struct ucred *cred,
541
struct workhead *wkhd)
542
{
543
544
panic("softdep_inode_appendwork called");
545
}
546
547
void
548
softdep_freework(struct workhead *wkhd)
549
{
550
551
panic("softdep_freework called");
552
}
553
554
int
555
softdep_prerename(struct vnode *fdvp,
556
struct vnode *fvp,
557
struct vnode *tdvp,
558
struct vnode *tvp)
559
{
560
561
panic("softdep_prerename called");
562
}
563
564
int
565
softdep_prelink(struct vnode *dvp,
566
struct vnode *vp,
567
struct componentname *cnp)
568
{
569
570
panic("softdep_prelink called");
571
}
572
573
#else
574
575
FEATURE(softupdates, "FFS soft-updates support");
576
577
static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
578
"soft updates stats");
579
static SYSCTL_NODE(_debug_softdep, OID_AUTO, total,
580
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
581
"total dependencies allocated");
582
static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse,
583
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
584
"high use dependencies allocated");
585
static SYSCTL_NODE(_debug_softdep, OID_AUTO, current,
586
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
587
"current dependencies allocated");
588
static SYSCTL_NODE(_debug_softdep, OID_AUTO, write,
589
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
590
"current dependencies written");
591
592
unsigned long dep_current[D_LAST + 1];
593
unsigned long dep_highuse[D_LAST + 1];
594
unsigned long dep_total[D_LAST + 1];
595
unsigned long dep_write[D_LAST + 1];
596
597
#define SOFTDEP_TYPE(type, str, long) \
598
static MALLOC_DEFINE(M_ ## type, #str, long); \
599
SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \
600
&dep_total[D_ ## type], 0, ""); \
601
SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \
602
&dep_current[D_ ## type], 0, ""); \
603
SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \
604
&dep_highuse[D_ ## type], 0, ""); \
605
SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \
606
&dep_write[D_ ## type], 0, "");
607
608
SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
609
SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
610
SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
611
"Block or frag allocated from cyl group map");
612
SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
613
SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
614
SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
615
SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
616
SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
617
SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
618
SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
619
SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
620
SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
621
SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
622
SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
623
SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
624
SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
625
SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
626
SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
627
SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
628
SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
629
SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
630
SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
631
SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
632
SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
633
SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
634
SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
635
SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
636
637
static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
638
639
static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
640
static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
641
static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
642
643
#define M_SOFTDEP_FLAGS (M_WAITOK)
644
645
/*
646
* translate from workitem type to memory type
647
* MUST match the defines above, such that memtype[D_XXX] == M_XXX
648
*/
649
static struct malloc_type *memtype[] = {
650
NULL,
651
M_PAGEDEP,
652
M_INODEDEP,
653
M_BMSAFEMAP,
654
M_NEWBLK,
655
M_ALLOCDIRECT,
656
M_INDIRDEP,
657
M_ALLOCINDIR,
658
M_FREEFRAG,
659
M_FREEBLKS,
660
M_FREEFILE,
661
M_DIRADD,
662
M_MKDIR,
663
M_DIRREM,
664
M_NEWDIRBLK,
665
M_FREEWORK,
666
M_FREEDEP,
667
M_JADDREF,
668
M_JREMREF,
669
M_JMVREF,
670
M_JNEWBLK,
671
M_JFREEBLK,
672
M_JFREEFRAG,
673
M_JSEG,
674
M_JSEGDEP,
675
M_SBDEP,
676
M_JTRUNC,
677
M_JFSYNC,
678
M_SENTINEL
679
};
680
681
#define DtoM(type) (memtype[type])
682
683
/*
684
* Names of malloc types.
685
*/
686
#define TYPENAME(type) \
687
((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
688
memtype[type]->ks_shortdesc : "???")
689
/*
690
* End system adaptation definitions.
691
*/
692
693
#define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino)
694
#define DOT_OFFSET offsetof(struct dirtemplate, dot_ino)
695
696
/*
697
* Internal function prototypes.
698
*/
699
static void check_clear_deps(struct mount *);
700
static void softdep_error(char *, int);
701
static int softdep_prerename_vnode(struct ufsmount *, struct vnode *);
702
static int softdep_process_worklist(struct mount *, int);
703
static int softdep_waitidle(struct mount *, int);
704
static void drain_output(struct vnode *);
705
static struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
706
static int check_inodedep_free(struct inodedep *);
707
static void clear_remove(struct mount *);
708
static void clear_inodedeps(struct mount *);
709
static void unlinked_inodedep(struct mount *, struct inodedep *);
710
static void clear_unlinked_inodedep(struct inodedep *);
711
static struct inodedep *first_unlinked_inodedep(struct ufsmount *);
712
static int flush_pagedep_deps(struct vnode *, struct mount *,
713
struct diraddhd *, struct buf *);
714
static int free_pagedep(struct pagedep *);
715
static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
716
static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
717
static int flush_deplist(struct allocdirectlst *, int, int *);
718
static int sync_cgs(struct mount *, int);
719
static int handle_written_filepage(struct pagedep *, struct buf *, int);
720
static int handle_written_sbdep(struct sbdep *, struct buf *);
721
static void initiate_write_sbdep(struct sbdep *);
722
static void diradd_inode_written(struct diradd *, struct inodedep *);
723
static int handle_written_indirdep(struct indirdep *, struct buf *,
724
struct buf**, int);
725
static int handle_written_inodeblock(struct inodedep *, struct buf *, int);
726
static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
727
uint8_t *);
728
static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
729
static void handle_written_jaddref(struct jaddref *);
730
static void handle_written_jremref(struct jremref *);
731
static void handle_written_jseg(struct jseg *, struct buf *);
732
static void handle_written_jnewblk(struct jnewblk *);
733
static void handle_written_jblkdep(struct jblkdep *);
734
static void handle_written_jfreefrag(struct jfreefrag *);
735
static void complete_jseg(struct jseg *);
736
static void complete_jsegs(struct jseg *);
737
static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
738
static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
739
static void jremref_write(struct jremref *, struct jseg *, uint8_t *);
740
static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
741
static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
742
static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
743
static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
744
static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
745
static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
746
static inline void inoref_write(struct inoref *, struct jseg *,
747
struct jrefrec *);
748
static void handle_allocdirect_partdone(struct allocdirect *,
749
struct workhead *);
750
static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
751
struct workhead *);
752
static void indirdep_complete(struct indirdep *);
753
static int indirblk_lookup(struct mount *, ufs2_daddr_t);
754
static void indirblk_insert(struct freework *);
755
static void indirblk_remove(struct freework *);
756
static void handle_allocindir_partdone(struct allocindir *);
757
static void initiate_write_filepage(struct pagedep *, struct buf *);
758
static void initiate_write_indirdep(struct indirdep*, struct buf *);
759
static void handle_written_mkdir(struct mkdir *, int);
760
static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
761
uint8_t *);
762
static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
763
static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
764
static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
765
static void handle_workitem_freefile(struct freefile *);
766
static int handle_workitem_remove(struct dirrem *, int);
767
static struct dirrem *newdirrem(struct buf *, struct inode *,
768
struct inode *, bool, struct dirrem **);
769
static struct indirdep *indirdep_lookup(struct mount *, struct inode *,
770
struct buf *);
771
static void cancel_indirdep(struct indirdep *, struct buf *,
772
struct freeblks *);
773
static void free_indirdep(struct indirdep *);
774
static void free_diradd(struct diradd *, struct workhead *);
775
static void merge_diradd(struct inodedep *, struct diradd *);
776
static void complete_diradd(struct diradd *);
777
static struct diradd *diradd_lookup(struct pagedep *, int);
778
static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
779
struct jremref *);
780
static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
781
struct jremref *);
782
static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
783
struct jremref *, struct jremref *);
784
static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
785
struct jremref *);
786
static void cancel_allocindir(struct allocindir *, struct buf *bp,
787
struct freeblks *, int);
788
static int setup_trunc_indir(struct freeblks *, struct inode *,
789
ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
790
static void complete_trunc_indir(struct freework *);
791
static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
792
int);
793
static void complete_mkdir(struct mkdir *);
794
static void free_newdirblk(struct newdirblk *);
795
static void free_jremref(struct jremref *);
796
static void free_jaddref(struct jaddref *);
797
static void free_jsegdep(struct jsegdep *);
798
static void free_jsegs(struct jblocks *);
799
static void rele_jseg(struct jseg *);
800
static void free_jseg(struct jseg *, struct jblocks *);
801
static void free_jnewblk(struct jnewblk *);
802
static void free_jblkdep(struct jblkdep *);
803
static void free_jfreefrag(struct jfreefrag *);
804
static void free_freedep(struct freedep *);
805
static void journal_jremref(struct dirrem *, struct jremref *,
806
struct inodedep *);
807
static void cancel_jnewblk(struct jnewblk *, struct workhead *);
808
static int cancel_jaddref(struct jaddref *, struct inodedep *,
809
struct workhead *);
810
static void cancel_jfreefrag(struct jfreefrag *);
811
static inline void setup_freedirect(struct freeblks *, struct inode *,
812
int, int);
813
static inline void setup_freeext(struct freeblks *, struct inode *, int, int);
814
static inline void setup_freeindir(struct freeblks *, struct inode *, int,
815
ufs_lbn_t, int);
816
static inline struct freeblks *newfreeblks(struct mount *, struct inode *);
817
static void freeblks_free(struct ufsmount *, struct freeblks *, int);
818
static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
819
static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
820
static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
821
static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
822
int, int);
823
static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
824
static int cancel_pagedep(struct pagedep *, struct freeblks *, int);
825
static int deallocate_dependencies(struct buf *, struct freeblks *, int);
826
static void newblk_freefrag(struct newblk*);
827
static void free_newblk(struct newblk *);
828
static void cancel_allocdirect(struct allocdirectlst *,
829
struct allocdirect *, struct freeblks *);
830
static int check_inode_unwritten(struct inodedep *);
831
static int free_inodedep(struct inodedep *);
832
static void freework_freeblock(struct freework *, uint64_t);
833
static void freework_enqueue(struct freework *);
834
static int handle_workitem_freeblocks(struct freeblks *, int);
835
static int handle_complete_freeblocks(struct freeblks *, int);
836
static void handle_workitem_indirblk(struct freework *);
837
static void handle_written_freework(struct freework *);
838
static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
839
static struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
840
struct workhead *);
841
static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
842
struct inodedep *, struct allocindir *, ufs_lbn_t);
843
static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
844
ufs2_daddr_t, ufs_lbn_t);
845
static void handle_workitem_freefrag(struct freefrag *);
846
static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
847
ufs_lbn_t, uint64_t);
848
static void allocdirect_merge(struct allocdirectlst *,
849
struct allocdirect *, struct allocdirect *);
850
static struct freefrag *allocindir_merge(struct allocindir *,
851
struct allocindir *);
852
static int bmsafemap_find(struct bmsafemap_hashhead *, int,
853
struct bmsafemap **);
854
static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
855
int cg, struct bmsafemap *);
856
static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
857
struct newblk **);
858
static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
859
static int inodedep_find(struct inodedep_hashhead *, ino_t,
860
struct inodedep **);
861
static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
862
static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
863
int, struct pagedep **);
864
static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
865
struct pagedep **);
866
static void pause_timer(void *);
867
static int request_cleanup(struct mount *, int);
868
static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
869
static void schedule_cleanup(struct mount *);
870
static void softdep_ast_cleanup_proc(struct thread *, int);
871
static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
872
static int process_worklist_item(struct mount *, int, int);
873
static void process_removes(struct vnode *);
874
static void process_truncates(struct vnode *);
875
static void jwork_move(struct workhead *, struct workhead *);
876
static void jwork_insert(struct workhead *, struct jsegdep *);
877
static void add_to_worklist(struct worklist *, int);
878
static void wake_worklist(struct worklist *);
879
static void wait_worklist(struct worklist *, char *);
880
static void remove_from_worklist(struct worklist *);
881
static void softdep_flush(void *);
882
static void softdep_flushjournal(struct mount *);
883
static int softdep_speedup(struct ufsmount *);
884
static void worklist_speedup(struct mount *);
885
static int journal_mount(struct mount *, struct fs *, struct ucred *);
886
static void journal_unmount(struct ufsmount *);
887
static int journal_space(struct ufsmount *, int);
888
static void journal_suspend(struct ufsmount *);
889
static int journal_unsuspend(struct ufsmount *ump);
890
static void add_to_journal(struct worklist *);
891
static void remove_from_journal(struct worklist *);
892
static bool softdep_excess_items(struct ufsmount *, int);
893
static void softdep_process_journal(struct mount *, struct worklist *, int);
894
static struct jremref *newjremref(struct dirrem *, struct inode *,
895
struct inode *ip, off_t, nlink_t);
896
static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
897
uint16_t);
898
static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
899
uint16_t);
900
static inline struct jsegdep *inoref_jseg(struct inoref *);
901
static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
902
static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
903
ufs2_daddr_t, int);
904
static void adjust_newfreework(struct freeblks *, int);
905
static struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
906
static void move_newblock_dep(struct jaddref *, struct inodedep *);
907
static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
908
static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
909
ufs2_daddr_t, long, ufs_lbn_t);
910
static struct freework *newfreework(struct ufsmount *, struct freeblks *,
911
struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
912
static int jwait(struct worklist *, int);
913
static struct inodedep *inodedep_lookup_ip(struct inode *);
914
static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
915
static struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
916
static void handle_jwork(struct workhead *);
917
static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
918
struct mkdir **);
919
static struct jblocks *jblocks_create(void);
920
static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
921
static void jblocks_free(struct jblocks *, struct mount *, int);
922
static void jblocks_destroy(struct jblocks *);
923
static void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
924
925
/*
926
* Exported softdep operations.
927
*/
928
static void softdep_disk_io_initiation(struct buf *);
929
static void softdep_disk_write_complete(struct buf *);
930
static void softdep_deallocate_dependencies(struct buf *);
931
static int softdep_count_dependencies(struct buf *bp, int);
932
933
/*
934
* Global lock over all of soft updates.
935
*/
936
static struct mtx lk;
937
MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF);
938
939
#define ACQUIRE_GBLLOCK(lk) mtx_lock(lk)
940
#define FREE_GBLLOCK(lk) mtx_unlock(lk)
941
#define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED)
942
943
/*
944
* Per-filesystem soft-updates locking.
945
*/
946
#define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock)
947
#define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock)
948
#define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock)
949
#define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock)
950
#define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \
951
RA_WLOCKED)
952
953
#define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock)
954
#define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock)
955
956
/*
957
* Worklist queue management.
958
* These routines require that the lock be held.
959
*/
960
#ifndef /* NOT */ INVARIANTS
961
#define WORKLIST_INSERT(head, item) do { \
962
(item)->wk_state |= ONWORKLIST; \
963
LIST_INSERT_HEAD(head, item, wk_list); \
964
} while (0)
965
#define WORKLIST_REMOVE(item) do { \
966
(item)->wk_state &= ~ONWORKLIST; \
967
LIST_REMOVE(item, wk_list); \
968
} while (0)
969
#define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT
970
#define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE
971
972
#else /* INVARIANTS */
973
static void worklist_insert(struct workhead *, struct worklist *, int,
974
const char *, int);
975
static void worklist_remove(struct worklist *, int, const char *, int);
976
977
#define WORKLIST_INSERT(head, item) \
978
worklist_insert(head, item, 1, __func__, __LINE__)
979
#define WORKLIST_INSERT_UNLOCKED(head, item)\
980
worklist_insert(head, item, 0, __func__, __LINE__)
981
#define WORKLIST_REMOVE(item)\
982
worklist_remove(item, 1, __func__, __LINE__)
983
#define WORKLIST_REMOVE_UNLOCKED(item)\
984
worklist_remove(item, 0, __func__, __LINE__)
985
986
static void
987
worklist_insert(struct workhead *head,
988
struct worklist *item,
989
int locked,
990
const char *func,
991
int line)
992
{
993
994
if (locked)
995
LOCK_OWNED(VFSTOUFS(item->wk_mp));
996
if (item->wk_state & ONWORKLIST)
997
panic("worklist_insert: %p %s(0x%X) already on list, "
998
"added in function %s at line %d",
999
item, TYPENAME(item->wk_type), item->wk_state,
1000
item->wk_func, item->wk_line);
1001
item->wk_state |= ONWORKLIST;
1002
item->wk_func = func;
1003
item->wk_line = line;
1004
LIST_INSERT_HEAD(head, item, wk_list);
1005
}
1006
1007
static void
1008
worklist_remove(struct worklist *item,
1009
int locked,
1010
const char *func,
1011
int line)
1012
{
1013
1014
if (locked)
1015
LOCK_OWNED(VFSTOUFS(item->wk_mp));
1016
if ((item->wk_state & ONWORKLIST) == 0)
1017
panic("worklist_remove: %p %s(0x%X) not on list, "
1018
"removed in function %s at line %d",
1019
item, TYPENAME(item->wk_type), item->wk_state,
1020
item->wk_func, item->wk_line);
1021
item->wk_state &= ~ONWORKLIST;
1022
item->wk_func = func;
1023
item->wk_line = line;
1024
LIST_REMOVE(item, wk_list);
1025
}
1026
#endif /* INVARIANTS */
1027
1028
/*
1029
* Merge two jsegdeps keeping only the oldest one as newer references
1030
* can't be discarded until after older references.
1031
*/
1032
static inline struct jsegdep *
1033
jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1034
{
1035
struct jsegdep *swp;
1036
1037
if (two == NULL)
1038
return (one);
1039
1040
if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1041
swp = one;
1042
one = two;
1043
two = swp;
1044
}
1045
WORKLIST_REMOVE(&two->jd_list);
1046
free_jsegdep(two);
1047
1048
return (one);
1049
}
1050
1051
/*
1052
* If two freedeps are compatible free one to reduce list size.
1053
*/
1054
static inline struct freedep *
1055
freedep_merge(struct freedep *one, struct freedep *two)
1056
{
1057
if (two == NULL)
1058
return (one);
1059
1060
if (one->fd_freework == two->fd_freework) {
1061
WORKLIST_REMOVE(&two->fd_list);
1062
free_freedep(two);
1063
}
1064
return (one);
1065
}
1066
1067
/*
1068
* Move journal work from one list to another. Duplicate freedeps and
1069
* jsegdeps are coalesced to keep the lists as small as possible.
1070
*/
1071
static void
1072
jwork_move(struct workhead *dst, struct workhead *src)
1073
{
1074
struct freedep *freedep;
1075
struct jsegdep *jsegdep;
1076
struct worklist *wkn;
1077
struct worklist *wk;
1078
1079
KASSERT(dst != src,
1080
("jwork_move: dst == src"));
1081
freedep = NULL;
1082
jsegdep = NULL;
1083
LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1084
if (wk->wk_type == D_JSEGDEP)
1085
jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1086
else if (wk->wk_type == D_FREEDEP)
1087
freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1088
}
1089
1090
while ((wk = LIST_FIRST(src)) != NULL) {
1091
WORKLIST_REMOVE(wk);
1092
WORKLIST_INSERT(dst, wk);
1093
if (wk->wk_type == D_JSEGDEP) {
1094
jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1095
continue;
1096
}
1097
if (wk->wk_type == D_FREEDEP)
1098
freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1099
}
1100
}
1101
1102
static void
1103
jwork_insert(struct workhead *dst, struct jsegdep *jsegdep)
1104
{
1105
struct jsegdep *jsegdepn;
1106
struct worklist *wk;
1107
1108
LIST_FOREACH(wk, dst, wk_list)
1109
if (wk->wk_type == D_JSEGDEP)
1110
break;
1111
if (wk == NULL) {
1112
WORKLIST_INSERT(dst, &jsegdep->jd_list);
1113
return;
1114
}
1115
jsegdepn = WK_JSEGDEP(wk);
1116
if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1117
WORKLIST_REMOVE(wk);
1118
free_jsegdep(jsegdepn);
1119
WORKLIST_INSERT(dst, &jsegdep->jd_list);
1120
} else
1121
free_jsegdep(jsegdep);
1122
}
1123
1124
/*
1125
* Routines for tracking and managing workitems.
1126
*/
1127
static void workitem_free(struct worklist *, int);
1128
static void workitem_alloc(struct worklist *, int, struct mount *);
1129
static void workitem_reassign(struct worklist *, int);
1130
1131
#define WORKITEM_FREE(item, type) \
1132
workitem_free((struct worklist *)(item), (type))
1133
#define WORKITEM_REASSIGN(item, type) \
1134
workitem_reassign((struct worklist *)(item), (type))
1135
1136
static void
1137
workitem_free(struct worklist *item, int type)
1138
{
1139
struct ufsmount *ump;
1140
1141
#ifdef INVARIANTS
1142
if (item->wk_state & ONWORKLIST)
1143
panic("workitem_free: %s(0x%X) still on list, "
1144
"added in function %s at line %d",
1145
TYPENAME(item->wk_type), item->wk_state,
1146
item->wk_func, item->wk_line);
1147
if (item->wk_type != type && type != D_NEWBLK)
1148
panic("workitem_free: type mismatch %s != %s",
1149
TYPENAME(item->wk_type), TYPENAME(type));
1150
#endif
1151
if (item->wk_state & IOWAITING)
1152
wakeup(item);
1153
ump = VFSTOUFS(item->wk_mp);
1154
LOCK_OWNED(ump);
1155
KASSERT(ump->softdep_deps > 0,
1156
("workitem_free: %s: softdep_deps going negative",
1157
ump->um_fs->fs_fsmnt));
1158
if (--ump->softdep_deps == 0 && ump->softdep_req)
1159
wakeup(&ump->softdep_deps);
1160
KASSERT(dep_current[item->wk_type] > 0,
1161
("workitem_free: %s: dep_current[%s] going negative",
1162
ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1163
KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1164
("workitem_free: %s: softdep_curdeps[%s] going negative",
1165
ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1166
atomic_subtract_long(&dep_current[item->wk_type], 1);
1167
ump->softdep_curdeps[item->wk_type] -= 1;
1168
LIST_REMOVE(item, wk_all);
1169
free(item, DtoM(type));
1170
}
1171
1172
static void
1173
workitem_alloc(struct worklist *item,
1174
int type,
1175
struct mount *mp)
1176
{
1177
struct ufsmount *ump;
1178
1179
item->wk_type = type;
1180
item->wk_mp = mp;
1181
item->wk_state = 0;
1182
1183
ump = VFSTOUFS(mp);
1184
ACQUIRE_GBLLOCK(&lk);
1185
dep_current[type]++;
1186
if (dep_current[type] > dep_highuse[type])
1187
dep_highuse[type] = dep_current[type];
1188
dep_total[type]++;
1189
FREE_GBLLOCK(&lk);
1190
ACQUIRE_LOCK(ump);
1191
ump->softdep_curdeps[type] += 1;
1192
ump->softdep_deps++;
1193
ump->softdep_accdeps++;
1194
LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all);
1195
FREE_LOCK(ump);
1196
}
1197
1198
static void
1199
workitem_reassign(struct worklist *item, int newtype)
1200
{
1201
struct ufsmount *ump;
1202
1203
ump = VFSTOUFS(item->wk_mp);
1204
LOCK_OWNED(ump);
1205
KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1206
("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1207
VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1208
ump->softdep_curdeps[item->wk_type] -= 1;
1209
ump->softdep_curdeps[newtype] += 1;
1210
KASSERT(dep_current[item->wk_type] > 0,
1211
("workitem_reassign: %s: dep_current[%s] going negative",
1212
VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1213
ACQUIRE_GBLLOCK(&lk);
1214
dep_current[newtype]++;
1215
dep_current[item->wk_type]--;
1216
if (dep_current[newtype] > dep_highuse[newtype])
1217
dep_highuse[newtype] = dep_current[newtype];
1218
dep_total[newtype]++;
1219
FREE_GBLLOCK(&lk);
1220
item->wk_type = newtype;
1221
LIST_REMOVE(item, wk_all);
1222
LIST_INSERT_HEAD(&ump->softdep_alldeps[newtype], item, wk_all);
1223
}
1224
1225
/*
1226
* Workitem queue management
1227
*/
1228
static int max_softdeps; /* maximum number of structs before slowdown */
1229
static int tickdelay = 2; /* number of ticks to pause during slowdown */
1230
static int proc_waiting; /* tracks whether we have a timeout posted */
1231
static int *stat_countp; /* statistic to count in proc_waiting timeout */
1232
static struct callout softdep_callout;
1233
static int req_clear_inodedeps; /* syncer process flush some inodedeps */
1234
static int req_clear_remove; /* syncer process flush some freeblks */
1235
static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1236
1237
/*
1238
* runtime statistics
1239
*/
1240
static int stat_flush_threads; /* number of softdep flushing threads */
1241
static int stat_worklist_push; /* number of worklist cleanups */
1242
static int stat_delayed_inact; /* number of delayed inactivation cleanups */
1243
static int stat_blk_limit_push; /* number of times block limit neared */
1244
static int stat_ino_limit_push; /* number of times inode limit neared */
1245
static int stat_blk_limit_hit; /* number of times block slowdown imposed */
1246
static int stat_ino_limit_hit; /* number of times inode slowdown imposed */
1247
static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */
1248
static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */
1249
static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */
1250
static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1251
static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */
1252
static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */
1253
static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */
1254
static int stat_journal_min; /* Times hit journal min threshold */
1255
static int stat_journal_low; /* Times hit journal low threshold */
1256
static int stat_journal_wait; /* Times blocked in jwait(). */
1257
static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */
1258
static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */
1259
static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */
1260
static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */
1261
static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1262
static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1263
static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1264
static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1265
static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1266
static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1267
1268
SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1269
&max_softdeps, 0, "");
1270
SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1271
&tickdelay, 0, "");
1272
SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1273
&stat_flush_threads, 0, "");
1274
SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push,
1275
CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,"");
1276
SYSCTL_INT(_debug_softdep, OID_AUTO, delayed_inactivations, CTLFLAG_RD,
1277
&stat_delayed_inact, 0, "");
1278
SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push,
1279
CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,"");
1280
SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push,
1281
CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,"");
1282
SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit,
1283
CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, "");
1284
SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit,
1285
CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, "");
1286
SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit,
1287
CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, "");
1288
SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs,
1289
CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, "");
1290
SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap,
1291
CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, "");
1292
SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs,
1293
CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, "");
1294
SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry,
1295
CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, "");
1296
SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback,
1297
CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, "");
1298
SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback,
1299
CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, "");
1300
SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low,
1301
CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, "");
1302
SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min,
1303
CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, "");
1304
SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait,
1305
CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, "");
1306
SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage,
1307
CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, "");
1308
SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks,
1309
CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, "");
1310
SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode,
1311
CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, "");
1312
SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk,
1313
CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, "");
1314
SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests,
1315
CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, "");
1316
SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests,
1317
CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, "");
1318
SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay,
1319
CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, "");
1320
SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries,
1321
CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, "");
1322
SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures,
1323
CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, "");
1324
1325
SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1326
&softdep_flushcache, 0, "");
1327
SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1328
&stat_emptyjblocks, 0, "");
1329
1330
SYSCTL_DECL(_vfs_ffs);
1331
1332
/* Whether to recompute the summary at mount time */
1333
static int compute_summary_at_mount = 0;
1334
SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1335
&compute_summary_at_mount, 0, "Recompute summary at mount");
1336
static int print_threads = 0;
1337
SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1338
&print_threads, 0, "Notify flusher thread start/stop");
1339
1340
/* List of all filesystems mounted with soft updates */
1341
static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1342
1343
static void
1344
get_parent_vp_unlock_bp(struct mount *mp,
1345
struct buf *bp,
1346
struct diraddhd *diraddhdp,
1347
struct diraddhd *unfinishedp)
1348
{
1349
struct diradd *dap;
1350
1351
/*
1352
* Requeue unfinished dependencies before
1353
* unlocking buffer, which could make
1354
* diraddhdp invalid.
1355
*/
1356
ACQUIRE_LOCK(VFSTOUFS(mp));
1357
while ((dap = LIST_FIRST(unfinishedp)) != NULL) {
1358
LIST_REMOVE(dap, da_pdlist);
1359
LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
1360
}
1361
FREE_LOCK(VFSTOUFS(mp));
1362
1363
bp->b_vflags &= ~BV_SCANNED;
1364
BUF_NOREC(bp);
1365
BUF_UNLOCK(bp);
1366
}
1367
1368
/*
1369
* This function fetches inode inum on mount point mp. We already
1370
* hold a locked vnode vp, and might have a locked buffer bp belonging
1371
* to vp.
1372
1373
* We must not block on acquiring the new inode lock as we will get
1374
* into a lock-order reversal with the buffer lock and possibly get a
1375
* deadlock. Thus if we cannot instantiate the requested vnode
1376
* without sleeping on its lock, we must unlock the vnode and the
1377
* buffer before doing a blocking on the vnode lock. We return
1378
* ERELOOKUP if we have had to unlock either the vnode or the buffer so
1379
* that the caller can reassess its state.
1380
*
1381
* Top-level VFS code (for syscalls and other consumers, e.g. callers
1382
* of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe
1383
* point.
1384
*
1385
* Since callers expect to operate on fully constructed vnode, we also
1386
* recheck v_data after relock, and return ENOENT if NULL.
1387
*
1388
* If unlocking bp, we must unroll dequeueing its unfinished
1389
* dependencies, and clear scan flag, before unlocking. If unlocking
1390
* vp while it is under deactivation, we re-queue deactivation.
1391
*/
1392
static int
1393
get_parent_vp(struct vnode *vp,
1394
struct mount *mp,
1395
ino_t inum,
1396
struct buf *bp,
1397
struct diraddhd *diraddhdp,
1398
struct diraddhd *unfinishedp,
1399
struct vnode **rvp)
1400
{
1401
struct vnode *pvp;
1402
int error;
1403
bool bplocked;
1404
1405
ASSERT_VOP_ELOCKED(vp, "child vnode must be locked");
1406
for (bplocked = true, pvp = NULL;;) {
1407
error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp,
1408
FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1409
if (error == 0) {
1410
/*
1411
* Since we could have unlocked vp, the inode
1412
* number could no longer indicate a
1413
* constructed node. In this case, we must
1414
* restart the syscall.
1415
*/
1416
if (VTOI(pvp)->i_mode == 0 || !bplocked) {
1417
if (bp != NULL && bplocked)
1418
get_parent_vp_unlock_bp(mp, bp,
1419
diraddhdp, unfinishedp);
1420
if (VTOI(pvp)->i_mode == 0)
1421
vgone(pvp);
1422
error = ERELOOKUP;
1423
goto out2;
1424
}
1425
goto out1;
1426
}
1427
if (bp != NULL && bplocked) {
1428
get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp);
1429
bplocked = false;
1430
}
1431
1432
/*
1433
* Do not drop vnode lock while inactivating during
1434
* vunref. This would result in leaks of the VI flags
1435
* and reclaiming of non-truncated vnode. Instead,
1436
* re-schedule inactivation hoping that we would be
1437
* able to sync inode later.
1438
*/
1439
if ((vp->v_iflag & VI_DOINGINACT) != 0 &&
1440
(vp->v_vflag & VV_UNREF) != 0) {
1441
VI_LOCK(vp);
1442
vp->v_iflag |= VI_OWEINACT;
1443
VI_UNLOCK(vp);
1444
return (ERELOOKUP);
1445
}
1446
1447
VOP_UNLOCK(vp);
1448
error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp,
1449
FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1450
if (error != 0) {
1451
MPASS(error != ERELOOKUP);
1452
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1453
break;
1454
}
1455
if (VTOI(pvp)->i_mode == 0) {
1456
vgone(pvp);
1457
vput(pvp);
1458
pvp = NULL;
1459
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1460
error = ERELOOKUP;
1461
break;
1462
}
1463
error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
1464
if (error == 0)
1465
break;
1466
vput(pvp);
1467
pvp = NULL;
1468
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1469
if (vp->v_data == NULL) {
1470
error = ENOENT;
1471
break;
1472
}
1473
}
1474
if (bp != NULL) {
1475
MPASS(!bplocked);
1476
error = ERELOOKUP;
1477
}
1478
out2:
1479
if (error != 0 && pvp != NULL) {
1480
vput(pvp);
1481
pvp = NULL;
1482
}
1483
out1:
1484
*rvp = pvp;
1485
ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return");
1486
return (error);
1487
}
1488
1489
/*
1490
* This function cleans the worklist for a filesystem.
1491
* Each filesystem running with soft dependencies gets its own
1492
* thread to run in this function. The thread is started up in
1493
* softdep_mount and shutdown in softdep_unmount. They show up
1494
* as part of the kernel "bufdaemon" process whose process
1495
* entry is available in bufdaemonproc.
1496
*/
1497
static int searchfailed;
1498
extern struct proc *bufdaemonproc;
1499
static void
1500
softdep_flush(void *addr)
1501
{
1502
struct mount *mp;
1503
struct thread *td;
1504
struct ufsmount *ump;
1505
int cleanups;
1506
1507
td = curthread;
1508
td->td_pflags |= TDP_NORUNNINGBUF;
1509
mp = (struct mount *)addr;
1510
ump = VFSTOUFS(mp);
1511
atomic_add_int(&stat_flush_threads, 1);
1512
ACQUIRE_LOCK(ump);
1513
ump->softdep_flags &= ~FLUSH_STARTING;
1514
wakeup(&ump->softdep_flushtd);
1515
FREE_LOCK(ump);
1516
if (print_threads) {
1517
if (stat_flush_threads == 1)
1518
printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1519
bufdaemonproc->p_pid);
1520
printf("Start thread %s\n", td->td_name);
1521
}
1522
for (;;) {
1523
while (softdep_process_worklist(mp, 0) > 0 ||
1524
(MOUNTEDSUJ(mp) &&
1525
VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1526
kthread_suspend_check();
1527
ACQUIRE_LOCK(ump);
1528
if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1529
msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1530
"sdflush", hz / 2);
1531
ump->softdep_flags &= ~FLUSH_CLEANUP;
1532
/*
1533
* Check to see if we are done and need to exit.
1534
*/
1535
if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1536
FREE_LOCK(ump);
1537
continue;
1538
}
1539
ump->softdep_flags &= ~FLUSH_EXIT;
1540
cleanups = ump->um_softdep->sd_cleanups;
1541
FREE_LOCK(ump);
1542
wakeup(&ump->softdep_flags);
1543
if (print_threads) {
1544
printf("Stop thread %s: searchfailed %d, "
1545
"did cleanups %d\n",
1546
td->td_name, searchfailed, cleanups);
1547
}
1548
atomic_subtract_int(&stat_flush_threads, 1);
1549
kthread_exit();
1550
panic("kthread_exit failed\n");
1551
}
1552
}
1553
1554
static void
1555
worklist_speedup(struct mount *mp)
1556
{
1557
struct ufsmount *ump;
1558
1559
ump = VFSTOUFS(mp);
1560
LOCK_OWNED(ump);
1561
if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1562
ump->softdep_flags |= FLUSH_CLEANUP;
1563
wakeup(&ump->softdep_flushtd);
1564
}
1565
1566
static void
1567
softdep_send_speedup(struct ufsmount *ump,
1568
off_t shortage,
1569
uint64_t flags)
1570
{
1571
struct buf *bp;
1572
1573
if ((ump->um_flags & UM_CANSPEEDUP) == 0)
1574
return;
1575
1576
bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
1577
bp->b_iocmd = BIO_SPEEDUP;
1578
bp->b_ioflags = flags;
1579
bp->b_bcount = omin(shortage, LONG_MAX);
1580
g_vfs_strategy(ump->um_bo, bp);
1581
bufwait(bp);
1582
free(bp, M_TRIM);
1583
}
1584
1585
static int
1586
softdep_speedup(struct ufsmount *ump)
1587
{
1588
struct ufsmount *altump;
1589
struct mount_softdeps *sdp;
1590
1591
LOCK_OWNED(ump);
1592
worklist_speedup(ump->um_mountp);
1593
bd_speedup();
1594
/*
1595
* If we have global shortages, then we need other
1596
* filesystems to help with the cleanup. Here we wakeup a
1597
* flusher thread for a filesystem that is over its fair
1598
* share of resources.
1599
*/
1600
if (req_clear_inodedeps || req_clear_remove) {
1601
ACQUIRE_GBLLOCK(&lk);
1602
TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1603
if ((altump = sdp->sd_ump) == ump)
1604
continue;
1605
if (((req_clear_inodedeps &&
1606
altump->softdep_curdeps[D_INODEDEP] >
1607
max_softdeps / stat_flush_threads) ||
1608
(req_clear_remove &&
1609
altump->softdep_curdeps[D_DIRREM] >
1610
(max_softdeps / 2) / stat_flush_threads)) &&
1611
TRY_ACQUIRE_LOCK(altump))
1612
break;
1613
}
1614
if (sdp == NULL) {
1615
searchfailed++;
1616
FREE_GBLLOCK(&lk);
1617
} else {
1618
/*
1619
* Move to the end of the list so we pick a
1620
* different one on out next try.
1621
*/
1622
TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1623
TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1624
FREE_GBLLOCK(&lk);
1625
if ((altump->softdep_flags &
1626
(FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1627
altump->softdep_flags |= FLUSH_CLEANUP;
1628
altump->um_softdep->sd_cleanups++;
1629
wakeup(&altump->softdep_flushtd);
1630
FREE_LOCK(altump);
1631
}
1632
}
1633
return (speedup_syncer());
1634
}
1635
1636
/*
1637
* Add an item to the end of the work queue.
1638
* This routine requires that the lock be held.
1639
* This is the only routine that adds items to the list.
1640
* The following routine is the only one that removes items
1641
* and does so in order from first to last.
1642
*/
1643
1644
#define WK_HEAD 0x0001 /* Add to HEAD. */
1645
#define WK_NODELAY 0x0002 /* Process immediately. */
1646
1647
static void
1648
add_to_worklist(struct worklist *wk, int flags)
1649
{
1650
struct ufsmount *ump;
1651
1652
ump = VFSTOUFS(wk->wk_mp);
1653
LOCK_OWNED(ump);
1654
if (wk->wk_state & ONWORKLIST)
1655
panic("add_to_worklist: %s(0x%X) already on list",
1656
TYPENAME(wk->wk_type), wk->wk_state);
1657
wk->wk_state |= ONWORKLIST;
1658
if (ump->softdep_on_worklist == 0) {
1659
LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1660
ump->softdep_worklist_tail = wk;
1661
} else if (flags & WK_HEAD) {
1662
LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1663
} else {
1664
LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1665
ump->softdep_worklist_tail = wk;
1666
}
1667
ump->softdep_on_worklist += 1;
1668
if (flags & WK_NODELAY)
1669
worklist_speedup(wk->wk_mp);
1670
}
1671
1672
/*
1673
* Remove the item to be processed. If we are removing the last
1674
* item on the list, we need to recalculate the tail pointer.
1675
*/
1676
static void
1677
remove_from_worklist(struct worklist *wk)
1678
{
1679
struct ufsmount *ump;
1680
1681
ump = VFSTOUFS(wk->wk_mp);
1682
if (ump->softdep_worklist_tail == wk)
1683
ump->softdep_worklist_tail =
1684
(struct worklist *)wk->wk_list.le_prev;
1685
WORKLIST_REMOVE(wk);
1686
ump->softdep_on_worklist -= 1;
1687
}
1688
1689
static void
1690
wake_worklist(struct worklist *wk)
1691
{
1692
if (wk->wk_state & IOWAITING) {
1693
wk->wk_state &= ~IOWAITING;
1694
wakeup(wk);
1695
}
1696
}
1697
1698
static void
1699
wait_worklist(struct worklist *wk, char *wmesg)
1700
{
1701
struct ufsmount *ump;
1702
1703
ump = VFSTOUFS(wk->wk_mp);
1704
wk->wk_state |= IOWAITING;
1705
msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1706
}
1707
1708
/*
1709
* Process that runs once per second to handle items in the background queue.
1710
*
1711
* Note that we ensure that everything is done in the order in which they
1712
* appear in the queue. The code below depends on this property to ensure
1713
* that blocks of a file are freed before the inode itself is freed. This
1714
* ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1715
* until all the old ones have been purged from the dependency lists.
1716
*/
1717
static int
1718
softdep_process_worklist(struct mount *mp, int full)
1719
{
1720
int cnt, matchcnt;
1721
struct ufsmount *ump;
1722
long starttime;
1723
1724
KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1725
ump = VFSTOUFS(mp);
1726
if (ump->um_softdep == NULL)
1727
return (0);
1728
matchcnt = 0;
1729
ACQUIRE_LOCK(ump);
1730
starttime = time_second;
1731
softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1732
check_clear_deps(mp);
1733
while (ump->softdep_on_worklist > 0) {
1734
if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1735
break;
1736
else
1737
matchcnt += cnt;
1738
check_clear_deps(mp);
1739
/*
1740
* We do not generally want to stop for buffer space, but if
1741
* we are really being a buffer hog, we will stop and wait.
1742
*/
1743
if (should_yield()) {
1744
FREE_LOCK(ump);
1745
kern_yield(PRI_USER);
1746
bwillwrite();
1747
ACQUIRE_LOCK(ump);
1748
}
1749
/*
1750
* Never allow processing to run for more than one
1751
* second. This gives the syncer thread the opportunity
1752
* to pause if appropriate.
1753
*/
1754
if (!full && starttime != time_second)
1755
break;
1756
}
1757
if (full == 0)
1758
journal_unsuspend(ump);
1759
FREE_LOCK(ump);
1760
return (matchcnt);
1761
}
1762
1763
/*
1764
* Process all removes associated with a vnode if we are running out of
1765
* journal space. Any other process which attempts to flush these will
1766
* be unable as we have the vnodes locked.
1767
*/
1768
static void
1769
process_removes(struct vnode *vp)
1770
{
1771
struct inodedep *inodedep;
1772
struct dirrem *dirrem;
1773
struct ufsmount *ump;
1774
struct mount *mp;
1775
ino_t inum;
1776
1777
mp = vp->v_mount;
1778
ump = VFSTOUFS(mp);
1779
LOCK_OWNED(ump);
1780
inum = VTOI(vp)->i_number;
1781
for (;;) {
1782
top:
1783
if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1784
return;
1785
LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1786
/*
1787
* If another thread is trying to lock this vnode
1788
* it will fail but we must wait for it to do so
1789
* before we can proceed.
1790
*/
1791
if (dirrem->dm_state & INPROGRESS) {
1792
wait_worklist(&dirrem->dm_list, "pwrwait");
1793
goto top;
1794
}
1795
if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1796
(COMPLETE | ONWORKLIST))
1797
break;
1798
}
1799
if (dirrem == NULL)
1800
return;
1801
remove_from_worklist(&dirrem->dm_list);
1802
FREE_LOCK(ump);
1803
if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1804
panic("process_removes: suspended filesystem");
1805
handle_workitem_remove(dirrem, 0);
1806
vn_finished_secondary_write(mp);
1807
ACQUIRE_LOCK(ump);
1808
}
1809
}
1810
1811
/*
1812
* Process all truncations associated with a vnode if we are running out
1813
* of journal space. This is called when the vnode lock is already held
1814
* and no other process can clear the truncation. This function returns
1815
* a value greater than zero if it did any work.
1816
*/
1817
static void
1818
process_truncates(struct vnode *vp)
1819
{
1820
struct inodedep *inodedep;
1821
struct freeblks *freeblks;
1822
struct ufsmount *ump;
1823
struct mount *mp;
1824
ino_t inum;
1825
int cgwait;
1826
1827
mp = vp->v_mount;
1828
ump = VFSTOUFS(mp);
1829
LOCK_OWNED(ump);
1830
inum = VTOI(vp)->i_number;
1831
for (;;) {
1832
if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1833
return;
1834
cgwait = 0;
1835
TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1836
/* Journal entries not yet written. */
1837
if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1838
jwait(&LIST_FIRST(
1839
&freeblks->fb_jblkdephd)->jb_list,
1840
MNT_WAIT);
1841
break;
1842
}
1843
/* Another thread is executing this item. */
1844
if (freeblks->fb_state & INPROGRESS) {
1845
wait_worklist(&freeblks->fb_list, "ptrwait");
1846
break;
1847
}
1848
/* Freeblks is waiting on a inode write. */
1849
if ((freeblks->fb_state & COMPLETE) == 0) {
1850
FREE_LOCK(ump);
1851
ffs_update(vp, 1);
1852
ACQUIRE_LOCK(ump);
1853
break;
1854
}
1855
if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1856
(ALLCOMPLETE | ONWORKLIST)) {
1857
remove_from_worklist(&freeblks->fb_list);
1858
freeblks->fb_state |= INPROGRESS;
1859
FREE_LOCK(ump);
1860
if (vn_start_secondary_write(NULL, &mp,
1861
V_NOWAIT))
1862
panic("process_truncates: "
1863
"suspended filesystem");
1864
handle_workitem_freeblocks(freeblks, 0);
1865
vn_finished_secondary_write(mp);
1866
ACQUIRE_LOCK(ump);
1867
break;
1868
}
1869
if (freeblks->fb_cgwait)
1870
cgwait++;
1871
}
1872
if (cgwait) {
1873
FREE_LOCK(ump);
1874
sync_cgs(mp, MNT_WAIT);
1875
ffs_sync_snap(mp, MNT_WAIT);
1876
ACQUIRE_LOCK(ump);
1877
continue;
1878
}
1879
if (freeblks == NULL)
1880
break;
1881
}
1882
return;
1883
}
1884
1885
/*
1886
* Process one item on the worklist.
1887
*/
1888
static int
1889
process_worklist_item(struct mount *mp,
1890
int target,
1891
int flags)
1892
{
1893
struct worklist sentinel;
1894
struct worklist *wk;
1895
struct ufsmount *ump;
1896
int matchcnt;
1897
int error;
1898
1899
KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1900
/*
1901
* If we are being called because of a process doing a
1902
* copy-on-write, then it is not safe to write as we may
1903
* recurse into the copy-on-write routine.
1904
*/
1905
if (curthread->td_pflags & TDP_COWINPROGRESS)
1906
return (-1);
1907
ump = VFSTOUFS(mp);
1908
LOCK_OWNED(ump);
1909
matchcnt = 0;
1910
sentinel.wk_mp = NULL;
1911
sentinel.wk_type = D_SENTINEL;
1912
LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1913
for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1914
wk = LIST_NEXT(&sentinel, wk_list)) {
1915
if (wk->wk_type == D_SENTINEL) {
1916
LIST_REMOVE(&sentinel, wk_list);
1917
LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1918
continue;
1919
}
1920
if (wk->wk_state & INPROGRESS)
1921
panic("process_worklist_item: %p already in progress.",
1922
wk);
1923
wk->wk_state |= INPROGRESS;
1924
remove_from_worklist(wk);
1925
FREE_LOCK(ump);
1926
if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1927
panic("process_worklist_item: suspended filesystem");
1928
switch (wk->wk_type) {
1929
case D_DIRREM:
1930
/* removal of a directory entry */
1931
error = handle_workitem_remove(WK_DIRREM(wk), flags);
1932
break;
1933
1934
case D_FREEBLKS:
1935
/* releasing blocks and/or fragments from a file */
1936
error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1937
flags);
1938
break;
1939
1940
case D_FREEFRAG:
1941
/* releasing a fragment when replaced as a file grows */
1942
handle_workitem_freefrag(WK_FREEFRAG(wk));
1943
error = 0;
1944
break;
1945
1946
case D_FREEFILE:
1947
/* releasing an inode when its link count drops to 0 */
1948
handle_workitem_freefile(WK_FREEFILE(wk));
1949
error = 0;
1950
break;
1951
1952
default:
1953
panic("%s_process_worklist: Unknown type %s",
1954
"softdep", TYPENAME(wk->wk_type));
1955
/* NOTREACHED */
1956
}
1957
vn_finished_secondary_write(mp);
1958
ACQUIRE_LOCK(ump);
1959
if (error == 0) {
1960
if (++matchcnt == target)
1961
break;
1962
continue;
1963
}
1964
/*
1965
* We have to retry the worklist item later. Wake up any
1966
* waiters who may be able to complete it immediately and
1967
* add the item back to the head so we don't try to execute
1968
* it again.
1969
*/
1970
wk->wk_state &= ~INPROGRESS;
1971
wake_worklist(wk);
1972
add_to_worklist(wk, WK_HEAD);
1973
}
1974
/* Sentinal could've become the tail from remove_from_worklist. */
1975
if (ump->softdep_worklist_tail == &sentinel)
1976
ump->softdep_worklist_tail =
1977
(struct worklist *)sentinel.wk_list.le_prev;
1978
LIST_REMOVE(&sentinel, wk_list);
1979
return (matchcnt);
1980
}
1981
1982
/*
1983
* Move dependencies from one buffer to another.
1984
*/
1985
int
1986
softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
1987
{
1988
struct worklist *wk, *wktail;
1989
struct ufsmount *ump;
1990
int dirty;
1991
1992
if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1993
return (0);
1994
KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1995
("softdep_move_dependencies called on non-softdep filesystem"));
1996
dirty = 0;
1997
wktail = NULL;
1998
ump = VFSTOUFS(wk->wk_mp);
1999
ACQUIRE_LOCK(ump);
2000
while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
2001
LIST_REMOVE(wk, wk_list);
2002
if (wk->wk_type == D_BMSAFEMAP &&
2003
bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
2004
dirty = 1;
2005
if (wktail == NULL)
2006
LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
2007
else
2008
LIST_INSERT_AFTER(wktail, wk, wk_list);
2009
wktail = wk;
2010
}
2011
FREE_LOCK(ump);
2012
2013
return (dirty);
2014
}
2015
2016
/*
2017
* Purge the work list of all items associated with a particular mount point.
2018
*/
2019
int
2020
softdep_flushworklist(struct mount *oldmnt,
2021
int *countp,
2022
struct thread *td)
2023
{
2024
struct vnode *devvp;
2025
struct ufsmount *ump;
2026
int count, error;
2027
2028
/*
2029
* Alternately flush the block device associated with the mount
2030
* point and process any dependencies that the flushing
2031
* creates. We continue until no more worklist dependencies
2032
* are found.
2033
*/
2034
*countp = 0;
2035
error = 0;
2036
ump = VFSTOUFS(oldmnt);
2037
devvp = ump->um_devvp;
2038
while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
2039
*countp += count;
2040
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2041
error = VOP_FSYNC(devvp, MNT_WAIT, td);
2042
VOP_UNLOCK(devvp);
2043
if (error != 0)
2044
break;
2045
}
2046
return (error);
2047
}
2048
2049
#define SU_WAITIDLE_RETRIES 20
2050
static int
2051
softdep_waitidle(struct mount *mp, int flags __unused)
2052
{
2053
struct ufsmount *ump;
2054
struct vnode *devvp;
2055
struct thread *td;
2056
int error, i;
2057
2058
ump = VFSTOUFS(mp);
2059
KASSERT(ump->um_softdep != NULL,
2060
("softdep_waitidle called on non-softdep filesystem"));
2061
devvp = ump->um_devvp;
2062
td = curthread;
2063
error = 0;
2064
ACQUIRE_LOCK(ump);
2065
for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
2066
ump->softdep_req = 1;
2067
KASSERT((flags & FORCECLOSE) == 0 ||
2068
ump->softdep_on_worklist == 0,
2069
("softdep_waitidle: work added after flush"));
2070
msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
2071
"softdeps", 10 * hz);
2072
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2073
error = VOP_FSYNC(devvp, MNT_WAIT, td);
2074
VOP_UNLOCK(devvp);
2075
ACQUIRE_LOCK(ump);
2076
if (error != 0)
2077
break;
2078
}
2079
ump->softdep_req = 0;
2080
if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
2081
error = EBUSY;
2082
printf("softdep_waitidle: Failed to flush worklist for %p\n",
2083
mp);
2084
}
2085
FREE_LOCK(ump);
2086
return (error);
2087
}
2088
2089
/*
2090
* Flush all vnodes and worklist items associated with a specified mount point.
2091
*/
2092
int
2093
softdep_flushfiles(struct mount *oldmnt,
2094
int flags,
2095
struct thread *td)
2096
{
2097
struct ufsmount *ump __unused;
2098
#ifdef QUOTA
2099
int i;
2100
#endif
2101
int error, early, depcount, loopcnt, retry_flush_count, retry;
2102
int morework;
2103
2104
ump = VFSTOUFS(oldmnt);
2105
KASSERT(ump->um_softdep != NULL,
2106
("softdep_flushfiles called on non-softdep filesystem"));
2107
loopcnt = 10;
2108
retry_flush_count = 3;
2109
retry_flush:
2110
error = 0;
2111
2112
/*
2113
* Alternately flush the vnodes associated with the mount
2114
* point and process any dependencies that the flushing
2115
* creates. In theory, this loop can happen at most twice,
2116
* but we give it a few extra just to be sure.
2117
*/
2118
for (; loopcnt > 0; loopcnt--) {
2119
/*
2120
* Do another flush in case any vnodes were brought in
2121
* as part of the cleanup operations.
2122
*/
2123
early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
2124
MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
2125
if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
2126
break;
2127
if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
2128
depcount == 0)
2129
break;
2130
}
2131
/*
2132
* If we are unmounting then it is an error to fail. If we
2133
* are simply trying to downgrade to read-only, then filesystem
2134
* activity can keep us busy forever, so we just fail with EBUSY.
2135
*/
2136
if (loopcnt == 0) {
2137
if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2138
panic("softdep_flushfiles: looping");
2139
error = EBUSY;
2140
}
2141
if (!error)
2142
error = softdep_waitidle(oldmnt, flags);
2143
if (!error) {
2144
if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2145
retry = 0;
2146
MNT_ILOCK(oldmnt);
2147
morework = oldmnt->mnt_nvnodelistsize > 0;
2148
#ifdef QUOTA
2149
UFS_LOCK(ump);
2150
for (i = 0; i < MAXQUOTAS; i++) {
2151
if (ump->um_quotas[i] != NULL)
2152
morework = 1;
2153
}
2154
UFS_UNLOCK(ump);
2155
#endif
2156
if (morework) {
2157
if (--retry_flush_count > 0) {
2158
retry = 1;
2159
loopcnt = 3;
2160
} else
2161
error = EBUSY;
2162
}
2163
MNT_IUNLOCK(oldmnt);
2164
if (retry)
2165
goto retry_flush;
2166
}
2167
}
2168
return (error);
2169
}
2170
2171
/*
2172
* Structure hashing.
2173
*
2174
* There are four types of structures that can be looked up:
2175
* 1) pagedep structures identified by mount point, inode number,
2176
* and logical block.
2177
* 2) inodedep structures identified by mount point and inode number.
2178
* 3) newblk structures identified by mount point and
2179
* physical block number.
2180
* 4) bmsafemap structures identified by mount point and
2181
* cylinder group number.
2182
*
2183
* The "pagedep" and "inodedep" dependency structures are hashed
2184
* separately from the file blocks and inodes to which they correspond.
2185
* This separation helps when the in-memory copy of an inode or
2186
* file block must be replaced. It also obviates the need to access
2187
* an inode or file page when simply updating (or de-allocating)
2188
* dependency structures. Lookup of newblk structures is needed to
2189
* find newly allocated blocks when trying to associate them with
2190
* their allocdirect or allocindir structure.
2191
*
2192
* The lookup routines optionally create and hash a new instance when
2193
* an existing entry is not found. The bmsafemap lookup routine always
2194
* allocates a new structure if an existing one is not found.
2195
*/
2196
#define DEPALLOC 0x0001 /* allocate structure if lookup fails */
2197
2198
/*
2199
* Structures and routines associated with pagedep caching.
2200
*/
2201
#define PAGEDEP_HASH(ump, inum, lbn) \
2202
(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2203
2204
static int
2205
pagedep_find(struct pagedep_hashhead *pagedephd,
2206
ino_t ino,
2207
ufs_lbn_t lbn,
2208
struct pagedep **pagedeppp)
2209
{
2210
struct pagedep *pagedep;
2211
2212
LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2213
if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2214
*pagedeppp = pagedep;
2215
return (1);
2216
}
2217
}
2218
*pagedeppp = NULL;
2219
return (0);
2220
}
2221
/*
2222
* Look up a pagedep. Return 1 if found, 0 otherwise.
2223
* If not found, allocate if DEPALLOC flag is passed.
2224
* Found or allocated entry is returned in pagedeppp.
2225
*/
2226
static int
2227
pagedep_lookup(struct mount *mp,
2228
struct buf *bp,
2229
ino_t ino,
2230
ufs_lbn_t lbn,
2231
int flags,
2232
struct pagedep **pagedeppp)
2233
{
2234
struct pagedep *pagedep;
2235
struct pagedep_hashhead *pagedephd;
2236
struct worklist *wk;
2237
struct ufsmount *ump;
2238
int ret;
2239
int i;
2240
2241
ump = VFSTOUFS(mp);
2242
LOCK_OWNED(ump);
2243
if (bp) {
2244
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2245
if (wk->wk_type == D_PAGEDEP) {
2246
*pagedeppp = WK_PAGEDEP(wk);
2247
return (1);
2248
}
2249
}
2250
}
2251
pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2252
ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2253
if (ret) {
2254
if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2255
WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2256
return (1);
2257
}
2258
if ((flags & DEPALLOC) == 0)
2259
return (0);
2260
FREE_LOCK(ump);
2261
pagedep = malloc(sizeof(struct pagedep),
2262
M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2263
workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2264
ACQUIRE_LOCK(ump);
2265
ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2266
if (*pagedeppp) {
2267
/*
2268
* This should never happen since we only create pagedeps
2269
* with the vnode lock held. Could be an assert.
2270
*/
2271
WORKITEM_FREE(pagedep, D_PAGEDEP);
2272
return (ret);
2273
}
2274
pagedep->pd_ino = ino;
2275
pagedep->pd_lbn = lbn;
2276
LIST_INIT(&pagedep->pd_dirremhd);
2277
LIST_INIT(&pagedep->pd_pendinghd);
2278
for (i = 0; i < DAHASHSZ; i++)
2279
LIST_INIT(&pagedep->pd_diraddhd[i]);
2280
LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2281
WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2282
*pagedeppp = pagedep;
2283
return (0);
2284
}
2285
2286
/*
2287
* Structures and routines associated with inodedep caching.
2288
*/
2289
#define INODEDEP_HASH(ump, inum) \
2290
(&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2291
2292
static int
2293
inodedep_find(struct inodedep_hashhead *inodedephd,
2294
ino_t inum,
2295
struct inodedep **inodedeppp)
2296
{
2297
struct inodedep *inodedep;
2298
2299
LIST_FOREACH(inodedep, inodedephd, id_hash)
2300
if (inum == inodedep->id_ino)
2301
break;
2302
if (inodedep) {
2303
*inodedeppp = inodedep;
2304
return (1);
2305
}
2306
*inodedeppp = NULL;
2307
2308
return (0);
2309
}
2310
/*
2311
* Look up an inodedep. Return 1 if found, 0 if not found.
2312
* If not found, allocate if DEPALLOC flag is passed.
2313
* Found or allocated entry is returned in inodedeppp.
2314
*/
2315
static int
2316
inodedep_lookup(struct mount *mp,
2317
ino_t inum,
2318
int flags,
2319
struct inodedep **inodedeppp)
2320
{
2321
struct inodedep *inodedep;
2322
struct inodedep_hashhead *inodedephd;
2323
struct ufsmount *ump;
2324
struct fs *fs;
2325
2326
ump = VFSTOUFS(mp);
2327
LOCK_OWNED(ump);
2328
fs = ump->um_fs;
2329
inodedephd = INODEDEP_HASH(ump, inum);
2330
2331
if (inodedep_find(inodedephd, inum, inodedeppp))
2332
return (1);
2333
if ((flags & DEPALLOC) == 0)
2334
return (0);
2335
/*
2336
* If the system is over its limit and our filesystem is
2337
* responsible for more than our share of that usage and
2338
* we are not in a rush, request some inodedep cleanup.
2339
*/
2340
if (softdep_excess_items(ump, D_INODEDEP))
2341
schedule_cleanup(mp);
2342
else
2343
FREE_LOCK(ump);
2344
inodedep = malloc(sizeof(struct inodedep),
2345
M_INODEDEP, M_SOFTDEP_FLAGS);
2346
workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2347
ACQUIRE_LOCK(ump);
2348
if (inodedep_find(inodedephd, inum, inodedeppp)) {
2349
WORKITEM_FREE(inodedep, D_INODEDEP);
2350
return (1);
2351
}
2352
inodedep->id_fs = fs;
2353
inodedep->id_ino = inum;
2354
inodedep->id_state = ALLCOMPLETE;
2355
inodedep->id_nlinkdelta = 0;
2356
inodedep->id_nlinkwrote = -1;
2357
inodedep->id_savedino1 = NULL;
2358
inodedep->id_savedsize = -1;
2359
inodedep->id_savedextsize = -1;
2360
inodedep->id_savednlink = -1;
2361
inodedep->id_bmsafemap = NULL;
2362
inodedep->id_mkdiradd = NULL;
2363
LIST_INIT(&inodedep->id_dirremhd);
2364
LIST_INIT(&inodedep->id_pendinghd);
2365
LIST_INIT(&inodedep->id_inowait);
2366
LIST_INIT(&inodedep->id_bufwait);
2367
TAILQ_INIT(&inodedep->id_inoreflst);
2368
TAILQ_INIT(&inodedep->id_inoupdt);
2369
TAILQ_INIT(&inodedep->id_newinoupdt);
2370
TAILQ_INIT(&inodedep->id_extupdt);
2371
TAILQ_INIT(&inodedep->id_newextupdt);
2372
TAILQ_INIT(&inodedep->id_freeblklst);
2373
LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2374
*inodedeppp = inodedep;
2375
return (0);
2376
}
2377
2378
/*
2379
* Structures and routines associated with newblk caching.
2380
*/
2381
#define NEWBLK_HASH(ump, inum) \
2382
(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2383
2384
static int
2385
newblk_find(struct newblk_hashhead *newblkhd,
2386
ufs2_daddr_t newblkno,
2387
int flags,
2388
struct newblk **newblkpp)
2389
{
2390
struct newblk *newblk;
2391
2392
LIST_FOREACH(newblk, newblkhd, nb_hash) {
2393
if (newblkno != newblk->nb_newblkno)
2394
continue;
2395
/*
2396
* If we're creating a new dependency don't match those that
2397
* have already been converted to allocdirects. This is for
2398
* a frag extend.
2399
*/
2400
if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2401
continue;
2402
break;
2403
}
2404
if (newblk) {
2405
*newblkpp = newblk;
2406
return (1);
2407
}
2408
*newblkpp = NULL;
2409
return (0);
2410
}
2411
2412
/*
2413
* Look up a newblk. Return 1 if found, 0 if not found.
2414
* If not found, allocate if DEPALLOC flag is passed.
2415
* Found or allocated entry is returned in newblkpp.
2416
*/
2417
static int
2418
newblk_lookup(struct mount *mp,
2419
ufs2_daddr_t newblkno,
2420
int flags,
2421
struct newblk **newblkpp)
2422
{
2423
struct newblk *newblk;
2424
struct newblk_hashhead *newblkhd;
2425
struct ufsmount *ump;
2426
2427
ump = VFSTOUFS(mp);
2428
LOCK_OWNED(ump);
2429
newblkhd = NEWBLK_HASH(ump, newblkno);
2430
if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2431
return (1);
2432
if ((flags & DEPALLOC) == 0)
2433
return (0);
2434
if (softdep_excess_items(ump, D_NEWBLK) ||
2435
softdep_excess_items(ump, D_ALLOCDIRECT) ||
2436
softdep_excess_items(ump, D_ALLOCINDIR))
2437
schedule_cleanup(mp);
2438
else
2439
FREE_LOCK(ump);
2440
newblk = malloc(sizeof(union allblk), M_NEWBLK,
2441
M_SOFTDEP_FLAGS | M_ZERO);
2442
workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2443
ACQUIRE_LOCK(ump);
2444
if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2445
WORKITEM_FREE(newblk, D_NEWBLK);
2446
return (1);
2447
}
2448
newblk->nb_freefrag = NULL;
2449
LIST_INIT(&newblk->nb_indirdeps);
2450
LIST_INIT(&newblk->nb_newdirblk);
2451
LIST_INIT(&newblk->nb_jwork);
2452
newblk->nb_state = ATTACHED;
2453
newblk->nb_newblkno = newblkno;
2454
LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2455
*newblkpp = newblk;
2456
return (0);
2457
}
2458
2459
/*
2460
* Structures and routines associated with freed indirect block caching.
2461
*/
2462
#define INDIR_HASH(ump, blkno) \
2463
(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2464
2465
/*
2466
* Lookup an indirect block in the indir hash table. The freework is
2467
* removed and potentially freed. The caller must do a blocking journal
2468
* write before writing to the blkno.
2469
*/
2470
static int
2471
indirblk_lookup(struct mount *mp, ufs2_daddr_t blkno)
2472
{
2473
struct freework *freework;
2474
struct indir_hashhead *wkhd;
2475
struct ufsmount *ump;
2476
2477
ump = VFSTOUFS(mp);
2478
wkhd = INDIR_HASH(ump, blkno);
2479
TAILQ_FOREACH(freework, wkhd, fw_next) {
2480
if (freework->fw_blkno != blkno)
2481
continue;
2482
indirblk_remove(freework);
2483
return (1);
2484
}
2485
return (0);
2486
}
2487
2488
/*
2489
* Insert an indirect block represented by freework into the indirblk
2490
* hash table so that it may prevent the block from being re-used prior
2491
* to the journal being written.
2492
*/
2493
static void
2494
indirblk_insert(struct freework *freework)
2495
{
2496
struct jblocks *jblocks;
2497
struct jseg *jseg;
2498
struct ufsmount *ump;
2499
2500
ump = VFSTOUFS(freework->fw_list.wk_mp);
2501
jblocks = ump->softdep_jblocks;
2502
jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2503
if (jseg == NULL)
2504
return;
2505
2506
LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2507
TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2508
fw_next);
2509
freework->fw_state &= ~DEPCOMPLETE;
2510
}
2511
2512
static void
2513
indirblk_remove(struct freework *freework)
2514
{
2515
struct ufsmount *ump;
2516
2517
ump = VFSTOUFS(freework->fw_list.wk_mp);
2518
LIST_REMOVE(freework, fw_segs);
2519
TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2520
freework->fw_state |= DEPCOMPLETE;
2521
if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2522
WORKITEM_FREE(freework, D_FREEWORK);
2523
}
2524
2525
/*
2526
* Executed during filesystem system initialization before
2527
* mounting any filesystems.
2528
*/
2529
void
2530
softdep_initialize(void)
2531
{
2532
2533
TAILQ_INIT(&softdepmounts);
2534
#ifdef __LP64__
2535
max_softdeps = desiredvnodes * 4;
2536
#else
2537
max_softdeps = desiredvnodes * 2;
2538
#endif
2539
2540
/* initialise bioops hack */
2541
bioops.io_start = softdep_disk_io_initiation;
2542
bioops.io_complete = softdep_disk_write_complete;
2543
bioops.io_deallocate = softdep_deallocate_dependencies;
2544
bioops.io_countdeps = softdep_count_dependencies;
2545
ast_register(TDA_UFS, ASTR_KCLEAR | ASTR_ASTF_REQUIRED, 0,
2546
softdep_ast_cleanup_proc);
2547
2548
/* Initialize the callout with an mtx. */
2549
callout_init_mtx(&softdep_callout, &lk, 0);
2550
}
2551
2552
/*
2553
* Executed after all filesystems have been unmounted during
2554
* filesystem module unload.
2555
*/
2556
void
2557
softdep_uninitialize(void)
2558
{
2559
2560
/* clear bioops hack */
2561
bioops.io_start = NULL;
2562
bioops.io_complete = NULL;
2563
bioops.io_deallocate = NULL;
2564
bioops.io_countdeps = NULL;
2565
ast_deregister(TDA_UFS);
2566
2567
callout_drain(&softdep_callout);
2568
}
2569
2570
/*
2571
* Called at mount time to notify the dependency code that a
2572
* filesystem wishes to use it.
2573
*/
2574
int
2575
softdep_mount(struct vnode *devvp,
2576
struct mount *mp,
2577
struct fs *fs,
2578
struct ucred *cred)
2579
{
2580
struct csum_total cstotal;
2581
struct mount_softdeps *sdp;
2582
struct ufsmount *ump;
2583
struct cg *cgp;
2584
struct buf *bp;
2585
uint64_t cyl, i;
2586
int error;
2587
2588
ump = VFSTOUFS(mp);
2589
2590
sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2591
M_WAITOK | M_ZERO);
2592
rw_init(&sdp->sd_fslock, "SUrw");
2593
sdp->sd_ump = ump;
2594
LIST_INIT(&sdp->sd_workitem_pending);
2595
LIST_INIT(&sdp->sd_journal_pending);
2596
TAILQ_INIT(&sdp->sd_unlinked);
2597
LIST_INIT(&sdp->sd_dirtycg);
2598
sdp->sd_worklist_tail = NULL;
2599
sdp->sd_on_worklist = 0;
2600
sdp->sd_deps = 0;
2601
LIST_INIT(&sdp->sd_mkdirlisthd);
2602
sdp->sd_pdhash = hashinit(desiredvnodes / 5, M_PAGEDEP,
2603
&sdp->sd_pdhashsize);
2604
sdp->sd_pdnextclean = 0;
2605
sdp->sd_idhash = hashinit(desiredvnodes, M_INODEDEP,
2606
&sdp->sd_idhashsize);
2607
sdp->sd_idnextclean = 0;
2608
sdp->sd_newblkhash = hashinit(max_softdeps / 2, M_NEWBLK,
2609
&sdp->sd_newblkhashsize);
2610
sdp->sd_bmhash = hashinit(1024, M_BMSAFEMAP, &sdp->sd_bmhashsize);
2611
i = 1 << (ffs(desiredvnodes / 10) - 1);
2612
sdp->sd_indirhash = malloc(i * sizeof(struct indir_hashhead),
2613
M_FREEWORK, M_WAITOK);
2614
sdp->sd_indirhashsize = i - 1;
2615
for (i = 0; i <= sdp->sd_indirhashsize; i++)
2616
TAILQ_INIT(&sdp->sd_indirhash[i]);
2617
for (i = 0; i <= D_LAST; i++)
2618
LIST_INIT(&sdp->sd_alldeps[i]);
2619
ACQUIRE_GBLLOCK(&lk);
2620
TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2621
FREE_GBLLOCK(&lk);
2622
2623
ump->um_softdep = sdp;
2624
MNT_ILOCK(mp);
2625
mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2626
if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2627
mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2628
MNTK_SOFTDEP | MNTK_NOASYNC;
2629
}
2630
MNT_IUNLOCK(mp);
2631
2632
if ((fs->fs_flags & FS_SUJ) &&
2633
(error = journal_mount(mp, fs, cred)) != 0) {
2634
printf("%s: failed to start journal: %d\n",
2635
mp->mnt_stat.f_mntonname, error);
2636
softdep_unmount(mp);
2637
return (error);
2638
}
2639
/*
2640
* Start our flushing thread in the bufdaemon process.
2641
*/
2642
ACQUIRE_LOCK(ump);
2643
ump->softdep_flags |= FLUSH_STARTING;
2644
FREE_LOCK(ump);
2645
error = kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2646
&ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2647
mp->mnt_stat.f_mntonname);
2648
ACQUIRE_LOCK(ump);
2649
if (error != 0) {
2650
printf("%s: failed to start softdepflush thread: %d\n",
2651
mp->mnt_stat.f_mntonname, error);
2652
ump->softdep_flags &= ~FLUSH_STARTING;
2653
FREE_LOCK(ump);
2654
softdep_unmount(mp);
2655
return (error);
2656
}
2657
while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2658
msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2659
hz / 2);
2660
}
2661
FREE_LOCK(ump);
2662
/*
2663
* When doing soft updates, the counters in the
2664
* superblock may have gotten out of sync. Recomputation
2665
* can take a long time and can be deferred for background
2666
* fsck. However, the old behavior of scanning the cylinder
2667
* groups and recalculating them at mount time is available
2668
* by setting vfs.ffs.compute_summary_at_mount to one.
2669
*/
2670
if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2671
return (0);
2672
bzero(&cstotal, sizeof cstotal);
2673
for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2674
if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2675
fs->fs_cgsize, cred, &bp)) != 0) {
2676
brelse(bp);
2677
softdep_unmount(mp);
2678
return (error);
2679
}
2680
cgp = (struct cg *)bp->b_data;
2681
cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2682
cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2683
cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2684
cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2685
fs->fs_cs(fs, cyl) = cgp->cg_cs;
2686
brelse(bp);
2687
}
2688
#ifdef INVARIANTS
2689
if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2690
printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2691
#endif
2692
bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2693
return (0);
2694
}
2695
2696
void
2697
softdep_unmount(struct mount *mp)
2698
{
2699
struct ufsmount *ump;
2700
struct mount_softdeps *ums;
2701
2702
ump = VFSTOUFS(mp);
2703
KASSERT(ump->um_softdep != NULL,
2704
("softdep_unmount called on non-softdep filesystem"));
2705
MNT_ILOCK(mp);
2706
mp->mnt_flag &= ~MNT_SOFTDEP;
2707
if ((mp->mnt_flag & MNT_SUJ) == 0) {
2708
MNT_IUNLOCK(mp);
2709
} else {
2710
mp->mnt_flag &= ~MNT_SUJ;
2711
MNT_IUNLOCK(mp);
2712
journal_unmount(ump);
2713
}
2714
/*
2715
* Shut down our flushing thread. Check for NULL is if
2716
* softdep_mount errors out before the thread has been created.
2717
*/
2718
if (ump->softdep_flushtd != NULL) {
2719
ACQUIRE_LOCK(ump);
2720
ump->softdep_flags |= FLUSH_EXIT;
2721
wakeup(&ump->softdep_flushtd);
2722
while ((ump->softdep_flags & FLUSH_EXIT) != 0) {
2723
msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM,
2724
"sdwait", 0);
2725
}
2726
KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2727
("Thread shutdown failed"));
2728
FREE_LOCK(ump);
2729
}
2730
2731
/*
2732
* We are no longer have softdep structure attached to ump.
2733
*/
2734
ums = ump->um_softdep;
2735
ACQUIRE_GBLLOCK(&lk);
2736
TAILQ_REMOVE(&softdepmounts, ums, sd_next);
2737
FREE_GBLLOCK(&lk);
2738
ump->um_softdep = NULL;
2739
2740
KASSERT(ums->sd_on_journal == 0,
2741
("ump %p ums %p on_journal %d", ump, ums, ums->sd_on_journal));
2742
KASSERT(ums->sd_on_worklist == 0,
2743
("ump %p ums %p on_worklist %d", ump, ums, ums->sd_on_worklist));
2744
KASSERT(ums->sd_deps == 0,
2745
("ump %p ums %p deps %d", ump, ums, ums->sd_deps));
2746
2747
/*
2748
* Free up our resources.
2749
*/
2750
rw_destroy(&ums->sd_fslock);
2751
hashdestroy(ums->sd_pdhash, M_PAGEDEP, ums->sd_pdhashsize);
2752
hashdestroy(ums->sd_idhash, M_INODEDEP, ums->sd_idhashsize);
2753
hashdestroy(ums->sd_newblkhash, M_NEWBLK, ums->sd_newblkhashsize);
2754
hashdestroy(ums->sd_bmhash, M_BMSAFEMAP, ums->sd_bmhashsize);
2755
free(ums->sd_indirhash, M_FREEWORK);
2756
#ifdef INVARIANTS
2757
for (int i = 0; i <= D_LAST; i++) {
2758
KASSERT(ums->sd_curdeps[i] == 0,
2759
("Unmount %s: Dep type %s != 0 (%jd)", ump->um_fs->fs_fsmnt,
2760
TYPENAME(i), (intmax_t)ums->sd_curdeps[i]));
2761
KASSERT(LIST_EMPTY(&ums->sd_alldeps[i]),
2762
("Unmount %s: Dep type %s not empty (%p)",
2763
ump->um_fs->fs_fsmnt,
2764
TYPENAME(i), LIST_FIRST(&ums->sd_alldeps[i])));
2765
}
2766
#endif
2767
free(ums, M_MOUNTDATA);
2768
}
2769
2770
static struct jblocks *
2771
jblocks_create(void)
2772
{
2773
struct jblocks *jblocks;
2774
2775
jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2776
TAILQ_INIT(&jblocks->jb_segs);
2777
jblocks->jb_avail = 10;
2778
jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2779
M_JBLOCKS, M_WAITOK | M_ZERO);
2780
2781
return (jblocks);
2782
}
2783
2784
static ufs2_daddr_t
2785
jblocks_alloc(struct jblocks *jblocks,
2786
int bytes,
2787
int *actual)
2788
{
2789
ufs2_daddr_t daddr;
2790
struct jextent *jext;
2791
int freecnt;
2792
int blocks;
2793
2794
blocks = bytes / DEV_BSIZE;
2795
jext = &jblocks->jb_extent[jblocks->jb_head];
2796
freecnt = jext->je_blocks - jblocks->jb_off;
2797
if (freecnt == 0) {
2798
jblocks->jb_off = 0;
2799
if (++jblocks->jb_head > jblocks->jb_used)
2800
jblocks->jb_head = 0;
2801
jext = &jblocks->jb_extent[jblocks->jb_head];
2802
freecnt = jext->je_blocks;
2803
}
2804
if (freecnt > blocks)
2805
freecnt = blocks;
2806
*actual = freecnt * DEV_BSIZE;
2807
daddr = jext->je_daddr + jblocks->jb_off;
2808
jblocks->jb_off += freecnt;
2809
jblocks->jb_free -= freecnt;
2810
2811
return (daddr);
2812
}
2813
2814
static void
2815
jblocks_free(struct jblocks *jblocks,
2816
struct mount *mp,
2817
int bytes)
2818
{
2819
2820
LOCK_OWNED(VFSTOUFS(mp));
2821
jblocks->jb_free += bytes / DEV_BSIZE;
2822
if (jblocks->jb_suspended)
2823
worklist_speedup(mp);
2824
wakeup(jblocks);
2825
}
2826
2827
static void
2828
jblocks_destroy(struct jblocks *jblocks)
2829
{
2830
2831
if (jblocks->jb_extent)
2832
free(jblocks->jb_extent, M_JBLOCKS);
2833
free(jblocks, M_JBLOCKS);
2834
}
2835
2836
static void
2837
jblocks_add(struct jblocks *jblocks,
2838
ufs2_daddr_t daddr,
2839
int blocks)
2840
{
2841
struct jextent *jext;
2842
2843
jblocks->jb_blocks += blocks;
2844
jblocks->jb_free += blocks;
2845
jext = &jblocks->jb_extent[jblocks->jb_used];
2846
/* Adding the first block. */
2847
if (jext->je_daddr == 0) {
2848
jext->je_daddr = daddr;
2849
jext->je_blocks = blocks;
2850
return;
2851
}
2852
/* Extending the last extent. */
2853
if (jext->je_daddr + jext->je_blocks == daddr) {
2854
jext->je_blocks += blocks;
2855
return;
2856
}
2857
/* Adding a new extent. */
2858
if (++jblocks->jb_used == jblocks->jb_avail) {
2859
jblocks->jb_avail *= 2;
2860
jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2861
M_JBLOCKS, M_WAITOK | M_ZERO);
2862
memcpy(jext, jblocks->jb_extent,
2863
sizeof(struct jextent) * jblocks->jb_used);
2864
free(jblocks->jb_extent, M_JBLOCKS);
2865
jblocks->jb_extent = jext;
2866
}
2867
jext = &jblocks->jb_extent[jblocks->jb_used];
2868
jext->je_daddr = daddr;
2869
jext->je_blocks = blocks;
2870
return;
2871
}
2872
2873
int
2874
softdep_journal_lookup(struct mount *mp, struct vnode **vpp)
2875
{
2876
struct componentname cnp;
2877
struct vnode *dvp;
2878
ino_t sujournal;
2879
int error;
2880
2881
error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2882
if (error)
2883
return (error);
2884
bzero(&cnp, sizeof(cnp));
2885
cnp.cn_nameiop = LOOKUP;
2886
cnp.cn_flags = ISLASTCN;
2887
cnp.cn_cred = curthread->td_ucred;
2888
cnp.cn_pnbuf = SUJ_FILE;
2889
cnp.cn_nameptr = SUJ_FILE;
2890
cnp.cn_namelen = strlen(SUJ_FILE);
2891
error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2892
vput(dvp);
2893
if (error != 0)
2894
return (error);
2895
error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2896
return (error);
2897
}
2898
2899
/*
2900
* Open and verify the journal file.
2901
*/
2902
static int
2903
journal_mount(struct mount *mp,
2904
struct fs *fs,
2905
struct ucred *cred)
2906
{
2907
struct jblocks *jblocks;
2908
struct ufsmount *ump;
2909
struct vnode *vp;
2910
struct inode *ip;
2911
ufs2_daddr_t blkno;
2912
int bcount;
2913
int error;
2914
int i;
2915
2916
ump = VFSTOUFS(mp);
2917
ump->softdep_journal_tail = NULL;
2918
ump->softdep_on_journal = 0;
2919
ump->softdep_accdeps = 0;
2920
ump->softdep_req = 0;
2921
ump->softdep_jblocks = NULL;
2922
error = softdep_journal_lookup(mp, &vp);
2923
if (error != 0) {
2924
printf("Failed to find journal. Use tunefs to create one\n");
2925
return (error);
2926
}
2927
ip = VTOI(vp);
2928
if (ip->i_size < SUJ_MIN) {
2929
error = ENOSPC;
2930
goto out;
2931
}
2932
bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */
2933
jblocks = jblocks_create();
2934
for (i = 0; i < bcount; i++) {
2935
error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2936
if (error)
2937
break;
2938
jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2939
}
2940
if (error) {
2941
jblocks_destroy(jblocks);
2942
goto out;
2943
}
2944
jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */
2945
jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2946
ump->softdep_jblocks = jblocks;
2947
2948
MNT_ILOCK(mp);
2949
mp->mnt_flag |= MNT_SUJ;
2950
MNT_IUNLOCK(mp);
2951
2952
/*
2953
* Only validate the journal contents if the
2954
* filesystem is clean, otherwise we write the logs
2955
* but they'll never be used. If the filesystem was
2956
* still dirty when we mounted it the journal is
2957
* invalid and a new journal can only be valid if it
2958
* starts from a clean mount.
2959
*/
2960
if (fs->fs_clean) {
2961
DIP_SET(ip, i_modrev, fs->fs_mtime);
2962
ip->i_flags |= IN_MODIFIED;
2963
ffs_update(vp, 1);
2964
}
2965
out:
2966
vput(vp);
2967
return (error);
2968
}
2969
2970
static void
2971
journal_unmount(struct ufsmount *ump)
2972
{
2973
2974
if (ump->softdep_jblocks)
2975
jblocks_destroy(ump->softdep_jblocks);
2976
ump->softdep_jblocks = NULL;
2977
}
2978
2979
/*
2980
* Called when a journal record is ready to be written. Space is allocated
2981
* and the journal entry is created when the journal is flushed to stable
2982
* store.
2983
*/
2984
static void
2985
add_to_journal(struct worklist *wk)
2986
{
2987
struct ufsmount *ump;
2988
2989
ump = VFSTOUFS(wk->wk_mp);
2990
LOCK_OWNED(ump);
2991
if (wk->wk_state & ONWORKLIST)
2992
panic("add_to_journal: %s(0x%X) already on list",
2993
TYPENAME(wk->wk_type), wk->wk_state);
2994
wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2995
if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2996
ump->softdep_jblocks->jb_age = ticks;
2997
LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2998
} else
2999
LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
3000
ump->softdep_journal_tail = wk;
3001
ump->softdep_on_journal += 1;
3002
}
3003
3004
/*
3005
* Remove an arbitrary item for the journal worklist maintain the tail
3006
* pointer. This happens when a new operation obviates the need to
3007
* journal an old operation.
3008
*/
3009
static void
3010
remove_from_journal(struct worklist *wk)
3011
{
3012
struct ufsmount *ump;
3013
3014
ump = VFSTOUFS(wk->wk_mp);
3015
LOCK_OWNED(ump);
3016
#ifdef INVARIANTS
3017
{
3018
struct worklist *wkn;
3019
3020
LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
3021
if (wkn == wk)
3022
break;
3023
if (wkn == NULL)
3024
panic("remove_from_journal: %p is not in journal", wk);
3025
}
3026
#endif
3027
/*
3028
* We emulate a TAILQ to save space in most structures which do not
3029
* require TAILQ semantics. Here we must update the tail position
3030
* when removing the tail which is not the final entry. This works
3031
* only if the worklist linkage are at the beginning of the structure.
3032
*/
3033
if (ump->softdep_journal_tail == wk)
3034
ump->softdep_journal_tail =
3035
(struct worklist *)wk->wk_list.le_prev;
3036
WORKLIST_REMOVE(wk);
3037
ump->softdep_on_journal -= 1;
3038
}
3039
3040
/*
3041
* Check for journal space as well as dependency limits so the prelink
3042
* code can throttle both journaled and non-journaled filesystems.
3043
* Threshold is 0 for low and 1 for min.
3044
*/
3045
static int
3046
journal_space(struct ufsmount *ump, int thresh)
3047
{
3048
struct jblocks *jblocks;
3049
int limit, avail;
3050
3051
jblocks = ump->softdep_jblocks;
3052
if (jblocks == NULL)
3053
return (1);
3054
/*
3055
* We use a tighter restriction here to prevent request_cleanup()
3056
* running in threads from running into locks we currently hold.
3057
* We have to be over the limit and our filesystem has to be
3058
* responsible for more than our share of that usage.
3059
*/
3060
limit = (max_softdeps / 10) * 9;
3061
if (dep_current[D_INODEDEP] > limit &&
3062
ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
3063
return (0);
3064
if (thresh)
3065
thresh = jblocks->jb_min;
3066
else
3067
thresh = jblocks->jb_low;
3068
avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
3069
avail = jblocks->jb_free - avail;
3070
3071
return (avail > thresh);
3072
}
3073
3074
static void
3075
journal_suspend(struct ufsmount *ump)
3076
{
3077
struct jblocks *jblocks;
3078
struct mount *mp;
3079
bool set;
3080
3081
mp = UFSTOVFS(ump);
3082
if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0)
3083
return;
3084
3085
jblocks = ump->softdep_jblocks;
3086
vfs_op_enter(mp);
3087
set = false;
3088
MNT_ILOCK(mp);
3089
if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
3090
stat_journal_min++;
3091
mp->mnt_kern_flag |= MNTK_SUSPEND;
3092
mp->mnt_susp_owner = ump->softdep_flushtd;
3093
set = true;
3094
}
3095
jblocks->jb_suspended = 1;
3096
MNT_IUNLOCK(mp);
3097
if (!set)
3098
vfs_op_exit(mp);
3099
}
3100
3101
static int
3102
journal_unsuspend(struct ufsmount *ump)
3103
{
3104
struct jblocks *jblocks;
3105
struct mount *mp;
3106
3107
mp = UFSTOVFS(ump);
3108
jblocks = ump->softdep_jblocks;
3109
3110
if (jblocks != NULL && jblocks->jb_suspended &&
3111
journal_space(ump, jblocks->jb_min)) {
3112
jblocks->jb_suspended = 0;
3113
FREE_LOCK(ump);
3114
mp->mnt_susp_owner = curthread;
3115
vfs_write_resume(mp, 0);
3116
ACQUIRE_LOCK(ump);
3117
return (1);
3118
}
3119
return (0);
3120
}
3121
3122
static void
3123
journal_check_space(struct ufsmount *ump)
3124
{
3125
struct mount *mp;
3126
3127
LOCK_OWNED(ump);
3128
3129
if (journal_space(ump, 0) == 0) {
3130
softdep_speedup(ump);
3131
mp = UFSTOVFS(ump);
3132
FREE_LOCK(ump);
3133
VFS_SYNC(mp, MNT_NOWAIT);
3134
ffs_sbupdate(ump, MNT_WAIT, 0);
3135
ACQUIRE_LOCK(ump);
3136
if (journal_space(ump, 1) == 0)
3137
journal_suspend(ump);
3138
}
3139
}
3140
3141
/*
3142
* Called before any allocation function to be certain that there is
3143
* sufficient space in the journal prior to creating any new records.
3144
* Since in the case of block allocation we may have multiple locked
3145
* buffers at the time of the actual allocation we can not block
3146
* when the journal records are created. Doing so would create a deadlock
3147
* if any of these buffers needed to be flushed to reclaim space. Instead
3148
* we require a sufficiently large amount of available space such that
3149
* each thread in the system could have passed this allocation check and
3150
* still have sufficient free space. With 20% of a minimum journal size
3151
* of 1MB we have 6553 records available.
3152
*/
3153
int
3154
softdep_prealloc(struct vnode *vp, int waitok)
3155
{
3156
struct ufsmount *ump;
3157
3158
KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
3159
("softdep_prealloc called on non-softdep filesystem"));
3160
/*
3161
* Nothing to do if we are not running journaled soft updates.
3162
* If we currently hold the snapshot lock, we must avoid
3163
* handling other resources that could cause deadlock. Do not
3164
* touch quotas vnode since it is typically recursed with
3165
* other vnode locks held.
3166
*/
3167
if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3168
(vp->v_vflag & VV_SYSTEM) != 0)
3169
return (0);
3170
ump = VFSTOUFS(vp->v_mount);
3171
ACQUIRE_LOCK(ump);
3172
if (journal_space(ump, 0)) {
3173
FREE_LOCK(ump);
3174
return (0);
3175
}
3176
stat_journal_low++;
3177
FREE_LOCK(ump);
3178
if (waitok == MNT_NOWAIT)
3179
return (ENOSPC);
3180
/*
3181
* Attempt to sync this vnode once to flush any journal
3182
* work attached to it.
3183
*/
3184
if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3185
ffs_syncvnode(vp, waitok, 0);
3186
ACQUIRE_LOCK(ump);
3187
process_removes(vp);
3188
process_truncates(vp);
3189
journal_check_space(ump);
3190
FREE_LOCK(ump);
3191
3192
return (0);
3193
}
3194
3195
/*
3196
* Try hard to sync all data and metadata for the vnode, and workitems
3197
* flushing which might conflict with the vnode lock. This is a
3198
* helper for softdep_prerename().
3199
*/
3200
static int
3201
softdep_prerename_vnode(struct ufsmount *ump, struct vnode *vp)
3202
{
3203
int error;
3204
3205
ASSERT_VOP_ELOCKED(vp, "prehandle");
3206
if (vp->v_data == NULL)
3207
return (0);
3208
error = VOP_FSYNC(vp, MNT_WAIT, curthread);
3209
if (error != 0)
3210
return (error);
3211
ACQUIRE_LOCK(ump);
3212
process_removes(vp);
3213
process_truncates(vp);
3214
FREE_LOCK(ump);
3215
return (0);
3216
}
3217
3218
/*
3219
* Must be called from VOP_RENAME() after all vnodes are locked.
3220
* Ensures that there is enough journal space for rename. It is
3221
* sufficiently different from softdep_prelink() by having to handle
3222
* four vnodes.
3223
*/
3224
int
3225
softdep_prerename(struct vnode *fdvp,
3226
struct vnode *fvp,
3227
struct vnode *tdvp,
3228
struct vnode *tvp)
3229
{
3230
struct ufsmount *ump;
3231
int error;
3232
3233
ump = VFSTOUFS(fdvp->v_mount);
3234
3235
if (journal_space(ump, 0))
3236
return (0);
3237
3238
VOP_UNLOCK(tdvp);
3239
VOP_UNLOCK(fvp);
3240
if (tvp != NULL && tvp != tdvp)
3241
VOP_UNLOCK(tvp);
3242
3243
error = softdep_prerename_vnode(ump, fdvp);
3244
VOP_UNLOCK(fdvp);
3245
if (error != 0)
3246
return (error);
3247
3248
VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY);
3249
error = softdep_prerename_vnode(ump, fvp);
3250
VOP_UNLOCK(fvp);
3251
if (error != 0)
3252
return (error);
3253
3254
if (tdvp != fdvp) {
3255
VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY);
3256
error = softdep_prerename_vnode(ump, tdvp);
3257
VOP_UNLOCK(tdvp);
3258
if (error != 0)
3259
return (error);
3260
}
3261
3262
if (tvp != fvp && tvp != NULL) {
3263
VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY);
3264
error = softdep_prerename_vnode(ump, tvp);
3265
VOP_UNLOCK(tvp);
3266
if (error != 0)
3267
return (error);
3268
}
3269
3270
ACQUIRE_LOCK(ump);
3271
softdep_speedup(ump);
3272
process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3273
journal_check_space(ump);
3274
FREE_LOCK(ump);
3275
return (ERELOOKUP);
3276
}
3277
3278
/*
3279
* Before adjusting a link count on a vnode verify that we have sufficient
3280
* journal space. If not, process operations that depend on the currently
3281
* locked pair of vnodes to try to flush space as the syncer, buf daemon,
3282
* and softdep flush threads can not acquire these locks to reclaim space.
3283
*
3284
* Returns 0 if all owned locks are still valid and were not dropped
3285
* in the process, in other case it returns either an error from sync,
3286
* or ERELOOKUP if any of the locks were re-acquired. In the later
3287
* case, the state of the vnodes cannot be relied upon and our VFS
3288
* syscall must be restarted at top level from the lookup.
3289
*/
3290
int
3291
softdep_prelink(struct vnode *dvp,
3292
struct vnode *vp,
3293
struct componentname *cnp)
3294
{
3295
struct ufsmount *ump;
3296
struct nameidata *ndp;
3297
3298
ASSERT_VOP_ELOCKED(dvp, "prelink dvp");
3299
if (vp != NULL)
3300
ASSERT_VOP_ELOCKED(vp, "prelink vp");
3301
ump = VFSTOUFS(dvp->v_mount);
3302
3303
/*
3304
* Nothing to do if we have sufficient journal space. We skip
3305
* flushing when vp is a snapshot to avoid deadlock where
3306
* another thread is trying to update the inodeblock for dvp
3307
* and is waiting on snaplk that vp holds.
3308
*/
3309
if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp))))
3310
return (0);
3311
3312
/*
3313
* Check if the journal space consumption can in theory be
3314
* accounted on dvp and vp. If the vnodes metadata was not
3315
* changed comparing with the previous round-trip into
3316
* softdep_prelink(), as indicated by the seqc generation
3317
* recorded in the nameidata, then there is no point in
3318
* starting the sync.
3319
*/
3320
ndp = __containerof(cnp, struct nameidata, ni_cnd);
3321
if (!seqc_in_modify(ndp->ni_dvp_seqc) &&
3322
vn_seqc_consistent(dvp, ndp->ni_dvp_seqc) &&
3323
(vp == NULL || (!seqc_in_modify(ndp->ni_vp_seqc) &&
3324
vn_seqc_consistent(vp, ndp->ni_vp_seqc))))
3325
return (0);
3326
3327
stat_journal_low++;
3328
if (vp != NULL) {
3329
VOP_UNLOCK(dvp);
3330
ffs_syncvnode(vp, MNT_NOWAIT, 0);
3331
vn_lock_pair(dvp, false, LK_EXCLUSIVE, vp, true, LK_EXCLUSIVE);
3332
if (dvp->v_data == NULL)
3333
goto out;
3334
}
3335
if (vp != NULL)
3336
VOP_UNLOCK(vp);
3337
ffs_syncvnode(dvp, MNT_WAIT, 0);
3338
/* Process vp before dvp as it may create .. removes. */
3339
if (vp != NULL) {
3340
VOP_UNLOCK(dvp);
3341
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3342
if (vp->v_data == NULL) {
3343
vn_lock_pair(dvp, false, LK_EXCLUSIVE, vp, true,
3344
LK_EXCLUSIVE);
3345
goto out;
3346
}
3347
ACQUIRE_LOCK(ump);
3348
process_removes(vp);
3349
process_truncates(vp);
3350
FREE_LOCK(ump);
3351
VOP_UNLOCK(vp);
3352
vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
3353
if (dvp->v_data == NULL) {
3354
vn_lock_pair(dvp, true, LK_EXCLUSIVE, vp, false,
3355
LK_EXCLUSIVE);
3356
goto out;
3357
}
3358
}
3359
3360
ACQUIRE_LOCK(ump);
3361
process_removes(dvp);
3362
process_truncates(dvp);
3363
VOP_UNLOCK(dvp);
3364
softdep_speedup(ump);
3365
3366
process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3367
journal_check_space(ump);
3368
FREE_LOCK(ump);
3369
3370
vn_lock_pair(dvp, false, LK_EXCLUSIVE, vp, false, LK_EXCLUSIVE);
3371
out:
3372
ndp->ni_dvp_seqc = vn_seqc_read_any(dvp);
3373
if (vp != NULL)
3374
ndp->ni_vp_seqc = vn_seqc_read_any(vp);
3375
return (ERELOOKUP);
3376
}
3377
3378
static void
3379
jseg_write(struct ufsmount *ump,
3380
struct jseg *jseg,
3381
uint8_t *data)
3382
{
3383
struct jsegrec *rec;
3384
3385
rec = (struct jsegrec *)data;
3386
rec->jsr_seq = jseg->js_seq;
3387
rec->jsr_oldest = jseg->js_oldseq;
3388
rec->jsr_cnt = jseg->js_cnt;
3389
rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3390
rec->jsr_crc = 0;
3391
rec->jsr_time = ump->um_fs->fs_mtime;
3392
}
3393
3394
static inline void
3395
inoref_write(struct inoref *inoref,
3396
struct jseg *jseg,
3397
struct jrefrec *rec)
3398
{
3399
3400
inoref->if_jsegdep->jd_seg = jseg;
3401
rec->jr_ino = inoref->if_ino;
3402
rec->jr_parent = inoref->if_parent;
3403
rec->jr_nlink = inoref->if_nlink;
3404
rec->jr_mode = inoref->if_mode;
3405
rec->jr_diroff = inoref->if_diroff;
3406
}
3407
3408
static void
3409
jaddref_write(struct jaddref *jaddref,
3410
struct jseg *jseg,
3411
uint8_t *data)
3412
{
3413
struct jrefrec *rec;
3414
3415
rec = (struct jrefrec *)data;
3416
rec->jr_op = JOP_ADDREF;
3417
inoref_write(&jaddref->ja_ref, jseg, rec);
3418
}
3419
3420
static void
3421
jremref_write(struct jremref *jremref,
3422
struct jseg *jseg,
3423
uint8_t *data)
3424
{
3425
struct jrefrec *rec;
3426
3427
rec = (struct jrefrec *)data;
3428
rec->jr_op = JOP_REMREF;
3429
inoref_write(&jremref->jr_ref, jseg, rec);
3430
}
3431
3432
static void
3433
jmvref_write(struct jmvref *jmvref,
3434
struct jseg *jseg,
3435
uint8_t *data)
3436
{
3437
struct jmvrec *rec;
3438
3439
rec = (struct jmvrec *)data;
3440
rec->jm_op = JOP_MVREF;
3441
rec->jm_ino = jmvref->jm_ino;
3442
rec->jm_parent = jmvref->jm_parent;
3443
rec->jm_oldoff = jmvref->jm_oldoff;
3444
rec->jm_newoff = jmvref->jm_newoff;
3445
}
3446
3447
static void
3448
jnewblk_write(struct jnewblk *jnewblk,
3449
struct jseg *jseg,
3450
uint8_t *data)
3451
{
3452
struct jblkrec *rec;
3453
3454
jnewblk->jn_jsegdep->jd_seg = jseg;
3455
rec = (struct jblkrec *)data;
3456
rec->jb_op = JOP_NEWBLK;
3457
rec->jb_ino = jnewblk->jn_ino;
3458
rec->jb_blkno = jnewblk->jn_blkno;
3459
rec->jb_lbn = jnewblk->jn_lbn;
3460
rec->jb_frags = jnewblk->jn_frags;
3461
rec->jb_oldfrags = jnewblk->jn_oldfrags;
3462
}
3463
3464
static void
3465
jfreeblk_write(struct jfreeblk *jfreeblk,
3466
struct jseg *jseg,
3467
uint8_t *data)
3468
{
3469
struct jblkrec *rec;
3470
3471
jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3472
rec = (struct jblkrec *)data;
3473
rec->jb_op = JOP_FREEBLK;
3474
rec->jb_ino = jfreeblk->jf_ino;
3475
rec->jb_blkno = jfreeblk->jf_blkno;
3476
rec->jb_lbn = jfreeblk->jf_lbn;
3477
rec->jb_frags = jfreeblk->jf_frags;
3478
rec->jb_oldfrags = 0;
3479
}
3480
3481
static void
3482
jfreefrag_write(struct jfreefrag *jfreefrag,
3483
struct jseg *jseg,
3484
uint8_t *data)
3485
{
3486
struct jblkrec *rec;
3487
3488
jfreefrag->fr_jsegdep->jd_seg = jseg;
3489
rec = (struct jblkrec *)data;
3490
rec->jb_op = JOP_FREEBLK;
3491
rec->jb_ino = jfreefrag->fr_ino;
3492
rec->jb_blkno = jfreefrag->fr_blkno;
3493
rec->jb_lbn = jfreefrag->fr_lbn;
3494
rec->jb_frags = jfreefrag->fr_frags;
3495
rec->jb_oldfrags = 0;
3496
}
3497
3498
static void
3499
jtrunc_write(struct jtrunc *jtrunc,
3500
struct jseg *jseg,
3501
uint8_t *data)
3502
{
3503
struct jtrncrec *rec;
3504
3505
jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3506
rec = (struct jtrncrec *)data;
3507
rec->jt_op = JOP_TRUNC;
3508
rec->jt_ino = jtrunc->jt_ino;
3509
rec->jt_size = jtrunc->jt_size;
3510
rec->jt_extsize = jtrunc->jt_extsize;
3511
}
3512
3513
static void
3514
jfsync_write(struct jfsync *jfsync,
3515
struct jseg *jseg,
3516
uint8_t *data)
3517
{
3518
struct jtrncrec *rec;
3519
3520
rec = (struct jtrncrec *)data;
3521
rec->jt_op = JOP_SYNC;
3522
rec->jt_ino = jfsync->jfs_ino;
3523
rec->jt_size = jfsync->jfs_size;
3524
rec->jt_extsize = jfsync->jfs_extsize;
3525
}
3526
3527
static void
3528
softdep_flushjournal(struct mount *mp)
3529
{
3530
struct jblocks *jblocks;
3531
struct ufsmount *ump;
3532
3533
if (MOUNTEDSUJ(mp) == 0)
3534
return;
3535
ump = VFSTOUFS(mp);
3536
jblocks = ump->softdep_jblocks;
3537
ACQUIRE_LOCK(ump);
3538
while (ump->softdep_on_journal) {
3539
jblocks->jb_needseg = 1;
3540
softdep_process_journal(mp, NULL, MNT_WAIT);
3541
}
3542
FREE_LOCK(ump);
3543
}
3544
3545
static void softdep_synchronize_completed(struct bio *);
3546
static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3547
3548
static void
3549
softdep_synchronize_completed(struct bio *bp)
3550
{
3551
struct jseg *oldest;
3552
struct jseg *jseg;
3553
struct ufsmount *ump;
3554
3555
/*
3556
* caller1 marks the last segment written before we issued the
3557
* synchronize cache.
3558
*/
3559
jseg = bp->bio_caller1;
3560
if (jseg == NULL) {
3561
g_destroy_bio(bp);
3562
return;
3563
}
3564
ump = VFSTOUFS(jseg->js_list.wk_mp);
3565
ACQUIRE_LOCK(ump);
3566
oldest = NULL;
3567
/*
3568
* Mark all the journal entries waiting on the synchronize cache
3569
* as completed so they may continue on.
3570
*/
3571
while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3572
jseg->js_state |= COMPLETE;
3573
oldest = jseg;
3574
jseg = TAILQ_PREV(jseg, jseglst, js_next);
3575
}
3576
/*
3577
* Restart deferred journal entry processing from the oldest
3578
* completed jseg.
3579
*/
3580
if (oldest)
3581
complete_jsegs(oldest);
3582
3583
FREE_LOCK(ump);
3584
g_destroy_bio(bp);
3585
}
3586
3587
/*
3588
* Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3589
* barriers. The journal must be written prior to any blocks that depend
3590
* on it and the journal can not be released until the blocks have be
3591
* written. This code handles both barriers simultaneously.
3592
*/
3593
static void
3594
softdep_synchronize(struct bio *bp,
3595
struct ufsmount *ump,
3596
void *caller1)
3597
{
3598
3599
bp->bio_cmd = BIO_FLUSH;
3600
bp->bio_flags |= BIO_ORDERED;
3601
bp->bio_data = NULL;
3602
bp->bio_offset = ump->um_cp->provider->mediasize;
3603
bp->bio_length = 0;
3604
bp->bio_done = softdep_synchronize_completed;
3605
bp->bio_caller1 = caller1;
3606
g_io_request(bp, ump->um_cp);
3607
}
3608
3609
/*
3610
* Flush some journal records to disk.
3611
*/
3612
static void
3613
softdep_process_journal(struct mount *mp,
3614
struct worklist *needwk,
3615
int flags)
3616
{
3617
struct jblocks *jblocks;
3618
struct ufsmount *ump;
3619
struct worklist *wk;
3620
struct jseg *jseg;
3621
struct buf *bp;
3622
struct bio *bio;
3623
uint8_t *data;
3624
struct fs *fs;
3625
int shouldflush;
3626
int segwritten;
3627
int jrecmin; /* Minimum records per block. */
3628
int jrecmax; /* Maximum records per block. */
3629
int size;
3630
int cnt;
3631
int off;
3632
int devbsize;
3633
int savef;
3634
3635
ump = VFSTOUFS(mp);
3636
if (ump->um_softdep == NULL || ump->um_softdep->sd_jblocks == NULL)
3637
return;
3638
shouldflush = softdep_flushcache;
3639
bio = NULL;
3640
jseg = NULL;
3641
LOCK_OWNED(ump);
3642
fs = ump->um_fs;
3643
jblocks = ump->softdep_jblocks;
3644
devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3645
savef = curthread_pflags_set(TDP_NORUNNINGBUF);
3646
3647
/*
3648
* We write anywhere between a disk block and fs block. The upper
3649
* bound is picked to prevent buffer cache fragmentation and limit
3650
* processing time per I/O.
3651
*/
3652
jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3653
jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3654
segwritten = 0;
3655
for (;;) {
3656
cnt = ump->softdep_on_journal;
3657
/*
3658
* Criteria for writing a segment:
3659
* 1) We have a full block.
3660
* 2) We're called from jwait() and haven't found the
3661
* journal item yet.
3662
* 3) Always write if needseg is set.
3663
* 4) If we are called from process_worklist and have
3664
* not yet written anything we write a partial block
3665
* to enforce a 1 second maximum latency on journal
3666
* entries.
3667
*/
3668
if (cnt < (jrecmax - 1) && needwk == NULL &&
3669
jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3670
break;
3671
cnt++;
3672
/*
3673
* Verify some free journal space. softdep_prealloc() should
3674
* guarantee that we don't run out so this is indicative of
3675
* a problem with the flow control. Try to recover
3676
* gracefully in any event.
3677
*/
3678
while (jblocks->jb_free == 0) {
3679
if (flags != MNT_WAIT)
3680
break;
3681
printf("softdep: Out of journal space!\n");
3682
softdep_speedup(ump);
3683
msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3684
}
3685
FREE_LOCK(ump);
3686
jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3687
workitem_alloc(&jseg->js_list, D_JSEG, mp);
3688
LIST_INIT(&jseg->js_entries);
3689
LIST_INIT(&jseg->js_indirs);
3690
jseg->js_state = ATTACHED;
3691
if (shouldflush == 0)
3692
jseg->js_state |= COMPLETE;
3693
else if (bio == NULL)
3694
bio = g_alloc_bio();
3695
jseg->js_jblocks = jblocks;
3696
bp = geteblk(fs->fs_bsize, 0);
3697
ACQUIRE_LOCK(ump);
3698
/*
3699
* If there was a race while we were allocating the block
3700
* and jseg the entry we care about was likely written.
3701
* We bail out in both the WAIT and NOWAIT case and assume
3702
* the caller will loop if the entry it cares about is
3703
* not written.
3704
*/
3705
cnt = ump->softdep_on_journal;
3706
if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3707
bp->b_flags |= B_INVAL | B_NOCACHE;
3708
WORKITEM_FREE(jseg, D_JSEG);
3709
FREE_LOCK(ump);
3710
brelse(bp);
3711
ACQUIRE_LOCK(ump);
3712
break;
3713
}
3714
/*
3715
* Calculate the disk block size required for the available
3716
* records rounded to the min size.
3717
*/
3718
if (cnt == 0)
3719
size = devbsize;
3720
else if (cnt < jrecmax)
3721
size = howmany(cnt, jrecmin) * devbsize;
3722
else
3723
size = fs->fs_bsize;
3724
/*
3725
* Allocate a disk block for this journal data and account
3726
* for truncation of the requested size if enough contiguous
3727
* space was not available.
3728
*/
3729
bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3730
bp->b_lblkno = bp->b_blkno;
3731
bp->b_offset = bp->b_blkno * DEV_BSIZE;
3732
bp->b_bcount = size;
3733
bp->b_flags &= ~B_INVAL;
3734
bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3735
/*
3736
* Initialize our jseg with cnt records. Assign the next
3737
* sequence number to it and link it in-order.
3738
*/
3739
cnt = MIN(cnt, (size / devbsize) * jrecmin);
3740
jseg->js_buf = bp;
3741
jseg->js_cnt = cnt;
3742
jseg->js_refs = cnt + 1; /* Self ref. */
3743
jseg->js_size = size;
3744
jseg->js_seq = jblocks->jb_nextseq++;
3745
if (jblocks->jb_oldestseg == NULL)
3746
jblocks->jb_oldestseg = jseg;
3747
jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3748
TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3749
if (jblocks->jb_writeseg == NULL)
3750
jblocks->jb_writeseg = jseg;
3751
/*
3752
* Start filling in records from the pending list.
3753
*/
3754
data = bp->b_data;
3755
off = 0;
3756
3757
/*
3758
* Always put a header on the first block.
3759
* XXX As with below, there might not be a chance to get
3760
* into the loop. Ensure that something valid is written.
3761
*/
3762
jseg_write(ump, jseg, data);
3763
off += JREC_SIZE;
3764
data = bp->b_data + off;
3765
3766
/*
3767
* XXX Something is wrong here. There's no work to do,
3768
* but we need to perform and I/O and allow it to complete
3769
* anyways.
3770
*/
3771
if (LIST_EMPTY(&ump->softdep_journal_pending))
3772
stat_emptyjblocks++;
3773
3774
while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3775
!= NULL) {
3776
if (cnt == 0)
3777
break;
3778
/* Place a segment header on every device block. */
3779
if ((off % devbsize) == 0) {
3780
jseg_write(ump, jseg, data);
3781
off += JREC_SIZE;
3782
data = bp->b_data + off;
3783
}
3784
if (wk == needwk)
3785
needwk = NULL;
3786
remove_from_journal(wk);
3787
wk->wk_state |= INPROGRESS;
3788
WORKLIST_INSERT(&jseg->js_entries, wk);
3789
switch (wk->wk_type) {
3790
case D_JADDREF:
3791
jaddref_write(WK_JADDREF(wk), jseg, data);
3792
break;
3793
case D_JREMREF:
3794
jremref_write(WK_JREMREF(wk), jseg, data);
3795
break;
3796
case D_JMVREF:
3797
jmvref_write(WK_JMVREF(wk), jseg, data);
3798
break;
3799
case D_JNEWBLK:
3800
jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3801
break;
3802
case D_JFREEBLK:
3803
jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3804
break;
3805
case D_JFREEFRAG:
3806
jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3807
break;
3808
case D_JTRUNC:
3809
jtrunc_write(WK_JTRUNC(wk), jseg, data);
3810
break;
3811
case D_JFSYNC:
3812
jfsync_write(WK_JFSYNC(wk), jseg, data);
3813
break;
3814
default:
3815
panic("process_journal: Unknown type %s",
3816
TYPENAME(wk->wk_type));
3817
/* NOTREACHED */
3818
}
3819
off += JREC_SIZE;
3820
data = bp->b_data + off;
3821
cnt--;
3822
}
3823
3824
/* Clear any remaining space so we don't leak kernel data */
3825
if (size > off)
3826
bzero(data, size - off);
3827
3828
/*
3829
* Write this one buffer and continue.
3830
*/
3831
segwritten = 1;
3832
jblocks->jb_needseg = 0;
3833
WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3834
FREE_LOCK(ump);
3835
bp->b_xflags |= BX_CVTENXIO;
3836
pbgetvp(ump->um_devvp, bp);
3837
/*
3838
* We only do the blocking wait once we find the journal
3839
* entry we're looking for.
3840
*/
3841
if (needwk == NULL && flags == MNT_WAIT)
3842
bwrite(bp);
3843
else
3844
bawrite(bp);
3845
ACQUIRE_LOCK(ump);
3846
}
3847
/*
3848
* If we wrote a segment issue a synchronize cache so the journal
3849
* is reflected on disk before the data is written. Since reclaiming
3850
* journal space also requires writing a journal record this
3851
* process also enforces a barrier before reclamation.
3852
*/
3853
if (segwritten && shouldflush) {
3854
softdep_synchronize(bio, ump,
3855
TAILQ_LAST(&jblocks->jb_segs, jseglst));
3856
} else if (bio)
3857
g_destroy_bio(bio);
3858
/*
3859
* If we've suspended the filesystem because we ran out of journal
3860
* space either try to sync it here to make some progress or
3861
* unsuspend it if we already have.
3862
*/
3863
if (flags == 0 && jblocks->jb_suspended) {
3864
if (journal_unsuspend(ump))
3865
goto out;
3866
FREE_LOCK(ump);
3867
VFS_SYNC(mp, MNT_NOWAIT);
3868
ffs_sbupdate(ump, MNT_WAIT, 0);
3869
ACQUIRE_LOCK(ump);
3870
}
3871
3872
out:
3873
curthread_pflags_restore(savef);
3874
}
3875
3876
/*
3877
* Complete a jseg, allowing all dependencies awaiting journal writes
3878
* to proceed. Each journal dependency also attaches a jsegdep to dependent
3879
* structures so that the journal segment can be freed to reclaim space.
3880
*/
3881
static void
3882
complete_jseg(struct jseg *jseg)
3883
{
3884
struct worklist *wk;
3885
struct jmvref *jmvref;
3886
#ifdef INVARIANTS
3887
int i = 0;
3888
#endif
3889
3890
while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3891
WORKLIST_REMOVE(wk);
3892
wk->wk_state &= ~INPROGRESS;
3893
wk->wk_state |= COMPLETE;
3894
KASSERT(i++ < jseg->js_cnt,
3895
("handle_written_jseg: overflow %d >= %d",
3896
i - 1, jseg->js_cnt));
3897
switch (wk->wk_type) {
3898
case D_JADDREF:
3899
handle_written_jaddref(WK_JADDREF(wk));
3900
break;
3901
case D_JREMREF:
3902
handle_written_jremref(WK_JREMREF(wk));
3903
break;
3904
case D_JMVREF:
3905
rele_jseg(jseg); /* No jsegdep. */
3906
jmvref = WK_JMVREF(wk);
3907
LIST_REMOVE(jmvref, jm_deps);
3908
if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3909
free_pagedep(jmvref->jm_pagedep);
3910
WORKITEM_FREE(jmvref, D_JMVREF);
3911
break;
3912
case D_JNEWBLK:
3913
handle_written_jnewblk(WK_JNEWBLK(wk));
3914
break;
3915
case D_JFREEBLK:
3916
handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3917
break;
3918
case D_JTRUNC:
3919
handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3920
break;
3921
case D_JFSYNC:
3922
rele_jseg(jseg); /* No jsegdep. */
3923
WORKITEM_FREE(wk, D_JFSYNC);
3924
break;
3925
case D_JFREEFRAG:
3926
handle_written_jfreefrag(WK_JFREEFRAG(wk));
3927
break;
3928
default:
3929
panic("handle_written_jseg: Unknown type %s",
3930
TYPENAME(wk->wk_type));
3931
/* NOTREACHED */
3932
}
3933
}
3934
/* Release the self reference so the structure may be freed. */
3935
rele_jseg(jseg);
3936
}
3937
3938
/*
3939
* Determine which jsegs are ready for completion processing. Waits for
3940
* synchronize cache to complete as well as forcing in-order completion
3941
* of journal entries.
3942
*/
3943
static void
3944
complete_jsegs(struct jseg *jseg)
3945
{
3946
struct jblocks *jblocks;
3947
struct jseg *jsegn;
3948
3949
jblocks = jseg->js_jblocks;
3950
/*
3951
* Don't allow out of order completions. If this isn't the first
3952
* block wait for it to write before we're done.
3953
*/
3954
if (jseg != jblocks->jb_writeseg)
3955
return;
3956
/* Iterate through available jsegs processing their entries. */
3957
while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3958
jblocks->jb_oldestwrseq = jseg->js_oldseq;
3959
jsegn = TAILQ_NEXT(jseg, js_next);
3960
complete_jseg(jseg);
3961
jseg = jsegn;
3962
}
3963
jblocks->jb_writeseg = jseg;
3964
/*
3965
* Attempt to free jsegs now that oldestwrseq may have advanced.
3966
*/
3967
free_jsegs(jblocks);
3968
}
3969
3970
/*
3971
* Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle
3972
* the final completions.
3973
*/
3974
static void
3975
handle_written_jseg(struct jseg *jseg, struct buf *bp)
3976
{
3977
3978
if (jseg->js_refs == 0)
3979
panic("handle_written_jseg: No self-reference on %p", jseg);
3980
jseg->js_state |= DEPCOMPLETE;
3981
/*
3982
* We'll never need this buffer again, set flags so it will be
3983
* discarded.
3984
*/
3985
bp->b_flags |= B_INVAL | B_NOCACHE;
3986
pbrelvp(bp);
3987
complete_jsegs(jseg);
3988
}
3989
3990
static inline struct jsegdep *
3991
inoref_jseg(struct inoref *inoref)
3992
{
3993
struct jsegdep *jsegdep;
3994
3995
jsegdep = inoref->if_jsegdep;
3996
inoref->if_jsegdep = NULL;
3997
3998
return (jsegdep);
3999
}
4000
4001
/*
4002
* Called once a jremref has made it to stable store. The jremref is marked
4003
* complete and we attempt to free it. Any pagedeps writes sleeping waiting
4004
* for the jremref to complete will be awoken by free_jremref.
4005
*/
4006
static void
4007
handle_written_jremref(struct jremref *jremref)
4008
{
4009
struct inodedep *inodedep;
4010
struct jsegdep *jsegdep;
4011
struct dirrem *dirrem;
4012
4013
/* Grab the jsegdep. */
4014
jsegdep = inoref_jseg(&jremref->jr_ref);
4015
/*
4016
* Remove us from the inoref list.
4017
*/
4018
if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
4019
0, &inodedep) == 0)
4020
panic("handle_written_jremref: Lost inodedep");
4021
TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
4022
/*
4023
* Complete the dirrem.
4024
*/
4025
dirrem = jremref->jr_dirrem;
4026
jremref->jr_dirrem = NULL;
4027
LIST_REMOVE(jremref, jr_deps);
4028
jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
4029
jwork_insert(&dirrem->dm_jwork, jsegdep);
4030
if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
4031
(dirrem->dm_state & COMPLETE) != 0)
4032
add_to_worklist(&dirrem->dm_list, 0);
4033
free_jremref(jremref);
4034
}
4035
4036
/*
4037
* Called once a jaddref has made it to stable store. The dependency is
4038
* marked complete and any dependent structures are added to the inode
4039
* bufwait list to be completed as soon as it is written. If a bitmap write
4040
* depends on this entry we move the inode into the inodedephd of the
4041
* bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
4042
*/
4043
static void
4044
handle_written_jaddref(struct jaddref *jaddref)
4045
{
4046
struct jsegdep *jsegdep;
4047
struct inodedep *inodedep;
4048
struct diradd *diradd;
4049
struct mkdir *mkdir;
4050
4051
/* Grab the jsegdep. */
4052
jsegdep = inoref_jseg(&jaddref->ja_ref);
4053
mkdir = NULL;
4054
diradd = NULL;
4055
if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4056
0, &inodedep) == 0)
4057
panic("handle_written_jaddref: Lost inodedep.");
4058
if (jaddref->ja_diradd == NULL)
4059
panic("handle_written_jaddref: No dependency");
4060
if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
4061
diradd = jaddref->ja_diradd;
4062
WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
4063
} else if (jaddref->ja_state & MKDIR_PARENT) {
4064
mkdir = jaddref->ja_mkdir;
4065
WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
4066
} else if (jaddref->ja_state & MKDIR_BODY)
4067
mkdir = jaddref->ja_mkdir;
4068
else
4069
panic("handle_written_jaddref: Unknown dependency %p",
4070
jaddref->ja_diradd);
4071
jaddref->ja_diradd = NULL; /* also clears ja_mkdir */
4072
/*
4073
* Remove us from the inode list.
4074
*/
4075
TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
4076
/*
4077
* The mkdir may be waiting on the jaddref to clear before freeing.
4078
*/
4079
if (mkdir) {
4080
KASSERT(mkdir->md_list.wk_type == D_MKDIR,
4081
("handle_written_jaddref: Incorrect type for mkdir %s",
4082
TYPENAME(mkdir->md_list.wk_type)));
4083
mkdir->md_jaddref = NULL;
4084
diradd = mkdir->md_diradd;
4085
mkdir->md_state |= DEPCOMPLETE;
4086
complete_mkdir(mkdir);
4087
}
4088
jwork_insert(&diradd->da_jwork, jsegdep);
4089
if (jaddref->ja_state & NEWBLOCK) {
4090
inodedep->id_state |= ONDEPLIST;
4091
LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
4092
inodedep, id_deps);
4093
}
4094
free_jaddref(jaddref);
4095
}
4096
4097
/*
4098
* Called once a jnewblk journal is written. The allocdirect or allocindir
4099
* is placed in the bmsafemap to await notification of a written bitmap. If
4100
* the operation was canceled we add the segdep to the appropriate
4101
* dependency to free the journal space once the canceling operation
4102
* completes.
4103
*/
4104
static void
4105
handle_written_jnewblk(struct jnewblk *jnewblk)
4106
{
4107
struct bmsafemap *bmsafemap;
4108
struct freefrag *freefrag;
4109
struct freework *freework;
4110
struct jsegdep *jsegdep;
4111
struct newblk *newblk;
4112
4113
/* Grab the jsegdep. */
4114
jsegdep = jnewblk->jn_jsegdep;
4115
jnewblk->jn_jsegdep = NULL;
4116
if (jnewblk->jn_dep == NULL)
4117
panic("handle_written_jnewblk: No dependency for the segdep.");
4118
switch (jnewblk->jn_dep->wk_type) {
4119
case D_NEWBLK:
4120
case D_ALLOCDIRECT:
4121
case D_ALLOCINDIR:
4122
/*
4123
* Add the written block to the bmsafemap so it can
4124
* be notified when the bitmap is on disk.
4125
*/
4126
newblk = WK_NEWBLK(jnewblk->jn_dep);
4127
newblk->nb_jnewblk = NULL;
4128
if ((newblk->nb_state & GOINGAWAY) == 0) {
4129
bmsafemap = newblk->nb_bmsafemap;
4130
newblk->nb_state |= ONDEPLIST;
4131
LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
4132
nb_deps);
4133
}
4134
jwork_insert(&newblk->nb_jwork, jsegdep);
4135
break;
4136
case D_FREEFRAG:
4137
/*
4138
* A newblock being removed by a freefrag when replaced by
4139
* frag extension.
4140
*/
4141
freefrag = WK_FREEFRAG(jnewblk->jn_dep);
4142
freefrag->ff_jdep = NULL;
4143
jwork_insert(&freefrag->ff_jwork, jsegdep);
4144
break;
4145
case D_FREEWORK:
4146
/*
4147
* A direct block was removed by truncate.
4148
*/
4149
freework = WK_FREEWORK(jnewblk->jn_dep);
4150
freework->fw_jnewblk = NULL;
4151
jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
4152
break;
4153
default:
4154
panic("handle_written_jnewblk: Unknown type %d.",
4155
jnewblk->jn_dep->wk_type);
4156
}
4157
jnewblk->jn_dep = NULL;
4158
free_jnewblk(jnewblk);
4159
}
4160
4161
/*
4162
* Cancel a jfreefrag that won't be needed, probably due to colliding with
4163
* an in-flight allocation that has not yet been committed. Divorce us
4164
* from the freefrag and mark it DEPCOMPLETE so that it may be added
4165
* to the worklist.
4166
*/
4167
static void
4168
cancel_jfreefrag(struct jfreefrag *jfreefrag)
4169
{
4170
struct freefrag *freefrag;
4171
4172
if (jfreefrag->fr_jsegdep) {
4173
free_jsegdep(jfreefrag->fr_jsegdep);
4174
jfreefrag->fr_jsegdep = NULL;
4175
}
4176
freefrag = jfreefrag->fr_freefrag;
4177
jfreefrag->fr_freefrag = NULL;
4178
free_jfreefrag(jfreefrag);
4179
freefrag->ff_state |= DEPCOMPLETE;
4180
CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
4181
}
4182
4183
/*
4184
* Free a jfreefrag when the parent freefrag is rendered obsolete.
4185
*/
4186
static void
4187
free_jfreefrag(struct jfreefrag *jfreefrag)
4188
{
4189
4190
if (jfreefrag->fr_state & INPROGRESS)
4191
WORKLIST_REMOVE(&jfreefrag->fr_list);
4192
else if (jfreefrag->fr_state & ONWORKLIST)
4193
remove_from_journal(&jfreefrag->fr_list);
4194
if (jfreefrag->fr_freefrag != NULL)
4195
panic("free_jfreefrag: Still attached to a freefrag.");
4196
WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
4197
}
4198
4199
/*
4200
* Called when the journal write for a jfreefrag completes. The parent
4201
* freefrag is added to the worklist if this completes its dependencies.
4202
*/
4203
static void
4204
handle_written_jfreefrag(struct jfreefrag *jfreefrag)
4205
{
4206
struct jsegdep *jsegdep;
4207
struct freefrag *freefrag;
4208
4209
/* Grab the jsegdep. */
4210
jsegdep = jfreefrag->fr_jsegdep;
4211
jfreefrag->fr_jsegdep = NULL;
4212
freefrag = jfreefrag->fr_freefrag;
4213
if (freefrag == NULL)
4214
panic("handle_written_jfreefrag: No freefrag.");
4215
freefrag->ff_state |= DEPCOMPLETE;
4216
freefrag->ff_jdep = NULL;
4217
jwork_insert(&freefrag->ff_jwork, jsegdep);
4218
if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
4219
add_to_worklist(&freefrag->ff_list, 0);
4220
jfreefrag->fr_freefrag = NULL;
4221
free_jfreefrag(jfreefrag);
4222
}
4223
4224
/*
4225
* Called when the journal write for a jfreeblk completes. The jfreeblk
4226
* is removed from the freeblks list of pending journal writes and the
4227
* jsegdep is moved to the freeblks jwork to be completed when all blocks
4228
* have been reclaimed.
4229
*/
4230
static void
4231
handle_written_jblkdep(struct jblkdep *jblkdep)
4232
{
4233
struct freeblks *freeblks;
4234
struct jsegdep *jsegdep;
4235
4236
/* Grab the jsegdep. */
4237
jsegdep = jblkdep->jb_jsegdep;
4238
jblkdep->jb_jsegdep = NULL;
4239
freeblks = jblkdep->jb_freeblks;
4240
LIST_REMOVE(jblkdep, jb_deps);
4241
jwork_insert(&freeblks->fb_jwork, jsegdep);
4242
/*
4243
* If the freeblks is all journaled, we can add it to the worklist.
4244
*/
4245
if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
4246
(freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
4247
add_to_worklist(&freeblks->fb_list, WK_NODELAY);
4248
4249
free_jblkdep(jblkdep);
4250
}
4251
4252
static struct jsegdep *
4253
newjsegdep(struct worklist *wk)
4254
{
4255
struct jsegdep *jsegdep;
4256
4257
jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
4258
workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
4259
jsegdep->jd_seg = NULL;
4260
4261
return (jsegdep);
4262
}
4263
4264
static struct jmvref *
4265
newjmvref(struct inode *dp,
4266
ino_t ino,
4267
off_t oldoff,
4268
off_t newoff)
4269
{
4270
struct jmvref *jmvref;
4271
4272
jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4273
workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4274
jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4275
jmvref->jm_parent = dp->i_number;
4276
jmvref->jm_ino = ino;
4277
jmvref->jm_oldoff = oldoff;
4278
jmvref->jm_newoff = newoff;
4279
4280
return (jmvref);
4281
}
4282
4283
/*
4284
* Allocate a new jremref that tracks the removal of ip from dp with the
4285
* directory entry offset of diroff. Mark the entry as ATTACHED and
4286
* DEPCOMPLETE as we have all the information required for the journal write
4287
* and the directory has already been removed from the buffer. The caller
4288
* is responsible for linking the jremref into the pagedep and adding it
4289
* to the journal to write. The MKDIR_PARENT flag is set if we're doing
4290
* a DOTDOT addition so handle_workitem_remove() can properly assign
4291
* the jsegdep when we're done.
4292
*/
4293
static struct jremref *
4294
newjremref(struct dirrem *dirrem,
4295
struct inode *dp,
4296
struct inode *ip,
4297
off_t diroff,
4298
nlink_t nlink)
4299
{
4300
struct jremref *jremref;
4301
4302
jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4303
workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4304
jremref->jr_state = ATTACHED;
4305
newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4306
nlink, ip->i_mode);
4307
jremref->jr_dirrem = dirrem;
4308
4309
return (jremref);
4310
}
4311
4312
static inline void
4313
newinoref(struct inoref *inoref,
4314
ino_t ino,
4315
ino_t parent,
4316
off_t diroff,
4317
nlink_t nlink,
4318
uint16_t mode)
4319
{
4320
4321
inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4322
inoref->if_diroff = diroff;
4323
inoref->if_ino = ino;
4324
inoref->if_parent = parent;
4325
inoref->if_nlink = nlink;
4326
inoref->if_mode = mode;
4327
}
4328
4329
/*
4330
* Allocate a new jaddref to track the addition of ino to dp at diroff. The
4331
* directory offset may not be known until later. The caller is responsible
4332
* adding the entry to the journal when this information is available. nlink
4333
* should be the link count prior to the addition and mode is only required
4334
* to have the correct FMT.
4335
*/
4336
static struct jaddref *
4337
newjaddref(struct inode *dp,
4338
ino_t ino,
4339
off_t diroff,
4340
int16_t nlink,
4341
uint16_t mode)
4342
{
4343
struct jaddref *jaddref;
4344
4345
jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4346
workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4347
jaddref->ja_state = ATTACHED;
4348
jaddref->ja_mkdir = NULL;
4349
newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4350
4351
return (jaddref);
4352
}
4353
4354
/*
4355
* Create a new free dependency for a freework. The caller is responsible
4356
* for adjusting the reference count when it has the lock held. The freedep
4357
* will track an outstanding bitmap write that will ultimately clear the
4358
* freework to continue.
4359
*/
4360
static struct freedep *
4361
newfreedep(struct freework *freework)
4362
{
4363
struct freedep *freedep;
4364
4365
freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4366
workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4367
freedep->fd_freework = freework;
4368
4369
return (freedep);
4370
}
4371
4372
/*
4373
* Free a freedep structure once the buffer it is linked to is written. If
4374
* this is the last reference to the freework schedule it for completion.
4375
*/
4376
static void
4377
free_freedep(struct freedep *freedep)
4378
{
4379
struct freework *freework;
4380
4381
freework = freedep->fd_freework;
4382
freework->fw_freeblks->fb_cgwait--;
4383
if (--freework->fw_ref == 0)
4384
freework_enqueue(freework);
4385
WORKITEM_FREE(freedep, D_FREEDEP);
4386
}
4387
4388
/*
4389
* Allocate a new freework structure that may be a level in an indirect
4390
* when parent is not NULL or a top level block when it is. The top level
4391
* freework structures are allocated without the per-filesystem lock held
4392
* and before the freeblks is visible outside of softdep_setup_freeblocks().
4393
*/
4394
static struct freework *
4395
newfreework(struct ufsmount *ump,
4396
struct freeblks *freeblks,
4397
struct freework *parent,
4398
ufs_lbn_t lbn,
4399
ufs2_daddr_t nb,
4400
int frags,
4401
int off,
4402
int journal)
4403
{
4404
struct freework *freework;
4405
4406
freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4407
workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4408
freework->fw_state = ATTACHED;
4409
freework->fw_jnewblk = NULL;
4410
freework->fw_freeblks = freeblks;
4411
freework->fw_parent = parent;
4412
freework->fw_lbn = lbn;
4413
freework->fw_blkno = nb;
4414
freework->fw_frags = frags;
4415
freework->fw_indir = NULL;
4416
freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4417
lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4418
freework->fw_start = freework->fw_off = off;
4419
if (journal)
4420
newjfreeblk(freeblks, lbn, nb, frags);
4421
if (parent == NULL) {
4422
ACQUIRE_LOCK(ump);
4423
WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4424
freeblks->fb_ref++;
4425
FREE_LOCK(ump);
4426
}
4427
4428
return (freework);
4429
}
4430
4431
/*
4432
* Eliminate a jfreeblk for a block that does not need journaling.
4433
*/
4434
static void
4435
cancel_jfreeblk(struct freeblks *freeblks, ufs2_daddr_t blkno)
4436
{
4437
struct jfreeblk *jfreeblk;
4438
struct jblkdep *jblkdep;
4439
4440
LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4441
if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4442
continue;
4443
jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4444
if (jfreeblk->jf_blkno == blkno)
4445
break;
4446
}
4447
if (jblkdep == NULL)
4448
return;
4449
CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4450
free_jsegdep(jblkdep->jb_jsegdep);
4451
LIST_REMOVE(jblkdep, jb_deps);
4452
WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4453
}
4454
4455
/*
4456
* Allocate a new jfreeblk to journal top level block pointer when truncating
4457
* a file. The caller must add this to the worklist when the per-filesystem
4458
* lock is held.
4459
*/
4460
static struct jfreeblk *
4461
newjfreeblk(struct freeblks *freeblks,
4462
ufs_lbn_t lbn,
4463
ufs2_daddr_t blkno,
4464
int frags)
4465
{
4466
struct jfreeblk *jfreeblk;
4467
4468
jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4469
workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4470
freeblks->fb_list.wk_mp);
4471
jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4472
jfreeblk->jf_dep.jb_freeblks = freeblks;
4473
jfreeblk->jf_ino = freeblks->fb_inum;
4474
jfreeblk->jf_lbn = lbn;
4475
jfreeblk->jf_blkno = blkno;
4476
jfreeblk->jf_frags = frags;
4477
LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4478
4479
return (jfreeblk);
4480
}
4481
4482
/*
4483
* The journal is only prepared to handle full-size block numbers, so we
4484
* have to adjust the record to reflect the change to a full-size block.
4485
* For example, suppose we have a block made up of fragments 8-15 and
4486
* want to free its last two fragments. We are given a request that says:
4487
* FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4488
* where frags are the number of fragments to free and oldfrags are the
4489
* number of fragments to keep. To block align it, we have to change it to
4490
* have a valid full-size blkno, so it becomes:
4491
* FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4492
*/
4493
static void
4494
adjust_newfreework(struct freeblks *freeblks, int frag_offset)
4495
{
4496
struct jfreeblk *jfreeblk;
4497
4498
KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4499
LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4500
("adjust_newfreework: Missing freeblks dependency"));
4501
4502
jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4503
jfreeblk->jf_blkno -= frag_offset;
4504
jfreeblk->jf_frags += frag_offset;
4505
}
4506
4507
/*
4508
* Allocate a new jtrunc to track a partial truncation.
4509
*/
4510
static struct jtrunc *
4511
newjtrunc(struct freeblks *freeblks,
4512
off_t size,
4513
int extsize)
4514
{
4515
struct jtrunc *jtrunc;
4516
4517
jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4518
workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4519
freeblks->fb_list.wk_mp);
4520
jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4521
jtrunc->jt_dep.jb_freeblks = freeblks;
4522
jtrunc->jt_ino = freeblks->fb_inum;
4523
jtrunc->jt_size = size;
4524
jtrunc->jt_extsize = extsize;
4525
LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4526
4527
return (jtrunc);
4528
}
4529
4530
/*
4531
* If we're canceling a new bitmap we have to search for another ref
4532
* to move into the bmsafemap dep. This might be better expressed
4533
* with another structure.
4534
*/
4535
static void
4536
move_newblock_dep(struct jaddref *jaddref, struct inodedep *inodedep)
4537
{
4538
struct inoref *inoref;
4539
struct jaddref *jaddrefn;
4540
4541
jaddrefn = NULL;
4542
for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4543
inoref = TAILQ_NEXT(inoref, if_deps)) {
4544
if ((jaddref->ja_state & NEWBLOCK) &&
4545
inoref->if_list.wk_type == D_JADDREF) {
4546
jaddrefn = (struct jaddref *)inoref;
4547
break;
4548
}
4549
}
4550
if (jaddrefn == NULL)
4551
return;
4552
jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4553
jaddrefn->ja_state |= jaddref->ja_state &
4554
(ATTACHED | UNDONE | NEWBLOCK);
4555
jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4556
jaddref->ja_state |= ATTACHED;
4557
LIST_REMOVE(jaddref, ja_bmdeps);
4558
LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4559
ja_bmdeps);
4560
}
4561
4562
/*
4563
* Cancel a jaddref either before it has been written or while it is being
4564
* written. This happens when a link is removed before the add reaches
4565
* the disk. The jaddref dependency is kept linked into the bmsafemap
4566
* and inode to prevent the link count or bitmap from reaching the disk
4567
* until handle_workitem_remove() re-adjusts the counts and bitmaps as
4568
* required.
4569
*
4570
* Returns 1 if the canceled addref requires journaling of the remove and
4571
* 0 otherwise.
4572
*/
4573
static int
4574
cancel_jaddref(struct jaddref *jaddref,
4575
struct inodedep *inodedep,
4576
struct workhead *wkhd)
4577
{
4578
struct inoref *inoref;
4579
struct jsegdep *jsegdep;
4580
int needsj;
4581
4582
KASSERT((jaddref->ja_state & COMPLETE) == 0,
4583
("cancel_jaddref: Canceling complete jaddref"));
4584
if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4585
needsj = 1;
4586
else
4587
needsj = 0;
4588
if (inodedep == NULL)
4589
if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4590
0, &inodedep) == 0)
4591
panic("cancel_jaddref: Lost inodedep");
4592
/*
4593
* We must adjust the nlink of any reference operation that follows
4594
* us so that it is consistent with the in-memory reference. This
4595
* ensures that inode nlink rollbacks always have the correct link.
4596
*/
4597
if (needsj == 0) {
4598
for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4599
inoref = TAILQ_NEXT(inoref, if_deps)) {
4600
if (inoref->if_state & GOINGAWAY)
4601
break;
4602
inoref->if_nlink--;
4603
}
4604
}
4605
jsegdep = inoref_jseg(&jaddref->ja_ref);
4606
if (jaddref->ja_state & NEWBLOCK)
4607
move_newblock_dep(jaddref, inodedep);
4608
wake_worklist(&jaddref->ja_list);
4609
jaddref->ja_mkdir = NULL;
4610
if (jaddref->ja_state & INPROGRESS) {
4611
jaddref->ja_state &= ~INPROGRESS;
4612
WORKLIST_REMOVE(&jaddref->ja_list);
4613
jwork_insert(wkhd, jsegdep);
4614
} else {
4615
free_jsegdep(jsegdep);
4616
if (jaddref->ja_state & DEPCOMPLETE)
4617
remove_from_journal(&jaddref->ja_list);
4618
}
4619
jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4620
/*
4621
* Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4622
* can arrange for them to be freed with the bitmap. Otherwise we
4623
* no longer need this addref attached to the inoreflst and it
4624
* will incorrectly adjust nlink if we leave it.
4625
*/
4626
if ((jaddref->ja_state & NEWBLOCK) == 0) {
4627
TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4628
if_deps);
4629
jaddref->ja_state |= COMPLETE;
4630
free_jaddref(jaddref);
4631
return (needsj);
4632
}
4633
/*
4634
* Leave the head of the list for jsegdeps for fast merging.
4635
*/
4636
if (LIST_FIRST(wkhd) != NULL) {
4637
jaddref->ja_state |= ONWORKLIST;
4638
LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4639
} else
4640
WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4641
4642
return (needsj);
4643
}
4644
4645
/*
4646
* Attempt to free a jaddref structure when some work completes. This
4647
* should only succeed once the entry is written and all dependencies have
4648
* been notified.
4649
*/
4650
static void
4651
free_jaddref(struct jaddref *jaddref)
4652
{
4653
4654
if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4655
return;
4656
if (jaddref->ja_ref.if_jsegdep)
4657
panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4658
jaddref, jaddref->ja_state);
4659
if (jaddref->ja_state & NEWBLOCK)
4660
LIST_REMOVE(jaddref, ja_bmdeps);
4661
if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4662
panic("free_jaddref: Bad state %p(0x%X)",
4663
jaddref, jaddref->ja_state);
4664
if (jaddref->ja_mkdir != NULL)
4665
panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4666
WORKITEM_FREE(jaddref, D_JADDREF);
4667
}
4668
4669
/*
4670
* Free a jremref structure once it has been written or discarded.
4671
*/
4672
static void
4673
free_jremref(struct jremref *jremref)
4674
{
4675
4676
if (jremref->jr_ref.if_jsegdep)
4677
free_jsegdep(jremref->jr_ref.if_jsegdep);
4678
if (jremref->jr_state & INPROGRESS)
4679
panic("free_jremref: IO still pending");
4680
WORKITEM_FREE(jremref, D_JREMREF);
4681
}
4682
4683
/*
4684
* Free a jnewblk structure.
4685
*/
4686
static void
4687
free_jnewblk(struct jnewblk *jnewblk)
4688
{
4689
4690
if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4691
return;
4692
LIST_REMOVE(jnewblk, jn_deps);
4693
if (jnewblk->jn_dep != NULL)
4694
panic("free_jnewblk: Dependency still attached.");
4695
WORKITEM_FREE(jnewblk, D_JNEWBLK);
4696
}
4697
4698
/*
4699
* Cancel a jnewblk which has been been made redundant by frag extension.
4700
*/
4701
static void
4702
cancel_jnewblk(struct jnewblk *jnewblk, struct workhead *wkhd)
4703
{
4704
struct jsegdep *jsegdep;
4705
4706
CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4707
jsegdep = jnewblk->jn_jsegdep;
4708
if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4709
panic("cancel_jnewblk: Invalid state");
4710
jnewblk->jn_jsegdep = NULL;
4711
jnewblk->jn_dep = NULL;
4712
jnewblk->jn_state |= GOINGAWAY;
4713
if (jnewblk->jn_state & INPROGRESS) {
4714
jnewblk->jn_state &= ~INPROGRESS;
4715
WORKLIST_REMOVE(&jnewblk->jn_list);
4716
jwork_insert(wkhd, jsegdep);
4717
} else {
4718
free_jsegdep(jsegdep);
4719
remove_from_journal(&jnewblk->jn_list);
4720
}
4721
wake_worklist(&jnewblk->jn_list);
4722
WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4723
}
4724
4725
static void
4726
free_jblkdep(struct jblkdep *jblkdep)
4727
{
4728
4729
if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4730
WORKITEM_FREE(jblkdep, D_JFREEBLK);
4731
else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4732
WORKITEM_FREE(jblkdep, D_JTRUNC);
4733
else
4734
panic("free_jblkdep: Unexpected type %s",
4735
TYPENAME(jblkdep->jb_list.wk_type));
4736
}
4737
4738
/*
4739
* Free a single jseg once it is no longer referenced in memory or on
4740
* disk. Reclaim journal blocks and dependencies waiting for the segment
4741
* to disappear.
4742
*/
4743
static void
4744
free_jseg(struct jseg *jseg, struct jblocks *jblocks)
4745
{
4746
struct freework *freework;
4747
4748
/*
4749
* Free freework structures that were lingering to indicate freed
4750
* indirect blocks that forced journal write ordering on reallocate.
4751
*/
4752
while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4753
indirblk_remove(freework);
4754
if (jblocks->jb_oldestseg == jseg)
4755
jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4756
TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4757
jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4758
KASSERT(LIST_EMPTY(&jseg->js_entries),
4759
("free_jseg: Freed jseg has valid entries."));
4760
WORKITEM_FREE(jseg, D_JSEG);
4761
}
4762
4763
/*
4764
* Free all jsegs that meet the criteria for being reclaimed and update
4765
* oldestseg.
4766
*/
4767
static void
4768
free_jsegs(struct jblocks *jblocks)
4769
{
4770
struct jseg *jseg;
4771
4772
/*
4773
* Free only those jsegs which have none allocated before them to
4774
* preserve the journal space ordering.
4775
*/
4776
while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4777
/*
4778
* Only reclaim space when nothing depends on this journal
4779
* set and another set has written that it is no longer
4780
* valid.
4781
*/
4782
if (jseg->js_refs != 0) {
4783
jblocks->jb_oldestseg = jseg;
4784
return;
4785
}
4786
if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4787
break;
4788
if (jseg->js_seq > jblocks->jb_oldestwrseq)
4789
break;
4790
/*
4791
* We can free jsegs that didn't write entries when
4792
* oldestwrseq == js_seq.
4793
*/
4794
if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4795
jseg->js_cnt != 0)
4796
break;
4797
free_jseg(jseg, jblocks);
4798
}
4799
/*
4800
* If we exited the loop above we still must discover the
4801
* oldest valid segment.
4802
*/
4803
if (jseg)
4804
for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4805
jseg = TAILQ_NEXT(jseg, js_next))
4806
if (jseg->js_refs != 0)
4807
break;
4808
jblocks->jb_oldestseg = jseg;
4809
/*
4810
* The journal has no valid records but some jsegs may still be
4811
* waiting on oldestwrseq to advance. We force a small record
4812
* out to permit these lingering records to be reclaimed.
4813
*/
4814
if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4815
jblocks->jb_needseg = 1;
4816
}
4817
4818
/*
4819
* Release one reference to a jseg and free it if the count reaches 0. This
4820
* should eventually reclaim journal space as well.
4821
*/
4822
static void
4823
rele_jseg(struct jseg *jseg)
4824
{
4825
4826
KASSERT(jseg->js_refs > 0,
4827
("free_jseg: Invalid refcnt %d", jseg->js_refs));
4828
if (--jseg->js_refs != 0)
4829
return;
4830
free_jsegs(jseg->js_jblocks);
4831
}
4832
4833
/*
4834
* Release a jsegdep and decrement the jseg count.
4835
*/
4836
static void
4837
free_jsegdep(struct jsegdep *jsegdep)
4838
{
4839
4840
if (jsegdep->jd_seg)
4841
rele_jseg(jsegdep->jd_seg);
4842
WORKITEM_FREE(jsegdep, D_JSEGDEP);
4843
}
4844
4845
/*
4846
* Wait for a journal item to make it to disk. Initiate journal processing
4847
* if required.
4848
*/
4849
static int
4850
jwait(struct worklist *wk, int waitfor)
4851
{
4852
4853
LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4854
/*
4855
* Blocking journal waits cause slow synchronous behavior. Record
4856
* stats on the frequency of these blocking operations.
4857
*/
4858
if (waitfor == MNT_WAIT) {
4859
stat_journal_wait++;
4860
switch (wk->wk_type) {
4861
case D_JREMREF:
4862
case D_JMVREF:
4863
stat_jwait_filepage++;
4864
break;
4865
case D_JTRUNC:
4866
case D_JFREEBLK:
4867
stat_jwait_freeblks++;
4868
break;
4869
case D_JNEWBLK:
4870
stat_jwait_newblk++;
4871
break;
4872
case D_JADDREF:
4873
stat_jwait_inode++;
4874
break;
4875
default:
4876
break;
4877
}
4878
}
4879
/*
4880
* If IO has not started we process the journal. We can't mark the
4881
* worklist item as IOWAITING because we drop the lock while
4882
* processing the journal and the worklist entry may be freed after
4883
* this point. The caller may call back in and re-issue the request.
4884
*/
4885
if ((wk->wk_state & INPROGRESS) == 0) {
4886
softdep_process_journal(wk->wk_mp, wk, waitfor);
4887
if (waitfor != MNT_WAIT)
4888
return (EBUSY);
4889
return (0);
4890
}
4891
if (waitfor != MNT_WAIT)
4892
return (EBUSY);
4893
wait_worklist(wk, "jwait");
4894
return (0);
4895
}
4896
4897
/*
4898
* Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4899
* appropriate. This is a convenience function to reduce duplicate code
4900
* for the setup and revert functions below.
4901
*/
4902
static struct inodedep *
4903
inodedep_lookup_ip(struct inode *ip)
4904
{
4905
struct inodedep *inodedep;
4906
4907
KASSERT(ip->i_nlink >= ip->i_effnlink,
4908
("inodedep_lookup_ip: bad delta"));
4909
(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
4910
&inodedep);
4911
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4912
KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4913
4914
return (inodedep);
4915
}
4916
4917
/*
4918
* Called prior to creating a new inode and linking it to a directory. The
4919
* jaddref structure must already be allocated by softdep_setup_inomapdep
4920
* and it is discovered here so we can initialize the mode and update
4921
* nlinkdelta.
4922
*/
4923
void
4924
softdep_setup_create(struct inode *dp, struct inode *ip)
4925
{
4926
struct inodedep *inodedep;
4927
struct jaddref *jaddref __diagused;
4928
struct vnode *dvp;
4929
4930
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4931
("softdep_setup_create called on non-softdep filesystem"));
4932
KASSERT(ip->i_nlink == 1,
4933
("softdep_setup_create: Invalid link count."));
4934
dvp = ITOV(dp);
4935
ACQUIRE_LOCK(ITOUMP(dp));
4936
inodedep = inodedep_lookup_ip(ip);
4937
if (DOINGSUJ(dvp)) {
4938
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4939
inoreflst);
4940
KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4941
("softdep_setup_create: No addref structure present."));
4942
}
4943
FREE_LOCK(ITOUMP(dp));
4944
}
4945
4946
/*
4947
* Create a jaddref structure to track the addition of a DOTDOT link when
4948
* we are reparenting an inode as part of a rename. This jaddref will be
4949
* found by softdep_setup_directory_change. Adjusts nlinkdelta for
4950
* non-journaling softdep.
4951
*/
4952
void
4953
softdep_setup_dotdot_link(struct inode *dp, struct inode *ip)
4954
{
4955
struct inodedep *inodedep;
4956
struct jaddref *jaddref;
4957
struct vnode *dvp;
4958
4959
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4960
("softdep_setup_dotdot_link called on non-softdep filesystem"));
4961
dvp = ITOV(dp);
4962
jaddref = NULL;
4963
/*
4964
* We don't set MKDIR_PARENT as this is not tied to a mkdir and
4965
* is used as a normal link would be.
4966
*/
4967
if (DOINGSUJ(dvp))
4968
jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4969
dp->i_effnlink - 1, dp->i_mode);
4970
ACQUIRE_LOCK(ITOUMP(dp));
4971
inodedep = inodedep_lookup_ip(dp);
4972
if (jaddref)
4973
TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4974
if_deps);
4975
FREE_LOCK(ITOUMP(dp));
4976
}
4977
4978
/*
4979
* Create a jaddref structure to track a new link to an inode. The directory
4980
* offset is not known until softdep_setup_directory_add or
4981
* softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling
4982
* softdep.
4983
*/
4984
void
4985
softdep_setup_link(struct inode *dp, struct inode *ip)
4986
{
4987
struct inodedep *inodedep;
4988
struct jaddref *jaddref;
4989
struct vnode *dvp;
4990
4991
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4992
("softdep_setup_link called on non-softdep filesystem"));
4993
dvp = ITOV(dp);
4994
jaddref = NULL;
4995
if (DOINGSUJ(dvp))
4996
jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4997
ip->i_mode);
4998
ACQUIRE_LOCK(ITOUMP(dp));
4999
inodedep = inodedep_lookup_ip(ip);
5000
if (jaddref)
5001
TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5002
if_deps);
5003
FREE_LOCK(ITOUMP(dp));
5004
}
5005
5006
/*
5007
* Called to create the jaddref structures to track . and .. references as
5008
* well as lookup and further initialize the incomplete jaddref created
5009
* by softdep_setup_inomapdep when the inode was allocated. Adjusts
5010
* nlinkdelta for non-journaling softdep.
5011
*/
5012
void
5013
softdep_setup_mkdir(struct inode *dp, struct inode *ip)
5014
{
5015
struct inodedep *inodedep;
5016
struct jaddref *dotdotaddref;
5017
struct jaddref *dotaddref;
5018
struct jaddref *jaddref;
5019
struct vnode *dvp;
5020
5021
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5022
("softdep_setup_mkdir called on non-softdep filesystem"));
5023
dvp = ITOV(dp);
5024
dotaddref = dotdotaddref = NULL;
5025
if (DOINGSUJ(dvp)) {
5026
dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
5027
ip->i_mode);
5028
dotaddref->ja_state |= MKDIR_BODY;
5029
dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
5030
dp->i_effnlink - 1, dp->i_mode);
5031
dotdotaddref->ja_state |= MKDIR_PARENT;
5032
}
5033
ACQUIRE_LOCK(ITOUMP(dp));
5034
inodedep = inodedep_lookup_ip(ip);
5035
if (DOINGSUJ(dvp)) {
5036
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5037
inoreflst);
5038
KASSERT(jaddref != NULL,
5039
("softdep_setup_mkdir: No addref structure present."));
5040
KASSERT(jaddref->ja_parent == dp->i_number,
5041
("softdep_setup_mkdir: bad parent %ju",
5042
(uintmax_t)jaddref->ja_parent));
5043
TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
5044
if_deps);
5045
}
5046
inodedep = inodedep_lookup_ip(dp);
5047
if (DOINGSUJ(dvp))
5048
TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
5049
&dotdotaddref->ja_ref, if_deps);
5050
FREE_LOCK(ITOUMP(dp));
5051
}
5052
5053
/*
5054
* Called to track nlinkdelta of the inode and parent directories prior to
5055
* unlinking a directory.
5056
*/
5057
void
5058
softdep_setup_rmdir(struct inode *dp, struct inode *ip)
5059
{
5060
5061
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5062
("softdep_setup_rmdir called on non-softdep filesystem"));
5063
ACQUIRE_LOCK(ITOUMP(dp));
5064
(void) inodedep_lookup_ip(ip);
5065
(void) inodedep_lookup_ip(dp);
5066
FREE_LOCK(ITOUMP(dp));
5067
}
5068
5069
/*
5070
* Called to track nlinkdelta of the inode and parent directories prior to
5071
* unlink.
5072
*/
5073
void
5074
softdep_setup_unlink(struct inode *dp, struct inode *ip)
5075
{
5076
5077
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5078
("softdep_setup_unlink called on non-softdep filesystem"));
5079
ACQUIRE_LOCK(ITOUMP(dp));
5080
(void) inodedep_lookup_ip(ip);
5081
(void) inodedep_lookup_ip(dp);
5082
FREE_LOCK(ITOUMP(dp));
5083
}
5084
5085
/*
5086
* Called to release the journal structures created by a failed non-directory
5087
* creation. Adjusts nlinkdelta for non-journaling softdep.
5088
*/
5089
void
5090
softdep_revert_create(struct inode *dp, struct inode *ip)
5091
{
5092
struct inodedep *inodedep;
5093
struct jaddref *jaddref;
5094
struct vnode *dvp;
5095
5096
KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
5097
("softdep_revert_create called on non-softdep filesystem"));
5098
dvp = ITOV(dp);
5099
ACQUIRE_LOCK(ITOUMP(dp));
5100
inodedep = inodedep_lookup_ip(ip);
5101
if (DOINGSUJ(dvp)) {
5102
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5103
inoreflst);
5104
KASSERT(jaddref->ja_parent == dp->i_number,
5105
("softdep_revert_create: addref parent mismatch"));
5106
cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5107
}
5108
FREE_LOCK(ITOUMP(dp));
5109
}
5110
5111
/*
5112
* Called to release the journal structures created by a failed link
5113
* addition. Adjusts nlinkdelta for non-journaling softdep.
5114
*/
5115
void
5116
softdep_revert_link(struct inode *dp, struct inode *ip)
5117
{
5118
struct inodedep *inodedep;
5119
struct jaddref *jaddref;
5120
struct vnode *dvp;
5121
5122
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5123
("softdep_revert_link called on non-softdep filesystem"));
5124
dvp = ITOV(dp);
5125
ACQUIRE_LOCK(ITOUMP(dp));
5126
inodedep = inodedep_lookup_ip(ip);
5127
if (DOINGSUJ(dvp)) {
5128
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5129
inoreflst);
5130
KASSERT(jaddref->ja_parent == dp->i_number,
5131
("softdep_revert_link: addref parent mismatch"));
5132
cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5133
}
5134
FREE_LOCK(ITOUMP(dp));
5135
}
5136
5137
/*
5138
* Called to release the journal structures created by a failed mkdir
5139
* attempt. Adjusts nlinkdelta for non-journaling softdep.
5140
*/
5141
void
5142
softdep_revert_mkdir(struct inode *dp, struct inode *ip)
5143
{
5144
struct inodedep *inodedep;
5145
struct jaddref *jaddref;
5146
struct jaddref *dotaddref;
5147
struct vnode *dvp;
5148
5149
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5150
("softdep_revert_mkdir called on non-softdep filesystem"));
5151
dvp = ITOV(dp);
5152
5153
ACQUIRE_LOCK(ITOUMP(dp));
5154
inodedep = inodedep_lookup_ip(dp);
5155
if (DOINGSUJ(dvp)) {
5156
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5157
inoreflst);
5158
KASSERT(jaddref->ja_parent == ip->i_number,
5159
("softdep_revert_mkdir: dotdot addref parent mismatch"));
5160
cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5161
}
5162
inodedep = inodedep_lookup_ip(ip);
5163
if (DOINGSUJ(dvp)) {
5164
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5165
inoreflst);
5166
KASSERT(jaddref->ja_parent == dp->i_number,
5167
("softdep_revert_mkdir: addref parent mismatch"));
5168
dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
5169
inoreflst, if_deps);
5170
cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5171
KASSERT(dotaddref->ja_parent == ip->i_number,
5172
("softdep_revert_mkdir: dot addref parent mismatch"));
5173
cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
5174
}
5175
FREE_LOCK(ITOUMP(dp));
5176
}
5177
5178
/*
5179
* Called to correct nlinkdelta after a failed rmdir.
5180
*/
5181
void
5182
softdep_revert_rmdir(struct inode *dp, struct inode *ip)
5183
{
5184
5185
KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5186
("softdep_revert_rmdir called on non-softdep filesystem"));
5187
ACQUIRE_LOCK(ITOUMP(dp));
5188
(void) inodedep_lookup_ip(ip);
5189
(void) inodedep_lookup_ip(dp);
5190
FREE_LOCK(ITOUMP(dp));
5191
}
5192
5193
/*
5194
* Protecting the freemaps (or bitmaps).
5195
*
5196
* To eliminate the need to execute fsck before mounting a filesystem
5197
* after a power failure, one must (conservatively) guarantee that the
5198
* on-disk copy of the bitmaps never indicate that a live inode or block is
5199
* free. So, when a block or inode is allocated, the bitmap should be
5200
* updated (on disk) before any new pointers. When a block or inode is
5201
* freed, the bitmap should not be updated until all pointers have been
5202
* reset. The latter dependency is handled by the delayed de-allocation
5203
* approach described below for block and inode de-allocation. The former
5204
* dependency is handled by calling the following procedure when a block or
5205
* inode is allocated. When an inode is allocated an "inodedep" is created
5206
* with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
5207
* Each "inodedep" is also inserted into the hash indexing structure so
5208
* that any additional link additions can be made dependent on the inode
5209
* allocation.
5210
*
5211
* The ufs filesystem maintains a number of free block counts (e.g., per
5212
* cylinder group, per cylinder and per <cylinder, rotational position> pair)
5213
* in addition to the bitmaps. These counts are used to improve efficiency
5214
* during allocation and therefore must be consistent with the bitmaps.
5215
* There is no convenient way to guarantee post-crash consistency of these
5216
* counts with simple update ordering, for two main reasons: (1) The counts
5217
* and bitmaps for a single cylinder group block are not in the same disk
5218
* sector. If a disk write is interrupted (e.g., by power failure), one may
5219
* be written and the other not. (2) Some of the counts are located in the
5220
* superblock rather than the cylinder group block. So, we focus our soft
5221
* updates implementation on protecting the bitmaps. When mounting a
5222
* filesystem, we recompute the auxiliary counts from the bitmaps.
5223
*/
5224
5225
/*
5226
* Called just after updating the cylinder group block to allocate an inode.
5227
*/
5228
void
5229
softdep_setup_inomapdep(
5230
struct buf *bp, /* buffer for cylgroup block with inode map */
5231
struct inode *ip, /* inode related to allocation */
5232
ino_t newinum, /* new inode number being allocated */
5233
int mode)
5234
{
5235
struct inodedep *inodedep;
5236
struct bmsafemap *bmsafemap;
5237
struct jaddref *jaddref;
5238
struct mount *mp;
5239
struct fs *fs;
5240
5241
mp = ITOVFS(ip);
5242
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5243
("softdep_setup_inomapdep called on non-softdep filesystem"));
5244
fs = VFSTOUFS(mp)->um_fs;
5245
jaddref = NULL;
5246
5247
/*
5248
* Allocate the journal reference add structure so that the bitmap
5249
* can be dependent on it.
5250
*/
5251
if (MOUNTEDSUJ(mp)) {
5252
jaddref = newjaddref(ip, newinum, 0, 0, mode);
5253
jaddref->ja_state |= NEWBLOCK;
5254
}
5255
5256
/*
5257
* Create a dependency for the newly allocated inode.
5258
* Panic if it already exists as something is seriously wrong.
5259
* Otherwise add it to the dependency list for the buffer holding
5260
* the cylinder group map from which it was allocated.
5261
*
5262
* We have to preallocate a bmsafemap entry in case it is needed
5263
* in bmsafemap_lookup since once we allocate the inodedep, we
5264
* have to finish initializing it before we can FREE_LOCK().
5265
* By preallocating, we avoid FREE_LOCK() while doing a malloc
5266
* in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5267
* creating the inodedep as it can be freed during the time
5268
* that we FREE_LOCK() while allocating the inodedep. We must
5269
* call workitem_alloc() before entering the locked section as
5270
* it also acquires the lock and we must avoid trying doing so
5271
* recursively.
5272
*/
5273
bmsafemap = malloc(sizeof(struct bmsafemap),
5274
M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5275
workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5276
ACQUIRE_LOCK(ITOUMP(ip));
5277
if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5278
panic("softdep_setup_inomapdep: dependency %p for new"
5279
"inode already exists", inodedep);
5280
bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5281
if (jaddref) {
5282
LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5283
TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5284
if_deps);
5285
} else {
5286
inodedep->id_state |= ONDEPLIST;
5287
LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5288
}
5289
inodedep->id_bmsafemap = bmsafemap;
5290
inodedep->id_state &= ~DEPCOMPLETE;
5291
FREE_LOCK(ITOUMP(ip));
5292
}
5293
5294
/*
5295
* Called just after updating the cylinder group block to
5296
* allocate block or fragment.
5297
*/
5298
void
5299
softdep_setup_blkmapdep(
5300
struct buf *bp, /* buffer for cylgroup block with block map */
5301
struct mount *mp, /* filesystem doing allocation */
5302
ufs2_daddr_t newblkno, /* number of newly allocated block */
5303
int frags, /* Number of fragments. */
5304
int oldfrags) /* Previous number of fragments for extend. */
5305
{
5306
struct newblk *newblk;
5307
struct bmsafemap *bmsafemap;
5308
struct jnewblk *jnewblk;
5309
struct ufsmount *ump;
5310
struct fs *fs;
5311
5312
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5313
("softdep_setup_blkmapdep called on non-softdep filesystem"));
5314
ump = VFSTOUFS(mp);
5315
fs = ump->um_fs;
5316
jnewblk = NULL;
5317
/*
5318
* Create a dependency for the newly allocated block.
5319
* Add it to the dependency list for the buffer holding
5320
* the cylinder group map from which it was allocated.
5321
*/
5322
if (MOUNTEDSUJ(mp)) {
5323
jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5324
workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5325
jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5326
jnewblk->jn_state = ATTACHED;
5327
jnewblk->jn_blkno = newblkno;
5328
jnewblk->jn_frags = frags;
5329
jnewblk->jn_oldfrags = oldfrags;
5330
#ifdef INVARIANTS
5331
{
5332
struct cg *cgp;
5333
uint8_t *blksfree;
5334
long bno;
5335
int i;
5336
5337
cgp = (struct cg *)bp->b_data;
5338
blksfree = cg_blksfree(cgp);
5339
bno = dtogd(fs, jnewblk->jn_blkno);
5340
for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5341
i++) {
5342
if (isset(blksfree, bno + i))
5343
panic("softdep_setup_blkmapdep: "
5344
"free fragment %d from %d-%d "
5345
"state 0x%X dep %p", i,
5346
jnewblk->jn_oldfrags,
5347
jnewblk->jn_frags,
5348
jnewblk->jn_state,
5349
jnewblk->jn_dep);
5350
}
5351
}
5352
#endif
5353
}
5354
5355
CTR3(KTR_SUJ,
5356
"softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5357
newblkno, frags, oldfrags);
5358
ACQUIRE_LOCK(ump);
5359
if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5360
panic("softdep_setup_blkmapdep: found block");
5361
newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5362
dtog(fs, newblkno), NULL);
5363
if (jnewblk) {
5364
jnewblk->jn_dep = (struct worklist *)newblk;
5365
LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5366
} else {
5367
newblk->nb_state |= ONDEPLIST;
5368
LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5369
}
5370
newblk->nb_bmsafemap = bmsafemap;
5371
newblk->nb_jnewblk = jnewblk;
5372
FREE_LOCK(ump);
5373
}
5374
5375
#define BMSAFEMAP_HASH(ump, cg) \
5376
(&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5377
5378
static int
5379
bmsafemap_find(
5380
struct bmsafemap_hashhead *bmsafemaphd,
5381
int cg,
5382
struct bmsafemap **bmsafemapp)
5383
{
5384
struct bmsafemap *bmsafemap;
5385
5386
LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5387
if (bmsafemap->sm_cg == cg)
5388
break;
5389
if (bmsafemap) {
5390
*bmsafemapp = bmsafemap;
5391
return (1);
5392
}
5393
*bmsafemapp = NULL;
5394
5395
return (0);
5396
}
5397
5398
/*
5399
* Find the bmsafemap associated with a cylinder group buffer.
5400
* If none exists, create one. The buffer must be locked when
5401
* this routine is called and this routine must be called with
5402
* the softdep lock held. To avoid giving up the lock while
5403
* allocating a new bmsafemap, a preallocated bmsafemap may be
5404
* provided. If it is provided but not needed, it is freed.
5405
*/
5406
static struct bmsafemap *
5407
bmsafemap_lookup(struct mount *mp,
5408
struct buf *bp,
5409
int cg,
5410
struct bmsafemap *newbmsafemap)
5411
{
5412
struct bmsafemap_hashhead *bmsafemaphd;
5413
struct bmsafemap *bmsafemap, *collision;
5414
struct worklist *wk;
5415
struct ufsmount *ump;
5416
5417
ump = VFSTOUFS(mp);
5418
LOCK_OWNED(ump);
5419
KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5420
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5421
if (wk->wk_type == D_BMSAFEMAP) {
5422
if (newbmsafemap)
5423
WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5424
return (WK_BMSAFEMAP(wk));
5425
}
5426
}
5427
bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5428
if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5429
if (newbmsafemap)
5430
WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5431
return (bmsafemap);
5432
}
5433
if (newbmsafemap) {
5434
bmsafemap = newbmsafemap;
5435
} else {
5436
FREE_LOCK(ump);
5437
bmsafemap = malloc(sizeof(struct bmsafemap),
5438
M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5439
workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5440
ACQUIRE_LOCK(ump);
5441
}
5442
bmsafemap->sm_buf = bp;
5443
LIST_INIT(&bmsafemap->sm_inodedephd);
5444
LIST_INIT(&bmsafemap->sm_inodedepwr);
5445
LIST_INIT(&bmsafemap->sm_newblkhd);
5446
LIST_INIT(&bmsafemap->sm_newblkwr);
5447
LIST_INIT(&bmsafemap->sm_jaddrefhd);
5448
LIST_INIT(&bmsafemap->sm_jnewblkhd);
5449
LIST_INIT(&bmsafemap->sm_freehd);
5450
LIST_INIT(&bmsafemap->sm_freewr);
5451
if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5452
WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5453
return (collision);
5454
}
5455
bmsafemap->sm_cg = cg;
5456
LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5457
LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5458
WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5459
return (bmsafemap);
5460
}
5461
5462
/*
5463
* Direct block allocation dependencies.
5464
*
5465
* When a new block is allocated, the corresponding disk locations must be
5466
* initialized (with zeros or new data) before the on-disk inode points to
5467
* them. Also, the freemap from which the block was allocated must be
5468
* updated (on disk) before the inode's pointer. These two dependencies are
5469
* independent of each other and are needed for all file blocks and indirect
5470
* blocks that are pointed to directly by the inode. Just before the
5471
* "in-core" version of the inode is updated with a newly allocated block
5472
* number, a procedure (below) is called to setup allocation dependency
5473
* structures. These structures are removed when the corresponding
5474
* dependencies are satisfied or when the block allocation becomes obsolete
5475
* (i.e., the file is deleted, the block is de-allocated, or the block is a
5476
* fragment that gets upgraded). All of these cases are handled in
5477
* procedures described later.
5478
*
5479
* When a file extension causes a fragment to be upgraded, either to a larger
5480
* fragment or to a full block, the on-disk location may change (if the
5481
* previous fragment could not simply be extended). In this case, the old
5482
* fragment must be de-allocated, but not until after the inode's pointer has
5483
* been updated. In most cases, this is handled by later procedures, which
5484
* will construct a "freefrag" structure to be added to the workitem queue
5485
* when the inode update is complete (or obsolete). The main exception to
5486
* this is when an allocation occurs while a pending allocation dependency
5487
* (for the same block pointer) remains. This case is handled in the main
5488
* allocation dependency setup procedure by immediately freeing the
5489
* unreferenced fragments.
5490
*/
5491
void
5492
softdep_setup_allocdirect(
5493
struct inode *ip, /* inode to which block is being added */
5494
ufs_lbn_t off, /* block pointer within inode */
5495
ufs2_daddr_t newblkno, /* disk block number being added */
5496
ufs2_daddr_t oldblkno, /* previous block number, 0 unless frag */
5497
long newsize, /* size of new block */
5498
long oldsize, /* size of new block */
5499
struct buf *bp) /* bp for allocated block */
5500
{
5501
struct allocdirect *adp, *oldadp;
5502
struct allocdirectlst *adphead;
5503
struct freefrag *freefrag;
5504
struct inodedep *inodedep;
5505
struct pagedep *pagedep;
5506
struct jnewblk *jnewblk;
5507
struct newblk *newblk;
5508
struct mount *mp;
5509
ufs_lbn_t lbn;
5510
5511
lbn = bp->b_lblkno;
5512
mp = ITOVFS(ip);
5513
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5514
("softdep_setup_allocdirect called on non-softdep filesystem"));
5515
if (oldblkno && oldblkno != newblkno)
5516
/*
5517
* The usual case is that a smaller fragment that
5518
* was just allocated has been replaced with a bigger
5519
* fragment or a full-size block. If it is marked as
5520
* B_DELWRI, the current contents have not been written
5521
* to disk. It is possible that the block was written
5522
* earlier, but very uncommon. If the block has never
5523
* been written, there is no need to send a BIO_DELETE
5524
* for it when it is freed. The gain from avoiding the
5525
* TRIMs for the common case of unwritten blocks far
5526
* exceeds the cost of the write amplification for the
5527
* uncommon case of failing to send a TRIM for a block
5528
* that had been written.
5529
*/
5530
freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5531
(bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5532
else
5533
freefrag = NULL;
5534
5535
CTR6(KTR_SUJ,
5536
"softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5537
"off %jd newsize %ld oldsize %d",
5538
ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5539
ACQUIRE_LOCK(ITOUMP(ip));
5540
if (off >= UFS_NDADDR) {
5541
if (lbn > 0)
5542
panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5543
lbn, off);
5544
/* allocating an indirect block */
5545
if (oldblkno != 0)
5546
panic("softdep_setup_allocdirect: non-zero indir");
5547
} else {
5548
if (off != lbn)
5549
panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5550
lbn, off);
5551
/*
5552
* Allocating a direct block.
5553
*
5554
* If we are allocating a directory block, then we must
5555
* allocate an associated pagedep to track additions and
5556
* deletions.
5557
*/
5558
if ((ip->i_mode & IFMT) == IFDIR)
5559
pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5560
&pagedep);
5561
}
5562
if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5563
panic("softdep_setup_allocdirect: lost block");
5564
KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5565
("softdep_setup_allocdirect: newblk already initialized"));
5566
/*
5567
* Convert the newblk to an allocdirect.
5568
*/
5569
WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5570
adp = (struct allocdirect *)newblk;
5571
newblk->nb_freefrag = freefrag;
5572
adp->ad_offset = off;
5573
adp->ad_oldblkno = oldblkno;
5574
adp->ad_newsize = newsize;
5575
adp->ad_oldsize = oldsize;
5576
5577
/*
5578
* Finish initializing the journal.
5579
*/
5580
if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5581
jnewblk->jn_ino = ip->i_number;
5582
jnewblk->jn_lbn = lbn;
5583
add_to_journal(&jnewblk->jn_list);
5584
}
5585
if (freefrag && freefrag->ff_jdep != NULL &&
5586
freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5587
add_to_journal(freefrag->ff_jdep);
5588
inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5589
adp->ad_inodedep = inodedep;
5590
5591
WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5592
/*
5593
* The list of allocdirects must be kept in sorted and ascending
5594
* order so that the rollback routines can quickly determine the
5595
* first uncommitted block (the size of the file stored on disk
5596
* ends at the end of the lowest committed fragment, or if there
5597
* are no fragments, at the end of the highest committed block).
5598
* Since files generally grow, the typical case is that the new
5599
* block is to be added at the end of the list. We speed this
5600
* special case by checking against the last allocdirect in the
5601
* list before laboriously traversing the list looking for the
5602
* insertion point.
5603
*/
5604
adphead = &inodedep->id_newinoupdt;
5605
oldadp = TAILQ_LAST(adphead, allocdirectlst);
5606
if (oldadp == NULL || oldadp->ad_offset <= off) {
5607
/* insert at end of list */
5608
TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5609
if (oldadp != NULL && oldadp->ad_offset == off)
5610
allocdirect_merge(adphead, adp, oldadp);
5611
FREE_LOCK(ITOUMP(ip));
5612
return;
5613
}
5614
TAILQ_FOREACH(oldadp, adphead, ad_next) {
5615
if (oldadp->ad_offset >= off)
5616
break;
5617
}
5618
if (oldadp == NULL)
5619
panic("softdep_setup_allocdirect: lost entry");
5620
/* insert in middle of list */
5621
TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5622
if (oldadp->ad_offset == off)
5623
allocdirect_merge(adphead, adp, oldadp);
5624
5625
FREE_LOCK(ITOUMP(ip));
5626
}
5627
5628
/*
5629
* Merge a newer and older journal record to be stored either in a
5630
* newblock or freefrag. This handles aggregating journal records for
5631
* fragment allocation into a second record as well as replacing a
5632
* journal free with an aborted journal allocation. A segment for the
5633
* oldest record will be placed on wkhd if it has been written. If not
5634
* the segment for the newer record will suffice.
5635
*/
5636
static struct worklist *
5637
jnewblk_merge(struct worklist *new,
5638
struct worklist *old,
5639
struct workhead *wkhd)
5640
{
5641
struct jnewblk *njnewblk;
5642
struct jnewblk *jnewblk;
5643
5644
/* Handle NULLs to simplify callers. */
5645
if (new == NULL)
5646
return (old);
5647
if (old == NULL)
5648
return (new);
5649
/* Replace a jfreefrag with a jnewblk. */
5650
if (new->wk_type == D_JFREEFRAG) {
5651
if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5652
panic("jnewblk_merge: blkno mismatch: %p, %p",
5653
old, new);
5654
cancel_jfreefrag(WK_JFREEFRAG(new));
5655
return (old);
5656
}
5657
if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5658
panic("jnewblk_merge: Bad type: old %d new %d\n",
5659
old->wk_type, new->wk_type);
5660
/*
5661
* Handle merging of two jnewblk records that describe
5662
* different sets of fragments in the same block.
5663
*/
5664
jnewblk = WK_JNEWBLK(old);
5665
njnewblk = WK_JNEWBLK(new);
5666
if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5667
panic("jnewblk_merge: Merging disparate blocks.");
5668
/*
5669
* The record may be rolled back in the cg.
5670
*/
5671
if (jnewblk->jn_state & UNDONE) {
5672
jnewblk->jn_state &= ~UNDONE;
5673
njnewblk->jn_state |= UNDONE;
5674
njnewblk->jn_state &= ~ATTACHED;
5675
}
5676
/*
5677
* We modify the newer addref and free the older so that if neither
5678
* has been written the most up-to-date copy will be on disk. If
5679
* both have been written but rolled back we only temporarily need
5680
* one of them to fix the bits when the cg write completes.
5681
*/
5682
jnewblk->jn_state |= ATTACHED | COMPLETE;
5683
njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5684
cancel_jnewblk(jnewblk, wkhd);
5685
WORKLIST_REMOVE(&jnewblk->jn_list);
5686
free_jnewblk(jnewblk);
5687
return (new);
5688
}
5689
5690
/*
5691
* Replace an old allocdirect dependency with a newer one.
5692
*/
5693
static void
5694
allocdirect_merge(
5695
struct allocdirectlst *adphead, /* head of list holding allocdirects */
5696
struct allocdirect *newadp, /* allocdirect being added */
5697
struct allocdirect *oldadp) /* existing allocdirect being checked */
5698
{
5699
struct worklist *wk;
5700
struct freefrag *freefrag;
5701
5702
freefrag = NULL;
5703
LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5704
if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5705
newadp->ad_oldsize != oldadp->ad_newsize ||
5706
newadp->ad_offset >= UFS_NDADDR)
5707
panic("%s %jd != new %jd || old size %ld != new %ld",
5708
"allocdirect_merge: old blkno",
5709
(intmax_t)newadp->ad_oldblkno,
5710
(intmax_t)oldadp->ad_newblkno,
5711
newadp->ad_oldsize, oldadp->ad_newsize);
5712
newadp->ad_oldblkno = oldadp->ad_oldblkno;
5713
newadp->ad_oldsize = oldadp->ad_oldsize;
5714
/*
5715
* If the old dependency had a fragment to free or had never
5716
* previously had a block allocated, then the new dependency
5717
* can immediately post its freefrag and adopt the old freefrag.
5718
* This action is done by swapping the freefrag dependencies.
5719
* The new dependency gains the old one's freefrag, and the
5720
* old one gets the new one and then immediately puts it on
5721
* the worklist when it is freed by free_newblk. It is
5722
* not possible to do this swap when the old dependency had a
5723
* non-zero size but no previous fragment to free. This condition
5724
* arises when the new block is an extension of the old block.
5725
* Here, the first part of the fragment allocated to the new
5726
* dependency is part of the block currently claimed on disk by
5727
* the old dependency, so cannot legitimately be freed until the
5728
* conditions for the new dependency are fulfilled.
5729
*/
5730
freefrag = newadp->ad_freefrag;
5731
if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5732
newadp->ad_freefrag = oldadp->ad_freefrag;
5733
oldadp->ad_freefrag = freefrag;
5734
}
5735
/*
5736
* If we are tracking a new directory-block allocation,
5737
* move it from the old allocdirect to the new allocdirect.
5738
*/
5739
if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5740
WORKLIST_REMOVE(wk);
5741
if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5742
panic("allocdirect_merge: extra newdirblk");
5743
WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5744
}
5745
TAILQ_REMOVE(adphead, oldadp, ad_next);
5746
/*
5747
* We need to move any journal dependencies over to the freefrag
5748
* that releases this block if it exists. Otherwise we are
5749
* extending an existing block and we'll wait until that is
5750
* complete to release the journal space and extend the
5751
* new journal to cover this old space as well.
5752
*/
5753
if (freefrag == NULL) {
5754
if (oldadp->ad_newblkno != newadp->ad_newblkno)
5755
panic("allocdirect_merge: %jd != %jd",
5756
oldadp->ad_newblkno, newadp->ad_newblkno);
5757
newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5758
jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5759
&oldadp->ad_block.nb_jnewblk->jn_list,
5760
&newadp->ad_block.nb_jwork);
5761
oldadp->ad_block.nb_jnewblk = NULL;
5762
cancel_newblk(&oldadp->ad_block, NULL,
5763
&newadp->ad_block.nb_jwork);
5764
} else {
5765
wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5766
&freefrag->ff_list, &freefrag->ff_jwork);
5767
freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5768
&freefrag->ff_jwork);
5769
}
5770
free_newblk(&oldadp->ad_block);
5771
}
5772
5773
/*
5774
* Allocate a jfreefrag structure to journal a single block free.
5775
*/
5776
static struct jfreefrag *
5777
newjfreefrag(struct freefrag *freefrag,
5778
struct inode *ip,
5779
ufs2_daddr_t blkno,
5780
long size,
5781
ufs_lbn_t lbn)
5782
{
5783
struct jfreefrag *jfreefrag;
5784
struct fs *fs;
5785
5786
fs = ITOFS(ip);
5787
jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5788
M_SOFTDEP_FLAGS);
5789
workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5790
jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5791
jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5792
jfreefrag->fr_ino = ip->i_number;
5793
jfreefrag->fr_lbn = lbn;
5794
jfreefrag->fr_blkno = blkno;
5795
jfreefrag->fr_frags = numfrags(fs, size);
5796
jfreefrag->fr_freefrag = freefrag;
5797
5798
return (jfreefrag);
5799
}
5800
5801
/*
5802
* Allocate a new freefrag structure.
5803
*/
5804
static struct freefrag *
5805
newfreefrag(struct inode *ip,
5806
ufs2_daddr_t blkno,
5807
long size,
5808
ufs_lbn_t lbn,
5809
uint64_t key)
5810
{
5811
struct freefrag *freefrag;
5812
struct ufsmount *ump;
5813
struct fs *fs;
5814
5815
CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5816
ip->i_number, blkno, size, lbn);
5817
ump = ITOUMP(ip);
5818
fs = ump->um_fs;
5819
if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5820
panic("newfreefrag: frag size");
5821
freefrag = malloc(sizeof(struct freefrag),
5822
M_FREEFRAG, M_SOFTDEP_FLAGS);
5823
workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5824
freefrag->ff_state = ATTACHED;
5825
LIST_INIT(&freefrag->ff_jwork);
5826
freefrag->ff_inum = ip->i_number;
5827
freefrag->ff_vtype = ITOV(ip)->v_type;
5828
freefrag->ff_blkno = blkno;
5829
freefrag->ff_fragsize = size;
5830
freefrag->ff_key = key;
5831
5832
if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5833
freefrag->ff_jdep = (struct worklist *)
5834
newjfreefrag(freefrag, ip, blkno, size, lbn);
5835
} else {
5836
freefrag->ff_state |= DEPCOMPLETE;
5837
freefrag->ff_jdep = NULL;
5838
}
5839
5840
return (freefrag);
5841
}
5842
5843
/*
5844
* This workitem de-allocates fragments that were replaced during
5845
* file block allocation.
5846
*/
5847
static void
5848
handle_workitem_freefrag(struct freefrag *freefrag)
5849
{
5850
struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5851
struct workhead wkhd;
5852
5853
CTR3(KTR_SUJ,
5854
"handle_workitem_freefrag: ino %d blkno %jd size %ld",
5855
freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5856
/*
5857
* It would be illegal to add new completion items to the
5858
* freefrag after it was schedule to be done so it must be
5859
* safe to modify the list head here.
5860
*/
5861
LIST_INIT(&wkhd);
5862
ACQUIRE_LOCK(ump);
5863
LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5864
/*
5865
* If the journal has not been written we must cancel it here.
5866
*/
5867
if (freefrag->ff_jdep) {
5868
if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5869
panic("handle_workitem_freefrag: Unexpected type %d\n",
5870
freefrag->ff_jdep->wk_type);
5871
cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5872
}
5873
FREE_LOCK(ump);
5874
ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5875
freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
5876
&wkhd, freefrag->ff_key);
5877
ACQUIRE_LOCK(ump);
5878
WORKITEM_FREE(freefrag, D_FREEFRAG);
5879
FREE_LOCK(ump);
5880
}
5881
5882
/*
5883
* Set up a dependency structure for an external attributes data block.
5884
* This routine follows much of the structure of softdep_setup_allocdirect.
5885
* See the description of softdep_setup_allocdirect above for details.
5886
*/
5887
void
5888
softdep_setup_allocext(
5889
struct inode *ip,
5890
ufs_lbn_t off,
5891
ufs2_daddr_t newblkno,
5892
ufs2_daddr_t oldblkno,
5893
long newsize,
5894
long oldsize,
5895
struct buf *bp)
5896
{
5897
struct allocdirect *adp, *oldadp;
5898
struct allocdirectlst *adphead;
5899
struct freefrag *freefrag;
5900
struct inodedep *inodedep;
5901
struct jnewblk *jnewblk;
5902
struct newblk *newblk;
5903
struct mount *mp;
5904
struct ufsmount *ump;
5905
ufs_lbn_t lbn;
5906
5907
mp = ITOVFS(ip);
5908
ump = VFSTOUFS(mp);
5909
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5910
("softdep_setup_allocext called on non-softdep filesystem"));
5911
KASSERT(off < UFS_NXADDR,
5912
("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
5913
5914
lbn = bp->b_lblkno;
5915
if (oldblkno && oldblkno != newblkno)
5916
/*
5917
* The usual case is that a smaller fragment that
5918
* was just allocated has been replaced with a bigger
5919
* fragment or a full-size block. If it is marked as
5920
* B_DELWRI, the current contents have not been written
5921
* to disk. It is possible that the block was written
5922
* earlier, but very uncommon. If the block has never
5923
* been written, there is no need to send a BIO_DELETE
5924
* for it when it is freed. The gain from avoiding the
5925
* TRIMs for the common case of unwritten blocks far
5926
* exceeds the cost of the write amplification for the
5927
* uncommon case of failing to send a TRIM for a block
5928
* that had been written.
5929
*/
5930
freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5931
(bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5932
else
5933
freefrag = NULL;
5934
5935
ACQUIRE_LOCK(ump);
5936
if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5937
panic("softdep_setup_allocext: lost block");
5938
KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5939
("softdep_setup_allocext: newblk already initialized"));
5940
/*
5941
* Convert the newblk to an allocdirect.
5942
*/
5943
WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5944
adp = (struct allocdirect *)newblk;
5945
newblk->nb_freefrag = freefrag;
5946
adp->ad_offset = off;
5947
adp->ad_oldblkno = oldblkno;
5948
adp->ad_newsize = newsize;
5949
adp->ad_oldsize = oldsize;
5950
adp->ad_state |= EXTDATA;
5951
5952
/*
5953
* Finish initializing the journal.
5954
*/
5955
if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5956
jnewblk->jn_ino = ip->i_number;
5957
jnewblk->jn_lbn = lbn;
5958
add_to_journal(&jnewblk->jn_list);
5959
}
5960
if (freefrag && freefrag->ff_jdep != NULL &&
5961
freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5962
add_to_journal(freefrag->ff_jdep);
5963
inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5964
adp->ad_inodedep = inodedep;
5965
5966
WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5967
/*
5968
* The list of allocdirects must be kept in sorted and ascending
5969
* order so that the rollback routines can quickly determine the
5970
* first uncommitted block (the size of the file stored on disk
5971
* ends at the end of the lowest committed fragment, or if there
5972
* are no fragments, at the end of the highest committed block).
5973
* Since files generally grow, the typical case is that the new
5974
* block is to be added at the end of the list. We speed this
5975
* special case by checking against the last allocdirect in the
5976
* list before laboriously traversing the list looking for the
5977
* insertion point.
5978
*/
5979
adphead = &inodedep->id_newextupdt;
5980
oldadp = TAILQ_LAST(adphead, allocdirectlst);
5981
if (oldadp == NULL || oldadp->ad_offset <= off) {
5982
/* insert at end of list */
5983
TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5984
if (oldadp != NULL && oldadp->ad_offset == off)
5985
allocdirect_merge(adphead, adp, oldadp);
5986
FREE_LOCK(ump);
5987
return;
5988
}
5989
TAILQ_FOREACH(oldadp, adphead, ad_next) {
5990
if (oldadp->ad_offset >= off)
5991
break;
5992
}
5993
if (oldadp == NULL)
5994
panic("softdep_setup_allocext: lost entry");
5995
/* insert in middle of list */
5996
TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5997
if (oldadp->ad_offset == off)
5998
allocdirect_merge(adphead, adp, oldadp);
5999
FREE_LOCK(ump);
6000
}
6001
6002
/*
6003
* Indirect block allocation dependencies.
6004
*
6005
* The same dependencies that exist for a direct block also exist when
6006
* a new block is allocated and pointed to by an entry in a block of
6007
* indirect pointers. The undo/redo states described above are also
6008
* used here. Because an indirect block contains many pointers that
6009
* may have dependencies, a second copy of the entire in-memory indirect
6010
* block is kept. The buffer cache copy is always completely up-to-date.
6011
* The second copy, which is used only as a source for disk writes,
6012
* contains only the safe pointers (i.e., those that have no remaining
6013
* update dependencies). The second copy is freed when all pointers
6014
* are safe. The cache is not allowed to replace indirect blocks with
6015
* pending update dependencies. If a buffer containing an indirect
6016
* block with dependencies is written, these routines will mark it
6017
* dirty again. It can only be successfully written once all the
6018
* dependencies are removed. The ffs_fsync routine in conjunction with
6019
* softdep_sync_metadata work together to get all the dependencies
6020
* removed so that a file can be successfully written to disk. Three
6021
* procedures are used when setting up indirect block pointer
6022
* dependencies. The division is necessary because of the organization
6023
* of the "balloc" routine and because of the distinction between file
6024
* pages and file metadata blocks.
6025
*/
6026
6027
/*
6028
* Allocate a new allocindir structure.
6029
*/
6030
static struct allocindir *
6031
newallocindir(
6032
struct inode *ip, /* inode for file being extended */
6033
int ptrno, /* offset of pointer in indirect block */
6034
ufs2_daddr_t newblkno, /* disk block number being added */
6035
ufs2_daddr_t oldblkno, /* previous block number, 0 if none */
6036
ufs_lbn_t lbn)
6037
{
6038
struct newblk *newblk;
6039
struct allocindir *aip;
6040
struct freefrag *freefrag;
6041
struct jnewblk *jnewblk;
6042
6043
if (oldblkno)
6044
freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
6045
SINGLETON_KEY);
6046
else
6047
freefrag = NULL;
6048
ACQUIRE_LOCK(ITOUMP(ip));
6049
if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
6050
panic("new_allocindir: lost block");
6051
KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
6052
("newallocindir: newblk already initialized"));
6053
WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
6054
newblk->nb_freefrag = freefrag;
6055
aip = (struct allocindir *)newblk;
6056
aip->ai_offset = ptrno;
6057
aip->ai_oldblkno = oldblkno;
6058
aip->ai_lbn = lbn;
6059
if ((jnewblk = newblk->nb_jnewblk) != NULL) {
6060
jnewblk->jn_ino = ip->i_number;
6061
jnewblk->jn_lbn = lbn;
6062
add_to_journal(&jnewblk->jn_list);
6063
}
6064
if (freefrag && freefrag->ff_jdep != NULL &&
6065
freefrag->ff_jdep->wk_type == D_JFREEFRAG)
6066
add_to_journal(freefrag->ff_jdep);
6067
return (aip);
6068
}
6069
6070
/*
6071
* Called just before setting an indirect block pointer
6072
* to a newly allocated file page.
6073
*/
6074
void
6075
softdep_setup_allocindir_page(
6076
struct inode *ip, /* inode for file being extended */
6077
ufs_lbn_t lbn, /* allocated block number within file */
6078
struct buf *bp, /* buffer with indirect blk referencing page */
6079
int ptrno, /* offset of pointer in indirect block */
6080
ufs2_daddr_t newblkno, /* disk block number being added */
6081
ufs2_daddr_t oldblkno, /* previous block number, 0 if none */
6082
struct buf *nbp) /* buffer holding allocated page */
6083
{
6084
struct inodedep *inodedep;
6085
struct freefrag *freefrag;
6086
struct allocindir *aip;
6087
struct pagedep *pagedep;
6088
struct mount *mp;
6089
struct ufsmount *ump;
6090
6091
mp = ITOVFS(ip);
6092
ump = VFSTOUFS(mp);
6093
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6094
("softdep_setup_allocindir_page called on non-softdep filesystem"));
6095
KASSERT(lbn == nbp->b_lblkno,
6096
("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
6097
lbn, bp->b_lblkno));
6098
CTR4(KTR_SUJ,
6099
"softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
6100
"lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
6101
ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
6102
aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
6103
(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6104
/*
6105
* If we are allocating a directory page, then we must
6106
* allocate an associated pagedep to track additions and
6107
* deletions.
6108
*/
6109
if ((ip->i_mode & IFMT) == IFDIR)
6110
pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
6111
WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6112
freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
6113
FREE_LOCK(ump);
6114
if (freefrag)
6115
handle_workitem_freefrag(freefrag);
6116
}
6117
6118
/*
6119
* Called just before setting an indirect block pointer to a
6120
* newly allocated indirect block.
6121
*/
6122
void
6123
softdep_setup_allocindir_meta(
6124
struct buf *nbp, /* newly allocated indirect block */
6125
struct inode *ip, /* inode for file being extended */
6126
struct buf *bp, /* indirect block referencing allocated block */
6127
int ptrno, /* offset of pointer in indirect block */
6128
ufs2_daddr_t newblkno) /* disk block number being added */
6129
{
6130
struct inodedep *inodedep;
6131
struct allocindir *aip;
6132
struct ufsmount *ump;
6133
ufs_lbn_t lbn;
6134
6135
ump = ITOUMP(ip);
6136
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6137
("softdep_setup_allocindir_meta called on non-softdep filesystem"));
6138
CTR3(KTR_SUJ,
6139
"softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
6140
ip->i_number, newblkno, ptrno);
6141
lbn = nbp->b_lblkno;
6142
ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
6143
aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
6144
inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
6145
WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6146
if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
6147
panic("softdep_setup_allocindir_meta: Block already existed");
6148
FREE_LOCK(ump);
6149
}
6150
6151
static void
6152
indirdep_complete(struct indirdep *indirdep)
6153
{
6154
struct allocindir *aip;
6155
6156
LIST_REMOVE(indirdep, ir_next);
6157
indirdep->ir_state |= DEPCOMPLETE;
6158
6159
while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
6160
LIST_REMOVE(aip, ai_next);
6161
free_newblk(&aip->ai_block);
6162
}
6163
/*
6164
* If this indirdep is not attached to a buf it was simply waiting
6165
* on completion to clear completehd. free_indirdep() asserts
6166
* that nothing is dangling.
6167
*/
6168
if ((indirdep->ir_state & ONWORKLIST) == 0)
6169
free_indirdep(indirdep);
6170
}
6171
6172
static struct indirdep *
6173
indirdep_lookup(struct mount *mp,
6174
struct inode *ip,
6175
struct buf *bp)
6176
{
6177
struct indirdep *indirdep, *newindirdep;
6178
struct newblk *newblk;
6179
struct ufsmount *ump;
6180
struct worklist *wk;
6181
struct fs *fs;
6182
ufs2_daddr_t blkno;
6183
6184
ump = VFSTOUFS(mp);
6185
LOCK_OWNED(ump);
6186
indirdep = NULL;
6187
newindirdep = NULL;
6188
fs = ump->um_fs;
6189
for (;;) {
6190
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
6191
if (wk->wk_type != D_INDIRDEP)
6192
continue;
6193
indirdep = WK_INDIRDEP(wk);
6194
break;
6195
}
6196
/* Found on the buffer worklist, no new structure to free. */
6197
if (indirdep != NULL && newindirdep == NULL)
6198
return (indirdep);
6199
if (indirdep != NULL && newindirdep != NULL)
6200
panic("indirdep_lookup: simultaneous create");
6201
/* None found on the buffer and a new structure is ready. */
6202
if (indirdep == NULL && newindirdep != NULL)
6203
break;
6204
/* None found and no new structure available. */
6205
FREE_LOCK(ump);
6206
newindirdep = malloc(sizeof(struct indirdep),
6207
M_INDIRDEP, M_SOFTDEP_FLAGS);
6208
workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
6209
newindirdep->ir_state = ATTACHED;
6210
if (I_IS_UFS1(ip))
6211
newindirdep->ir_state |= UFS1FMT;
6212
TAILQ_INIT(&newindirdep->ir_trunc);
6213
newindirdep->ir_saveddata = NULL;
6214
LIST_INIT(&newindirdep->ir_deplisthd);
6215
LIST_INIT(&newindirdep->ir_donehd);
6216
LIST_INIT(&newindirdep->ir_writehd);
6217
LIST_INIT(&newindirdep->ir_completehd);
6218
if (bp->b_blkno == bp->b_lblkno) {
6219
ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
6220
NULL, NULL);
6221
bp->b_blkno = blkno;
6222
}
6223
newindirdep->ir_freeblks = NULL;
6224
newindirdep->ir_savebp =
6225
getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
6226
newindirdep->ir_bp = bp;
6227
BUF_KERNPROC(newindirdep->ir_savebp);
6228
bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
6229
ACQUIRE_LOCK(ump);
6230
}
6231
indirdep = newindirdep;
6232
WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
6233
/*
6234
* If the block is not yet allocated we don't set DEPCOMPLETE so
6235
* that we don't free dependencies until the pointers are valid.
6236
* This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
6237
* than using the hash.
6238
*/
6239
if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
6240
LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
6241
else
6242
indirdep->ir_state |= DEPCOMPLETE;
6243
return (indirdep);
6244
}
6245
6246
/*
6247
* Called to finish the allocation of the "aip" allocated
6248
* by one of the two routines above.
6249
*/
6250
static struct freefrag *
6251
setup_allocindir_phase2(
6252
struct buf *bp, /* in-memory copy of the indirect block */
6253
struct inode *ip, /* inode for file being extended */
6254
struct inodedep *inodedep, /* Inodedep for ip */
6255
struct allocindir *aip, /* allocindir allocated by the above routines */
6256
ufs_lbn_t lbn) /* Logical block number for this block. */
6257
{
6258
struct fs *fs __diagused;
6259
struct indirdep *indirdep;
6260
struct allocindir *oldaip;
6261
struct freefrag *freefrag;
6262
struct mount *mp;
6263
struct ufsmount *ump;
6264
6265
mp = ITOVFS(ip);
6266
ump = VFSTOUFS(mp);
6267
LOCK_OWNED(ump);
6268
fs = ump->um_fs;
6269
if (bp->b_lblkno >= 0)
6270
panic("setup_allocindir_phase2: not indir blk");
6271
KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6272
("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6273
indirdep = indirdep_lookup(mp, ip, bp);
6274
KASSERT(indirdep->ir_savebp != NULL,
6275
("setup_allocindir_phase2 NULL ir_savebp"));
6276
aip->ai_indirdep = indirdep;
6277
/*
6278
* Check for an unwritten dependency for this indirect offset. If
6279
* there is, merge the old dependency into the new one. This happens
6280
* as a result of reallocblk only.
6281
*/
6282
freefrag = NULL;
6283
if (aip->ai_oldblkno != 0) {
6284
LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6285
if (oldaip->ai_offset == aip->ai_offset) {
6286
freefrag = allocindir_merge(aip, oldaip);
6287
goto done;
6288
}
6289
}
6290
LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6291
if (oldaip->ai_offset == aip->ai_offset) {
6292
freefrag = allocindir_merge(aip, oldaip);
6293
goto done;
6294
}
6295
}
6296
}
6297
done:
6298
LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6299
return (freefrag);
6300
}
6301
6302
/*
6303
* Merge two allocindirs which refer to the same block. Move newblock
6304
* dependencies and setup the freefrags appropriately.
6305
*/
6306
static struct freefrag *
6307
allocindir_merge(
6308
struct allocindir *aip,
6309
struct allocindir *oldaip)
6310
{
6311
struct freefrag *freefrag;
6312
struct worklist *wk;
6313
6314
if (oldaip->ai_newblkno != aip->ai_oldblkno)
6315
panic("allocindir_merge: blkno");
6316
aip->ai_oldblkno = oldaip->ai_oldblkno;
6317
freefrag = aip->ai_freefrag;
6318
aip->ai_freefrag = oldaip->ai_freefrag;
6319
oldaip->ai_freefrag = NULL;
6320
KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6321
/*
6322
* If we are tracking a new directory-block allocation,
6323
* move it from the old allocindir to the new allocindir.
6324
*/
6325
if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6326
WORKLIST_REMOVE(wk);
6327
if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6328
panic("allocindir_merge: extra newdirblk");
6329
WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6330
}
6331
/*
6332
* We can skip journaling for this freefrag and just complete
6333
* any pending journal work for the allocindir that is being
6334
* removed after the freefrag completes.
6335
*/
6336
if (freefrag->ff_jdep)
6337
cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6338
LIST_REMOVE(oldaip, ai_next);
6339
freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6340
&freefrag->ff_list, &freefrag->ff_jwork);
6341
free_newblk(&oldaip->ai_block);
6342
6343
return (freefrag);
6344
}
6345
6346
static inline void
6347
setup_freedirect(
6348
struct freeblks *freeblks,
6349
struct inode *ip,
6350
int i,
6351
int needj)
6352
{
6353
struct ufsmount *ump;
6354
ufs2_daddr_t blkno;
6355
int frags;
6356
6357
blkno = DIP(ip, i_db[i]);
6358
if (blkno == 0)
6359
return;
6360
DIP_SET(ip, i_db[i], 0);
6361
ump = ITOUMP(ip);
6362
frags = sblksize(ump->um_fs, ip->i_size, i);
6363
frags = numfrags(ump->um_fs, frags);
6364
newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6365
}
6366
6367
static inline void
6368
setup_freeext(
6369
struct freeblks *freeblks,
6370
struct inode *ip,
6371
int i,
6372
int needj)
6373
{
6374
struct ufsmount *ump;
6375
ufs2_daddr_t blkno;
6376
int frags;
6377
6378
blkno = ip->i_din2->di_extb[i];
6379
if (blkno == 0)
6380
return;
6381
ip->i_din2->di_extb[i] = 0;
6382
ump = ITOUMP(ip);
6383
frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6384
frags = numfrags(ump->um_fs, frags);
6385
newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6386
}
6387
6388
static inline void
6389
setup_freeindir(
6390
struct freeblks *freeblks,
6391
struct inode *ip,
6392
int i,
6393
ufs_lbn_t lbn,
6394
int needj)
6395
{
6396
struct ufsmount *ump;
6397
ufs2_daddr_t blkno;
6398
6399
blkno = DIP(ip, i_ib[i]);
6400
if (blkno == 0)
6401
return;
6402
DIP_SET(ip, i_ib[i], 0);
6403
ump = ITOUMP(ip);
6404
newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6405
0, needj);
6406
}
6407
6408
static inline struct freeblks *
6409
newfreeblks(struct mount *mp, struct inode *ip)
6410
{
6411
struct freeblks *freeblks;
6412
6413
freeblks = malloc(sizeof(struct freeblks),
6414
M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6415
workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6416
LIST_INIT(&freeblks->fb_jblkdephd);
6417
LIST_INIT(&freeblks->fb_jwork);
6418
freeblks->fb_ref = 0;
6419
freeblks->fb_cgwait = 0;
6420
freeblks->fb_state = ATTACHED;
6421
freeblks->fb_uid = ip->i_uid;
6422
freeblks->fb_inum = ip->i_number;
6423
freeblks->fb_vtype = ITOV(ip)->v_type;
6424
freeblks->fb_modrev = DIP(ip, i_modrev);
6425
freeblks->fb_devvp = ITODEVVP(ip);
6426
freeblks->fb_chkcnt = 0;
6427
freeblks->fb_len = 0;
6428
6429
return (freeblks);
6430
}
6431
6432
static void
6433
trunc_indirdep(
6434
struct indirdep *indirdep,
6435
struct freeblks *freeblks,
6436
struct buf *bp,
6437
int off)
6438
{
6439
struct allocindir *aip, *aipn;
6440
6441
/*
6442
* The first set of allocindirs won't be in savedbp.
6443
*/
6444
LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6445
if (aip->ai_offset > off)
6446
cancel_allocindir(aip, bp, freeblks, 1);
6447
LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6448
if (aip->ai_offset > off)
6449
cancel_allocindir(aip, bp, freeblks, 1);
6450
/*
6451
* These will exist in savedbp.
6452
*/
6453
LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6454
if (aip->ai_offset > off)
6455
cancel_allocindir(aip, NULL, freeblks, 0);
6456
LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6457
if (aip->ai_offset > off)
6458
cancel_allocindir(aip, NULL, freeblks, 0);
6459
}
6460
6461
/*
6462
* Follow the chain of indirects down to lastlbn creating a freework
6463
* structure for each. This will be used to start indir_trunc() at
6464
* the right offset and create the journal records for the parrtial
6465
* truncation. A second step will handle the truncated dependencies.
6466
*/
6467
static int
6468
setup_trunc_indir(
6469
struct freeblks *freeblks,
6470
struct inode *ip,
6471
ufs_lbn_t lbn,
6472
ufs_lbn_t lastlbn,
6473
ufs2_daddr_t blkno)
6474
{
6475
struct indirdep *indirdep;
6476
struct indirdep *indirn;
6477
struct freework *freework;
6478
struct newblk *newblk;
6479
struct mount *mp;
6480
struct ufsmount *ump;
6481
struct buf *bp;
6482
uint8_t *start;
6483
uint8_t *end;
6484
ufs_lbn_t lbnadd;
6485
int level;
6486
int error;
6487
int off;
6488
6489
freework = NULL;
6490
if (blkno == 0)
6491
return (0);
6492
mp = freeblks->fb_list.wk_mp;
6493
ump = VFSTOUFS(mp);
6494
/*
6495
* Here, calls to VOP_BMAP() will fail. However, we already have
6496
* the on-disk address, so we just pass it to bread() instead of
6497
* having bread() attempt to calculate it using VOP_BMAP().
6498
*/
6499
error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno),
6500
(int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
6501
if (error)
6502
return (error);
6503
level = lbn_level(lbn);
6504
lbnadd = lbn_offset(ump->um_fs, level);
6505
/*
6506
* Compute the offset of the last block we want to keep. Store
6507
* in the freework the first block we want to completely free.
6508
*/
6509
off = (lastlbn - -(lbn + level)) / lbnadd;
6510
if (off + 1 == NINDIR(ump->um_fs))
6511
goto nowork;
6512
freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6513
/*
6514
* Link the freework into the indirdep. This will prevent any new
6515
* allocations from proceeding until we are finished with the
6516
* truncate and the block is written.
6517
*/
6518
ACQUIRE_LOCK(ump);
6519
indirdep = indirdep_lookup(mp, ip, bp);
6520
if (indirdep->ir_freeblks)
6521
panic("setup_trunc_indir: indirdep already truncated.");
6522
TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6523
freework->fw_indir = indirdep;
6524
/*
6525
* Cancel any allocindirs that will not make it to disk.
6526
* We have to do this for all copies of the indirdep that
6527
* live on this newblk.
6528
*/
6529
if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6530
if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
6531
&newblk) == 0)
6532
panic("setup_trunc_indir: lost block");
6533
LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6534
trunc_indirdep(indirn, freeblks, bp, off);
6535
} else
6536
trunc_indirdep(indirdep, freeblks, bp, off);
6537
FREE_LOCK(ump);
6538
/*
6539
* Creation is protected by the buf lock. The saveddata is only
6540
* needed if a full truncation follows a partial truncation but it
6541
* is difficult to allocate in that case so we fetch it anyway.
6542
*/
6543
if (indirdep->ir_saveddata == NULL)
6544
indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6545
M_SOFTDEP_FLAGS);
6546
nowork:
6547
/* Fetch the blkno of the child and the zero start offset. */
6548
if (I_IS_UFS1(ip)) {
6549
blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6550
start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6551
} else {
6552
blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6553
start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6554
}
6555
if (freework) {
6556
/* Zero the truncated pointers. */
6557
end = bp->b_data + bp->b_bcount;
6558
bzero(start, end - start);
6559
bdwrite(bp);
6560
} else
6561
bqrelse(bp);
6562
if (level == 0)
6563
return (0);
6564
lbn++; /* adjust level */
6565
lbn -= (off * lbnadd);
6566
return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6567
}
6568
6569
/*
6570
* Complete the partial truncation of an indirect block setup by
6571
* setup_trunc_indir(). This zeros the truncated pointers in the saved
6572
* copy and writes them to disk before the freeblks is allowed to complete.
6573
*/
6574
static void
6575
complete_trunc_indir(struct freework *freework)
6576
{
6577
struct freework *fwn;
6578
struct indirdep *indirdep;
6579
struct ufsmount *ump;
6580
struct buf *bp;
6581
uintptr_t start;
6582
int count;
6583
6584
ump = VFSTOUFS(freework->fw_list.wk_mp);
6585
LOCK_OWNED(ump);
6586
indirdep = freework->fw_indir;
6587
for (;;) {
6588
bp = indirdep->ir_bp;
6589
/* See if the block was discarded. */
6590
if (bp == NULL)
6591
break;
6592
/* Inline part of getdirtybuf(). We dont want bremfree. */
6593
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6594
break;
6595
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6596
LOCK_PTR(ump)) == 0)
6597
BUF_UNLOCK(bp);
6598
ACQUIRE_LOCK(ump);
6599
}
6600
freework->fw_state |= DEPCOMPLETE;
6601
TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6602
/*
6603
* Zero the pointers in the saved copy.
6604
*/
6605
if (indirdep->ir_state & UFS1FMT)
6606
start = sizeof(ufs1_daddr_t);
6607
else
6608
start = sizeof(ufs2_daddr_t);
6609
start *= freework->fw_start;
6610
count = indirdep->ir_savebp->b_bcount - start;
6611
start += (uintptr_t)indirdep->ir_savebp->b_data;
6612
bzero((char *)start, count);
6613
/*
6614
* We need to start the next truncation in the list if it has not
6615
* been started yet.
6616
*/
6617
fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6618
if (fwn != NULL) {
6619
if (fwn->fw_freeblks == indirdep->ir_freeblks)
6620
TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6621
if ((fwn->fw_state & ONWORKLIST) == 0)
6622
freework_enqueue(fwn);
6623
}
6624
/*
6625
* If bp is NULL the block was fully truncated, restore
6626
* the saved block list otherwise free it if it is no
6627
* longer needed.
6628
*/
6629
if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6630
if (bp == NULL)
6631
bcopy(indirdep->ir_saveddata,
6632
indirdep->ir_savebp->b_data,
6633
indirdep->ir_savebp->b_bcount);
6634
free(indirdep->ir_saveddata, M_INDIRDEP);
6635
indirdep->ir_saveddata = NULL;
6636
}
6637
/*
6638
* When bp is NULL there is a full truncation pending. We
6639
* must wait for this full truncation to be journaled before
6640
* we can release this freework because the disk pointers will
6641
* never be written as zero.
6642
*/
6643
if (bp == NULL) {
6644
if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6645
handle_written_freework(freework);
6646
else
6647
WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6648
&freework->fw_list);
6649
if (fwn == NULL) {
6650
freework->fw_indir = (void *)0x0000deadbeef0000;
6651
bp = indirdep->ir_savebp;
6652
indirdep->ir_savebp = NULL;
6653
free_indirdep(indirdep);
6654
FREE_LOCK(ump);
6655
brelse(bp);
6656
ACQUIRE_LOCK(ump);
6657
}
6658
} else {
6659
/* Complete when the real copy is written. */
6660
WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6661
BUF_UNLOCK(bp);
6662
}
6663
}
6664
6665
/*
6666
* Calculate the number of blocks we are going to release where datablocks
6667
* is the current total and length is the new file size.
6668
*/
6669
static ufs2_daddr_t
6670
blkcount(struct fs *fs,
6671
ufs2_daddr_t datablocks,
6672
off_t length)
6673
{
6674
off_t totblks, numblks;
6675
6676
totblks = 0;
6677
numblks = howmany(length, fs->fs_bsize);
6678
if (numblks <= UFS_NDADDR) {
6679
totblks = howmany(length, fs->fs_fsize);
6680
goto out;
6681
}
6682
totblks = blkstofrags(fs, numblks);
6683
numblks -= UFS_NDADDR;
6684
/*
6685
* Count all single, then double, then triple indirects required.
6686
* Subtracting one indirects worth of blocks for each pass
6687
* acknowledges one of each pointed to by the inode.
6688
*/
6689
for (;;) {
6690
totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6691
numblks -= NINDIR(fs);
6692
if (numblks <= 0)
6693
break;
6694
numblks = howmany(numblks, NINDIR(fs));
6695
}
6696
out:
6697
totblks = fsbtodb(fs, totblks);
6698
/*
6699
* Handle sparse files. We can't reclaim more blocks than the inode
6700
* references. We will correct it later in handle_complete_freeblks()
6701
* when we know the real count.
6702
*/
6703
if (totblks > datablocks)
6704
return (0);
6705
return (datablocks - totblks);
6706
}
6707
6708
/*
6709
* Handle freeblocks for journaled softupdate filesystems.
6710
*
6711
* Contrary to normal softupdates, we must preserve the block pointers in
6712
* indirects until their subordinates are free. This is to avoid journaling
6713
* every block that is freed which may consume more space than the journal
6714
* itself. The recovery program will see the free block journals at the
6715
* base of the truncated area and traverse them to reclaim space. The
6716
* pointers in the inode may be cleared immediately after the journal
6717
* records are written because each direct and indirect pointer in the
6718
* inode is recorded in a journal. This permits full truncation to proceed
6719
* asynchronously. The write order is journal -> inode -> cgs -> indirects.
6720
*
6721
* The algorithm is as follows:
6722
* 1) Traverse the in-memory state and create journal entries to release
6723
* the relevant blocks and full indirect trees.
6724
* 2) Traverse the indirect block chain adding partial truncation freework
6725
* records to indirects in the path to lastlbn. The freework will
6726
* prevent new allocation dependencies from being satisfied in this
6727
* indirect until the truncation completes.
6728
* 3) Read and lock the inode block, performing an update with the new size
6729
* and pointers. This prevents truncated data from becoming valid on
6730
* disk through step 4.
6731
* 4) Reap unsatisfied dependencies that are beyond the truncated area,
6732
* eliminate journal work for those records that do not require it.
6733
* 5) Schedule the journal records to be written followed by the inode block.
6734
* 6) Allocate any necessary frags for the end of file.
6735
* 7) Zero any partially truncated blocks.
6736
*
6737
* From this truncation proceeds asynchronously using the freework and
6738
* indir_trunc machinery. The file will not be extended again into a
6739
* partially truncated indirect block until all work is completed but
6740
* the normal dependency mechanism ensures that it is rolled back/forward
6741
* as appropriate. Further truncation may occur without delay and is
6742
* serialized in indir_trunc().
6743
*/
6744
void
6745
softdep_journal_freeblocks(
6746
struct inode *ip, /* The inode whose length is to be reduced */
6747
struct ucred *cred,
6748
off_t length, /* The new length for the file */
6749
int flags) /* IO_EXT and/or IO_NORMAL */
6750
{
6751
struct freeblks *freeblks, *fbn;
6752
struct worklist *wk, *wkn;
6753
struct inodedep *inodedep;
6754
struct jblkdep *jblkdep;
6755
struct allocdirect *adp, *adpn;
6756
struct ufsmount *ump;
6757
struct fs *fs;
6758
struct buf *bp;
6759
struct vnode *vp;
6760
struct mount *mp;
6761
daddr_t dbn;
6762
ufs2_daddr_t extblocks, datablocks;
6763
ufs_lbn_t tmpval, lbn, lastlbn;
6764
int frags, lastoff, iboff, allocblock, needj, error, i;
6765
6766
ump = ITOUMP(ip);
6767
mp = UFSTOVFS(ump);
6768
fs = ump->um_fs;
6769
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6770
("softdep_journal_freeblocks called on non-softdep filesystem"));
6771
vp = ITOV(ip);
6772
needj = 1;
6773
iboff = -1;
6774
allocblock = 0;
6775
extblocks = 0;
6776
datablocks = 0;
6777
frags = 0;
6778
freeblks = newfreeblks(mp, ip);
6779
ACQUIRE_LOCK(ump);
6780
/*
6781
* If we're truncating a removed file that will never be written
6782
* we don't need to journal the block frees. The canceled journals
6783
* for the allocations will suffice.
6784
*/
6785
inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6786
if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6787
length == 0)
6788
needj = 0;
6789
CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6790
ip->i_number, length, needj);
6791
FREE_LOCK(ump);
6792
/*
6793
* Calculate the lbn that we are truncating to. This results in -1
6794
* if we're truncating the 0 bytes. So it is the last lbn we want
6795
* to keep, not the first lbn we want to truncate.
6796
*/
6797
lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6798
lastoff = blkoff(fs, length);
6799
/*
6800
* Compute frags we are keeping in lastlbn. 0 means all.
6801
*/
6802
if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6803
frags = fragroundup(fs, lastoff);
6804
/* adp offset of last valid allocdirect. */
6805
iboff = lastlbn;
6806
} else if (lastlbn > 0)
6807
iboff = UFS_NDADDR;
6808
if (fs->fs_magic == FS_UFS2_MAGIC)
6809
extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6810
/*
6811
* Handle normal data blocks and indirects. This section saves
6812
* values used after the inode update to complete frag and indirect
6813
* truncation.
6814
*/
6815
if ((flags & IO_NORMAL) != 0) {
6816
/*
6817
* Handle truncation of whole direct and indirect blocks.
6818
*/
6819
for (i = iboff + 1; i < UFS_NDADDR; i++)
6820
setup_freedirect(freeblks, ip, i, needj);
6821
for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6822
i < UFS_NIADDR;
6823
i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6824
/* Release a whole indirect tree. */
6825
if (lbn > lastlbn) {
6826
setup_freeindir(freeblks, ip, i, -lbn -i,
6827
needj);
6828
continue;
6829
}
6830
iboff = i + UFS_NDADDR;
6831
/*
6832
* Traverse partially truncated indirect tree.
6833
*/
6834
if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6835
setup_trunc_indir(freeblks, ip, -lbn - i,
6836
lastlbn, DIP(ip, i_ib[i]));
6837
}
6838
/*
6839
* Handle partial truncation to a frag boundary.
6840
*/
6841
if (frags) {
6842
ufs2_daddr_t blkno;
6843
long oldfrags;
6844
6845
oldfrags = blksize(fs, ip, lastlbn);
6846
blkno = DIP(ip, i_db[lastlbn]);
6847
if (blkno && oldfrags != frags) {
6848
oldfrags -= frags;
6849
oldfrags = numfrags(fs, oldfrags);
6850
blkno += numfrags(fs, frags);
6851
newfreework(ump, freeblks, NULL, lastlbn,
6852
blkno, oldfrags, 0, needj);
6853
if (needj)
6854
adjust_newfreework(freeblks,
6855
numfrags(fs, frags));
6856
} else if (blkno == 0)
6857
allocblock = 1;
6858
}
6859
/*
6860
* Add a journal record for partial truncate if we are
6861
* handling indirect blocks. Non-indirects need no extra
6862
* journaling.
6863
*/
6864
if (length != 0 && lastlbn >= UFS_NDADDR) {
6865
UFS_INODE_SET_FLAG(ip, IN_TRUNCATED);
6866
newjtrunc(freeblks, length, 0);
6867
}
6868
ip->i_size = length;
6869
DIP_SET(ip, i_size, ip->i_size);
6870
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6871
datablocks = DIP(ip, i_blocks) - extblocks;
6872
if (length != 0)
6873
datablocks = blkcount(fs, datablocks, length);
6874
freeblks->fb_len = length;
6875
}
6876
if ((flags & IO_EXT) != 0) {
6877
for (i = 0; i < UFS_NXADDR; i++)
6878
setup_freeext(freeblks, ip, i, needj);
6879
ip->i_din2->di_extsize = 0;
6880
datablocks += extblocks;
6881
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6882
}
6883
#ifdef QUOTA
6884
/* Reference the quotas in case the block count is wrong in the end. */
6885
quotaref(vp, freeblks->fb_quota);
6886
(void) chkdq(ip, -datablocks, NOCRED, FORCE);
6887
#endif
6888
freeblks->fb_chkcnt = -datablocks;
6889
UFS_LOCK(ump);
6890
fs->fs_pendingblocks += datablocks;
6891
UFS_UNLOCK(ump);
6892
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6893
/*
6894
* Handle truncation of incomplete alloc direct dependencies. We
6895
* hold the inode block locked to prevent incomplete dependencies
6896
* from reaching the disk while we are eliminating those that
6897
* have been truncated. This is a partially inlined ffs_update().
6898
*/
6899
ufs_itimes(vp);
6900
ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6901
dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
6902
error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize,
6903
NULL, NULL, 0, cred, 0, NULL, &bp);
6904
if (error) {
6905
softdep_error("softdep_journal_freeblocks", error);
6906
return;
6907
}
6908
if (bp->b_bufsize == fs->fs_bsize)
6909
bp->b_flags |= B_CLUSTEROK;
6910
softdep_update_inodeblock(ip, bp, 0);
6911
if (ump->um_fstype == UFS1) {
6912
*((struct ufs1_dinode *)bp->b_data +
6913
ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6914
} else {
6915
ffs_update_dinode_ckhash(fs, ip->i_din2);
6916
*((struct ufs2_dinode *)bp->b_data +
6917
ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6918
}
6919
ACQUIRE_LOCK(ump);
6920
(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6921
if ((inodedep->id_state & IOSTARTED) != 0)
6922
panic("softdep_setup_freeblocks: inode busy");
6923
/*
6924
* Add the freeblks structure to the list of operations that
6925
* must await the zero'ed inode being written to disk. If we
6926
* still have a bitmap dependency (needj), then the inode
6927
* has never been written to disk, so we can process the
6928
* freeblks below once we have deleted the dependencies.
6929
*/
6930
if (needj)
6931
WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6932
else
6933
freeblks->fb_state |= COMPLETE;
6934
if ((flags & IO_NORMAL) != 0) {
6935
TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6936
if (adp->ad_offset > iboff)
6937
cancel_allocdirect(&inodedep->id_inoupdt, adp,
6938
freeblks);
6939
/*
6940
* Truncate the allocdirect. We could eliminate
6941
* or modify journal records as well.
6942
*/
6943
else if (adp->ad_offset == iboff && frags)
6944
adp->ad_newsize = frags;
6945
}
6946
}
6947
if ((flags & IO_EXT) != 0)
6948
while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6949
cancel_allocdirect(&inodedep->id_extupdt, adp,
6950
freeblks);
6951
/*
6952
* Scan the bufwait list for newblock dependencies that will never
6953
* make it to disk.
6954
*/
6955
LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6956
if (wk->wk_type != D_ALLOCDIRECT)
6957
continue;
6958
adp = WK_ALLOCDIRECT(wk);
6959
if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6960
((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6961
cancel_jfreeblk(freeblks, adp->ad_newblkno);
6962
cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6963
WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6964
}
6965
}
6966
/*
6967
* Add journal work.
6968
*/
6969
LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6970
add_to_journal(&jblkdep->jb_list);
6971
FREE_LOCK(ump);
6972
bdwrite(bp);
6973
/*
6974
* Truncate dependency structures beyond length.
6975
*/
6976
trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6977
/*
6978
* This is only set when we need to allocate a fragment because
6979
* none existed at the end of a frag-sized file. It handles only
6980
* allocating a new, zero filled block.
6981
*/
6982
if (allocblock) {
6983
ip->i_size = length - lastoff;
6984
DIP_SET(ip, i_size, ip->i_size);
6985
error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6986
if (error != 0) {
6987
softdep_error("softdep_journal_freeblks", error);
6988
return;
6989
}
6990
ip->i_size = length;
6991
DIP_SET(ip, i_size, length);
6992
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
6993
allocbuf(bp, frags);
6994
ffs_update(vp, 0);
6995
bawrite(bp);
6996
} else if (lastoff != 0 && vp->v_type != VDIR) {
6997
int size;
6998
6999
/*
7000
* Zero the end of a truncated frag or block.
7001
*/
7002
size = sblksize(fs, length, lastlbn);
7003
error = bread(vp, lastlbn, size, cred, &bp);
7004
if (error == 0) {
7005
bzero((char *)bp->b_data + lastoff, size - lastoff);
7006
bawrite(bp);
7007
} else if (!ffs_fsfail_cleanup(ump, error)) {
7008
softdep_error("softdep_journal_freeblks", error);
7009
return;
7010
}
7011
}
7012
ACQUIRE_LOCK(ump);
7013
inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7014
TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
7015
freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
7016
/*
7017
* We zero earlier truncations so they don't erroneously
7018
* update i_blocks.
7019
*/
7020
if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
7021
TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
7022
fbn->fb_len = 0;
7023
if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
7024
LIST_EMPTY(&freeblks->fb_jblkdephd))
7025
freeblks->fb_state |= INPROGRESS;
7026
else
7027
freeblks = NULL;
7028
FREE_LOCK(ump);
7029
if (freeblks)
7030
handle_workitem_freeblocks(freeblks, 0);
7031
trunc_pages(ip, length, extblocks, flags);
7032
7033
}
7034
7035
/*
7036
* Flush a JOP_SYNC to the journal.
7037
*/
7038
void
7039
softdep_journal_fsync(struct inode *ip)
7040
{
7041
struct jfsync *jfsync;
7042
struct ufsmount *ump;
7043
7044
ump = ITOUMP(ip);
7045
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7046
("softdep_journal_fsync called on non-softdep filesystem"));
7047
if ((ip->i_flag & IN_TRUNCATED) == 0)
7048
return;
7049
ip->i_flag &= ~IN_TRUNCATED;
7050
jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
7051
workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
7052
jfsync->jfs_size = ip->i_size;
7053
jfsync->jfs_ino = ip->i_number;
7054
ACQUIRE_LOCK(ump);
7055
add_to_journal(&jfsync->jfs_list);
7056
jwait(&jfsync->jfs_list, MNT_WAIT);
7057
FREE_LOCK(ump);
7058
}
7059
7060
/*
7061
* Block de-allocation dependencies.
7062
*
7063
* When blocks are de-allocated, the on-disk pointers must be nullified before
7064
* the blocks are made available for use by other files. (The true
7065
* requirement is that old pointers must be nullified before new on-disk
7066
* pointers are set. We chose this slightly more stringent requirement to
7067
* reduce complexity.) Our implementation handles this dependency by updating
7068
* the inode (or indirect block) appropriately but delaying the actual block
7069
* de-allocation (i.e., freemap and free space count manipulation) until
7070
* after the updated versions reach stable storage. After the disk is
7071
* updated, the blocks can be safely de-allocated whenever it is convenient.
7072
* This implementation handles only the common case of reducing a file's
7073
* length to zero. Other cases are handled by the conventional synchronous
7074
* write approach.
7075
*
7076
* The ffs implementation with which we worked double-checks
7077
* the state of the block pointers and file size as it reduces
7078
* a file's length. Some of this code is replicated here in our
7079
* soft updates implementation. The freeblks->fb_chkcnt field is
7080
* used to transfer a part of this information to the procedure
7081
* that eventually de-allocates the blocks.
7082
*
7083
* This routine should be called from the routine that shortens
7084
* a file's length, before the inode's size or block pointers
7085
* are modified. It will save the block pointer information for
7086
* later release and zero the inode so that the calling routine
7087
* can release it.
7088
*/
7089
void
7090
softdep_setup_freeblocks(
7091
struct inode *ip, /* The inode whose length is to be reduced */
7092
off_t length, /* The new length for the file */
7093
int flags) /* IO_EXT and/or IO_NORMAL */
7094
{
7095
struct ufs1_dinode *dp1;
7096
struct ufs2_dinode *dp2;
7097
struct freeblks *freeblks;
7098
struct inodedep *inodedep;
7099
struct allocdirect *adp;
7100
struct ufsmount *ump;
7101
struct buf *bp;
7102
struct fs *fs;
7103
ufs2_daddr_t extblocks, datablocks;
7104
struct mount *mp;
7105
int i, delay, error;
7106
ufs_lbn_t tmpval;
7107
ufs_lbn_t lbn;
7108
7109
ump = ITOUMP(ip);
7110
mp = UFSTOVFS(ump);
7111
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
7112
("softdep_setup_freeblocks called on non-softdep filesystem"));
7113
CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
7114
ip->i_number, length);
7115
KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
7116
fs = ump->um_fs;
7117
if ((error = bread(ump->um_devvp,
7118
fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
7119
(int)fs->fs_bsize, NOCRED, &bp)) != 0) {
7120
if (!ffs_fsfail_cleanup(ump, error))
7121
softdep_error("softdep_setup_freeblocks", error);
7122
return;
7123
}
7124
freeblks = newfreeblks(mp, ip);
7125
extblocks = 0;
7126
datablocks = 0;
7127
if (fs->fs_magic == FS_UFS2_MAGIC)
7128
extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
7129
if ((flags & IO_NORMAL) != 0) {
7130
for (i = 0; i < UFS_NDADDR; i++)
7131
setup_freedirect(freeblks, ip, i, 0);
7132
for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
7133
i < UFS_NIADDR;
7134
i++, lbn += tmpval, tmpval *= NINDIR(fs))
7135
setup_freeindir(freeblks, ip, i, -lbn -i, 0);
7136
ip->i_size = 0;
7137
DIP_SET(ip, i_size, 0);
7138
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7139
datablocks = DIP(ip, i_blocks) - extblocks;
7140
}
7141
if ((flags & IO_EXT) != 0) {
7142
for (i = 0; i < UFS_NXADDR; i++)
7143
setup_freeext(freeblks, ip, i, 0);
7144
ip->i_din2->di_extsize = 0;
7145
datablocks += extblocks;
7146
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7147
}
7148
#ifdef QUOTA
7149
/* Reference the quotas in case the block count is wrong in the end. */
7150
quotaref(ITOV(ip), freeblks->fb_quota);
7151
(void) chkdq(ip, -datablocks, NOCRED, FORCE);
7152
#endif
7153
freeblks->fb_chkcnt = -datablocks;
7154
UFS_LOCK(ump);
7155
fs->fs_pendingblocks += datablocks;
7156
UFS_UNLOCK(ump);
7157
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
7158
/*
7159
* Push the zero'ed inode to its disk buffer so that we are free
7160
* to delete its dependencies below. Once the dependencies are gone
7161
* the buffer can be safely released.
7162
*/
7163
if (ump->um_fstype == UFS1) {
7164
dp1 = ((struct ufs1_dinode *)bp->b_data +
7165
ino_to_fsbo(fs, ip->i_number));
7166
ip->i_din1->di_freelink = dp1->di_freelink;
7167
*dp1 = *ip->i_din1;
7168
} else {
7169
dp2 = ((struct ufs2_dinode *)bp->b_data +
7170
ino_to_fsbo(fs, ip->i_number));
7171
ip->i_din2->di_freelink = dp2->di_freelink;
7172
ffs_update_dinode_ckhash(fs, ip->i_din2);
7173
*dp2 = *ip->i_din2;
7174
}
7175
/*
7176
* Find and eliminate any inode dependencies.
7177
*/
7178
ACQUIRE_LOCK(ump);
7179
(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7180
if ((inodedep->id_state & IOSTARTED) != 0)
7181
panic("softdep_setup_freeblocks: inode busy");
7182
/*
7183
* Add the freeblks structure to the list of operations that
7184
* must await the zero'ed inode being written to disk. If we
7185
* still have a bitmap dependency (delay == 0), then the inode
7186
* has never been written to disk, so we can process the
7187
* freeblks below once we have deleted the dependencies.
7188
*/
7189
delay = (inodedep->id_state & DEPCOMPLETE);
7190
if (delay)
7191
WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
7192
else
7193
freeblks->fb_state |= COMPLETE;
7194
/*
7195
* Because the file length has been truncated to zero, any
7196
* pending block allocation dependency structures associated
7197
* with this inode are obsolete and can simply be de-allocated.
7198
* We must first merge the two dependency lists to get rid of
7199
* any duplicate freefrag structures, then purge the merged list.
7200
* If we still have a bitmap dependency, then the inode has never
7201
* been written to disk, so we can free any fragments without delay.
7202
*/
7203
if (flags & IO_NORMAL) {
7204
merge_inode_lists(&inodedep->id_newinoupdt,
7205
&inodedep->id_inoupdt);
7206
while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
7207
cancel_allocdirect(&inodedep->id_inoupdt, adp,
7208
freeblks);
7209
}
7210
if (flags & IO_EXT) {
7211
merge_inode_lists(&inodedep->id_newextupdt,
7212
&inodedep->id_extupdt);
7213
while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7214
cancel_allocdirect(&inodedep->id_extupdt, adp,
7215
freeblks);
7216
}
7217
FREE_LOCK(ump);
7218
bdwrite(bp);
7219
trunc_dependencies(ip, freeblks, -1, 0, flags);
7220
ACQUIRE_LOCK(ump);
7221
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
7222
(void) free_inodedep(inodedep);
7223
freeblks->fb_state |= DEPCOMPLETE;
7224
/*
7225
* If the inode with zeroed block pointers is now on disk
7226
* we can start freeing blocks.
7227
*/
7228
if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
7229
freeblks->fb_state |= INPROGRESS;
7230
else
7231
freeblks = NULL;
7232
FREE_LOCK(ump);
7233
if (freeblks)
7234
handle_workitem_freeblocks(freeblks, 0);
7235
trunc_pages(ip, length, extblocks, flags);
7236
}
7237
7238
/*
7239
* Eliminate pages from the page cache that back parts of this inode and
7240
* adjust the vnode pager's idea of our size. This prevents stale data
7241
* from hanging around in the page cache.
7242
*/
7243
static void
7244
trunc_pages(
7245
struct inode *ip,
7246
off_t length,
7247
ufs2_daddr_t extblocks,
7248
int flags)
7249
{
7250
struct vnode *vp;
7251
struct fs *fs;
7252
ufs_lbn_t lbn;
7253
off_t end, extend;
7254
7255
vp = ITOV(ip);
7256
fs = ITOFS(ip);
7257
extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7258
if ((flags & IO_EXT) != 0)
7259
vn_pages_remove(vp, extend, 0);
7260
if ((flags & IO_NORMAL) == 0)
7261
return;
7262
BO_LOCK(&vp->v_bufobj);
7263
drain_output(vp);
7264
BO_UNLOCK(&vp->v_bufobj);
7265
/*
7266
* The vnode pager eliminates file pages we eliminate indirects
7267
* below.
7268
*/
7269
vnode_pager_setsize(vp, length);
7270
/*
7271
* Calculate the end based on the last indirect we want to keep. If
7272
* the block extends into indirects we can just use the negative of
7273
* its lbn. Doubles and triples exist at lower numbers so we must
7274
* be careful not to remove those, if they exist. double and triple
7275
* indirect lbns do not overlap with others so it is not important
7276
* to verify how many levels are required.
7277
*/
7278
lbn = lblkno(fs, length);
7279
if (lbn >= UFS_NDADDR) {
7280
/* Calculate the virtual lbn of the triple indirect. */
7281
lbn = -lbn - (UFS_NIADDR - 1);
7282
end = OFF_TO_IDX(lblktosize(fs, lbn));
7283
} else
7284
end = extend;
7285
vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7286
}
7287
7288
/*
7289
* See if the buf bp is in the range eliminated by truncation.
7290
*/
7291
static int
7292
trunc_check_buf(
7293
struct buf *bp,
7294
int *blkoffp,
7295
ufs_lbn_t lastlbn,
7296
int lastoff,
7297
int flags)
7298
{
7299
ufs_lbn_t lbn;
7300
7301
*blkoffp = 0;
7302
/* Only match ext/normal blocks as appropriate. */
7303
if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7304
((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7305
return (0);
7306
/* ALTDATA is always a full truncation. */
7307
if ((bp->b_xflags & BX_ALTDATA) != 0)
7308
return (1);
7309
/* -1 is full truncation. */
7310
if (lastlbn == -1)
7311
return (1);
7312
/*
7313
* If this is a partial truncate we only want those
7314
* blocks and indirect blocks that cover the range
7315
* we're after.
7316
*/
7317
lbn = bp->b_lblkno;
7318
if (lbn < 0)
7319
lbn = -(lbn + lbn_level(lbn));
7320
if (lbn < lastlbn)
7321
return (0);
7322
/* Here we only truncate lblkno if it's partial. */
7323
if (lbn == lastlbn) {
7324
if (lastoff == 0)
7325
return (0);
7326
*blkoffp = lastoff;
7327
}
7328
return (1);
7329
}
7330
7331
/*
7332
* Eliminate any dependencies that exist in memory beyond lblkno:off
7333
*/
7334
static void
7335
trunc_dependencies(
7336
struct inode *ip,
7337
struct freeblks *freeblks,
7338
ufs_lbn_t lastlbn,
7339
int lastoff,
7340
int flags)
7341
{
7342
struct bufobj *bo;
7343
struct vnode *vp;
7344
struct buf *bp;
7345
int blkoff;
7346
7347
/*
7348
* We must wait for any I/O in progress to finish so that
7349
* all potential buffers on the dirty list will be visible.
7350
* Once they are all there, walk the list and get rid of
7351
* any dependencies.
7352
*/
7353
vp = ITOV(ip);
7354
bo = &vp->v_bufobj;
7355
BO_LOCK(bo);
7356
drain_output(vp);
7357
TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7358
bp->b_vflags &= ~BV_SCANNED;
7359
restart:
7360
TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7361
if (bp->b_vflags & BV_SCANNED)
7362
continue;
7363
if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7364
bp->b_vflags |= BV_SCANNED;
7365
continue;
7366
}
7367
KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7368
if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7369
goto restart;
7370
BO_UNLOCK(bo);
7371
if (deallocate_dependencies(bp, freeblks, blkoff))
7372
bqrelse(bp);
7373
else
7374
brelse(bp);
7375
BO_LOCK(bo);
7376
goto restart;
7377
}
7378
/*
7379
* Now do the work of vtruncbuf while also matching indirect blocks.
7380
*/
7381
TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7382
bp->b_vflags &= ~BV_SCANNED;
7383
cleanrestart:
7384
TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7385
if (bp->b_vflags & BV_SCANNED)
7386
continue;
7387
if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7388
bp->b_vflags |= BV_SCANNED;
7389
continue;
7390
}
7391
if (BUF_LOCK(bp,
7392
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7393
BO_LOCKPTR(bo)) == ENOLCK) {
7394
BO_LOCK(bo);
7395
goto cleanrestart;
7396
}
7397
BO_LOCK(bo);
7398
bp->b_vflags |= BV_SCANNED;
7399
BO_UNLOCK(bo);
7400
bremfree(bp);
7401
if (blkoff != 0) {
7402
allocbuf(bp, blkoff);
7403
bqrelse(bp);
7404
} else {
7405
bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7406
brelse(bp);
7407
}
7408
BO_LOCK(bo);
7409
goto cleanrestart;
7410
}
7411
drain_output(vp);
7412
BO_UNLOCK(bo);
7413
}
7414
7415
static int
7416
cancel_pagedep(
7417
struct pagedep *pagedep,
7418
struct freeblks *freeblks,
7419
int blkoff)
7420
{
7421
struct jremref *jremref;
7422
struct jmvref *jmvref;
7423
struct dirrem *dirrem, *tmp;
7424
int i;
7425
7426
/*
7427
* Copy any directory remove dependencies to the list
7428
* to be processed after the freeblks proceeds. If
7429
* directory entry never made it to disk they
7430
* can be dumped directly onto the work list.
7431
*/
7432
LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7433
/* Skip this directory removal if it is intended to remain. */
7434
if (dirrem->dm_offset < blkoff)
7435
continue;
7436
/*
7437
* If there are any dirrems we wait for the journal write
7438
* to complete and then restart the buf scan as the lock
7439
* has been dropped.
7440
*/
7441
while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7442
jwait(&jremref->jr_list, MNT_WAIT);
7443
return (ERESTART);
7444
}
7445
LIST_REMOVE(dirrem, dm_next);
7446
dirrem->dm_dirinum = pagedep->pd_ino;
7447
WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7448
}
7449
while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7450
jwait(&jmvref->jm_list, MNT_WAIT);
7451
return (ERESTART);
7452
}
7453
/*
7454
* When we're partially truncating a pagedep we just want to flush
7455
* journal entries and return. There can not be any adds in the
7456
* truncated portion of the directory and newblk must remain if
7457
* part of the block remains.
7458
*/
7459
if (blkoff != 0) {
7460
struct diradd *dap;
7461
7462
LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7463
if (dap->da_offset > blkoff)
7464
panic("cancel_pagedep: diradd %p off %d > %d",
7465
dap, dap->da_offset, blkoff);
7466
for (i = 0; i < DAHASHSZ; i++)
7467
LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7468
if (dap->da_offset > blkoff)
7469
panic("cancel_pagedep: diradd %p off %d > %d",
7470
dap, dap->da_offset, blkoff);
7471
return (0);
7472
}
7473
/*
7474
* There should be no directory add dependencies present
7475
* as the directory could not be truncated until all
7476
* children were removed.
7477
*/
7478
KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7479
("deallocate_dependencies: pendinghd != NULL"));
7480
for (i = 0; i < DAHASHSZ; i++)
7481
KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7482
("deallocate_dependencies: diraddhd != NULL"));
7483
if ((pagedep->pd_state & NEWBLOCK) != 0)
7484
free_newdirblk(pagedep->pd_newdirblk);
7485
if (free_pagedep(pagedep) == 0)
7486
panic("Failed to free pagedep %p", pagedep);
7487
return (0);
7488
}
7489
7490
/*
7491
* Reclaim any dependency structures from a buffer that is about to
7492
* be reallocated to a new vnode. The buffer must be locked, thus,
7493
* no I/O completion operations can occur while we are manipulating
7494
* its associated dependencies. The mutex is held so that other I/O's
7495
* associated with related dependencies do not occur.
7496
*/
7497
static int
7498
deallocate_dependencies(
7499
struct buf *bp,
7500
struct freeblks *freeblks,
7501
int off)
7502
{
7503
struct indirdep *indirdep;
7504
struct pagedep *pagedep;
7505
struct worklist *wk, *wkn;
7506
struct ufsmount *ump;
7507
7508
ump = softdep_bp_to_mp(bp);
7509
if (ump == NULL)
7510
goto done;
7511
ACQUIRE_LOCK(ump);
7512
LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7513
switch (wk->wk_type) {
7514
case D_INDIRDEP:
7515
indirdep = WK_INDIRDEP(wk);
7516
if (bp->b_lblkno >= 0 ||
7517
bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7518
panic("deallocate_dependencies: not indir");
7519
cancel_indirdep(indirdep, bp, freeblks);
7520
continue;
7521
7522
case D_PAGEDEP:
7523
pagedep = WK_PAGEDEP(wk);
7524
if (cancel_pagedep(pagedep, freeblks, off)) {
7525
FREE_LOCK(ump);
7526
return (ERESTART);
7527
}
7528
continue;
7529
7530
case D_ALLOCINDIR:
7531
/*
7532
* Simply remove the allocindir, we'll find it via
7533
* the indirdep where we can clear pointers if
7534
* needed.
7535
*/
7536
WORKLIST_REMOVE(wk);
7537
continue;
7538
7539
case D_FREEWORK:
7540
/*
7541
* A truncation is waiting for the zero'd pointers
7542
* to be written. It can be freed when the freeblks
7543
* is journaled.
7544
*/
7545
WORKLIST_REMOVE(wk);
7546
wk->wk_state |= ONDEPLIST;
7547
WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7548
break;
7549
7550
case D_ALLOCDIRECT:
7551
if (off != 0)
7552
continue;
7553
/* FALLTHROUGH */
7554
default:
7555
panic("deallocate_dependencies: Unexpected type %s",
7556
TYPENAME(wk->wk_type));
7557
/* NOTREACHED */
7558
}
7559
}
7560
FREE_LOCK(ump);
7561
done:
7562
/*
7563
* Don't throw away this buf, we were partially truncating and
7564
* some deps may always remain.
7565
*/
7566
if (off) {
7567
allocbuf(bp, off);
7568
bp->b_vflags |= BV_SCANNED;
7569
return (EBUSY);
7570
}
7571
bp->b_flags |= B_INVAL | B_NOCACHE;
7572
7573
return (0);
7574
}
7575
7576
/*
7577
* An allocdirect is being canceled due to a truncate. We must make sure
7578
* the journal entry is released in concert with the blkfree that releases
7579
* the storage. Completed journal entries must not be released until the
7580
* space is no longer pointed to by the inode or in the bitmap.
7581
*/
7582
static void
7583
cancel_allocdirect(
7584
struct allocdirectlst *adphead,
7585
struct allocdirect *adp,
7586
struct freeblks *freeblks)
7587
{
7588
struct freework *freework;
7589
struct newblk *newblk;
7590
struct worklist *wk;
7591
7592
TAILQ_REMOVE(adphead, adp, ad_next);
7593
newblk = (struct newblk *)adp;
7594
freework = NULL;
7595
/*
7596
* Find the correct freework structure.
7597
*/
7598
LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7599
if (wk->wk_type != D_FREEWORK)
7600
continue;
7601
freework = WK_FREEWORK(wk);
7602
if (freework->fw_blkno == newblk->nb_newblkno)
7603
break;
7604
}
7605
if (freework == NULL)
7606
panic("cancel_allocdirect: Freework not found");
7607
/*
7608
* If a newblk exists at all we still have the journal entry that
7609
* initiated the allocation so we do not need to journal the free.
7610
*/
7611
cancel_jfreeblk(freeblks, freework->fw_blkno);
7612
/*
7613
* If the journal hasn't been written the jnewblk must be passed
7614
* to the call to ffs_blkfree that reclaims the space. We accomplish
7615
* this by linking the journal dependency into the freework to be
7616
* freed when freework_freeblock() is called. If the journal has
7617
* been written we can simply reclaim the journal space when the
7618
* freeblks work is complete.
7619
*/
7620
freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7621
&freeblks->fb_jwork);
7622
WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7623
}
7624
7625
/*
7626
* Cancel a new block allocation. May be an indirect or direct block. We
7627
* remove it from various lists and return any journal record that needs to
7628
* be resolved by the caller.
7629
*
7630
* A special consideration is made for indirects which were never pointed
7631
* at on disk and will never be found once this block is released.
7632
*/
7633
static struct jnewblk *
7634
cancel_newblk(
7635
struct newblk *newblk,
7636
struct worklist *wk,
7637
struct workhead *wkhd)
7638
{
7639
struct jnewblk *jnewblk;
7640
7641
CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7642
7643
newblk->nb_state |= GOINGAWAY;
7644
/*
7645
* Previously we traversed the completedhd on each indirdep
7646
* attached to this newblk to cancel them and gather journal
7647
* work. Since we need only the oldest journal segment and
7648
* the lowest point on the tree will always have the oldest
7649
* journal segment we are free to release the segments
7650
* of any subordinates and may leave the indirdep list to
7651
* indirdep_complete() when this newblk is freed.
7652
*/
7653
if (newblk->nb_state & ONDEPLIST) {
7654
newblk->nb_state &= ~ONDEPLIST;
7655
LIST_REMOVE(newblk, nb_deps);
7656
}
7657
if (newblk->nb_state & ONWORKLIST)
7658
WORKLIST_REMOVE(&newblk->nb_list);
7659
/*
7660
* If the journal entry hasn't been written we save a pointer to
7661
* the dependency that frees it until it is written or the
7662
* superseding operation completes.
7663
*/
7664
jnewblk = newblk->nb_jnewblk;
7665
if (jnewblk != NULL && wk != NULL) {
7666
newblk->nb_jnewblk = NULL;
7667
jnewblk->jn_dep = wk;
7668
}
7669
if (!LIST_EMPTY(&newblk->nb_jwork))
7670
jwork_move(wkhd, &newblk->nb_jwork);
7671
/*
7672
* When truncating we must free the newdirblk early to remove
7673
* the pagedep from the hash before returning.
7674
*/
7675
if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7676
free_newdirblk(WK_NEWDIRBLK(wk));
7677
if (!LIST_EMPTY(&newblk->nb_newdirblk))
7678
panic("cancel_newblk: extra newdirblk");
7679
7680
return (jnewblk);
7681
}
7682
7683
/*
7684
* Schedule the freefrag associated with a newblk to be released once
7685
* the pointers are written and the previous block is no longer needed.
7686
*/
7687
static void
7688
newblk_freefrag(struct newblk *newblk)
7689
{
7690
struct freefrag *freefrag;
7691
7692
if (newblk->nb_freefrag == NULL)
7693
return;
7694
freefrag = newblk->nb_freefrag;
7695
newblk->nb_freefrag = NULL;
7696
freefrag->ff_state |= COMPLETE;
7697
if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7698
add_to_worklist(&freefrag->ff_list, 0);
7699
}
7700
7701
/*
7702
* Free a newblk. Generate a new freefrag work request if appropriate.
7703
* This must be called after the inode pointer and any direct block pointers
7704
* are valid or fully removed via truncate or frag extension.
7705
*/
7706
static void
7707
free_newblk(struct newblk *newblk)
7708
{
7709
struct indirdep *indirdep;
7710
struct worklist *wk;
7711
7712
KASSERT(newblk->nb_jnewblk == NULL,
7713
("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7714
KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7715
("free_newblk: unclaimed newblk"));
7716
LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7717
newblk_freefrag(newblk);
7718
if (newblk->nb_state & ONDEPLIST)
7719
LIST_REMOVE(newblk, nb_deps);
7720
if (newblk->nb_state & ONWORKLIST)
7721
WORKLIST_REMOVE(&newblk->nb_list);
7722
LIST_REMOVE(newblk, nb_hash);
7723
if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7724
free_newdirblk(WK_NEWDIRBLK(wk));
7725
if (!LIST_EMPTY(&newblk->nb_newdirblk))
7726
panic("free_newblk: extra newdirblk");
7727
while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7728
indirdep_complete(indirdep);
7729
handle_jwork(&newblk->nb_jwork);
7730
WORKITEM_FREE(newblk, D_NEWBLK);
7731
}
7732
7733
/*
7734
* Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7735
*/
7736
static void
7737
free_newdirblk(struct newdirblk *newdirblk)
7738
{
7739
struct pagedep *pagedep;
7740
struct diradd *dap;
7741
struct worklist *wk;
7742
7743
LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7744
WORKLIST_REMOVE(&newdirblk->db_list);
7745
/*
7746
* If the pagedep is still linked onto the directory buffer
7747
* dependency chain, then some of the entries on the
7748
* pd_pendinghd list may not be committed to disk yet. In
7749
* this case, we will simply clear the NEWBLOCK flag and
7750
* let the pd_pendinghd list be processed when the pagedep
7751
* is next written. If the pagedep is no longer on the buffer
7752
* dependency chain, then all the entries on the pd_pending
7753
* list are committed to disk and we can free them here.
7754
*/
7755
pagedep = newdirblk->db_pagedep;
7756
pagedep->pd_state &= ~NEWBLOCK;
7757
if ((pagedep->pd_state & ONWORKLIST) == 0) {
7758
while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7759
free_diradd(dap, NULL);
7760
/*
7761
* If no dependencies remain, the pagedep will be freed.
7762
*/
7763
free_pagedep(pagedep);
7764
}
7765
/* Should only ever be one item in the list. */
7766
while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7767
WORKLIST_REMOVE(wk);
7768
handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7769
}
7770
WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7771
}
7772
7773
/*
7774
* Prepare an inode to be freed. The actual free operation is not
7775
* done until the zero'ed inode has been written to disk.
7776
*/
7777
void
7778
softdep_freefile(
7779
struct vnode *pvp,
7780
ino_t ino,
7781
int mode)
7782
{
7783
struct inode *ip = VTOI(pvp);
7784
struct inodedep *inodedep;
7785
struct freefile *freefile;
7786
struct freeblks *freeblks;
7787
struct ufsmount *ump;
7788
7789
ump = ITOUMP(ip);
7790
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7791
("softdep_freefile called on non-softdep filesystem"));
7792
/*
7793
* This sets up the inode de-allocation dependency.
7794
*/
7795
freefile = malloc(sizeof(struct freefile),
7796
M_FREEFILE, M_SOFTDEP_FLAGS);
7797
workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7798
freefile->fx_mode = mode;
7799
freefile->fx_oldinum = ino;
7800
freefile->fx_devvp = ump->um_devvp;
7801
LIST_INIT(&freefile->fx_jwork);
7802
UFS_LOCK(ump);
7803
ump->um_fs->fs_pendinginodes += 1;
7804
UFS_UNLOCK(ump);
7805
7806
/*
7807
* If the inodedep does not exist, then the zero'ed inode has
7808
* been written to disk. If the allocated inode has never been
7809
* written to disk, then the on-disk inode is zero'ed. In either
7810
* case we can free the file immediately. If the journal was
7811
* canceled before being written the inode will never make it to
7812
* disk and we must send the canceled journal entrys to
7813
* ffs_freefile() to be cleared in conjunction with the bitmap.
7814
* Any blocks waiting on the inode to write can be safely freed
7815
* here as it will never been written.
7816
*/
7817
ACQUIRE_LOCK(ump);
7818
inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7819
if (inodedep) {
7820
/*
7821
* Clear out freeblks that no longer need to reference
7822
* this inode.
7823
*/
7824
while ((freeblks =
7825
TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7826
TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7827
fb_next);
7828
freeblks->fb_state &= ~ONDEPLIST;
7829
}
7830
/*
7831
* Remove this inode from the unlinked list.
7832
*/
7833
if (inodedep->id_state & UNLINKED) {
7834
/*
7835
* Save the journal work to be freed with the bitmap
7836
* before we clear UNLINKED. Otherwise it can be lost
7837
* if the inode block is written.
7838
*/
7839
handle_bufwait(inodedep, &freefile->fx_jwork);
7840
clear_unlinked_inodedep(inodedep);
7841
/*
7842
* Re-acquire inodedep as we've dropped the
7843
* per-filesystem lock in clear_unlinked_inodedep().
7844
*/
7845
inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7846
}
7847
}
7848
if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7849
FREE_LOCK(ump);
7850
handle_workitem_freefile(freefile);
7851
return;
7852
}
7853
if ((inodedep->id_state & DEPCOMPLETE) == 0)
7854
inodedep->id_state |= GOINGAWAY;
7855
WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7856
FREE_LOCK(ump);
7857
if (ip->i_number == ino)
7858
UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
7859
}
7860
7861
/*
7862
* Check to see if an inode has never been written to disk. If
7863
* so free the inodedep and return success, otherwise return failure.
7864
*
7865
* If we still have a bitmap dependency, then the inode has never
7866
* been written to disk. Drop the dependency as it is no longer
7867
* necessary since the inode is being deallocated. We set the
7868
* ALLCOMPLETE flags since the bitmap now properly shows that the
7869
* inode is not allocated. Even if the inode is actively being
7870
* written, it has been rolled back to its zero'ed state, so we
7871
* are ensured that a zero inode is what is on the disk. For short
7872
* lived files, this change will usually result in removing all the
7873
* dependencies from the inode so that it can be freed immediately.
7874
*/
7875
static int
7876
check_inode_unwritten(struct inodedep *inodedep)
7877
{
7878
7879
LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7880
7881
if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7882
!LIST_EMPTY(&inodedep->id_dirremhd) ||
7883
!LIST_EMPTY(&inodedep->id_pendinghd) ||
7884
!LIST_EMPTY(&inodedep->id_bufwait) ||
7885
!LIST_EMPTY(&inodedep->id_inowait) ||
7886
!TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7887
!TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7888
!TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7889
!TAILQ_EMPTY(&inodedep->id_extupdt) ||
7890
!TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7891
!TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7892
inodedep->id_mkdiradd != NULL ||
7893
inodedep->id_nlinkdelta != 0)
7894
return (0);
7895
/*
7896
* Another process might be in initiate_write_inodeblock_ufs[12]
7897
* trying to allocate memory without holding "Softdep Lock".
7898
*/
7899
if ((inodedep->id_state & IOSTARTED) != 0 &&
7900
inodedep->id_savedino1 == NULL)
7901
return (0);
7902
7903
if (inodedep->id_state & ONDEPLIST)
7904
LIST_REMOVE(inodedep, id_deps);
7905
inodedep->id_state &= ~ONDEPLIST;
7906
inodedep->id_state |= ALLCOMPLETE;
7907
inodedep->id_bmsafemap = NULL;
7908
if (inodedep->id_state & ONWORKLIST)
7909
WORKLIST_REMOVE(&inodedep->id_list);
7910
if (inodedep->id_savedino1 != NULL) {
7911
free(inodedep->id_savedino1, M_SAVEDINO);
7912
inodedep->id_savedino1 = NULL;
7913
}
7914
if (free_inodedep(inodedep) == 0)
7915
panic("check_inode_unwritten: busy inode");
7916
return (1);
7917
}
7918
7919
static int
7920
check_inodedep_free(struct inodedep *inodedep)
7921
{
7922
7923
LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7924
if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7925
!LIST_EMPTY(&inodedep->id_dirremhd) ||
7926
!LIST_EMPTY(&inodedep->id_pendinghd) ||
7927
!LIST_EMPTY(&inodedep->id_bufwait) ||
7928
!LIST_EMPTY(&inodedep->id_inowait) ||
7929
!TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7930
!TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7931
!TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7932
!TAILQ_EMPTY(&inodedep->id_extupdt) ||
7933
!TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7934
!TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7935
inodedep->id_mkdiradd != NULL ||
7936
inodedep->id_nlinkdelta != 0 ||
7937
inodedep->id_savedino1 != NULL)
7938
return (0);
7939
return (1);
7940
}
7941
7942
/*
7943
* Try to free an inodedep structure. Return 1 if it could be freed.
7944
*/
7945
static int
7946
free_inodedep(struct inodedep *inodedep)
7947
{
7948
7949
LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7950
if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7951
!check_inodedep_free(inodedep))
7952
return (0);
7953
if (inodedep->id_state & ONDEPLIST)
7954
LIST_REMOVE(inodedep, id_deps);
7955
LIST_REMOVE(inodedep, id_hash);
7956
WORKITEM_FREE(inodedep, D_INODEDEP);
7957
return (1);
7958
}
7959
7960
/*
7961
* Free the block referenced by a freework structure. The parent freeblks
7962
* structure is released and completed when the final cg bitmap reaches
7963
* the disk. This routine may be freeing a jnewblk which never made it to
7964
* disk in which case we do not have to wait as the operation is undone
7965
* in memory immediately.
7966
*/
7967
static void
7968
freework_freeblock(struct freework *freework, uint64_t key)
7969
{
7970
struct freeblks *freeblks;
7971
struct jnewblk *jnewblk;
7972
struct ufsmount *ump;
7973
struct workhead wkhd;
7974
struct fs *fs;
7975
int bsize;
7976
int needj;
7977
7978
ump = VFSTOUFS(freework->fw_list.wk_mp);
7979
LOCK_OWNED(ump);
7980
/*
7981
* Handle partial truncate separately.
7982
*/
7983
if (freework->fw_indir) {
7984
complete_trunc_indir(freework);
7985
return;
7986
}
7987
freeblks = freework->fw_freeblks;
7988
fs = ump->um_fs;
7989
needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7990
bsize = lfragtosize(fs, freework->fw_frags);
7991
LIST_INIT(&wkhd);
7992
/*
7993
* DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7994
* on the indirblk hashtable and prevents premature freeing.
7995
*/
7996
freework->fw_state |= DEPCOMPLETE;
7997
/*
7998
* SUJ needs to wait for the segment referencing freed indirect
7999
* blocks to expire so that we know the checker will not confuse
8000
* a re-allocated indirect block with its old contents.
8001
*/
8002
if (needj && freework->fw_lbn <= -UFS_NDADDR)
8003
indirblk_insert(freework);
8004
/*
8005
* If we are canceling an existing jnewblk pass it to the free
8006
* routine, otherwise pass the freeblk which will ultimately
8007
* release the freeblks. If we're not journaling, we can just
8008
* free the freeblks immediately.
8009
*/
8010
jnewblk = freework->fw_jnewblk;
8011
if (jnewblk != NULL) {
8012
cancel_jnewblk(jnewblk, &wkhd);
8013
needj = 0;
8014
} else if (needj) {
8015
freework->fw_state |= DELAYEDFREE;
8016
freeblks->fb_cgwait++;
8017
WORKLIST_INSERT(&wkhd, &freework->fw_list);
8018
}
8019
FREE_LOCK(ump);
8020
freeblks_free(ump, freeblks, btodb(bsize));
8021
CTR4(KTR_SUJ,
8022
"freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
8023
freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
8024
ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
8025
freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
8026
ACQUIRE_LOCK(ump);
8027
/*
8028
* The jnewblk will be discarded and the bits in the map never
8029
* made it to disk. We can immediately free the freeblk.
8030
*/
8031
if (needj == 0)
8032
handle_written_freework(freework);
8033
}
8034
8035
/*
8036
* We enqueue freework items that need processing back on the freeblks and
8037
* add the freeblks to the worklist. This makes it easier to find all work
8038
* required to flush a truncation in process_truncates().
8039
*/
8040
static void
8041
freework_enqueue(struct freework *freework)
8042
{
8043
struct freeblks *freeblks;
8044
8045
freeblks = freework->fw_freeblks;
8046
if ((freework->fw_state & INPROGRESS) == 0)
8047
WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
8048
if ((freeblks->fb_state &
8049
(ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
8050
LIST_EMPTY(&freeblks->fb_jblkdephd))
8051
add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8052
}
8053
8054
/*
8055
* Start, continue, or finish the process of freeing an indirect block tree.
8056
* The free operation may be paused at any point with fw_off containing the
8057
* offset to restart from. This enables us to implement some flow control
8058
* for large truncates which may fan out and generate a huge number of
8059
* dependencies.
8060
*/
8061
static void
8062
handle_workitem_indirblk(struct freework *freework)
8063
{
8064
struct freeblks *freeblks;
8065
struct ufsmount *ump;
8066
struct fs *fs;
8067
8068
freeblks = freework->fw_freeblks;
8069
ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8070
fs = ump->um_fs;
8071
if (freework->fw_state & DEPCOMPLETE) {
8072
handle_written_freework(freework);
8073
return;
8074
}
8075
if (freework->fw_off == NINDIR(fs)) {
8076
freework_freeblock(freework, SINGLETON_KEY);
8077
return;
8078
}
8079
freework->fw_state |= INPROGRESS;
8080
FREE_LOCK(ump);
8081
indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
8082
freework->fw_lbn);
8083
ACQUIRE_LOCK(ump);
8084
}
8085
8086
/*
8087
* Called when a freework structure attached to a cg buf is written. The
8088
* ref on either the parent or the freeblks structure is released and
8089
* the freeblks is added back to the worklist if there is more work to do.
8090
*/
8091
static void
8092
handle_written_freework(struct freework *freework)
8093
{
8094
struct freeblks *freeblks;
8095
struct freework *parent;
8096
8097
freeblks = freework->fw_freeblks;
8098
parent = freework->fw_parent;
8099
if (freework->fw_state & DELAYEDFREE)
8100
freeblks->fb_cgwait--;
8101
freework->fw_state |= COMPLETE;
8102
if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
8103
WORKITEM_FREE(freework, D_FREEWORK);
8104
if (parent) {
8105
if (--parent->fw_ref == 0)
8106
freework_enqueue(parent);
8107
return;
8108
}
8109
if (--freeblks->fb_ref != 0)
8110
return;
8111
if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
8112
ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
8113
add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8114
}
8115
8116
/*
8117
* This workitem routine performs the block de-allocation.
8118
* The workitem is added to the pending list after the updated
8119
* inode block has been written to disk. As mentioned above,
8120
* checks regarding the number of blocks de-allocated (compared
8121
* to the number of blocks allocated for the file) are also
8122
* performed in this function.
8123
*/
8124
static int
8125
handle_workitem_freeblocks(struct freeblks *freeblks, int flags)
8126
{
8127
struct freework *freework;
8128
struct newblk *newblk;
8129
struct allocindir *aip;
8130
struct ufsmount *ump;
8131
struct worklist *wk;
8132
uint64_t key;
8133
8134
KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
8135
("handle_workitem_freeblocks: Journal entries not written."));
8136
ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8137
key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8138
ACQUIRE_LOCK(ump);
8139
while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
8140
WORKLIST_REMOVE(wk);
8141
switch (wk->wk_type) {
8142
case D_DIRREM:
8143
wk->wk_state |= COMPLETE;
8144
add_to_worklist(wk, 0);
8145
continue;
8146
8147
case D_ALLOCDIRECT:
8148
free_newblk(WK_NEWBLK(wk));
8149
continue;
8150
8151
case D_ALLOCINDIR:
8152
aip = WK_ALLOCINDIR(wk);
8153
freework = NULL;
8154
if (aip->ai_state & DELAYEDFREE) {
8155
FREE_LOCK(ump);
8156
freework = newfreework(ump, freeblks, NULL,
8157
aip->ai_lbn, aip->ai_newblkno,
8158
ump->um_fs->fs_frag, 0, 0);
8159
ACQUIRE_LOCK(ump);
8160
}
8161
newblk = WK_NEWBLK(wk);
8162
if (newblk->nb_jnewblk) {
8163
freework->fw_jnewblk = newblk->nb_jnewblk;
8164
newblk->nb_jnewblk->jn_dep = &freework->fw_list;
8165
newblk->nb_jnewblk = NULL;
8166
}
8167
free_newblk(newblk);
8168
continue;
8169
8170
case D_FREEWORK:
8171
freework = WK_FREEWORK(wk);
8172
if (freework->fw_lbn <= -UFS_NDADDR)
8173
handle_workitem_indirblk(freework);
8174
else
8175
freework_freeblock(freework, key);
8176
continue;
8177
default:
8178
panic("handle_workitem_freeblocks: Unknown type %s",
8179
TYPENAME(wk->wk_type));
8180
}
8181
}
8182
if (freeblks->fb_ref != 0) {
8183
freeblks->fb_state &= ~INPROGRESS;
8184
wake_worklist(&freeblks->fb_list);
8185
freeblks = NULL;
8186
}
8187
FREE_LOCK(ump);
8188
ffs_blkrelease_finish(ump, key);
8189
if (freeblks)
8190
return handle_complete_freeblocks(freeblks, flags);
8191
return (0);
8192
}
8193
8194
/*
8195
* Handle completion of block free via truncate. This allows fs_pending
8196
* to track the actual free block count more closely than if we only updated
8197
* it at the end. We must be careful to handle cases where the block count
8198
* on free was incorrect.
8199
*/
8200
static void
8201
freeblks_free(struct ufsmount *ump,
8202
struct freeblks *freeblks,
8203
int blocks)
8204
{
8205
struct fs *fs;
8206
ufs2_daddr_t remain;
8207
8208
UFS_LOCK(ump);
8209
remain = -freeblks->fb_chkcnt;
8210
freeblks->fb_chkcnt += blocks;
8211
if (remain > 0) {
8212
if (remain < blocks)
8213
blocks = remain;
8214
fs = ump->um_fs;
8215
fs->fs_pendingblocks -= blocks;
8216
}
8217
UFS_UNLOCK(ump);
8218
}
8219
8220
/*
8221
* Once all of the freework workitems are complete we can retire the
8222
* freeblocks dependency and any journal work awaiting completion. This
8223
* can not be called until all other dependencies are stable on disk.
8224
*/
8225
static int
8226
handle_complete_freeblocks(struct freeblks *freeblks, int flags)
8227
{
8228
struct inodedep *inodedep;
8229
struct inode *ip;
8230
struct vnode *vp;
8231
struct fs *fs;
8232
struct ufsmount *ump;
8233
ufs2_daddr_t spare;
8234
8235
ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8236
fs = ump->um_fs;
8237
flags = LK_EXCLUSIVE | flags;
8238
spare = freeblks->fb_chkcnt;
8239
8240
/*
8241
* If we did not release the expected number of blocks we may have
8242
* to adjust the inode block count here. Only do so if it wasn't
8243
* a truncation to zero and the modrev still matches.
8244
*/
8245
if (spare && freeblks->fb_len != 0) {
8246
if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8247
flags, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP) != 0)
8248
return (EBUSY);
8249
ip = VTOI(vp);
8250
if (ip->i_mode == 0) {
8251
vgone(vp);
8252
} else if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8253
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8254
UFS_INODE_SET_FLAG(ip, IN_CHANGE);
8255
/*
8256
* We must wait so this happens before the
8257
* journal is reclaimed.
8258
*/
8259
ffs_update(vp, 1);
8260
}
8261
vput(vp);
8262
}
8263
if (spare < 0) {
8264
UFS_LOCK(ump);
8265
fs->fs_pendingblocks += spare;
8266
UFS_UNLOCK(ump);
8267
}
8268
#ifdef QUOTA
8269
/* Handle spare. */
8270
if (spare)
8271
quotaadj(freeblks->fb_quota, ump, -spare);
8272
quotarele(freeblks->fb_quota);
8273
#endif
8274
ACQUIRE_LOCK(ump);
8275
if (freeblks->fb_state & ONDEPLIST) {
8276
inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8277
0, &inodedep);
8278
TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8279
freeblks->fb_state &= ~ONDEPLIST;
8280
if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8281
free_inodedep(inodedep);
8282
}
8283
/*
8284
* All of the freeblock deps must be complete prior to this call
8285
* so it's now safe to complete earlier outstanding journal entries.
8286
*/
8287
handle_jwork(&freeblks->fb_jwork);
8288
WORKITEM_FREE(freeblks, D_FREEBLKS);
8289
FREE_LOCK(ump);
8290
return (0);
8291
}
8292
8293
/*
8294
* Release blocks associated with the freeblks and stored in the indirect
8295
* block dbn. If level is greater than SINGLE, the block is an indirect block
8296
* and recursive calls to indirtrunc must be used to cleanse other indirect
8297
* blocks.
8298
*
8299
* This handles partial and complete truncation of blocks. Partial is noted
8300
* with goingaway == 0. In this case the freework is completed after the
8301
* zero'd indirects are written to disk. For full truncation the freework
8302
* is completed after the block is freed.
8303
*/
8304
static void
8305
indir_trunc(struct freework *freework,
8306
ufs2_daddr_t dbn,
8307
ufs_lbn_t lbn)
8308
{
8309
struct freework *nfreework;
8310
struct workhead wkhd;
8311
struct freeblks *freeblks;
8312
struct buf *bp;
8313
struct fs *fs;
8314
struct indirdep *indirdep;
8315
struct mount *mp;
8316
struct ufsmount *ump;
8317
ufs1_daddr_t *bap1;
8318
ufs2_daddr_t nb, nnb, *bap2;
8319
ufs_lbn_t lbnadd, nlbn;
8320
uint64_t key;
8321
int nblocks, ufs1fmt, freedblocks;
8322
int goingaway, freedeps, needj, level, cnt, i, error;
8323
8324
freeblks = freework->fw_freeblks;
8325
mp = freeblks->fb_list.wk_mp;
8326
ump = VFSTOUFS(mp);
8327
fs = ump->um_fs;
8328
/*
8329
* Get buffer of block pointers to be freed. There are three cases:
8330
*
8331
* 1) Partial truncate caches the indirdep pointer in the freework
8332
* which provides us a back copy to the save bp which holds the
8333
* pointers we want to clear. When this completes the zero
8334
* pointers are written to the real copy.
8335
* 2) The indirect is being completely truncated, cancel_indirdep()
8336
* eliminated the real copy and placed the indirdep on the saved
8337
* copy. The indirdep and buf are discarded when this completes.
8338
* 3) The indirect was not in memory, we read a copy off of the disk
8339
* using the devvp and drop and invalidate the buffer when we're
8340
* done.
8341
*/
8342
goingaway = 1;
8343
indirdep = NULL;
8344
if (freework->fw_indir != NULL) {
8345
goingaway = 0;
8346
indirdep = freework->fw_indir;
8347
bp = indirdep->ir_savebp;
8348
if (bp == NULL || bp->b_blkno != dbn)
8349
panic("indir_trunc: Bad saved buf %p blkno %jd",
8350
bp, (intmax_t)dbn);
8351
} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8352
/*
8353
* The lock prevents the buf dep list from changing and
8354
* indirects on devvp should only ever have one dependency.
8355
*/
8356
indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8357
if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8358
panic("indir_trunc: Bad indirdep %p from buf %p",
8359
indirdep, bp);
8360
} else {
8361
error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn,
8362
(int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
8363
if (error)
8364
return;
8365
}
8366
ACQUIRE_LOCK(ump);
8367
/* Protects against a race with complete_trunc_indir(). */
8368
freework->fw_state &= ~INPROGRESS;
8369
/*
8370
* If we have an indirdep we need to enforce the truncation order
8371
* and discard it when it is complete.
8372
*/
8373
if (indirdep) {
8374
if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8375
!TAILQ_EMPTY(&indirdep->ir_trunc)) {
8376
/*
8377
* Add the complete truncate to the list on the
8378
* indirdep to enforce in-order processing.
8379
*/
8380
if (freework->fw_indir == NULL)
8381
TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8382
freework, fw_next);
8383
FREE_LOCK(ump);
8384
return;
8385
}
8386
/*
8387
* If we're goingaway, free the indirdep. Otherwise it will
8388
* linger until the write completes.
8389
*/
8390
if (goingaway) {
8391
KASSERT(indirdep->ir_savebp == bp,
8392
("indir_trunc: losing ir_savebp %p",
8393
indirdep->ir_savebp));
8394
indirdep->ir_savebp = NULL;
8395
free_indirdep(indirdep);
8396
}
8397
}
8398
FREE_LOCK(ump);
8399
/* Initialize pointers depending on block size. */
8400
if (ump->um_fstype == UFS1) {
8401
bap1 = (ufs1_daddr_t *)bp->b_data;
8402
nb = bap1[freework->fw_off];
8403
ufs1fmt = 1;
8404
bap2 = NULL;
8405
} else {
8406
bap2 = (ufs2_daddr_t *)bp->b_data;
8407
nb = bap2[freework->fw_off];
8408
ufs1fmt = 0;
8409
bap1 = NULL;
8410
}
8411
level = lbn_level(lbn);
8412
needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8413
lbnadd = lbn_offset(fs, level);
8414
nblocks = btodb(fs->fs_bsize);
8415
nfreework = freework;
8416
freedeps = 0;
8417
cnt = 0;
8418
/*
8419
* Reclaim blocks. Traverses into nested indirect levels and
8420
* arranges for the current level to be freed when subordinates
8421
* are free when journaling.
8422
*/
8423
key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8424
for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8425
if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb,
8426
fs->fs_bsize) != 0)
8427
nb = 0;
8428
if (i != NINDIR(fs) - 1) {
8429
if (ufs1fmt)
8430
nnb = bap1[i+1];
8431
else
8432
nnb = bap2[i+1];
8433
} else
8434
nnb = 0;
8435
if (nb == 0)
8436
continue;
8437
cnt++;
8438
if (level != 0) {
8439
nlbn = (lbn + 1) - (i * lbnadd);
8440
if (needj != 0) {
8441
nfreework = newfreework(ump, freeblks, freework,
8442
nlbn, nb, fs->fs_frag, 0, 0);
8443
freedeps++;
8444
}
8445
indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8446
} else {
8447
struct freedep *freedep;
8448
8449
/*
8450
* Attempt to aggregate freedep dependencies for
8451
* all blocks being released to the same CG.
8452
*/
8453
LIST_INIT(&wkhd);
8454
if (needj != 0 &&
8455
(nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8456
freedep = newfreedep(freework);
8457
WORKLIST_INSERT_UNLOCKED(&wkhd,
8458
&freedep->fd_list);
8459
freedeps++;
8460
}
8461
CTR3(KTR_SUJ,
8462
"indir_trunc: ino %jd blkno %jd size %d",
8463
freeblks->fb_inum, nb, fs->fs_bsize);
8464
ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8465
fs->fs_bsize, freeblks->fb_inum,
8466
freeblks->fb_vtype, &wkhd, key);
8467
}
8468
}
8469
ffs_blkrelease_finish(ump, key);
8470
if (goingaway) {
8471
bp->b_flags |= B_INVAL | B_NOCACHE;
8472
brelse(bp);
8473
}
8474
freedblocks = 0;
8475
if (level == 0)
8476
freedblocks = (nblocks * cnt);
8477
if (needj == 0)
8478
freedblocks += nblocks;
8479
freeblks_free(ump, freeblks, freedblocks);
8480
/*
8481
* If we are journaling set up the ref counts and offset so this
8482
* indirect can be completed when its children are free.
8483
*/
8484
if (needj) {
8485
ACQUIRE_LOCK(ump);
8486
freework->fw_off = i;
8487
freework->fw_ref += freedeps;
8488
freework->fw_ref -= NINDIR(fs) + 1;
8489
if (level == 0)
8490
freeblks->fb_cgwait += freedeps;
8491
if (freework->fw_ref == 0)
8492
freework_freeblock(freework, SINGLETON_KEY);
8493
FREE_LOCK(ump);
8494
return;
8495
}
8496
/*
8497
* If we're not journaling we can free the indirect now.
8498
*/
8499
dbn = dbtofsb(fs, dbn);
8500
CTR3(KTR_SUJ,
8501
"indir_trunc 2: ino %jd blkno %jd size %d",
8502
freeblks->fb_inum, dbn, fs->fs_bsize);
8503
ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8504
freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
8505
/* Non SUJ softdep does single-threaded truncations. */
8506
if (freework->fw_blkno == dbn) {
8507
freework->fw_state |= ALLCOMPLETE;
8508
ACQUIRE_LOCK(ump);
8509
handle_written_freework(freework);
8510
FREE_LOCK(ump);
8511
}
8512
return;
8513
}
8514
8515
/*
8516
* Cancel an allocindir when it is removed via truncation. When bp is not
8517
* NULL the indirect never appeared on disk and is scheduled to be freed
8518
* independently of the indir so we can more easily track journal work.
8519
*/
8520
static void
8521
cancel_allocindir(
8522
struct allocindir *aip,
8523
struct buf *bp,
8524
struct freeblks *freeblks,
8525
int trunc)
8526
{
8527
struct indirdep *indirdep;
8528
struct freefrag *freefrag;
8529
struct newblk *newblk;
8530
8531
newblk = (struct newblk *)aip;
8532
LIST_REMOVE(aip, ai_next);
8533
/*
8534
* We must eliminate the pointer in bp if it must be freed on its
8535
* own due to partial truncate or pending journal work.
8536
*/
8537
if (bp && (trunc || newblk->nb_jnewblk)) {
8538
/*
8539
* Clear the pointer and mark the aip to be freed
8540
* directly if it never existed on disk.
8541
*/
8542
aip->ai_state |= DELAYEDFREE;
8543
indirdep = aip->ai_indirdep;
8544
if (indirdep->ir_state & UFS1FMT)
8545
((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8546
else
8547
((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8548
}
8549
/*
8550
* When truncating the previous pointer will be freed via
8551
* savedbp. Eliminate the freefrag which would dup free.
8552
*/
8553
if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8554
newblk->nb_freefrag = NULL;
8555
if (freefrag->ff_jdep)
8556
cancel_jfreefrag(
8557
WK_JFREEFRAG(freefrag->ff_jdep));
8558
jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8559
WORKITEM_FREE(freefrag, D_FREEFRAG);
8560
}
8561
/*
8562
* If the journal hasn't been written the jnewblk must be passed
8563
* to the call to ffs_blkfree that reclaims the space. We accomplish
8564
* this by leaving the journal dependency on the newblk to be freed
8565
* when a freework is created in handle_workitem_freeblocks().
8566
*/
8567
cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8568
WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8569
}
8570
8571
/*
8572
* Create the mkdir dependencies for . and .. in a new directory. Link them
8573
* in to a newdirblk so any subsequent additions are tracked properly. The
8574
* caller is responsible for adding the mkdir1 dependency to the journal
8575
* and updating id_mkdiradd. This function returns with the per-filesystem
8576
* lock held.
8577
*/
8578
static struct mkdir *
8579
setup_newdir(
8580
struct diradd *dap,
8581
ino_t newinum,
8582
ino_t dinum,
8583
struct buf *newdirbp,
8584
struct mkdir **mkdirp)
8585
{
8586
struct newblk *newblk;
8587
struct pagedep *pagedep;
8588
struct inodedep *inodedep;
8589
struct newdirblk *newdirblk;
8590
struct mkdir *mkdir1, *mkdir2;
8591
struct worklist *wk;
8592
struct jaddref *jaddref;
8593
struct ufsmount *ump;
8594
struct mount *mp;
8595
8596
mp = dap->da_list.wk_mp;
8597
ump = VFSTOUFS(mp);
8598
newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8599
M_SOFTDEP_FLAGS);
8600
workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8601
LIST_INIT(&newdirblk->db_mkdir);
8602
mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8603
workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8604
mkdir1->md_state = ATTACHED | MKDIR_BODY;
8605
mkdir1->md_diradd = dap;
8606
mkdir1->md_jaddref = NULL;
8607
mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8608
workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8609
mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8610
mkdir2->md_diradd = dap;
8611
mkdir2->md_jaddref = NULL;
8612
if (MOUNTEDSUJ(mp) == 0) {
8613
mkdir1->md_state |= DEPCOMPLETE;
8614
mkdir2->md_state |= DEPCOMPLETE;
8615
}
8616
/*
8617
* Dependency on "." and ".." being written to disk.
8618
*/
8619
mkdir1->md_buf = newdirbp;
8620
ACQUIRE_LOCK(VFSTOUFS(mp));
8621
LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8622
/*
8623
* We must link the pagedep, allocdirect, and newdirblk for
8624
* the initial file page so the pointer to the new directory
8625
* is not written until the directory contents are live and
8626
* any subsequent additions are not marked live until the
8627
* block is reachable via the inode.
8628
*/
8629
if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8630
panic("setup_newdir: lost pagedep");
8631
LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8632
if (wk->wk_type == D_ALLOCDIRECT)
8633
break;
8634
if (wk == NULL)
8635
panic("setup_newdir: lost allocdirect");
8636
if (pagedep->pd_state & NEWBLOCK)
8637
panic("setup_newdir: NEWBLOCK already set");
8638
newblk = WK_NEWBLK(wk);
8639
pagedep->pd_state |= NEWBLOCK;
8640
pagedep->pd_newdirblk = newdirblk;
8641
newdirblk->db_pagedep = pagedep;
8642
WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8643
WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8644
/*
8645
* Look up the inodedep for the parent directory so that we
8646
* can link mkdir2 into the pending dotdot jaddref or
8647
* the inode write if there is none. If the inode is
8648
* ALLCOMPLETE and no jaddref is present all dependencies have
8649
* been satisfied and mkdir2 can be freed.
8650
*/
8651
inodedep_lookup(mp, dinum, 0, &inodedep);
8652
if (MOUNTEDSUJ(mp)) {
8653
if (inodedep == NULL)
8654
panic("setup_newdir: Lost parent.");
8655
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8656
inoreflst);
8657
KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8658
(jaddref->ja_state & MKDIR_PARENT),
8659
("setup_newdir: bad dotdot jaddref %p", jaddref));
8660
LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8661
mkdir2->md_jaddref = jaddref;
8662
jaddref->ja_mkdir = mkdir2;
8663
} else if (inodedep == NULL ||
8664
(inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8665
dap->da_state &= ~MKDIR_PARENT;
8666
WORKITEM_FREE(mkdir2, D_MKDIR);
8667
mkdir2 = NULL;
8668
} else {
8669
LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8670
WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8671
}
8672
*mkdirp = mkdir2;
8673
8674
return (mkdir1);
8675
}
8676
8677
/*
8678
* Directory entry addition dependencies.
8679
*
8680
* When adding a new directory entry, the inode (with its incremented link
8681
* count) must be written to disk before the directory entry's pointer to it.
8682
* Also, if the inode is newly allocated, the corresponding freemap must be
8683
* updated (on disk) before the directory entry's pointer. These requirements
8684
* are met via undo/redo on the directory entry's pointer, which consists
8685
* simply of the inode number.
8686
*
8687
* As directory entries are added and deleted, the free space within a
8688
* directory block can become fragmented. The ufs filesystem will compact
8689
* a fragmented directory block to make space for a new entry. When this
8690
* occurs, the offsets of previously added entries change. Any "diradd"
8691
* dependency structures corresponding to these entries must be updated with
8692
* the new offsets.
8693
*/
8694
8695
/*
8696
* This routine is called after the in-memory inode's link
8697
* count has been incremented, but before the directory entry's
8698
* pointer to the inode has been set.
8699
*/
8700
int
8701
softdep_setup_directory_add(
8702
struct buf *bp, /* buffer containing directory block */
8703
struct inode *dp, /* inode for directory */
8704
off_t diroffset, /* offset of new entry in directory */
8705
ino_t newinum, /* inode referenced by new directory entry */
8706
struct buf *newdirbp, /* non-NULL => contents of new mkdir */
8707
int isnewblk) /* entry is in a newly allocated block */
8708
{
8709
int offset; /* offset of new entry within directory block */
8710
ufs_lbn_t lbn; /* block in directory containing new entry */
8711
struct fs *fs;
8712
struct diradd *dap;
8713
struct newblk *newblk;
8714
struct pagedep *pagedep;
8715
struct inodedep *inodedep;
8716
struct newdirblk *newdirblk;
8717
struct mkdir *mkdir1, *mkdir2;
8718
struct jaddref *jaddref;
8719
struct ufsmount *ump;
8720
struct mount *mp;
8721
int isindir;
8722
8723
mp = ITOVFS(dp);
8724
ump = VFSTOUFS(mp);
8725
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8726
("softdep_setup_directory_add called on non-softdep filesystem"));
8727
/*
8728
* Whiteouts have no dependencies.
8729
*/
8730
if (newinum == UFS_WINO) {
8731
if (newdirbp != NULL)
8732
bdwrite(newdirbp);
8733
return (0);
8734
}
8735
jaddref = NULL;
8736
mkdir1 = mkdir2 = NULL;
8737
fs = ump->um_fs;
8738
lbn = lblkno(fs, diroffset);
8739
offset = blkoff(fs, diroffset);
8740
dap = malloc(sizeof(struct diradd), M_DIRADD,
8741
M_SOFTDEP_FLAGS|M_ZERO);
8742
workitem_alloc(&dap->da_list, D_DIRADD, mp);
8743
dap->da_offset = offset;
8744
dap->da_newinum = newinum;
8745
dap->da_state = ATTACHED;
8746
LIST_INIT(&dap->da_jwork);
8747
isindir = bp->b_lblkno >= UFS_NDADDR;
8748
newdirblk = NULL;
8749
if (isnewblk &&
8750
(isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8751
newdirblk = malloc(sizeof(struct newdirblk),
8752
M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8753
workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8754
LIST_INIT(&newdirblk->db_mkdir);
8755
}
8756
/*
8757
* If we're creating a new directory setup the dependencies and set
8758
* the dap state to wait for them. Otherwise it's COMPLETE and
8759
* we can move on.
8760
*/
8761
if (newdirbp == NULL) {
8762
dap->da_state |= DEPCOMPLETE;
8763
ACQUIRE_LOCK(ump);
8764
} else {
8765
dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8766
mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8767
&mkdir2);
8768
}
8769
/*
8770
* Link into parent directory pagedep to await its being written.
8771
*/
8772
pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8773
#ifdef INVARIANTS
8774
if (diradd_lookup(pagedep, offset) != NULL)
8775
panic("softdep_setup_directory_add: %p already at off %d\n",
8776
diradd_lookup(pagedep, offset), offset);
8777
#endif
8778
dap->da_pagedep = pagedep;
8779
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8780
da_pdlist);
8781
inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8782
/*
8783
* If we're journaling, link the diradd into the jaddref so it
8784
* may be completed after the journal entry is written. Otherwise,
8785
* link the diradd into its inodedep. If the inode is not yet
8786
* written place it on the bufwait list, otherwise do the post-inode
8787
* write processing to put it on the id_pendinghd list.
8788
*/
8789
if (MOUNTEDSUJ(mp)) {
8790
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8791
inoreflst);
8792
KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8793
("softdep_setup_directory_add: bad jaddref %p", jaddref));
8794
jaddref->ja_diroff = diroffset;
8795
jaddref->ja_diradd = dap;
8796
add_to_journal(&jaddref->ja_list);
8797
} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8798
diradd_inode_written(dap, inodedep);
8799
else
8800
WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8801
/*
8802
* Add the journal entries for . and .. links now that the primary
8803
* link is written.
8804
*/
8805
if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8806
jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8807
inoreflst, if_deps);
8808
KASSERT(jaddref != NULL &&
8809
jaddref->ja_ino == jaddref->ja_parent &&
8810
(jaddref->ja_state & MKDIR_BODY),
8811
("softdep_setup_directory_add: bad dot jaddref %p",
8812
jaddref));
8813
mkdir1->md_jaddref = jaddref;
8814
jaddref->ja_mkdir = mkdir1;
8815
/*
8816
* It is important that the dotdot journal entry
8817
* is added prior to the dot entry since dot writes
8818
* both the dot and dotdot links. These both must
8819
* be added after the primary link for the journal
8820
* to remain consistent.
8821
*/
8822
add_to_journal(&mkdir2->md_jaddref->ja_list);
8823
add_to_journal(&jaddref->ja_list);
8824
}
8825
/*
8826
* If we are adding a new directory remember this diradd so that if
8827
* we rename it we can keep the dot and dotdot dependencies. If
8828
* we are adding a new name for an inode that has a mkdiradd we
8829
* must be in rename and we have to move the dot and dotdot
8830
* dependencies to this new name. The old name is being orphaned
8831
* soon.
8832
*/
8833
if (mkdir1 != NULL) {
8834
if (inodedep->id_mkdiradd != NULL)
8835
panic("softdep_setup_directory_add: Existing mkdir");
8836
inodedep->id_mkdiradd = dap;
8837
} else if (inodedep->id_mkdiradd)
8838
merge_diradd(inodedep, dap);
8839
if (newdirblk != NULL) {
8840
/*
8841
* There is nothing to do if we are already tracking
8842
* this block.
8843
*/
8844
if ((pagedep->pd_state & NEWBLOCK) != 0) {
8845
WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8846
FREE_LOCK(ump);
8847
return (0);
8848
}
8849
if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8850
== 0)
8851
panic("softdep_setup_directory_add: lost entry");
8852
WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8853
pagedep->pd_state |= NEWBLOCK;
8854
pagedep->pd_newdirblk = newdirblk;
8855
newdirblk->db_pagedep = pagedep;
8856
FREE_LOCK(ump);
8857
/*
8858
* If we extended into an indirect signal direnter to sync.
8859
*/
8860
if (isindir)
8861
return (1);
8862
return (0);
8863
}
8864
FREE_LOCK(ump);
8865
return (0);
8866
}
8867
8868
/*
8869
* This procedure is called to change the offset of a directory
8870
* entry when compacting a directory block which must be owned
8871
* exclusively by the caller. Note that the actual entry movement
8872
* must be done in this procedure to ensure that no I/O completions
8873
* occur while the move is in progress.
8874
*/
8875
void
8876
softdep_change_directoryentry_offset(
8877
struct buf *bp, /* Buffer holding directory block. */
8878
struct inode *dp, /* inode for directory */
8879
caddr_t base, /* address of dp->i_offset */
8880
caddr_t oldloc, /* address of old directory location */
8881
caddr_t newloc, /* address of new directory location */
8882
int entrysize) /* size of directory entry */
8883
{
8884
int offset, oldoffset, newoffset;
8885
struct pagedep *pagedep;
8886
struct jmvref *jmvref;
8887
struct diradd *dap;
8888
struct direct *de;
8889
struct mount *mp;
8890
struct ufsmount *ump;
8891
ufs_lbn_t lbn;
8892
int flags;
8893
8894
mp = ITOVFS(dp);
8895
ump = VFSTOUFS(mp);
8896
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8897
("softdep_change_directoryentry_offset called on "
8898
"non-softdep filesystem"));
8899
de = (struct direct *)oldloc;
8900
jmvref = NULL;
8901
flags = 0;
8902
/*
8903
* Moves are always journaled as it would be too complex to
8904
* determine if any affected adds or removes are present in the
8905
* journal.
8906
*/
8907
if (MOUNTEDSUJ(mp)) {
8908
flags = DEPALLOC;
8909
jmvref = newjmvref(dp, de->d_ino,
8910
I_OFFSET(dp) + (oldloc - base),
8911
I_OFFSET(dp) + (newloc - base));
8912
}
8913
lbn = lblkno(ump->um_fs, I_OFFSET(dp));
8914
offset = blkoff(ump->um_fs, I_OFFSET(dp));
8915
oldoffset = offset + (oldloc - base);
8916
newoffset = offset + (newloc - base);
8917
ACQUIRE_LOCK(ump);
8918
if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8919
goto done;
8920
dap = diradd_lookup(pagedep, oldoffset);
8921
if (dap) {
8922
dap->da_offset = newoffset;
8923
newoffset = DIRADDHASH(newoffset);
8924
oldoffset = DIRADDHASH(oldoffset);
8925
if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8926
newoffset != oldoffset) {
8927
LIST_REMOVE(dap, da_pdlist);
8928
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8929
dap, da_pdlist);
8930
}
8931
}
8932
done:
8933
if (jmvref) {
8934
jmvref->jm_pagedep = pagedep;
8935
LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8936
add_to_journal(&jmvref->jm_list);
8937
}
8938
bcopy(oldloc, newloc, entrysize);
8939
FREE_LOCK(ump);
8940
}
8941
8942
/*
8943
* Move the mkdir dependencies and journal work from one diradd to another
8944
* when renaming a directory. The new name must depend on the mkdir deps
8945
* completing as the old name did. Directories can only have one valid link
8946
* at a time so one must be canonical.
8947
*/
8948
static void
8949
merge_diradd(struct inodedep *inodedep, struct diradd *newdap)
8950
{
8951
struct diradd *olddap;
8952
struct mkdir *mkdir, *nextmd;
8953
struct ufsmount *ump;
8954
short state;
8955
8956
olddap = inodedep->id_mkdiradd;
8957
inodedep->id_mkdiradd = newdap;
8958
if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8959
newdap->da_state &= ~DEPCOMPLETE;
8960
ump = VFSTOUFS(inodedep->id_list.wk_mp);
8961
for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8962
mkdir = nextmd) {
8963
nextmd = LIST_NEXT(mkdir, md_mkdirs);
8964
if (mkdir->md_diradd != olddap)
8965
continue;
8966
mkdir->md_diradd = newdap;
8967
state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8968
newdap->da_state |= state;
8969
olddap->da_state &= ~state;
8970
if ((olddap->da_state &
8971
(MKDIR_PARENT | MKDIR_BODY)) == 0)
8972
break;
8973
}
8974
if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8975
panic("merge_diradd: unfound ref");
8976
}
8977
/*
8978
* Any mkdir related journal items are not safe to be freed until
8979
* the new name is stable.
8980
*/
8981
jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8982
olddap->da_state |= DEPCOMPLETE;
8983
complete_diradd(olddap);
8984
}
8985
8986
/*
8987
* Move the diradd to the pending list when all diradd dependencies are
8988
* complete.
8989
*/
8990
static void
8991
complete_diradd(struct diradd *dap)
8992
{
8993
struct pagedep *pagedep;
8994
8995
if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8996
if (dap->da_state & DIRCHG)
8997
pagedep = dap->da_previous->dm_pagedep;
8998
else
8999
pagedep = dap->da_pagedep;
9000
LIST_REMOVE(dap, da_pdlist);
9001
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9002
}
9003
}
9004
9005
/*
9006
* Cancel a diradd when a dirrem overlaps with it. We must cancel the journal
9007
* add entries and conditionally journal the remove.
9008
*/
9009
static void
9010
cancel_diradd(
9011
struct diradd *dap,
9012
struct dirrem *dirrem,
9013
struct jremref *jremref,
9014
struct jremref *dotremref,
9015
struct jremref *dotdotremref)
9016
{
9017
struct inodedep *inodedep;
9018
struct jaddref *jaddref;
9019
struct inoref *inoref;
9020
struct ufsmount *ump;
9021
struct mkdir *mkdir;
9022
9023
/*
9024
* If no remove references were allocated we're on a non-journaled
9025
* filesystem and can skip the cancel step.
9026
*/
9027
if (jremref == NULL) {
9028
free_diradd(dap, NULL);
9029
return;
9030
}
9031
/*
9032
* Cancel the primary name an free it if it does not require
9033
* journaling.
9034
*/
9035
if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
9036
0, &inodedep) != 0) {
9037
/* Abort the addref that reference this diradd. */
9038
TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
9039
if (inoref->if_list.wk_type != D_JADDREF)
9040
continue;
9041
jaddref = (struct jaddref *)inoref;
9042
if (jaddref->ja_diradd != dap)
9043
continue;
9044
if (cancel_jaddref(jaddref, inodedep,
9045
&dirrem->dm_jwork) == 0) {
9046
free_jremref(jremref);
9047
jremref = NULL;
9048
}
9049
break;
9050
}
9051
}
9052
/*
9053
* Cancel subordinate names and free them if they do not require
9054
* journaling.
9055
*/
9056
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9057
ump = VFSTOUFS(dap->da_list.wk_mp);
9058
LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
9059
if (mkdir->md_diradd != dap)
9060
continue;
9061
if ((jaddref = mkdir->md_jaddref) == NULL)
9062
continue;
9063
mkdir->md_jaddref = NULL;
9064
if (mkdir->md_state & MKDIR_PARENT) {
9065
if (cancel_jaddref(jaddref, NULL,
9066
&dirrem->dm_jwork) == 0) {
9067
free_jremref(dotdotremref);
9068
dotdotremref = NULL;
9069
}
9070
} else {
9071
if (cancel_jaddref(jaddref, inodedep,
9072
&dirrem->dm_jwork) == 0) {
9073
free_jremref(dotremref);
9074
dotremref = NULL;
9075
}
9076
}
9077
}
9078
}
9079
9080
if (jremref)
9081
journal_jremref(dirrem, jremref, inodedep);
9082
if (dotremref)
9083
journal_jremref(dirrem, dotremref, inodedep);
9084
if (dotdotremref)
9085
journal_jremref(dirrem, dotdotremref, NULL);
9086
jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
9087
free_diradd(dap, &dirrem->dm_jwork);
9088
}
9089
9090
/*
9091
* Free a diradd dependency structure.
9092
*/
9093
static void
9094
free_diradd(struct diradd *dap, struct workhead *wkhd)
9095
{
9096
struct dirrem *dirrem;
9097
struct pagedep *pagedep;
9098
struct inodedep *inodedep;
9099
struct mkdir *mkdir, *nextmd;
9100
struct ufsmount *ump;
9101
9102
ump = VFSTOUFS(dap->da_list.wk_mp);
9103
LOCK_OWNED(ump);
9104
LIST_REMOVE(dap, da_pdlist);
9105
if (dap->da_state & ONWORKLIST)
9106
WORKLIST_REMOVE(&dap->da_list);
9107
if ((dap->da_state & DIRCHG) == 0) {
9108
pagedep = dap->da_pagedep;
9109
} else {
9110
dirrem = dap->da_previous;
9111
pagedep = dirrem->dm_pagedep;
9112
dirrem->dm_dirinum = pagedep->pd_ino;
9113
dirrem->dm_state |= COMPLETE;
9114
if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9115
add_to_worklist(&dirrem->dm_list, 0);
9116
}
9117
if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
9118
0, &inodedep) != 0)
9119
if (inodedep->id_mkdiradd == dap)
9120
inodedep->id_mkdiradd = NULL;
9121
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9122
for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9123
mkdir = nextmd) {
9124
nextmd = LIST_NEXT(mkdir, md_mkdirs);
9125
if (mkdir->md_diradd != dap)
9126
continue;
9127
dap->da_state &=
9128
~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
9129
LIST_REMOVE(mkdir, md_mkdirs);
9130
if (mkdir->md_state & ONWORKLIST)
9131
WORKLIST_REMOVE(&mkdir->md_list);
9132
if (mkdir->md_jaddref != NULL)
9133
panic("free_diradd: Unexpected jaddref");
9134
WORKITEM_FREE(mkdir, D_MKDIR);
9135
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
9136
break;
9137
}
9138
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
9139
panic("free_diradd: unfound ref");
9140
}
9141
if (inodedep)
9142
free_inodedep(inodedep);
9143
/*
9144
* Free any journal segments waiting for the directory write.
9145
*/
9146
handle_jwork(&dap->da_jwork);
9147
WORKITEM_FREE(dap, D_DIRADD);
9148
}
9149
9150
/*
9151
* Directory entry removal dependencies.
9152
*
9153
* When removing a directory entry, the entry's inode pointer must be
9154
* zero'ed on disk before the corresponding inode's link count is decremented
9155
* (possibly freeing the inode for re-use). This dependency is handled by
9156
* updating the directory entry but delaying the inode count reduction until
9157
* after the directory block has been written to disk. After this point, the
9158
* inode count can be decremented whenever it is convenient.
9159
*/
9160
9161
/*
9162
* This routine should be called immediately after removing
9163
* a directory entry. The inode's link count should not be
9164
* decremented by the calling procedure -- the soft updates
9165
* code will do this task when it is safe.
9166
*/
9167
void
9168
softdep_setup_remove(
9169
struct buf *bp, /* buffer containing directory block */
9170
struct inode *dp, /* inode for the directory being modified */
9171
struct inode *ip, /* inode for directory entry being removed */
9172
bool isrmdir) /* indicates if doing RMDIR */
9173
{
9174
struct dirrem *dirrem, *prevdirrem;
9175
struct inodedep *inodedep;
9176
struct ufsmount *ump;
9177
int direct;
9178
9179
ump = ITOUMP(ip);
9180
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9181
("softdep_setup_remove called on non-softdep filesystem"));
9182
/*
9183
* Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want
9184
* newdirrem() to setup the full directory remove which requires
9185
* isrmdir > 1.
9186
*/
9187
dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9188
/*
9189
* Add the dirrem to the inodedep's pending remove list for quick
9190
* discovery later.
9191
*/
9192
if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
9193
panic("softdep_setup_remove: Lost inodedep.");
9194
KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
9195
dirrem->dm_state |= ONDEPLIST;
9196
LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9197
9198
/*
9199
* If the COMPLETE flag is clear, then there were no active
9200
* entries and we want to roll back to a zeroed entry until
9201
* the new inode is committed to disk. If the COMPLETE flag is
9202
* set then we have deleted an entry that never made it to
9203
* disk. If the entry we deleted resulted from a name change,
9204
* then the old name still resides on disk. We cannot delete
9205
* its inode (returned to us in prevdirrem) until the zeroed
9206
* directory entry gets to disk. The new inode has never been
9207
* referenced on the disk, so can be deleted immediately.
9208
*/
9209
if ((dirrem->dm_state & COMPLETE) == 0) {
9210
LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
9211
dm_next);
9212
FREE_LOCK(ump);
9213
} else {
9214
if (prevdirrem != NULL)
9215
LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
9216
prevdirrem, dm_next);
9217
dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
9218
direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
9219
FREE_LOCK(ump);
9220
if (direct)
9221
handle_workitem_remove(dirrem, 0);
9222
}
9223
}
9224
9225
/*
9226
* Check for an entry matching 'offset' on both the pd_dirraddhd list and the
9227
* pd_pendinghd list of a pagedep.
9228
*/
9229
static struct diradd *
9230
diradd_lookup(struct pagedep *pagedep, int offset)
9231
{
9232
struct diradd *dap;
9233
9234
LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
9235
if (dap->da_offset == offset)
9236
return (dap);
9237
LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
9238
if (dap->da_offset == offset)
9239
return (dap);
9240
return (NULL);
9241
}
9242
9243
/*
9244
* Search for a .. diradd dependency in a directory that is being removed.
9245
* If the directory was renamed to a new parent we have a diradd rather
9246
* than a mkdir for the .. entry. We need to cancel it now before
9247
* it is found in truncate().
9248
*/
9249
static struct jremref *
9250
cancel_diradd_dotdot(struct inode *ip,
9251
struct dirrem *dirrem,
9252
struct jremref *jremref)
9253
{
9254
struct pagedep *pagedep;
9255
struct diradd *dap;
9256
struct worklist *wk;
9257
9258
if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9259
return (jremref);
9260
dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9261
if (dap == NULL)
9262
return (jremref);
9263
cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9264
/*
9265
* Mark any journal work as belonging to the parent so it is freed
9266
* with the .. reference.
9267
*/
9268
LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9269
wk->wk_state |= MKDIR_PARENT;
9270
return (NULL);
9271
}
9272
9273
/*
9274
* Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9275
* replace it with a dirrem/diradd pair as a result of re-parenting a
9276
* directory. This ensures that we don't simultaneously have a mkdir and
9277
* a diradd for the same .. entry.
9278
*/
9279
static struct jremref *
9280
cancel_mkdir_dotdot(struct inode *ip,
9281
struct dirrem *dirrem,
9282
struct jremref *jremref)
9283
{
9284
struct inodedep *inodedep;
9285
struct jaddref *jaddref;
9286
struct ufsmount *ump;
9287
struct mkdir *mkdir;
9288
struct diradd *dap;
9289
struct mount *mp;
9290
9291
mp = ITOVFS(ip);
9292
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9293
return (jremref);
9294
dap = inodedep->id_mkdiradd;
9295
if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9296
return (jremref);
9297
ump = VFSTOUFS(inodedep->id_list.wk_mp);
9298
for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9299
mkdir = LIST_NEXT(mkdir, md_mkdirs))
9300
if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9301
break;
9302
if (mkdir == NULL)
9303
panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9304
if ((jaddref = mkdir->md_jaddref) != NULL) {
9305
mkdir->md_jaddref = NULL;
9306
jaddref->ja_state &= ~MKDIR_PARENT;
9307
if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9308
panic("cancel_mkdir_dotdot: Lost parent inodedep");
9309
if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9310
journal_jremref(dirrem, jremref, inodedep);
9311
jremref = NULL;
9312
}
9313
}
9314
if (mkdir->md_state & ONWORKLIST)
9315
WORKLIST_REMOVE(&mkdir->md_list);
9316
mkdir->md_state |= ALLCOMPLETE;
9317
complete_mkdir(mkdir);
9318
return (jremref);
9319
}
9320
9321
static void
9322
journal_jremref(struct dirrem *dirrem,
9323
struct jremref *jremref,
9324
struct inodedep *inodedep)
9325
{
9326
9327
if (inodedep == NULL)
9328
if (inodedep_lookup(jremref->jr_list.wk_mp,
9329
jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9330
panic("journal_jremref: Lost inodedep");
9331
LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9332
TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9333
add_to_journal(&jremref->jr_list);
9334
}
9335
9336
static void
9337
dirrem_journal(
9338
struct dirrem *dirrem,
9339
struct jremref *jremref,
9340
struct jremref *dotremref,
9341
struct jremref *dotdotremref)
9342
{
9343
struct inodedep *inodedep;
9344
9345
if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9346
&inodedep) == 0)
9347
panic("dirrem_journal: Lost inodedep");
9348
journal_jremref(dirrem, jremref, inodedep);
9349
if (dotremref)
9350
journal_jremref(dirrem, dotremref, inodedep);
9351
if (dotdotremref)
9352
journal_jremref(dirrem, dotdotremref, NULL);
9353
}
9354
9355
/*
9356
* Allocate a new dirrem if appropriate and return it along with
9357
* its associated pagedep. Called without a lock, returns with lock.
9358
*/
9359
static struct dirrem *
9360
newdirrem(
9361
struct buf *bp, /* buffer containing directory block */
9362
struct inode *dp, /* inode for the directory being modified */
9363
struct inode *ip, /* inode for directory entry being removed */
9364
bool isrmdir, /* indicates if doing RMDIR */
9365
struct dirrem **prevdirremp) /* previously referenced inode, if any */
9366
{
9367
int offset;
9368
ufs_lbn_t lbn;
9369
struct diradd *dap;
9370
struct dirrem *dirrem;
9371
struct pagedep *pagedep;
9372
struct jremref *jremref;
9373
struct jremref *dotremref;
9374
struct jremref *dotdotremref;
9375
struct vnode *dvp;
9376
struct ufsmount *ump;
9377
9378
/*
9379
* Whiteouts have no deletion dependencies.
9380
*/
9381
if (ip == NULL)
9382
panic("newdirrem: whiteout");
9383
dvp = ITOV(dp);
9384
ump = ITOUMP(dp);
9385
9386
/*
9387
* If the system is over its limit and our filesystem is
9388
* responsible for more than our share of that usage and
9389
* we are not a snapshot, request some inodedep cleanup.
9390
* Limiting the number of dirrem structures will also limit
9391
* the number of freefile and freeblks structures.
9392
*/
9393
ACQUIRE_LOCK(ump);
9394
if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9395
schedule_cleanup(UFSTOVFS(ump));
9396
else
9397
FREE_LOCK(ump);
9398
dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9399
M_ZERO);
9400
workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9401
LIST_INIT(&dirrem->dm_jremrefhd);
9402
LIST_INIT(&dirrem->dm_jwork);
9403
dirrem->dm_state = isrmdir ? RMDIR : 0;
9404
dirrem->dm_oldinum = ip->i_number;
9405
*prevdirremp = NULL;
9406
/*
9407
* Allocate remove reference structures to track journal write
9408
* dependencies. We will always have one for the link and
9409
* when doing directories we will always have one more for dot.
9410
* When renaming a directory we skip the dotdot link change so
9411
* this is not needed.
9412
*/
9413
jremref = dotremref = dotdotremref = NULL;
9414
if (DOINGSUJ(dvp)) {
9415
if (isrmdir) {
9416
jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9417
ip->i_effnlink + 2);
9418
dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9419
ip->i_effnlink + 1);
9420
dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9421
dp->i_effnlink + 1);
9422
dotdotremref->jr_state |= MKDIR_PARENT;
9423
} else
9424
jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9425
ip->i_effnlink + 1);
9426
}
9427
ACQUIRE_LOCK(ump);
9428
lbn = lblkno(ump->um_fs, I_OFFSET(dp));
9429
offset = blkoff(ump->um_fs, I_OFFSET(dp));
9430
pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9431
&pagedep);
9432
dirrem->dm_pagedep = pagedep;
9433
dirrem->dm_offset = offset;
9434
/*
9435
* If we're renaming a .. link to a new directory, cancel any
9436
* existing MKDIR_PARENT mkdir. If it has already been canceled
9437
* the jremref is preserved for any potential diradd in this
9438
* location. This can not coincide with a rmdir.
9439
*/
9440
if (I_OFFSET(dp) == DOTDOT_OFFSET) {
9441
if (isrmdir)
9442
panic("newdirrem: .. directory change during remove?");
9443
jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9444
}
9445
/*
9446
* If we're removing a directory search for the .. dependency now and
9447
* cancel it. Any pending journal work will be added to the dirrem
9448
* to be completed when the workitem remove completes.
9449
*/
9450
if (isrmdir)
9451
dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9452
/*
9453
* Check for a diradd dependency for the same directory entry.
9454
* If present, then both dependencies become obsolete and can
9455
* be de-allocated.
9456
*/
9457
dap = diradd_lookup(pagedep, offset);
9458
if (dap == NULL) {
9459
/*
9460
* Link the jremref structures into the dirrem so they are
9461
* written prior to the pagedep.
9462
*/
9463
if (jremref)
9464
dirrem_journal(dirrem, jremref, dotremref,
9465
dotdotremref);
9466
return (dirrem);
9467
}
9468
/*
9469
* Must be ATTACHED at this point.
9470
*/
9471
if ((dap->da_state & ATTACHED) == 0)
9472
panic("newdirrem: not ATTACHED");
9473
if (dap->da_newinum != ip->i_number)
9474
panic("newdirrem: inum %ju should be %ju",
9475
(uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9476
/*
9477
* If we are deleting a changed name that never made it to disk,
9478
* then return the dirrem describing the previous inode (which
9479
* represents the inode currently referenced from this entry on disk).
9480
*/
9481
if ((dap->da_state & DIRCHG) != 0) {
9482
*prevdirremp = dap->da_previous;
9483
dap->da_state &= ~DIRCHG;
9484
dap->da_pagedep = pagedep;
9485
}
9486
/*
9487
* We are deleting an entry that never made it to disk.
9488
* Mark it COMPLETE so we can delete its inode immediately.
9489
*/
9490
dirrem->dm_state |= COMPLETE;
9491
cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9492
#ifdef INVARIANTS
9493
if (!isrmdir) {
9494
struct worklist *wk;
9495
9496
LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9497
if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9498
panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9499
}
9500
#endif
9501
9502
return (dirrem);
9503
}
9504
9505
/*
9506
* Directory entry change dependencies.
9507
*
9508
* Changing an existing directory entry requires that an add operation
9509
* be completed first followed by a deletion. The semantics for the addition
9510
* are identical to the description of adding a new entry above except
9511
* that the rollback is to the old inode number rather than zero. Once
9512
* the addition dependency is completed, the removal is done as described
9513
* in the removal routine above.
9514
*/
9515
9516
/*
9517
* This routine should be called immediately after changing
9518
* a directory entry. The inode's link count should not be
9519
* decremented by the calling procedure -- the soft updates
9520
* code will perform this task when it is safe.
9521
*/
9522
void
9523
softdep_setup_directory_change(
9524
struct buf *bp, /* buffer containing directory block */
9525
struct inode *dp, /* inode for the directory being modified */
9526
struct inode *ip, /* inode for directory entry being removed */
9527
ino_t newinum, /* new inode number for changed entry */
9528
u_int newparent) /* indicates if doing RMDIR */
9529
{
9530
int offset;
9531
struct diradd *dap = NULL;
9532
struct dirrem *dirrem, *prevdirrem;
9533
struct pagedep *pagedep;
9534
struct inodedep *inodedep;
9535
struct jaddref *jaddref;
9536
struct mount *mp;
9537
struct ufsmount *ump;
9538
9539
mp = ITOVFS(dp);
9540
ump = VFSTOUFS(mp);
9541
offset = blkoff(ump->um_fs, I_OFFSET(dp));
9542
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9543
("softdep_setup_directory_change called on non-softdep filesystem"));
9544
9545
/*
9546
* Whiteouts do not need diradd dependencies.
9547
*/
9548
if (newinum != UFS_WINO) {
9549
dap = malloc(sizeof(struct diradd),
9550
M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9551
workitem_alloc(&dap->da_list, D_DIRADD, mp);
9552
dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9553
dap->da_offset = offset;
9554
dap->da_newinum = newinum;
9555
LIST_INIT(&dap->da_jwork);
9556
}
9557
9558
/*
9559
* Allocate a new dirrem and ACQUIRE_LOCK.
9560
*/
9561
dirrem = newdirrem(bp, dp, ip, newparent != 0, &prevdirrem);
9562
pagedep = dirrem->dm_pagedep;
9563
/*
9564
* The possible values for newparent:
9565
* 0 - non-directory file rename
9566
* 1 - directory rename within same directory
9567
* inum - directory rename to new directory of given inode number
9568
* When renaming to a new directory, we are both deleting and
9569
* creating a new directory entry, so the link count on the new
9570
* directory should not change. Thus we do not need the followup
9571
* dirrem which is usually done in handle_workitem_remove. We set
9572
* the DIRCHG flag to tell handle_workitem_remove to skip the
9573
* followup dirrem.
9574
*/
9575
if (newparent > 1)
9576
dirrem->dm_state |= DIRCHG;
9577
9578
/*
9579
* Whiteouts have no additional dependencies,
9580
* so just put the dirrem on the correct list.
9581
*/
9582
if (newinum == UFS_WINO) {
9583
if ((dirrem->dm_state & COMPLETE) == 0) {
9584
LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9585
dm_next);
9586
} else {
9587
dirrem->dm_dirinum = pagedep->pd_ino;
9588
if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9589
add_to_worklist(&dirrem->dm_list, 0);
9590
}
9591
FREE_LOCK(ump);
9592
return;
9593
}
9594
/*
9595
* Add the dirrem to the inodedep's pending remove list for quick
9596
* discovery later. A valid nlinkdelta ensures that this lookup
9597
* will not fail.
9598
*/
9599
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9600
panic("softdep_setup_directory_change: Lost inodedep.");
9601
dirrem->dm_state |= ONDEPLIST;
9602
LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9603
9604
/*
9605
* If the COMPLETE flag is clear, then there were no active
9606
* entries and we want to roll back to the previous inode until
9607
* the new inode is committed to disk. If the COMPLETE flag is
9608
* set, then we have deleted an entry that never made it to disk.
9609
* If the entry we deleted resulted from a name change, then the old
9610
* inode reference still resides on disk. Any rollback that we do
9611
* needs to be to that old inode (returned to us in prevdirrem). If
9612
* the entry we deleted resulted from a create, then there is
9613
* no entry on the disk, so we want to roll back to zero rather
9614
* than the uncommitted inode. In either of the COMPLETE cases we
9615
* want to immediately free the unwritten and unreferenced inode.
9616
*/
9617
if ((dirrem->dm_state & COMPLETE) == 0) {
9618
dap->da_previous = dirrem;
9619
} else {
9620
if (prevdirrem != NULL) {
9621
dap->da_previous = prevdirrem;
9622
} else {
9623
dap->da_state &= ~DIRCHG;
9624
dap->da_pagedep = pagedep;
9625
}
9626
dirrem->dm_dirinum = pagedep->pd_ino;
9627
if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9628
add_to_worklist(&dirrem->dm_list, 0);
9629
}
9630
/*
9631
* Lookup the jaddref for this journal entry. We must finish
9632
* initializing it and make the diradd write dependent on it.
9633
* If we're not journaling, put it on the id_bufwait list if the
9634
* inode is not yet written. If it is written, do the post-inode
9635
* write processing to put it on the id_pendinghd list.
9636
*/
9637
inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9638
if (MOUNTEDSUJ(mp)) {
9639
jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9640
inoreflst);
9641
KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9642
("softdep_setup_directory_change: bad jaddref %p",
9643
jaddref));
9644
jaddref->ja_diroff = I_OFFSET(dp);
9645
jaddref->ja_diradd = dap;
9646
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9647
dap, da_pdlist);
9648
add_to_journal(&jaddref->ja_list);
9649
} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9650
dap->da_state |= COMPLETE;
9651
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9652
WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9653
} else {
9654
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9655
dap, da_pdlist);
9656
WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9657
}
9658
/*
9659
* If we're making a new name for a directory that has not been
9660
* committed when need to move the dot and dotdot references to
9661
* this new name.
9662
*/
9663
if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET)
9664
merge_diradd(inodedep, dap);
9665
FREE_LOCK(ump);
9666
}
9667
9668
/*
9669
* Called whenever the link count on an inode is changed.
9670
* It creates an inode dependency so that the new reference(s)
9671
* to the inode cannot be committed to disk until the updated
9672
* inode has been written.
9673
*/
9674
void
9675
softdep_change_linkcnt(
9676
struct inode *ip) /* the inode with the increased link count */
9677
{
9678
struct inodedep *inodedep;
9679
struct ufsmount *ump;
9680
9681
ump = ITOUMP(ip);
9682
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9683
("softdep_change_linkcnt called on non-softdep filesystem"));
9684
ACQUIRE_LOCK(ump);
9685
inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9686
if (ip->i_nlink < ip->i_effnlink)
9687
panic("softdep_change_linkcnt: bad delta");
9688
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9689
FREE_LOCK(ump);
9690
}
9691
9692
/*
9693
* Attach a sbdep dependency to the superblock buf so that we can keep
9694
* track of the head of the linked list of referenced but unlinked inodes.
9695
*/
9696
void
9697
softdep_setup_sbupdate(
9698
struct ufsmount *ump,
9699
struct fs *fs,
9700
struct buf *bp)
9701
{
9702
struct sbdep *sbdep;
9703
struct worklist *wk;
9704
9705
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9706
("softdep_setup_sbupdate called on non-softdep filesystem"));
9707
LIST_FOREACH(wk, &bp->b_dep, wk_list)
9708
if (wk->wk_type == D_SBDEP)
9709
break;
9710
if (wk != NULL)
9711
return;
9712
sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9713
workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9714
sbdep->sb_fs = fs;
9715
sbdep->sb_ump = ump;
9716
ACQUIRE_LOCK(ump);
9717
WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9718
FREE_LOCK(ump);
9719
}
9720
9721
/*
9722
* Return the first unlinked inodedep which is ready to be the head of the
9723
* list. The inodedep and all those after it must have valid next pointers.
9724
*/
9725
static struct inodedep *
9726
first_unlinked_inodedep(struct ufsmount *ump)
9727
{
9728
struct inodedep *inodedep;
9729
struct inodedep *idp;
9730
9731
LOCK_OWNED(ump);
9732
for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9733
inodedep; inodedep = idp) {
9734
if ((inodedep->id_state & UNLINKNEXT) == 0)
9735
return (NULL);
9736
idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9737
if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9738
break;
9739
if ((inodedep->id_state & UNLINKPREV) == 0)
9740
break;
9741
}
9742
return (inodedep);
9743
}
9744
9745
/*
9746
* Set the sujfree unlinked head pointer prior to writing a superblock.
9747
*/
9748
static void
9749
initiate_write_sbdep(struct sbdep *sbdep)
9750
{
9751
struct inodedep *inodedep;
9752
struct fs *bpfs;
9753
struct fs *fs;
9754
9755
bpfs = sbdep->sb_fs;
9756
fs = sbdep->sb_ump->um_fs;
9757
inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9758
if (inodedep) {
9759
fs->fs_sujfree = inodedep->id_ino;
9760
inodedep->id_state |= UNLINKPREV;
9761
} else
9762
fs->fs_sujfree = 0;
9763
bpfs->fs_sujfree = fs->fs_sujfree;
9764
/*
9765
* Because we have made changes to the superblock, we need to
9766
* recompute its check-hash.
9767
*/
9768
bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9769
}
9770
9771
/*
9772
* After a superblock is written determine whether it must be written again
9773
* due to a changing unlinked list head.
9774
*/
9775
static int
9776
handle_written_sbdep(struct sbdep *sbdep, struct buf *bp)
9777
{
9778
struct inodedep *inodedep;
9779
struct fs *fs;
9780
9781
LOCK_OWNED(sbdep->sb_ump);
9782
fs = sbdep->sb_fs;
9783
/*
9784
* If the superblock doesn't match the in-memory list start over.
9785
*/
9786
inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9787
if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9788
(inodedep == NULL && fs->fs_sujfree != 0)) {
9789
bdirty(bp);
9790
return (1);
9791
}
9792
WORKITEM_FREE(sbdep, D_SBDEP);
9793
if (fs->fs_sujfree == 0)
9794
return (0);
9795
/*
9796
* Now that we have a record of this inode in stable store allow it
9797
* to be written to free up pending work. Inodes may see a lot of
9798
* write activity after they are unlinked which we must not hold up.
9799
*/
9800
for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9801
if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9802
panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9803
inodedep, inodedep->id_state);
9804
if (inodedep->id_state & UNLINKONLIST)
9805
break;
9806
inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9807
}
9808
9809
return (0);
9810
}
9811
9812
/*
9813
* Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9814
*/
9815
static void
9816
unlinked_inodedep( struct mount *mp, struct inodedep *inodedep)
9817
{
9818
struct ufsmount *ump;
9819
9820
ump = VFSTOUFS(mp);
9821
LOCK_OWNED(ump);
9822
if (MOUNTEDSUJ(mp) == 0)
9823
return;
9824
ump->um_fs->fs_fmod = 1;
9825
if (inodedep->id_state & UNLINKED)
9826
panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9827
inodedep->id_state |= UNLINKED;
9828
TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9829
}
9830
9831
/*
9832
* Remove an inodedep from the unlinked inodedep list. This may require
9833
* disk writes if the inode has made it that far.
9834
*/
9835
static void
9836
clear_unlinked_inodedep( struct inodedep *inodedep)
9837
{
9838
struct ufs2_dinode *dip;
9839
struct ufsmount *ump;
9840
struct inodedep *idp;
9841
struct inodedep *idn;
9842
struct fs *fs, *bpfs;
9843
struct buf *bp;
9844
daddr_t dbn;
9845
ino_t ino;
9846
ino_t nino;
9847
ino_t pino;
9848
int error;
9849
9850
ump = VFSTOUFS(inodedep->id_list.wk_mp);
9851
fs = ump->um_fs;
9852
ino = inodedep->id_ino;
9853
error = 0;
9854
for (;;) {
9855
LOCK_OWNED(ump);
9856
KASSERT((inodedep->id_state & UNLINKED) != 0,
9857
("clear_unlinked_inodedep: inodedep %p not unlinked",
9858
inodedep));
9859
/*
9860
* If nothing has yet been written simply remove us from
9861
* the in memory list and return. This is the most common
9862
* case where handle_workitem_remove() loses the final
9863
* reference.
9864
*/
9865
if ((inodedep->id_state & UNLINKLINKS) == 0)
9866
break;
9867
/*
9868
* If we have a NEXT pointer and no PREV pointer we can simply
9869
* clear NEXT's PREV and remove ourselves from the list. Be
9870
* careful not to clear PREV if the superblock points at
9871
* next as well.
9872
*/
9873
idn = TAILQ_NEXT(inodedep, id_unlinked);
9874
if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9875
if (idn && fs->fs_sujfree != idn->id_ino)
9876
idn->id_state &= ~UNLINKPREV;
9877
break;
9878
}
9879
/*
9880
* Here we have an inodedep which is actually linked into
9881
* the list. We must remove it by forcing a write to the
9882
* link before us, whether it be the superblock or an inode.
9883
* Unfortunately the list may change while we're waiting
9884
* on the buf lock for either resource so we must loop until
9885
* we lock the right one. If both the superblock and an
9886
* inode point to this inode we must clear the inode first
9887
* followed by the superblock.
9888
*/
9889
idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9890
pino = 0;
9891
if (idp && (idp->id_state & UNLINKNEXT))
9892
pino = idp->id_ino;
9893
FREE_LOCK(ump);
9894
if (pino == 0) {
9895
bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9896
(int)fs->fs_sbsize, 0, 0, 0);
9897
} else {
9898
dbn = fsbtodb(fs, ino_to_fsba(fs, pino));
9899
error = ffs_breadz(ump, ump->um_devvp, dbn, dbn,
9900
(int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL,
9901
&bp);
9902
}
9903
ACQUIRE_LOCK(ump);
9904
if (error)
9905
break;
9906
/* If the list has changed restart the loop. */
9907
idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9908
nino = 0;
9909
if (idp && (idp->id_state & UNLINKNEXT))
9910
nino = idp->id_ino;
9911
if (nino != pino ||
9912
(inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9913
FREE_LOCK(ump);
9914
brelse(bp);
9915
ACQUIRE_LOCK(ump);
9916
continue;
9917
}
9918
nino = 0;
9919
idn = TAILQ_NEXT(inodedep, id_unlinked);
9920
if (idn)
9921
nino = idn->id_ino;
9922
/*
9923
* Remove us from the in memory list. After this we cannot
9924
* access the inodedep.
9925
*/
9926
KASSERT((inodedep->id_state & UNLINKED) != 0,
9927
("clear_unlinked_inodedep: inodedep %p not unlinked",
9928
inodedep));
9929
inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9930
TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9931
FREE_LOCK(ump);
9932
/*
9933
* The predecessor's next pointer is manually updated here
9934
* so that the NEXT flag is never cleared for an element
9935
* that is in the list.
9936
*/
9937
if (pino == 0) {
9938
bcopy((caddr_t)fs, bp->b_data, (uint64_t)fs->fs_sbsize);
9939
bpfs = (struct fs *)bp->b_data;
9940
ffs_oldfscompat_write(bpfs);
9941
softdep_setup_sbupdate(ump, bpfs, bp);
9942
/*
9943
* Because we may have made changes to the superblock,
9944
* we need to recompute its check-hash.
9945
*/
9946
bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9947
} else if (fs->fs_magic == FS_UFS1_MAGIC) {
9948
((struct ufs1_dinode *)bp->b_data +
9949
ino_to_fsbo(fs, pino))->di_freelink = nino;
9950
} else {
9951
dip = (struct ufs2_dinode *)bp->b_data +
9952
ino_to_fsbo(fs, pino);
9953
dip->di_freelink = nino;
9954
ffs_update_dinode_ckhash(fs, dip);
9955
}
9956
/*
9957
* If the bwrite fails we have no recourse to recover. The
9958
* filesystem is corrupted already.
9959
*/
9960
bwrite(bp);
9961
ACQUIRE_LOCK(ump);
9962
/*
9963
* If the superblock pointer still needs to be cleared force
9964
* a write here.
9965
*/
9966
if (fs->fs_sujfree == ino) {
9967
FREE_LOCK(ump);
9968
bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9969
(int)fs->fs_sbsize, 0, 0, 0);
9970
bcopy((caddr_t)fs, bp->b_data, (uint64_t)fs->fs_sbsize);
9971
bpfs = (struct fs *)bp->b_data;
9972
ffs_oldfscompat_write(bpfs);
9973
softdep_setup_sbupdate(ump, bpfs, bp);
9974
/*
9975
* Because we may have made changes to the superblock,
9976
* we need to recompute its check-hash.
9977
*/
9978
bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9979
bwrite(bp);
9980
ACQUIRE_LOCK(ump);
9981
}
9982
9983
if (fs->fs_sujfree != ino)
9984
return;
9985
panic("clear_unlinked_inodedep: Failed to clear free head");
9986
}
9987
if (inodedep->id_ino == fs->fs_sujfree)
9988
panic("clear_unlinked_inodedep: Freeing head of free list");
9989
inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9990
TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9991
return;
9992
}
9993
9994
/*
9995
* This workitem decrements the inode's link count.
9996
* If the link count reaches zero, the file is removed.
9997
*/
9998
static int
9999
handle_workitem_remove(struct dirrem *dirrem, int flags)
10000
{
10001
struct inodedep *inodedep;
10002
struct workhead dotdotwk;
10003
struct worklist *wk;
10004
struct ufsmount *ump;
10005
struct mount *mp;
10006
struct vnode *vp;
10007
struct inode *ip;
10008
ino_t oldinum;
10009
10010
if (dirrem->dm_state & ONWORKLIST)
10011
panic("handle_workitem_remove: dirrem %p still on worklist",
10012
dirrem);
10013
oldinum = dirrem->dm_oldinum;
10014
mp = dirrem->dm_list.wk_mp;
10015
ump = VFSTOUFS(mp);
10016
flags |= LK_EXCLUSIVE;
10017
if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ |
10018
FFSV_FORCEINODEDEP) != 0)
10019
return (EBUSY);
10020
ip = VTOI(vp);
10021
MPASS(ip->i_mode != 0);
10022
ACQUIRE_LOCK(ump);
10023
if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
10024
panic("handle_workitem_remove: lost inodedep");
10025
if (dirrem->dm_state & ONDEPLIST)
10026
LIST_REMOVE(dirrem, dm_inonext);
10027
KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
10028
("handle_workitem_remove: Journal entries not written."));
10029
10030
/*
10031
* Move all dependencies waiting on the remove to complete
10032
* from the dirrem to the inode inowait list to be completed
10033
* after the inode has been updated and written to disk.
10034
*
10035
* Any marked MKDIR_PARENT are saved to be completed when the
10036
* dotdot ref is removed unless DIRCHG is specified. For
10037
* directory change operations there will be no further
10038
* directory writes and the jsegdeps need to be moved along
10039
* with the rest to be completed when the inode is free or
10040
* stable in the inode free list.
10041
*/
10042
LIST_INIT(&dotdotwk);
10043
while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
10044
WORKLIST_REMOVE(wk);
10045
if ((dirrem->dm_state & DIRCHG) == 0 &&
10046
wk->wk_state & MKDIR_PARENT) {
10047
wk->wk_state &= ~MKDIR_PARENT;
10048
WORKLIST_INSERT(&dotdotwk, wk);
10049
continue;
10050
}
10051
WORKLIST_INSERT(&inodedep->id_inowait, wk);
10052
}
10053
LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
10054
/*
10055
* Normal file deletion.
10056
*/
10057
if ((dirrem->dm_state & RMDIR) == 0) {
10058
ip->i_nlink--;
10059
KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino "
10060
"%ju negative i_nlink %d", (intmax_t)ip->i_number,
10061
ip->i_nlink));
10062
DIP_SET_NLINK(ip, ip->i_nlink);
10063
UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10064
if (ip->i_nlink < ip->i_effnlink)
10065
panic("handle_workitem_remove: bad file delta");
10066
if (ip->i_nlink == 0)
10067
unlinked_inodedep(mp, inodedep);
10068
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10069
KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10070
("handle_workitem_remove: worklist not empty. %s",
10071
TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
10072
WORKITEM_FREE(dirrem, D_DIRREM);
10073
FREE_LOCK(ump);
10074
goto out;
10075
}
10076
/*
10077
* Directory deletion. Decrement reference count for both the
10078
* just deleted parent directory entry and the reference for ".".
10079
* Arrange to have the reference count on the parent decremented
10080
* to account for the loss of "..".
10081
*/
10082
ip->i_nlink -= 2;
10083
KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino "
10084
"%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink));
10085
DIP_SET_NLINK(ip, ip->i_nlink);
10086
UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10087
if (ip->i_nlink < ip->i_effnlink)
10088
panic("handle_workitem_remove: bad dir delta");
10089
if (ip->i_nlink == 0)
10090
unlinked_inodedep(mp, inodedep);
10091
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10092
/*
10093
* Rename a directory to a new parent. Since, we are both deleting
10094
* and creating a new directory entry, the link count on the new
10095
* directory should not change. Thus we skip the followup dirrem.
10096
*/
10097
if (dirrem->dm_state & DIRCHG) {
10098
KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10099
("handle_workitem_remove: DIRCHG and worklist not empty."));
10100
WORKITEM_FREE(dirrem, D_DIRREM);
10101
FREE_LOCK(ump);
10102
goto out;
10103
}
10104
dirrem->dm_state = ONDEPLIST;
10105
dirrem->dm_oldinum = dirrem->dm_dirinum;
10106
/*
10107
* Place the dirrem on the parent's diremhd list.
10108
*/
10109
if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
10110
panic("handle_workitem_remove: lost dir inodedep");
10111
LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
10112
/*
10113
* If the allocated inode has never been written to disk, then
10114
* the on-disk inode is zero'ed and we can remove the file
10115
* immediately. When journaling if the inode has been marked
10116
* unlinked and not DEPCOMPLETE we know it can never be written.
10117
*/
10118
inodedep_lookup(mp, oldinum, 0, &inodedep);
10119
if (inodedep == NULL ||
10120
(inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
10121
check_inode_unwritten(inodedep)) {
10122
FREE_LOCK(ump);
10123
vput(vp);
10124
return handle_workitem_remove(dirrem, flags);
10125
}
10126
WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
10127
FREE_LOCK(ump);
10128
UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10129
out:
10130
ffs_update(vp, 0);
10131
vput(vp);
10132
return (0);
10133
}
10134
10135
/*
10136
* Inode de-allocation dependencies.
10137
*
10138
* When an inode's link count is reduced to zero, it can be de-allocated. We
10139
* found it convenient to postpone de-allocation until after the inode is
10140
* written to disk with its new link count (zero). At this point, all of the
10141
* on-disk inode's block pointers are nullified and, with careful dependency
10142
* list ordering, all dependencies related to the inode will be satisfied and
10143
* the corresponding dependency structures de-allocated. So, if/when the
10144
* inode is reused, there will be no mixing of old dependencies with new
10145
* ones. This artificial dependency is set up by the block de-allocation
10146
* procedure above (softdep_setup_freeblocks) and completed by the
10147
* following procedure.
10148
*/
10149
static void
10150
handle_workitem_freefile(struct freefile *freefile)
10151
{
10152
struct workhead wkhd;
10153
struct fs *fs;
10154
struct ufsmount *ump;
10155
int error;
10156
#ifdef INVARIANTS
10157
struct inodedep *idp;
10158
#endif
10159
10160
ump = VFSTOUFS(freefile->fx_list.wk_mp);
10161
fs = ump->um_fs;
10162
#ifdef INVARIANTS
10163
ACQUIRE_LOCK(ump);
10164
error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
10165
FREE_LOCK(ump);
10166
if (error)
10167
panic("handle_workitem_freefile: inodedep %p survived", idp);
10168
#endif
10169
UFS_LOCK(ump);
10170
fs->fs_pendinginodes -= 1;
10171
UFS_UNLOCK(ump);
10172
LIST_INIT(&wkhd);
10173
LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
10174
if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
10175
freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
10176
softdep_error("handle_workitem_freefile", error);
10177
ACQUIRE_LOCK(ump);
10178
WORKITEM_FREE(freefile, D_FREEFILE);
10179
FREE_LOCK(ump);
10180
}
10181
10182
/*
10183
* Helper function which unlinks marker element from work list and returns
10184
* the next element on the list.
10185
*/
10186
static __inline struct worklist *
10187
markernext(struct worklist *marker)
10188
{
10189
struct worklist *next;
10190
10191
next = LIST_NEXT(marker, wk_list);
10192
LIST_REMOVE(marker, wk_list);
10193
return next;
10194
}
10195
10196
/*
10197
* Disk writes.
10198
*
10199
* The dependency structures constructed above are most actively used when file
10200
* system blocks are written to disk. No constraints are placed on when a
10201
* block can be written, but unsatisfied update dependencies are made safe by
10202
* modifying (or replacing) the source memory for the duration of the disk
10203
* write. When the disk write completes, the memory block is again brought
10204
* up-to-date.
10205
*
10206
* In-core inode structure reclamation.
10207
*
10208
* Because there are a finite number of "in-core" inode structures, they are
10209
* reused regularly. By transferring all inode-related dependencies to the
10210
* in-memory inode block and indexing them separately (via "inodedep"s), we
10211
* can allow "in-core" inode structures to be reused at any time and avoid
10212
* any increase in contention.
10213
*
10214
* Called just before entering the device driver to initiate a new disk I/O.
10215
* The buffer must be locked, thus, no I/O completion operations can occur
10216
* while we are manipulating its associated dependencies.
10217
*/
10218
static void
10219
softdep_disk_io_initiation(
10220
struct buf *bp) /* structure describing disk write to occur */
10221
{
10222
struct worklist *wk;
10223
struct worklist marker;
10224
struct inodedep *inodedep;
10225
struct freeblks *freeblks;
10226
struct jblkdep *jblkdep;
10227
struct newblk *newblk;
10228
struct ufsmount *ump;
10229
10230
/*
10231
* We only care about write operations. There should never
10232
* be dependencies for reads.
10233
*/
10234
if (bp->b_iocmd != BIO_WRITE)
10235
panic("softdep_disk_io_initiation: not write");
10236
10237
if (bp->b_vflags & BV_BKGRDINPROG)
10238
panic("softdep_disk_io_initiation: Writing buffer with "
10239
"background write in progress: %p", bp);
10240
10241
ump = softdep_bp_to_mp(bp);
10242
if (ump == NULL)
10243
return;
10244
10245
marker.wk_type = D_LAST + 1; /* Not a normal workitem */
10246
ACQUIRE_LOCK(ump);
10247
/*
10248
* Do any necessary pre-I/O processing.
10249
*/
10250
for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
10251
wk = markernext(&marker)) {
10252
LIST_INSERT_AFTER(wk, &marker, wk_list);
10253
switch (wk->wk_type) {
10254
case D_PAGEDEP:
10255
initiate_write_filepage(WK_PAGEDEP(wk), bp);
10256
continue;
10257
10258
case D_INODEDEP:
10259
inodedep = WK_INODEDEP(wk);
10260
if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10261
initiate_write_inodeblock_ufs1(inodedep, bp);
10262
else
10263
initiate_write_inodeblock_ufs2(inodedep, bp);
10264
continue;
10265
10266
case D_INDIRDEP:
10267
initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10268
continue;
10269
10270
case D_BMSAFEMAP:
10271
initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10272
continue;
10273
10274
case D_JSEG:
10275
WK_JSEG(wk)->js_buf = NULL;
10276
continue;
10277
10278
case D_FREEBLKS:
10279
freeblks = WK_FREEBLKS(wk);
10280
jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10281
/*
10282
* We have to wait for the freeblks to be journaled
10283
* before we can write an inodeblock with updated
10284
* pointers. Be careful to arrange the marker so
10285
* we revisit the freeblks if it's not removed by
10286
* the first jwait().
10287
*/
10288
if (jblkdep != NULL) {
10289
LIST_REMOVE(&marker, wk_list);
10290
LIST_INSERT_BEFORE(wk, &marker, wk_list);
10291
jwait(&jblkdep->jb_list, MNT_WAIT);
10292
}
10293
continue;
10294
case D_ALLOCDIRECT:
10295
case D_ALLOCINDIR:
10296
/*
10297
* We have to wait for the jnewblk to be journaled
10298
* before we can write to a block if the contents
10299
* may be confused with an earlier file's indirect
10300
* at recovery time. Handle the marker as described
10301
* above.
10302
*/
10303
newblk = WK_NEWBLK(wk);
10304
if (newblk->nb_jnewblk != NULL &&
10305
indirblk_lookup(newblk->nb_list.wk_mp,
10306
newblk->nb_newblkno)) {
10307
LIST_REMOVE(&marker, wk_list);
10308
LIST_INSERT_BEFORE(wk, &marker, wk_list);
10309
jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10310
}
10311
continue;
10312
10313
case D_SBDEP:
10314
initiate_write_sbdep(WK_SBDEP(wk));
10315
continue;
10316
10317
case D_MKDIR:
10318
case D_FREEWORK:
10319
case D_FREEDEP:
10320
case D_JSEGDEP:
10321
continue;
10322
10323
default:
10324
panic("handle_disk_io_initiation: Unexpected type %s",
10325
TYPENAME(wk->wk_type));
10326
/* NOTREACHED */
10327
}
10328
}
10329
FREE_LOCK(ump);
10330
}
10331
10332
/*
10333
* Called from within the procedure above to deal with unsatisfied
10334
* allocation dependencies in a directory. The buffer must be locked,
10335
* thus, no I/O completion operations can occur while we are
10336
* manipulating its associated dependencies.
10337
*/
10338
static void
10339
initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
10340
{
10341
struct jremref *jremref;
10342
struct jmvref *jmvref;
10343
struct dirrem *dirrem;
10344
struct diradd *dap;
10345
struct direct *ep;
10346
int i;
10347
10348
if (pagedep->pd_state & IOSTARTED) {
10349
/*
10350
* This can only happen if there is a driver that does not
10351
* understand chaining. Here biodone will reissue the call
10352
* to strategy for the incomplete buffers.
10353
*/
10354
printf("initiate_write_filepage: already started\n");
10355
return;
10356
}
10357
pagedep->pd_state |= IOSTARTED;
10358
/*
10359
* Wait for all journal remove dependencies to hit the disk.
10360
* We can not allow any potentially conflicting directory adds
10361
* to be visible before removes and rollback is too difficult.
10362
* The per-filesystem lock may be dropped and re-acquired, however
10363
* we hold the buf locked so the dependency can not go away.
10364
*/
10365
LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10366
while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10367
jwait(&jremref->jr_list, MNT_WAIT);
10368
while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10369
jwait(&jmvref->jm_list, MNT_WAIT);
10370
for (i = 0; i < DAHASHSZ; i++) {
10371
LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10372
ep = (struct direct *)
10373
((char *)bp->b_data + dap->da_offset);
10374
if (ep->d_ino != dap->da_newinum)
10375
panic("%s: dir inum %ju != new %ju",
10376
"initiate_write_filepage",
10377
(uintmax_t)ep->d_ino,
10378
(uintmax_t)dap->da_newinum);
10379
if (dap->da_state & DIRCHG)
10380
ep->d_ino = dap->da_previous->dm_oldinum;
10381
else
10382
ep->d_ino = 0;
10383
dap->da_state &= ~ATTACHED;
10384
dap->da_state |= UNDONE;
10385
}
10386
}
10387
}
10388
10389
/*
10390
* Version of initiate_write_inodeblock that handles UFS1 dinodes.
10391
* Note that any bug fixes made to this routine must be done in the
10392
* version found below.
10393
*
10394
* Called from within the procedure above to deal with unsatisfied
10395
* allocation dependencies in an inodeblock. The buffer must be
10396
* locked, thus, no I/O completion operations can occur while we
10397
* are manipulating its associated dependencies.
10398
*/
10399
static void
10400
initiate_write_inodeblock_ufs1(
10401
struct inodedep *inodedep,
10402
struct buf *bp) /* The inode block */
10403
{
10404
struct allocdirect *adp, *lastadp;
10405
struct ufs1_dinode *dp;
10406
struct ufs1_dinode *sip;
10407
struct inoref *inoref;
10408
struct ufsmount *ump;
10409
struct fs *fs;
10410
ufs_lbn_t i;
10411
#ifdef INVARIANTS
10412
ufs_lbn_t prevlbn = 0;
10413
#endif
10414
int deplist __diagused;
10415
10416
if (inodedep->id_state & IOSTARTED)
10417
panic("initiate_write_inodeblock_ufs1: already started");
10418
inodedep->id_state |= IOSTARTED;
10419
fs = inodedep->id_fs;
10420
ump = VFSTOUFS(inodedep->id_list.wk_mp);
10421
LOCK_OWNED(ump);
10422
dp = (struct ufs1_dinode *)bp->b_data +
10423
ino_to_fsbo(fs, inodedep->id_ino);
10424
10425
/*
10426
* If we're on the unlinked list but have not yet written our
10427
* next pointer initialize it here.
10428
*/
10429
if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10430
struct inodedep *inon;
10431
10432
inon = TAILQ_NEXT(inodedep, id_unlinked);
10433
dp->di_freelink = inon ? inon->id_ino : 0;
10434
}
10435
/*
10436
* If the bitmap is not yet written, then the allocated
10437
* inode cannot be written to disk.
10438
*/
10439
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10440
if (inodedep->id_savedino1 != NULL)
10441
panic("initiate_write_inodeblock_ufs1: I/O underway");
10442
FREE_LOCK(ump);
10443
sip = malloc(sizeof(struct ufs1_dinode),
10444
M_SAVEDINO, M_SOFTDEP_FLAGS);
10445
ACQUIRE_LOCK(ump);
10446
inodedep->id_savedino1 = sip;
10447
*inodedep->id_savedino1 = *dp;
10448
bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10449
dp->di_gen = inodedep->id_savedino1->di_gen;
10450
dp->di_freelink = inodedep->id_savedino1->di_freelink;
10451
return;
10452
}
10453
/*
10454
* If no dependencies, then there is nothing to roll back.
10455
*/
10456
inodedep->id_savedsize = dp->di_size;
10457
inodedep->id_savedextsize = 0;
10458
inodedep->id_savednlink = dp->di_nlink;
10459
if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10460
TAILQ_EMPTY(&inodedep->id_inoreflst))
10461
return;
10462
/*
10463
* Revert the link count to that of the first unwritten journal entry.
10464
*/
10465
inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10466
if (inoref)
10467
dp->di_nlink = inoref->if_nlink;
10468
/*
10469
* Set the dependencies to busy.
10470
*/
10471
for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10472
adp = TAILQ_NEXT(adp, ad_next)) {
10473
#ifdef INVARIANTS
10474
if (deplist != 0 && prevlbn >= adp->ad_offset)
10475
panic("softdep_write_inodeblock: lbn order");
10476
prevlbn = adp->ad_offset;
10477
if (adp->ad_offset < UFS_NDADDR &&
10478
dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10479
panic("initiate_write_inodeblock_ufs1: "
10480
"direct pointer #%jd mismatch %d != %jd",
10481
(intmax_t)adp->ad_offset,
10482
dp->di_db[adp->ad_offset],
10483
(intmax_t)adp->ad_newblkno);
10484
if (adp->ad_offset >= UFS_NDADDR &&
10485
dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10486
panic("initiate_write_inodeblock_ufs1: "
10487
"indirect pointer #%jd mismatch %d != %jd",
10488
(intmax_t)adp->ad_offset - UFS_NDADDR,
10489
dp->di_ib[adp->ad_offset - UFS_NDADDR],
10490
(intmax_t)adp->ad_newblkno);
10491
deplist |= 1 << adp->ad_offset;
10492
if ((adp->ad_state & ATTACHED) == 0)
10493
panic("initiate_write_inodeblock_ufs1: "
10494
"Unknown state 0x%x", adp->ad_state);
10495
#endif /* INVARIANTS */
10496
adp->ad_state &= ~ATTACHED;
10497
adp->ad_state |= UNDONE;
10498
}
10499
/*
10500
* The on-disk inode cannot claim to be any larger than the last
10501
* fragment that has been written. Otherwise, the on-disk inode
10502
* might have fragments that were not the last block in the file
10503
* which would corrupt the filesystem.
10504
*/
10505
for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10506
lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10507
if (adp->ad_offset >= UFS_NDADDR)
10508
break;
10509
dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10510
/* keep going until hitting a rollback to a frag */
10511
if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10512
continue;
10513
dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10514
for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10515
#ifdef INVARIANTS
10516
if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10517
panic("initiate_write_inodeblock_ufs1: "
10518
"lost dep1");
10519
#endif /* INVARIANTS */
10520
dp->di_db[i] = 0;
10521
}
10522
for (i = 0; i < UFS_NIADDR; i++) {
10523
#ifdef INVARIANTS
10524
if (dp->di_ib[i] != 0 &&
10525
(deplist & ((1 << UFS_NDADDR) << i)) == 0)
10526
panic("initiate_write_inodeblock_ufs1: "
10527
"lost dep2");
10528
#endif /* INVARIANTS */
10529
dp->di_ib[i] = 0;
10530
}
10531
return;
10532
}
10533
/*
10534
* If we have zero'ed out the last allocated block of the file,
10535
* roll back the size to the last currently allocated block.
10536
* We know that this last allocated block is a full-sized as
10537
* we already checked for fragments in the loop above.
10538
*/
10539
if (lastadp != NULL &&
10540
dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10541
for (i = lastadp->ad_offset; i >= 0; i--)
10542
if (dp->di_db[i] != 0)
10543
break;
10544
dp->di_size = (i + 1) * fs->fs_bsize;
10545
}
10546
/*
10547
* The only dependencies are for indirect blocks.
10548
*
10549
* The file size for indirect block additions is not guaranteed.
10550
* Such a guarantee would be non-trivial to achieve. The conventional
10551
* synchronous write implementation also does not make this guarantee.
10552
* Fsck should catch and fix discrepancies. Arguably, the file size
10553
* can be over-estimated without destroying integrity when the file
10554
* moves into the indirect blocks (i.e., is large). If we want to
10555
* postpone fsck, we are stuck with this argument.
10556
*/
10557
for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10558
dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10559
}
10560
10561
/*
10562
* Version of initiate_write_inodeblock that handles UFS2 dinodes.
10563
* Note that any bug fixes made to this routine must be done in the
10564
* version found above.
10565
*
10566
* Called from within the procedure above to deal with unsatisfied
10567
* allocation dependencies in an inodeblock. The buffer must be
10568
* locked, thus, no I/O completion operations can occur while we
10569
* are manipulating its associated dependencies.
10570
*/
10571
static void
10572
initiate_write_inodeblock_ufs2(
10573
struct inodedep *inodedep,
10574
struct buf *bp) /* The inode block */
10575
{
10576
struct allocdirect *adp, *lastadp;
10577
struct ufs2_dinode *dp;
10578
struct ufs2_dinode *sip;
10579
struct inoref *inoref;
10580
struct ufsmount *ump;
10581
struct fs *fs;
10582
ufs_lbn_t i;
10583
#ifdef INVARIANTS
10584
ufs_lbn_t prevlbn = 0;
10585
#endif
10586
int deplist __diagused;
10587
10588
if (inodedep->id_state & IOSTARTED)
10589
panic("initiate_write_inodeblock_ufs2: already started");
10590
inodedep->id_state |= IOSTARTED;
10591
fs = inodedep->id_fs;
10592
ump = VFSTOUFS(inodedep->id_list.wk_mp);
10593
LOCK_OWNED(ump);
10594
dp = (struct ufs2_dinode *)bp->b_data +
10595
ino_to_fsbo(fs, inodedep->id_ino);
10596
10597
/*
10598
* If we're on the unlinked list but have not yet written our
10599
* next pointer initialize it here.
10600
*/
10601
if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10602
struct inodedep *inon;
10603
10604
inon = TAILQ_NEXT(inodedep, id_unlinked);
10605
dp->di_freelink = inon ? inon->id_ino : 0;
10606
ffs_update_dinode_ckhash(fs, dp);
10607
}
10608
/*
10609
* If the bitmap is not yet written, then the allocated
10610
* inode cannot be written to disk.
10611
*/
10612
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10613
if (inodedep->id_savedino2 != NULL)
10614
panic("initiate_write_inodeblock_ufs2: I/O underway");
10615
FREE_LOCK(ump);
10616
sip = malloc(sizeof(struct ufs2_dinode),
10617
M_SAVEDINO, M_SOFTDEP_FLAGS);
10618
ACQUIRE_LOCK(ump);
10619
inodedep->id_savedino2 = sip;
10620
*inodedep->id_savedino2 = *dp;
10621
bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10622
dp->di_gen = inodedep->id_savedino2->di_gen;
10623
dp->di_freelink = inodedep->id_savedino2->di_freelink;
10624
return;
10625
}
10626
/*
10627
* If no dependencies, then there is nothing to roll back.
10628
*/
10629
inodedep->id_savedsize = dp->di_size;
10630
inodedep->id_savedextsize = dp->di_extsize;
10631
inodedep->id_savednlink = dp->di_nlink;
10632
if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10633
TAILQ_EMPTY(&inodedep->id_extupdt) &&
10634
TAILQ_EMPTY(&inodedep->id_inoreflst))
10635
return;
10636
/*
10637
* Revert the link count to that of the first unwritten journal entry.
10638
*/
10639
inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10640
if (inoref)
10641
dp->di_nlink = inoref->if_nlink;
10642
10643
/*
10644
* Set the ext data dependencies to busy.
10645
*/
10646
for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10647
adp = TAILQ_NEXT(adp, ad_next)) {
10648
#ifdef INVARIANTS
10649
if (deplist != 0 && prevlbn >= adp->ad_offset)
10650
panic("initiate_write_inodeblock_ufs2: lbn order");
10651
prevlbn = adp->ad_offset;
10652
if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10653
panic("initiate_write_inodeblock_ufs2: "
10654
"ext pointer #%jd mismatch %jd != %jd",
10655
(intmax_t)adp->ad_offset,
10656
(intmax_t)dp->di_extb[adp->ad_offset],
10657
(intmax_t)adp->ad_newblkno);
10658
deplist |= 1 << adp->ad_offset;
10659
if ((adp->ad_state & ATTACHED) == 0)
10660
panic("initiate_write_inodeblock_ufs2: Unknown "
10661
"state 0x%x", adp->ad_state);
10662
#endif /* INVARIANTS */
10663
adp->ad_state &= ~ATTACHED;
10664
adp->ad_state |= UNDONE;
10665
}
10666
/*
10667
* The on-disk inode cannot claim to be any larger than the last
10668
* fragment that has been written. Otherwise, the on-disk inode
10669
* might have fragments that were not the last block in the ext
10670
* data which would corrupt the filesystem.
10671
*/
10672
for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10673
lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10674
dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10675
/* keep going until hitting a rollback to a frag */
10676
if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10677
continue;
10678
dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10679
for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10680
#ifdef INVARIANTS
10681
if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10682
panic("initiate_write_inodeblock_ufs2: "
10683
"lost dep1");
10684
#endif /* INVARIANTS */
10685
dp->di_extb[i] = 0;
10686
}
10687
lastadp = NULL;
10688
break;
10689
}
10690
/*
10691
* If we have zero'ed out the last allocated block of the ext
10692
* data, roll back the size to the last currently allocated block.
10693
* We know that this last allocated block is a full-sized as
10694
* we already checked for fragments in the loop above.
10695
*/
10696
if (lastadp != NULL &&
10697
dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10698
for (i = lastadp->ad_offset; i >= 0; i--)
10699
if (dp->di_extb[i] != 0)
10700
break;
10701
dp->di_extsize = (i + 1) * fs->fs_bsize;
10702
}
10703
/*
10704
* Set the file data dependencies to busy.
10705
*/
10706
for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10707
adp = TAILQ_NEXT(adp, ad_next)) {
10708
#ifdef INVARIANTS
10709
if (deplist != 0 && prevlbn >= adp->ad_offset)
10710
panic("softdep_write_inodeblock: lbn order");
10711
if ((adp->ad_state & ATTACHED) == 0)
10712
panic("inodedep %p and adp %p not attached", inodedep, adp);
10713
prevlbn = adp->ad_offset;
10714
if (!ffs_fsfail_cleanup(ump, 0) &&
10715
adp->ad_offset < UFS_NDADDR &&
10716
dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10717
panic("initiate_write_inodeblock_ufs2: "
10718
"direct pointer #%jd mismatch %jd != %jd",
10719
(intmax_t)adp->ad_offset,
10720
(intmax_t)dp->di_db[adp->ad_offset],
10721
(intmax_t)adp->ad_newblkno);
10722
if (!ffs_fsfail_cleanup(ump, 0) &&
10723
adp->ad_offset >= UFS_NDADDR &&
10724
dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10725
panic("initiate_write_inodeblock_ufs2: "
10726
"indirect pointer #%jd mismatch %jd != %jd",
10727
(intmax_t)adp->ad_offset - UFS_NDADDR,
10728
(intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10729
(intmax_t)adp->ad_newblkno);
10730
deplist |= 1 << adp->ad_offset;
10731
if ((adp->ad_state & ATTACHED) == 0)
10732
panic("initiate_write_inodeblock_ufs2: Unknown "
10733
"state 0x%x", adp->ad_state);
10734
#endif /* INVARIANTS */
10735
adp->ad_state &= ~ATTACHED;
10736
adp->ad_state |= UNDONE;
10737
}
10738
/*
10739
* The on-disk inode cannot claim to be any larger than the last
10740
* fragment that has been written. Otherwise, the on-disk inode
10741
* might have fragments that were not the last block in the file
10742
* which would corrupt the filesystem.
10743
*/
10744
for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10745
lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10746
if (adp->ad_offset >= UFS_NDADDR)
10747
break;
10748
dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10749
/* keep going until hitting a rollback to a frag */
10750
if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10751
continue;
10752
dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10753
for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10754
#ifdef INVARIANTS
10755
if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10756
panic("initiate_write_inodeblock_ufs2: "
10757
"lost dep2");
10758
#endif /* INVARIANTS */
10759
dp->di_db[i] = 0;
10760
}
10761
for (i = 0; i < UFS_NIADDR; i++) {
10762
#ifdef INVARIANTS
10763
if (dp->di_ib[i] != 0 &&
10764
(deplist & ((1 << UFS_NDADDR) << i)) == 0)
10765
panic("initiate_write_inodeblock_ufs2: "
10766
"lost dep3");
10767
#endif /* INVARIANTS */
10768
dp->di_ib[i] = 0;
10769
}
10770
ffs_update_dinode_ckhash(fs, dp);
10771
return;
10772
}
10773
/*
10774
* If we have zero'ed out the last allocated block of the file,
10775
* roll back the size to the last currently allocated block.
10776
* We know that this last allocated block is a full-sized as
10777
* we already checked for fragments in the loop above.
10778
*/
10779
if (lastadp != NULL &&
10780
dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10781
for (i = lastadp->ad_offset; i >= 0; i--)
10782
if (dp->di_db[i] != 0)
10783
break;
10784
dp->di_size = (i + 1) * fs->fs_bsize;
10785
}
10786
/*
10787
* The only dependencies are for indirect blocks.
10788
*
10789
* The file size for indirect block additions is not guaranteed.
10790
* Such a guarantee would be non-trivial to achieve. The conventional
10791
* synchronous write implementation also does not make this guarantee.
10792
* Fsck should catch and fix discrepancies. Arguably, the file size
10793
* can be over-estimated without destroying integrity when the file
10794
* moves into the indirect blocks (i.e., is large). If we want to
10795
* postpone fsck, we are stuck with this argument.
10796
*/
10797
for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10798
dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10799
ffs_update_dinode_ckhash(fs, dp);
10800
}
10801
10802
/*
10803
* Cancel an indirdep as a result of truncation. Release all of the
10804
* children allocindirs and place their journal work on the appropriate
10805
* list.
10806
*/
10807
static void
10808
cancel_indirdep(
10809
struct indirdep *indirdep,
10810
struct buf *bp,
10811
struct freeblks *freeblks)
10812
{
10813
struct allocindir *aip;
10814
10815
/*
10816
* None of the indirect pointers will ever be visible,
10817
* so they can simply be tossed. GOINGAWAY ensures
10818
* that allocated pointers will be saved in the buffer
10819
* cache until they are freed. Note that they will
10820
* only be able to be found by their physical address
10821
* since the inode mapping the logical address will
10822
* be gone. The save buffer used for the safe copy
10823
* was allocated in setup_allocindir_phase2 using
10824
* the physical address so it could be used for this
10825
* purpose. Hence we swap the safe copy with the real
10826
* copy, allowing the safe copy to be freed and holding
10827
* on to the real copy for later use in indir_trunc.
10828
*/
10829
if (indirdep->ir_state & GOINGAWAY)
10830
panic("cancel_indirdep: already gone");
10831
if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10832
indirdep->ir_state |= DEPCOMPLETE;
10833
LIST_REMOVE(indirdep, ir_next);
10834
}
10835
indirdep->ir_state |= GOINGAWAY;
10836
/*
10837
* Pass in bp for blocks still have journal writes
10838
* pending so we can cancel them on their own.
10839
*/
10840
while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10841
cancel_allocindir(aip, bp, freeblks, 0);
10842
while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10843
cancel_allocindir(aip, NULL, freeblks, 0);
10844
while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10845
cancel_allocindir(aip, NULL, freeblks, 0);
10846
while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10847
cancel_allocindir(aip, NULL, freeblks, 0);
10848
/*
10849
* If there are pending partial truncations we need to keep the
10850
* old block copy around until they complete. This is because
10851
* the current b_data is not a perfect superset of the available
10852
* blocks.
10853
*/
10854
if (TAILQ_EMPTY(&indirdep->ir_trunc))
10855
bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10856
else
10857
bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10858
WORKLIST_REMOVE(&indirdep->ir_list);
10859
WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10860
indirdep->ir_bp = NULL;
10861
indirdep->ir_freeblks = freeblks;
10862
}
10863
10864
/*
10865
* Free an indirdep once it no longer has new pointers to track.
10866
*/
10867
static void
10868
free_indirdep(struct indirdep *indirdep)
10869
{
10870
10871
KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10872
("free_indirdep: Indir trunc list not empty."));
10873
KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10874
("free_indirdep: Complete head not empty."));
10875
KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10876
("free_indirdep: write head not empty."));
10877
KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10878
("free_indirdep: done head not empty."));
10879
KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10880
("free_indirdep: deplist head not empty."));
10881
KASSERT((indirdep->ir_state & DEPCOMPLETE),
10882
("free_indirdep: %p still on newblk list.", indirdep));
10883
KASSERT(indirdep->ir_saveddata == NULL,
10884
("free_indirdep: %p still has saved data.", indirdep));
10885
KASSERT(indirdep->ir_savebp == NULL,
10886
("free_indirdep: %p still has savebp buffer.", indirdep));
10887
if (indirdep->ir_state & ONWORKLIST)
10888
WORKLIST_REMOVE(&indirdep->ir_list);
10889
WORKITEM_FREE(indirdep, D_INDIRDEP);
10890
}
10891
10892
/*
10893
* Called before a write to an indirdep. This routine is responsible for
10894
* rolling back pointers to a safe state which includes only those
10895
* allocindirs which have been completed.
10896
*/
10897
static void
10898
initiate_write_indirdep(struct indirdep *indirdep, struct buf *bp)
10899
{
10900
struct ufsmount *ump;
10901
10902
indirdep->ir_state |= IOSTARTED;
10903
if (indirdep->ir_state & GOINGAWAY)
10904
panic("disk_io_initiation: indirdep gone");
10905
/*
10906
* If there are no remaining dependencies, this will be writing
10907
* the real pointers.
10908
*/
10909
if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10910
TAILQ_EMPTY(&indirdep->ir_trunc))
10911
return;
10912
/*
10913
* Replace up-to-date version with safe version.
10914
*/
10915
if (indirdep->ir_saveddata == NULL) {
10916
ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10917
LOCK_OWNED(ump);
10918
FREE_LOCK(ump);
10919
indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10920
M_SOFTDEP_FLAGS);
10921
ACQUIRE_LOCK(ump);
10922
}
10923
indirdep->ir_state &= ~ATTACHED;
10924
indirdep->ir_state |= UNDONE;
10925
bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10926
bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10927
bp->b_bcount);
10928
}
10929
10930
/*
10931
* Called when an inode has been cleared in a cg bitmap. This finally
10932
* eliminates any canceled jaddrefs
10933
*/
10934
void
10935
softdep_setup_inofree(struct mount *mp,
10936
struct buf *bp,
10937
ino_t ino,
10938
struct workhead *wkhd,
10939
bool doingrecovery)
10940
{
10941
struct worklist *wk, *wkn;
10942
struct ufsmount *ump;
10943
#ifdef INVARIANTS
10944
struct inodedep *inodedep;
10945
#endif
10946
10947
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10948
("softdep_setup_inofree called on non-softdep filesystem"));
10949
ump = VFSTOUFS(mp);
10950
ACQUIRE_LOCK(ump);
10951
KASSERT(doingrecovery || ffs_fsfail_cleanup(ump, 0) ||
10952
isclr(cg_inosused((struct cg *)bp->b_data),
10953
ino % ump->um_fs->fs_ipg),
10954
("softdep_setup_inofree: inode %ju not freed.", (uintmax_t)ino));
10955
KASSERT(inodedep_lookup(mp, ino, 0, &inodedep) == 0,
10956
("softdep_setup_inofree: ino %ju has existing inodedep %p",
10957
(uintmax_t)ino, inodedep));
10958
if (wkhd) {
10959
LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10960
if (wk->wk_type != D_JADDREF)
10961
continue;
10962
WORKLIST_REMOVE(wk);
10963
/*
10964
* We can free immediately even if the jaddref
10965
* isn't attached in a background write as now
10966
* the bitmaps are reconciled.
10967
*/
10968
wk->wk_state |= COMPLETE | ATTACHED;
10969
free_jaddref(WK_JADDREF(wk));
10970
}
10971
jwork_move(&bp->b_dep, wkhd);
10972
}
10973
FREE_LOCK(ump);
10974
}
10975
10976
/*
10977
* Called via ffs_blkfree() after a set of frags has been cleared from a cg
10978
* map. Any dependencies waiting for the write to clear are added to the
10979
* buf's list and any jnewblks that are being canceled are discarded
10980
* immediately.
10981
*/
10982
void
10983
softdep_setup_blkfree(
10984
struct mount *mp,
10985
struct buf *bp,
10986
ufs2_daddr_t blkno,
10987
int frags,
10988
struct workhead *wkhd,
10989
bool doingrecovery)
10990
{
10991
struct bmsafemap *bmsafemap;
10992
struct jnewblk *jnewblk;
10993
struct ufsmount *ump;
10994
struct worklist *wk;
10995
struct fs *fs;
10996
#ifdef INVARIANTS
10997
uint8_t *blksfree;
10998
struct cg *cgp;
10999
ufs2_daddr_t jstart;
11000
ufs2_daddr_t jend;
11001
ufs2_daddr_t end;
11002
long bno;
11003
int i;
11004
#endif
11005
11006
CTR3(KTR_SUJ,
11007
"softdep_setup_blkfree: blkno %jd frags %d wk head %p",
11008
blkno, frags, wkhd);
11009
11010
ump = VFSTOUFS(mp);
11011
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
11012
("softdep_setup_blkfree called on non-softdep filesystem"));
11013
ACQUIRE_LOCK(ump);
11014
/* Lookup the bmsafemap so we track when it is dirty. */
11015
fs = ump->um_fs;
11016
bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11017
/*
11018
* Detach any jnewblks which have been canceled. They must linger
11019
* until the bitmap is cleared again by ffs_blkfree() to prevent
11020
* an unjournaled allocation from hitting the disk.
11021
*/
11022
if (wkhd) {
11023
while ((wk = LIST_FIRST(wkhd)) != NULL) {
11024
CTR2(KTR_SUJ,
11025
"softdep_setup_blkfree: blkno %jd wk type %d",
11026
blkno, wk->wk_type);
11027
WORKLIST_REMOVE(wk);
11028
if (wk->wk_type != D_JNEWBLK) {
11029
WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
11030
continue;
11031
}
11032
jnewblk = WK_JNEWBLK(wk);
11033
KASSERT(jnewblk->jn_state & GOINGAWAY,
11034
("softdep_setup_blkfree: jnewblk not canceled."));
11035
#ifdef INVARIANTS
11036
if (!doingrecovery && !ffs_fsfail_cleanup(ump, 0)) {
11037
/*
11038
* Assert that this block is free in the
11039
* bitmap before we discard the jnewblk.
11040
*/
11041
cgp = (struct cg *)bp->b_data;
11042
blksfree = cg_blksfree(cgp);
11043
bno = dtogd(fs, jnewblk->jn_blkno);
11044
for (i = jnewblk->jn_oldfrags;
11045
i < jnewblk->jn_frags; i++) {
11046
if (isset(blksfree, bno + i))
11047
continue;
11048
panic("softdep_setup_blkfree: block "
11049
"%ju not freed.",
11050
(uintmax_t)jnewblk->jn_blkno);
11051
}
11052
}
11053
#endif
11054
/*
11055
* Even if it's not attached we can free immediately
11056
* as the new bitmap is correct.
11057
*/
11058
wk->wk_state |= COMPLETE | ATTACHED;
11059
free_jnewblk(jnewblk);
11060
}
11061
}
11062
11063
#ifdef INVARIANTS
11064
/*
11065
* Assert that we are not freeing a block which has an outstanding
11066
* allocation dependency.
11067
*/
11068
fs = VFSTOUFS(mp)->um_fs;
11069
bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11070
end = blkno + frags;
11071
LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11072
/*
11073
* Don't match against blocks that will be freed when the
11074
* background write is done.
11075
*/
11076
if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
11077
(COMPLETE | DEPCOMPLETE))
11078
continue;
11079
jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
11080
jend = jnewblk->jn_blkno + jnewblk->jn_frags;
11081
if ((blkno >= jstart && blkno < jend) ||
11082
(end > jstart && end <= jend)) {
11083
printf("state 0x%X %jd - %d %d dep %p\n",
11084
jnewblk->jn_state, jnewblk->jn_blkno,
11085
jnewblk->jn_oldfrags, jnewblk->jn_frags,
11086
jnewblk->jn_dep);
11087
panic("softdep_setup_blkfree: "
11088
"%jd-%jd(%d) overlaps with %jd-%jd",
11089
blkno, end, frags, jstart, jend);
11090
}
11091
}
11092
#endif
11093
FREE_LOCK(ump);
11094
}
11095
11096
/*
11097
* Revert a block allocation when the journal record that describes it
11098
* is not yet written.
11099
*/
11100
static int
11101
jnewblk_rollback(
11102
struct jnewblk *jnewblk,
11103
struct fs *fs,
11104
struct cg *cgp,
11105
uint8_t *blksfree)
11106
{
11107
ufs1_daddr_t fragno;
11108
long cgbno, bbase;
11109
int frags, blk;
11110
int i;
11111
11112
frags = 0;
11113
cgbno = dtogd(fs, jnewblk->jn_blkno);
11114
/*
11115
* We have to test which frags need to be rolled back. We may
11116
* be operating on a stale copy when doing background writes.
11117
*/
11118
for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
11119
if (isclr(blksfree, cgbno + i))
11120
frags++;
11121
if (frags == 0)
11122
return (0);
11123
/*
11124
* This is mostly ffs_blkfree() sans some validation and
11125
* superblock updates.
11126
*/
11127
if (frags == fs->fs_frag) {
11128
fragno = fragstoblks(fs, cgbno);
11129
ffs_setblock(fs, blksfree, fragno);
11130
ffs_clusteracct(fs, cgp, fragno, 1);
11131
cgp->cg_cs.cs_nbfree++;
11132
} else {
11133
cgbno += jnewblk->jn_oldfrags;
11134
bbase = cgbno - fragnum(fs, cgbno);
11135
/* Decrement the old frags. */
11136
blk = blkmap(fs, blksfree, bbase);
11137
ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11138
/* Deallocate the fragment */
11139
for (i = 0; i < frags; i++)
11140
setbit(blksfree, cgbno + i);
11141
cgp->cg_cs.cs_nffree += frags;
11142
/* Add back in counts associated with the new frags */
11143
blk = blkmap(fs, blksfree, bbase);
11144
ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11145
/* If a complete block has been reassembled, account for it. */
11146
fragno = fragstoblks(fs, bbase);
11147
if (ffs_isblock(fs, blksfree, fragno)) {
11148
cgp->cg_cs.cs_nffree -= fs->fs_frag;
11149
ffs_clusteracct(fs, cgp, fragno, 1);
11150
cgp->cg_cs.cs_nbfree++;
11151
}
11152
}
11153
stat_jnewblk++;
11154
jnewblk->jn_state &= ~ATTACHED;
11155
jnewblk->jn_state |= UNDONE;
11156
11157
return (frags);
11158
}
11159
11160
static void
11161
initiate_write_bmsafemap(
11162
struct bmsafemap *bmsafemap,
11163
struct buf *bp) /* The cg block. */
11164
{
11165
struct jaddref *jaddref;
11166
struct jnewblk *jnewblk;
11167
uint8_t *inosused;
11168
uint8_t *blksfree;
11169
struct cg *cgp;
11170
struct fs *fs;
11171
ino_t ino;
11172
11173
/*
11174
* If this is a background write, we did this at the time that
11175
* the copy was made, so do not need to do it again.
11176
*/
11177
if (bmsafemap->sm_state & IOSTARTED)
11178
return;
11179
bmsafemap->sm_state |= IOSTARTED;
11180
/*
11181
* Clear any inode allocations which are pending journal writes.
11182
*/
11183
if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
11184
cgp = (struct cg *)bp->b_data;
11185
fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11186
inosused = cg_inosused(cgp);
11187
LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
11188
ino = jaddref->ja_ino % fs->fs_ipg;
11189
if (isset(inosused, ino)) {
11190
if ((jaddref->ja_mode & IFMT) == IFDIR)
11191
cgp->cg_cs.cs_ndir--;
11192
cgp->cg_cs.cs_nifree++;
11193
clrbit(inosused, ino);
11194
jaddref->ja_state &= ~ATTACHED;
11195
jaddref->ja_state |= UNDONE;
11196
stat_jaddref++;
11197
} else
11198
panic("initiate_write_bmsafemap: inode %ju "
11199
"marked free", (uintmax_t)jaddref->ja_ino);
11200
}
11201
}
11202
/*
11203
* Clear any block allocations which are pending journal writes.
11204
*/
11205
if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11206
cgp = (struct cg *)bp->b_data;
11207
fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11208
blksfree = cg_blksfree(cgp);
11209
LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11210
if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
11211
continue;
11212
panic("initiate_write_bmsafemap: block %jd "
11213
"marked free", jnewblk->jn_blkno);
11214
}
11215
}
11216
/*
11217
* Move allocation lists to the written lists so they can be
11218
* cleared once the block write is complete.
11219
*/
11220
LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
11221
inodedep, id_deps);
11222
LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11223
newblk, nb_deps);
11224
LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
11225
wk_list);
11226
}
11227
11228
void
11229
softdep_handle_error(struct buf *bp)
11230
{
11231
struct ufsmount *ump;
11232
11233
ump = softdep_bp_to_mp(bp);
11234
if (ump == NULL)
11235
return;
11236
11237
if (ffs_fsfail_cleanup(ump, bp->b_error)) {
11238
/*
11239
* No future writes will succeed, so the on-disk image is safe.
11240
* Pretend that this write succeeded so that the softdep state
11241
* will be cleaned up naturally.
11242
*/
11243
bp->b_ioflags &= ~BIO_ERROR;
11244
bp->b_error = 0;
11245
}
11246
}
11247
11248
/*
11249
* This routine is called during the completion interrupt
11250
* service routine for a disk write (from the procedure called
11251
* by the device driver to inform the filesystem caches of
11252
* a request completion). It should be called early in this
11253
* procedure, before the block is made available to other
11254
* processes or other routines are called.
11255
*
11256
*/
11257
static void
11258
softdep_disk_write_complete(
11259
struct buf *bp) /* describes the completed disk write */
11260
{
11261
struct worklist *wk;
11262
struct worklist *owk;
11263
struct ufsmount *ump;
11264
struct workhead reattach;
11265
struct freeblks *freeblks;
11266
struct buf *sbp;
11267
11268
ump = softdep_bp_to_mp(bp);
11269
KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
11270
("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
11271
"with outstanding dependencies for buffer %p", bp));
11272
if (ump == NULL)
11273
return;
11274
if ((bp->b_ioflags & BIO_ERROR) != 0)
11275
softdep_handle_error(bp);
11276
/*
11277
* If an error occurred while doing the write, then the data
11278
* has not hit the disk and the dependencies cannot be processed.
11279
* But we do have to go through and roll forward any dependencies
11280
* that were rolled back before the disk write.
11281
*/
11282
sbp = NULL;
11283
ACQUIRE_LOCK(ump);
11284
if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
11285
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11286
switch (wk->wk_type) {
11287
case D_PAGEDEP:
11288
handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11289
continue;
11290
11291
case D_INODEDEP:
11292
handle_written_inodeblock(WK_INODEDEP(wk),
11293
bp, 0);
11294
continue;
11295
11296
case D_BMSAFEMAP:
11297
handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11298
bp, 0);
11299
continue;
11300
11301
case D_INDIRDEP:
11302
handle_written_indirdep(WK_INDIRDEP(wk),
11303
bp, &sbp, 0);
11304
continue;
11305
default:
11306
/* nothing to roll forward */
11307
continue;
11308
}
11309
}
11310
FREE_LOCK(ump);
11311
if (sbp)
11312
brelse(sbp);
11313
return;
11314
}
11315
LIST_INIT(&reattach);
11316
11317
/*
11318
* Ump SU lock must not be released anywhere in this code segment.
11319
*/
11320
owk = NULL;
11321
while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11322
WORKLIST_REMOVE(wk);
11323
atomic_add_long(&dep_write[wk->wk_type], 1);
11324
if (wk == owk)
11325
panic("duplicate worklist: %p\n", wk);
11326
owk = wk;
11327
switch (wk->wk_type) {
11328
case D_PAGEDEP:
11329
if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11330
WRITESUCCEEDED))
11331
WORKLIST_INSERT(&reattach, wk);
11332
continue;
11333
11334
case D_INODEDEP:
11335
if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11336
WRITESUCCEEDED))
11337
WORKLIST_INSERT(&reattach, wk);
11338
continue;
11339
11340
case D_BMSAFEMAP:
11341
if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11342
WRITESUCCEEDED))
11343
WORKLIST_INSERT(&reattach, wk);
11344
continue;
11345
11346
case D_MKDIR:
11347
handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11348
continue;
11349
11350
case D_ALLOCDIRECT:
11351
wk->wk_state |= COMPLETE;
11352
handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11353
continue;
11354
11355
case D_ALLOCINDIR:
11356
wk->wk_state |= COMPLETE;
11357
handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11358
continue;
11359
11360
case D_INDIRDEP:
11361
if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11362
WRITESUCCEEDED))
11363
WORKLIST_INSERT(&reattach, wk);
11364
continue;
11365
11366
case D_FREEBLKS:
11367
wk->wk_state |= COMPLETE;
11368
freeblks = WK_FREEBLKS(wk);
11369
if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11370
LIST_EMPTY(&freeblks->fb_jblkdephd))
11371
add_to_worklist(wk, WK_NODELAY);
11372
continue;
11373
11374
case D_FREEWORK:
11375
handle_written_freework(WK_FREEWORK(wk));
11376
break;
11377
11378
case D_JSEGDEP:
11379
free_jsegdep(WK_JSEGDEP(wk));
11380
continue;
11381
11382
case D_JSEG:
11383
handle_written_jseg(WK_JSEG(wk), bp);
11384
continue;
11385
11386
case D_SBDEP:
11387
if (handle_written_sbdep(WK_SBDEP(wk), bp))
11388
WORKLIST_INSERT(&reattach, wk);
11389
continue;
11390
11391
case D_FREEDEP:
11392
free_freedep(WK_FREEDEP(wk));
11393
continue;
11394
11395
default:
11396
panic("handle_disk_write_complete: Unknown type %s",
11397
TYPENAME(wk->wk_type));
11398
/* NOTREACHED */
11399
}
11400
}
11401
/*
11402
* Reattach any requests that must be redone.
11403
*/
11404
while ((wk = LIST_FIRST(&reattach)) != NULL) {
11405
WORKLIST_REMOVE(wk);
11406
WORKLIST_INSERT(&bp->b_dep, wk);
11407
}
11408
FREE_LOCK(ump);
11409
if (sbp)
11410
brelse(sbp);
11411
}
11412
11413
/*
11414
* Called from within softdep_disk_write_complete above.
11415
*/
11416
static void
11417
handle_allocdirect_partdone(
11418
struct allocdirect *adp, /* the completed allocdirect */
11419
struct workhead *wkhd) /* Work to do when inode is writtne. */
11420
{
11421
struct allocdirectlst *listhead;
11422
struct allocdirect *listadp;
11423
struct inodedep *inodedep;
11424
long bsize;
11425
11426
LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp));
11427
if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11428
return;
11429
/*
11430
* The on-disk inode cannot claim to be any larger than the last
11431
* fragment that has been written. Otherwise, the on-disk inode
11432
* might have fragments that were not the last block in the file
11433
* which would corrupt the filesystem. Thus, we cannot free any
11434
* allocdirects after one whose ad_oldblkno claims a fragment as
11435
* these blocks must be rolled back to zero before writing the inode.
11436
* We check the currently active set of allocdirects in id_inoupdt
11437
* or id_extupdt as appropriate.
11438
*/
11439
inodedep = adp->ad_inodedep;
11440
bsize = inodedep->id_fs->fs_bsize;
11441
if (adp->ad_state & EXTDATA)
11442
listhead = &inodedep->id_extupdt;
11443
else
11444
listhead = &inodedep->id_inoupdt;
11445
TAILQ_FOREACH(listadp, listhead, ad_next) {
11446
/* found our block */
11447
if (listadp == adp)
11448
break;
11449
/* continue if ad_oldlbn is not a fragment */
11450
if (listadp->ad_oldsize == 0 ||
11451
listadp->ad_oldsize == bsize)
11452
continue;
11453
/* hit a fragment */
11454
return;
11455
}
11456
/*
11457
* If we have reached the end of the current list without
11458
* finding the just finished dependency, then it must be
11459
* on the future dependency list. Future dependencies cannot
11460
* be freed until they are moved to the current list.
11461
*/
11462
if (listadp == NULL) {
11463
#ifdef INVARIANTS
11464
if (adp->ad_state & EXTDATA)
11465
listhead = &inodedep->id_newextupdt;
11466
else
11467
listhead = &inodedep->id_newinoupdt;
11468
TAILQ_FOREACH(listadp, listhead, ad_next)
11469
/* found our block */
11470
if (listadp == adp)
11471
break;
11472
if (listadp == NULL)
11473
panic("handle_allocdirect_partdone: lost dep");
11474
#endif /* INVARIANTS */
11475
return;
11476
}
11477
/*
11478
* If we have found the just finished dependency, then queue
11479
* it along with anything that follows it that is complete.
11480
* Since the pointer has not yet been written in the inode
11481
* as the dependency prevents it, place the allocdirect on the
11482
* bufwait list where it will be freed once the pointer is
11483
* valid.
11484
*/
11485
if (wkhd == NULL)
11486
wkhd = &inodedep->id_bufwait;
11487
for (; adp; adp = listadp) {
11488
listadp = TAILQ_NEXT(adp, ad_next);
11489
if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11490
return;
11491
TAILQ_REMOVE(listhead, adp, ad_next);
11492
WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11493
}
11494
}
11495
11496
/*
11497
* Called from within softdep_disk_write_complete above. This routine
11498
* completes successfully written allocindirs.
11499
*/
11500
static void
11501
handle_allocindir_partdone(
11502
struct allocindir *aip) /* the completed allocindir */
11503
{
11504
struct indirdep *indirdep;
11505
11506
if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11507
return;
11508
indirdep = aip->ai_indirdep;
11509
LIST_REMOVE(aip, ai_next);
11510
/*
11511
* Don't set a pointer while the buffer is undergoing IO or while
11512
* we have active truncations.
11513
*/
11514
if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11515
LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11516
return;
11517
}
11518
if (indirdep->ir_state & UFS1FMT)
11519
((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11520
aip->ai_newblkno;
11521
else
11522
((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11523
aip->ai_newblkno;
11524
/*
11525
* Await the pointer write before freeing the allocindir.
11526
*/
11527
LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11528
}
11529
11530
/*
11531
* Release segments held on a jwork list.
11532
*/
11533
static void
11534
handle_jwork(struct workhead *wkhd)
11535
{
11536
struct worklist *wk;
11537
11538
while ((wk = LIST_FIRST(wkhd)) != NULL) {
11539
WORKLIST_REMOVE(wk);
11540
switch (wk->wk_type) {
11541
case D_JSEGDEP:
11542
free_jsegdep(WK_JSEGDEP(wk));
11543
continue;
11544
case D_FREEDEP:
11545
free_freedep(WK_FREEDEP(wk));
11546
continue;
11547
case D_FREEFRAG:
11548
rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11549
WORKITEM_FREE(wk, D_FREEFRAG);
11550
continue;
11551
case D_FREEWORK:
11552
handle_written_freework(WK_FREEWORK(wk));
11553
continue;
11554
default:
11555
panic("handle_jwork: Unknown type %s\n",
11556
TYPENAME(wk->wk_type));
11557
}
11558
}
11559
}
11560
11561
/*
11562
* Handle the bufwait list on an inode when it is safe to release items
11563
* held there. This normally happens after an inode block is written but
11564
* may be delayed and handled later if there are pending journal items that
11565
* are not yet safe to be released.
11566
*/
11567
static struct freefile *
11568
handle_bufwait(
11569
struct inodedep *inodedep,
11570
struct workhead *refhd)
11571
{
11572
struct jaddref *jaddref;
11573
struct freefile *freefile;
11574
struct worklist *wk;
11575
11576
freefile = NULL;
11577
while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11578
WORKLIST_REMOVE(wk);
11579
switch (wk->wk_type) {
11580
case D_FREEFILE:
11581
/*
11582
* We defer adding freefile to the worklist
11583
* until all other additions have been made to
11584
* ensure that it will be done after all the
11585
* old blocks have been freed.
11586
*/
11587
if (freefile != NULL)
11588
panic("handle_bufwait: freefile");
11589
freefile = WK_FREEFILE(wk);
11590
continue;
11591
11592
case D_MKDIR:
11593
handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11594
continue;
11595
11596
case D_DIRADD:
11597
diradd_inode_written(WK_DIRADD(wk), inodedep);
11598
continue;
11599
11600
case D_FREEFRAG:
11601
wk->wk_state |= COMPLETE;
11602
if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11603
add_to_worklist(wk, 0);
11604
continue;
11605
11606
case D_DIRREM:
11607
wk->wk_state |= COMPLETE;
11608
add_to_worklist(wk, 0);
11609
continue;
11610
11611
case D_ALLOCDIRECT:
11612
case D_ALLOCINDIR:
11613
free_newblk(WK_NEWBLK(wk));
11614
continue;
11615
11616
case D_JNEWBLK:
11617
wk->wk_state |= COMPLETE;
11618
free_jnewblk(WK_JNEWBLK(wk));
11619
continue;
11620
11621
/*
11622
* Save freed journal segments and add references on
11623
* the supplied list which will delay their release
11624
* until the cg bitmap is cleared on disk.
11625
*/
11626
case D_JSEGDEP:
11627
if (refhd == NULL)
11628
free_jsegdep(WK_JSEGDEP(wk));
11629
else
11630
WORKLIST_INSERT(refhd, wk);
11631
continue;
11632
11633
case D_JADDREF:
11634
jaddref = WK_JADDREF(wk);
11635
TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11636
if_deps);
11637
/*
11638
* Transfer any jaddrefs to the list to be freed with
11639
* the bitmap if we're handling a removed file.
11640
*/
11641
if (refhd == NULL) {
11642
wk->wk_state |= COMPLETE;
11643
free_jaddref(jaddref);
11644
} else
11645
WORKLIST_INSERT(refhd, wk);
11646
continue;
11647
11648
default:
11649
panic("handle_bufwait: Unknown type %p(%s)",
11650
wk, TYPENAME(wk->wk_type));
11651
/* NOTREACHED */
11652
}
11653
}
11654
return (freefile);
11655
}
11656
/*
11657
* Called from within softdep_disk_write_complete above to restore
11658
* in-memory inode block contents to their most up-to-date state. Note
11659
* that this routine is always called from interrupt level with further
11660
* interrupts from this device blocked.
11661
*
11662
* If the write did not succeed, we will do all the roll-forward
11663
* operations, but we will not take the actions that will allow its
11664
* dependencies to be processed.
11665
*/
11666
static int
11667
handle_written_inodeblock(
11668
struct inodedep *inodedep,
11669
struct buf *bp, /* buffer containing the inode block */
11670
int flags)
11671
{
11672
struct freefile *freefile;
11673
struct allocdirect *adp, *nextadp;
11674
struct ufs1_dinode *dp1 = NULL;
11675
struct ufs2_dinode *dp2 = NULL;
11676
struct workhead wkhd;
11677
int hadchanges, fstype;
11678
ino_t freelink;
11679
11680
LIST_INIT(&wkhd);
11681
hadchanges = 0;
11682
freefile = NULL;
11683
if ((inodedep->id_state & IOSTARTED) == 0)
11684
panic("handle_written_inodeblock: not started");
11685
inodedep->id_state &= ~IOSTARTED;
11686
if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11687
fstype = UFS1;
11688
dp1 = (struct ufs1_dinode *)bp->b_data +
11689
ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11690
freelink = dp1->di_freelink;
11691
} else {
11692
fstype = UFS2;
11693
dp2 = (struct ufs2_dinode *)bp->b_data +
11694
ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11695
freelink = dp2->di_freelink;
11696
}
11697
/*
11698
* Leave this inodeblock dirty until it's in the list.
11699
*/
11700
if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11701
(flags & WRITESUCCEEDED)) {
11702
struct inodedep *inon;
11703
11704
inon = TAILQ_NEXT(inodedep, id_unlinked);
11705
if ((inon == NULL && freelink == 0) ||
11706
(inon && inon->id_ino == freelink)) {
11707
if (inon)
11708
inon->id_state |= UNLINKPREV;
11709
inodedep->id_state |= UNLINKNEXT;
11710
}
11711
hadchanges = 1;
11712
}
11713
/*
11714
* If we had to rollback the inode allocation because of
11715
* bitmaps being incomplete, then simply restore it.
11716
* Keep the block dirty so that it will not be reclaimed until
11717
* all associated dependencies have been cleared and the
11718
* corresponding updates written to disk.
11719
*/
11720
if (inodedep->id_savedino1 != NULL) {
11721
hadchanges = 1;
11722
if (fstype == UFS1)
11723
*dp1 = *inodedep->id_savedino1;
11724
else
11725
*dp2 = *inodedep->id_savedino2;
11726
free(inodedep->id_savedino1, M_SAVEDINO);
11727
inodedep->id_savedino1 = NULL;
11728
if ((bp->b_flags & B_DELWRI) == 0)
11729
stat_inode_bitmap++;
11730
bdirty(bp);
11731
/*
11732
* If the inode is clear here and GOINGAWAY it will never
11733
* be written. Process the bufwait and clear any pending
11734
* work which may include the freefile.
11735
*/
11736
if (inodedep->id_state & GOINGAWAY)
11737
goto bufwait;
11738
return (1);
11739
}
11740
if (flags & WRITESUCCEEDED)
11741
inodedep->id_state |= COMPLETE;
11742
/*
11743
* Roll forward anything that had to be rolled back before
11744
* the inode could be updated.
11745
*/
11746
for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11747
nextadp = TAILQ_NEXT(adp, ad_next);
11748
if (adp->ad_state & ATTACHED)
11749
panic("handle_written_inodeblock: new entry");
11750
if (fstype == UFS1) {
11751
if (adp->ad_offset < UFS_NDADDR) {
11752
if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11753
panic("%s %s #%jd mismatch %d != %jd",
11754
"handle_written_inodeblock:",
11755
"direct pointer",
11756
(intmax_t)adp->ad_offset,
11757
dp1->di_db[adp->ad_offset],
11758
(intmax_t)adp->ad_oldblkno);
11759
dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11760
} else {
11761
if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11762
0)
11763
panic("%s: %s #%jd allocated as %d",
11764
"handle_written_inodeblock",
11765
"indirect pointer",
11766
(intmax_t)adp->ad_offset -
11767
UFS_NDADDR,
11768
dp1->di_ib[adp->ad_offset -
11769
UFS_NDADDR]);
11770
dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11771
adp->ad_newblkno;
11772
}
11773
} else {
11774
if (adp->ad_offset < UFS_NDADDR) {
11775
if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11776
panic("%s: %s #%jd %s %jd != %jd",
11777
"handle_written_inodeblock",
11778
"direct pointer",
11779
(intmax_t)adp->ad_offset, "mismatch",
11780
(intmax_t)dp2->di_db[adp->ad_offset],
11781
(intmax_t)adp->ad_oldblkno);
11782
dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11783
} else {
11784
if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
11785
0)
11786
panic("%s: %s #%jd allocated as %jd",
11787
"handle_written_inodeblock",
11788
"indirect pointer",
11789
(intmax_t)adp->ad_offset -
11790
UFS_NDADDR,
11791
(intmax_t)
11792
dp2->di_ib[adp->ad_offset -
11793
UFS_NDADDR]);
11794
dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
11795
adp->ad_newblkno;
11796
}
11797
}
11798
adp->ad_state &= ~UNDONE;
11799
adp->ad_state |= ATTACHED;
11800
hadchanges = 1;
11801
}
11802
for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11803
nextadp = TAILQ_NEXT(adp, ad_next);
11804
if (adp->ad_state & ATTACHED)
11805
panic("handle_written_inodeblock: new entry");
11806
if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11807
panic("%s: direct pointers #%jd %s %jd != %jd",
11808
"handle_written_inodeblock",
11809
(intmax_t)adp->ad_offset, "mismatch",
11810
(intmax_t)dp2->di_extb[adp->ad_offset],
11811
(intmax_t)adp->ad_oldblkno);
11812
dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11813
adp->ad_state &= ~UNDONE;
11814
adp->ad_state |= ATTACHED;
11815
hadchanges = 1;
11816
}
11817
if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11818
stat_direct_blk_ptrs++;
11819
/*
11820
* Reset the file size to its most up-to-date value.
11821
*/
11822
if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11823
panic("handle_written_inodeblock: bad size");
11824
if (inodedep->id_savednlink > UFS_LINK_MAX)
11825
panic("handle_written_inodeblock: Invalid link count "
11826
"%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
11827
inodedep);
11828
if (fstype == UFS1) {
11829
if (dp1->di_nlink != inodedep->id_savednlink) {
11830
dp1->di_nlink = inodedep->id_savednlink;
11831
hadchanges = 1;
11832
}
11833
if (dp1->di_size != inodedep->id_savedsize) {
11834
dp1->di_size = inodedep->id_savedsize;
11835
hadchanges = 1;
11836
}
11837
} else {
11838
if (dp2->di_nlink != inodedep->id_savednlink) {
11839
dp2->di_nlink = inodedep->id_savednlink;
11840
hadchanges = 1;
11841
}
11842
if (dp2->di_size != inodedep->id_savedsize) {
11843
dp2->di_size = inodedep->id_savedsize;
11844
hadchanges = 1;
11845
}
11846
if (dp2->di_extsize != inodedep->id_savedextsize) {
11847
dp2->di_extsize = inodedep->id_savedextsize;
11848
hadchanges = 1;
11849
}
11850
}
11851
inodedep->id_savedsize = -1;
11852
inodedep->id_savedextsize = -1;
11853
inodedep->id_savednlink = -1;
11854
/*
11855
* If there were any rollbacks in the inode block, then it must be
11856
* marked dirty so that its will eventually get written back in
11857
* its correct form.
11858
*/
11859
if (hadchanges) {
11860
if (fstype == UFS2)
11861
ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
11862
bdirty(bp);
11863
}
11864
bufwait:
11865
/*
11866
* If the write did not succeed, we have done all the roll-forward
11867
* operations, but we cannot take the actions that will allow its
11868
* dependencies to be processed.
11869
*/
11870
if ((flags & WRITESUCCEEDED) == 0)
11871
return (hadchanges);
11872
/*
11873
* Process any allocdirects that completed during the update.
11874
*/
11875
if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11876
handle_allocdirect_partdone(adp, &wkhd);
11877
if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11878
handle_allocdirect_partdone(adp, &wkhd);
11879
/*
11880
* Process deallocations that were held pending until the
11881
* inode had been written to disk. Freeing of the inode
11882
* is delayed until after all blocks have been freed to
11883
* avoid creation of new <vfsid, inum, lbn> triples
11884
* before the old ones have been deleted. Completely
11885
* unlinked inodes are not processed until the unlinked
11886
* inode list is written or the last reference is removed.
11887
*/
11888
if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11889
freefile = handle_bufwait(inodedep, NULL);
11890
if (freefile && !LIST_EMPTY(&wkhd)) {
11891
WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11892
freefile = NULL;
11893
}
11894
}
11895
/*
11896
* Move rolled forward dependency completions to the bufwait list
11897
* now that those that were already written have been processed.
11898
*/
11899
if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11900
panic("handle_written_inodeblock: bufwait but no changes");
11901
jwork_move(&inodedep->id_bufwait, &wkhd);
11902
11903
if (freefile != NULL) {
11904
/*
11905
* If the inode is goingaway it was never written. Fake up
11906
* the state here so free_inodedep() can succeed.
11907
*/
11908
if (inodedep->id_state & GOINGAWAY)
11909
inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11910
if (free_inodedep(inodedep) == 0)
11911
panic("handle_written_inodeblock: live inodedep %p",
11912
inodedep);
11913
add_to_worklist(&freefile->fx_list, 0);
11914
return (0);
11915
}
11916
11917
/*
11918
* If no outstanding dependencies, free it.
11919
*/
11920
if (free_inodedep(inodedep) ||
11921
(TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11922
TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11923
TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11924
LIST_FIRST(&inodedep->id_bufwait) == 0))
11925
return (0);
11926
return (hadchanges);
11927
}
11928
11929
/*
11930
* Perform needed roll-forwards and kick off any dependencies that
11931
* can now be processed.
11932
*
11933
* If the write did not succeed, we will do all the roll-forward
11934
* operations, but we will not take the actions that will allow its
11935
* dependencies to be processed.
11936
*/
11937
static int
11938
handle_written_indirdep(
11939
struct indirdep *indirdep,
11940
struct buf *bp,
11941
struct buf **bpp,
11942
int flags)
11943
{
11944
struct allocindir *aip;
11945
struct buf *sbp;
11946
int chgs;
11947
11948
if (indirdep->ir_state & GOINGAWAY)
11949
panic("handle_written_indirdep: indirdep gone");
11950
if ((indirdep->ir_state & IOSTARTED) == 0)
11951
panic("handle_written_indirdep: IO not started");
11952
chgs = 0;
11953
/*
11954
* If there were rollbacks revert them here.
11955
*/
11956
if (indirdep->ir_saveddata) {
11957
bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11958
if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11959
free(indirdep->ir_saveddata, M_INDIRDEP);
11960
indirdep->ir_saveddata = NULL;
11961
}
11962
chgs = 1;
11963
}
11964
indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11965
indirdep->ir_state |= ATTACHED;
11966
/*
11967
* If the write did not succeed, we have done all the roll-forward
11968
* operations, but we cannot take the actions that will allow its
11969
* dependencies to be processed.
11970
*/
11971
if ((flags & WRITESUCCEEDED) == 0) {
11972
stat_indir_blk_ptrs++;
11973
bdirty(bp);
11974
return (1);
11975
}
11976
/*
11977
* Move allocindirs with written pointers to the completehd if
11978
* the indirdep's pointer is not yet written. Otherwise
11979
* free them here.
11980
*/
11981
while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11982
LIST_REMOVE(aip, ai_next);
11983
if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11984
LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11985
ai_next);
11986
newblk_freefrag(&aip->ai_block);
11987
continue;
11988
}
11989
free_newblk(&aip->ai_block);
11990
}
11991
/*
11992
* Move allocindirs that have finished dependency processing from
11993
* the done list to the write list after updating the pointers.
11994
*/
11995
if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11996
while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11997
handle_allocindir_partdone(aip);
11998
if (aip == LIST_FIRST(&indirdep->ir_donehd))
11999
panic("disk_write_complete: not gone");
12000
chgs = 1;
12001
}
12002
}
12003
/*
12004
* Preserve the indirdep if there were any changes or if it is not
12005
* yet valid on disk.
12006
*/
12007
if (chgs) {
12008
stat_indir_blk_ptrs++;
12009
bdirty(bp);
12010
return (1);
12011
}
12012
/*
12013
* If there were no changes we can discard the savedbp and detach
12014
* ourselves from the buf. We are only carrying completed pointers
12015
* in this case.
12016
*/
12017
sbp = indirdep->ir_savebp;
12018
sbp->b_flags |= B_INVAL | B_NOCACHE;
12019
indirdep->ir_savebp = NULL;
12020
indirdep->ir_bp = NULL;
12021
if (*bpp != NULL)
12022
panic("handle_written_indirdep: bp already exists.");
12023
*bpp = sbp;
12024
/*
12025
* The indirdep may not be freed until its parent points at it.
12026
*/
12027
if (indirdep->ir_state & DEPCOMPLETE)
12028
free_indirdep(indirdep);
12029
12030
return (0);
12031
}
12032
12033
/*
12034
* Process a diradd entry after its dependent inode has been written.
12035
*/
12036
static void
12037
diradd_inode_written(
12038
struct diradd *dap,
12039
struct inodedep *inodedep)
12040
{
12041
12042
LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp));
12043
dap->da_state |= COMPLETE;
12044
complete_diradd(dap);
12045
WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
12046
}
12047
12048
/*
12049
* Returns true if the bmsafemap will have rollbacks when written. Must only
12050
* be called with the per-filesystem lock and the buf lock on the cg held.
12051
*/
12052
static int
12053
bmsafemap_backgroundwrite(
12054
struct bmsafemap *bmsafemap,
12055
struct buf *bp)
12056
{
12057
int dirty;
12058
12059
LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
12060
dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
12061
!LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
12062
/*
12063
* If we're initiating a background write we need to process the
12064
* rollbacks as they exist now, not as they exist when IO starts.
12065
* No other consumers will look at the contents of the shadowed
12066
* buf so this is safe to do here.
12067
*/
12068
if (bp->b_xflags & BX_BKGRDMARKER)
12069
initiate_write_bmsafemap(bmsafemap, bp);
12070
12071
return (dirty);
12072
}
12073
12074
/*
12075
* Re-apply an allocation when a cg write is complete.
12076
*/
12077
static int
12078
jnewblk_rollforward(
12079
struct jnewblk *jnewblk,
12080
struct fs *fs,
12081
struct cg *cgp,
12082
uint8_t *blksfree)
12083
{
12084
ufs1_daddr_t fragno;
12085
ufs2_daddr_t blkno;
12086
long cgbno, bbase;
12087
int frags, blk;
12088
int i;
12089
12090
frags = 0;
12091
cgbno = dtogd(fs, jnewblk->jn_blkno);
12092
for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
12093
if (isclr(blksfree, cgbno + i))
12094
panic("jnewblk_rollforward: re-allocated fragment");
12095
frags++;
12096
}
12097
if (frags == fs->fs_frag) {
12098
blkno = fragstoblks(fs, cgbno);
12099
ffs_clrblock(fs, blksfree, (long)blkno);
12100
ffs_clusteracct(fs, cgp, blkno, -1);
12101
cgp->cg_cs.cs_nbfree--;
12102
} else {
12103
bbase = cgbno - fragnum(fs, cgbno);
12104
cgbno += jnewblk->jn_oldfrags;
12105
/* If a complete block had been reassembled, account for it. */
12106
fragno = fragstoblks(fs, bbase);
12107
if (ffs_isblock(fs, blksfree, fragno)) {
12108
cgp->cg_cs.cs_nffree += fs->fs_frag;
12109
ffs_clusteracct(fs, cgp, fragno, -1);
12110
cgp->cg_cs.cs_nbfree--;
12111
}
12112
/* Decrement the old frags. */
12113
blk = blkmap(fs, blksfree, bbase);
12114
ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
12115
/* Allocate the fragment */
12116
for (i = 0; i < frags; i++)
12117
clrbit(blksfree, cgbno + i);
12118
cgp->cg_cs.cs_nffree -= frags;
12119
/* Add back in counts associated with the new frags */
12120
blk = blkmap(fs, blksfree, bbase);
12121
ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
12122
}
12123
return (frags);
12124
}
12125
12126
/*
12127
* Complete a write to a bmsafemap structure. Roll forward any bitmap
12128
* changes if it's not a background write. Set all written dependencies
12129
* to DEPCOMPLETE and free the structure if possible.
12130
*
12131
* If the write did not succeed, we will do all the roll-forward
12132
* operations, but we will not take the actions that will allow its
12133
* dependencies to be processed.
12134
*/
12135
static int
12136
handle_written_bmsafemap(
12137
struct bmsafemap *bmsafemap,
12138
struct buf *bp,
12139
int flags)
12140
{
12141
struct newblk *newblk;
12142
struct inodedep *inodedep;
12143
struct jaddref *jaddref, *jatmp;
12144
struct jnewblk *jnewblk, *jntmp;
12145
struct ufsmount *ump;
12146
uint8_t *inosused;
12147
uint8_t *blksfree;
12148
struct cg *cgp;
12149
struct fs *fs;
12150
ino_t ino;
12151
int foreground;
12152
int chgs;
12153
12154
if ((bmsafemap->sm_state & IOSTARTED) == 0)
12155
panic("handle_written_bmsafemap: Not started\n");
12156
ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
12157
chgs = 0;
12158
bmsafemap->sm_state &= ~IOSTARTED;
12159
foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
12160
/*
12161
* If write was successful, release journal work that was waiting
12162
* on the write. Otherwise move the work back.
12163
*/
12164
if (flags & WRITESUCCEEDED)
12165
handle_jwork(&bmsafemap->sm_freewr);
12166
else
12167
LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12168
worklist, wk_list);
12169
12170
/*
12171
* Restore unwritten inode allocation pending jaddref writes.
12172
*/
12173
if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
12174
cgp = (struct cg *)bp->b_data;
12175
fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12176
inosused = cg_inosused(cgp);
12177
LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
12178
ja_bmdeps, jatmp) {
12179
if ((jaddref->ja_state & UNDONE) == 0)
12180
continue;
12181
ino = jaddref->ja_ino % fs->fs_ipg;
12182
if (isset(inosused, ino))
12183
panic("handle_written_bmsafemap: "
12184
"re-allocated inode");
12185
/* Do the roll-forward only if it's a real copy. */
12186
if (foreground) {
12187
if ((jaddref->ja_mode & IFMT) == IFDIR)
12188
cgp->cg_cs.cs_ndir++;
12189
cgp->cg_cs.cs_nifree--;
12190
setbit(inosused, ino);
12191
chgs = 1;
12192
}
12193
jaddref->ja_state &= ~UNDONE;
12194
jaddref->ja_state |= ATTACHED;
12195
free_jaddref(jaddref);
12196
}
12197
}
12198
/*
12199
* Restore any block allocations which are pending journal writes.
12200
*/
12201
if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
12202
cgp = (struct cg *)bp->b_data;
12203
fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12204
blksfree = cg_blksfree(cgp);
12205
LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
12206
jntmp) {
12207
if ((jnewblk->jn_state & UNDONE) == 0)
12208
continue;
12209
/* Do the roll-forward only if it's a real copy. */
12210
if (foreground &&
12211
jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
12212
chgs = 1;
12213
jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
12214
jnewblk->jn_state |= ATTACHED;
12215
free_jnewblk(jnewblk);
12216
}
12217
}
12218
/*
12219
* If the write did not succeed, we have done all the roll-forward
12220
* operations, but we cannot take the actions that will allow its
12221
* dependencies to be processed.
12222
*/
12223
if ((flags & WRITESUCCEEDED) == 0) {
12224
LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
12225
newblk, nb_deps);
12226
LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12227
worklist, wk_list);
12228
if (foreground)
12229
bdirty(bp);
12230
return (1);
12231
}
12232
while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
12233
newblk->nb_state |= DEPCOMPLETE;
12234
newblk->nb_state &= ~ONDEPLIST;
12235
newblk->nb_bmsafemap = NULL;
12236
LIST_REMOVE(newblk, nb_deps);
12237
if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
12238
handle_allocdirect_partdone(
12239
WK_ALLOCDIRECT(&newblk->nb_list), NULL);
12240
else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
12241
handle_allocindir_partdone(
12242
WK_ALLOCINDIR(&newblk->nb_list));
12243
else if (newblk->nb_list.wk_type != D_NEWBLK)
12244
panic("handle_written_bmsafemap: Unexpected type: %s",
12245
TYPENAME(newblk->nb_list.wk_type));
12246
}
12247
while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
12248
inodedep->id_state |= DEPCOMPLETE;
12249
inodedep->id_state &= ~ONDEPLIST;
12250
LIST_REMOVE(inodedep, id_deps);
12251
inodedep->id_bmsafemap = NULL;
12252
}
12253
LIST_REMOVE(bmsafemap, sm_next);
12254
if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
12255
LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
12256
LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
12257
LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
12258
LIST_EMPTY(&bmsafemap->sm_freehd)) {
12259
LIST_REMOVE(bmsafemap, sm_hash);
12260
WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
12261
return (0);
12262
}
12263
LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
12264
if (foreground)
12265
bdirty(bp);
12266
return (1);
12267
}
12268
12269
/*
12270
* Try to free a mkdir dependency.
12271
*/
12272
static void
12273
complete_mkdir(struct mkdir *mkdir)
12274
{
12275
struct diradd *dap;
12276
12277
if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
12278
return;
12279
LIST_REMOVE(mkdir, md_mkdirs);
12280
dap = mkdir->md_diradd;
12281
dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
12282
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
12283
dap->da_state |= DEPCOMPLETE;
12284
complete_diradd(dap);
12285
}
12286
WORKITEM_FREE(mkdir, D_MKDIR);
12287
}
12288
12289
/*
12290
* Handle the completion of a mkdir dependency.
12291
*/
12292
static void
12293
handle_written_mkdir(struct mkdir *mkdir, int type)
12294
{
12295
12296
if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12297
panic("handle_written_mkdir: bad type");
12298
mkdir->md_state |= COMPLETE;
12299
complete_mkdir(mkdir);
12300
}
12301
12302
static int
12303
free_pagedep(struct pagedep *pagedep)
12304
{
12305
int i;
12306
12307
if (pagedep->pd_state & NEWBLOCK)
12308
return (0);
12309
if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12310
return (0);
12311
for (i = 0; i < DAHASHSZ; i++)
12312
if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12313
return (0);
12314
if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12315
return (0);
12316
if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12317
return (0);
12318
if (pagedep->pd_state & ONWORKLIST)
12319
WORKLIST_REMOVE(&pagedep->pd_list);
12320
LIST_REMOVE(pagedep, pd_hash);
12321
WORKITEM_FREE(pagedep, D_PAGEDEP);
12322
12323
return (1);
12324
}
12325
12326
/*
12327
* Called from within softdep_disk_write_complete above.
12328
* A write operation was just completed. Removed inodes can
12329
* now be freed and associated block pointers may be committed.
12330
* Note that this routine is always called from interrupt level
12331
* with further interrupts from this device blocked.
12332
*
12333
* If the write did not succeed, we will do all the roll-forward
12334
* operations, but we will not take the actions that will allow its
12335
* dependencies to be processed.
12336
*/
12337
static int
12338
handle_written_filepage(
12339
struct pagedep *pagedep,
12340
struct buf *bp, /* buffer containing the written page */
12341
int flags)
12342
{
12343
struct dirrem *dirrem;
12344
struct diradd *dap, *nextdap;
12345
struct direct *ep;
12346
int i, chgs;
12347
12348
if ((pagedep->pd_state & IOSTARTED) == 0)
12349
panic("handle_written_filepage: not started");
12350
pagedep->pd_state &= ~IOSTARTED;
12351
if ((flags & WRITESUCCEEDED) == 0)
12352
goto rollforward;
12353
/*
12354
* Process any directory removals that have been committed.
12355
*/
12356
while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12357
LIST_REMOVE(dirrem, dm_next);
12358
dirrem->dm_state |= COMPLETE;
12359
dirrem->dm_dirinum = pagedep->pd_ino;
12360
KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12361
("handle_written_filepage: Journal entries not written."));
12362
add_to_worklist(&dirrem->dm_list, 0);
12363
}
12364
/*
12365
* Free any directory additions that have been committed.
12366
* If it is a newly allocated block, we have to wait until
12367
* the on-disk directory inode claims the new block.
12368
*/
12369
if ((pagedep->pd_state & NEWBLOCK) == 0)
12370
while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12371
free_diradd(dap, NULL);
12372
rollforward:
12373
/*
12374
* Uncommitted directory entries must be restored.
12375
*/
12376
for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12377
for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12378
dap = nextdap) {
12379
nextdap = LIST_NEXT(dap, da_pdlist);
12380
if (dap->da_state & ATTACHED)
12381
panic("handle_written_filepage: attached");
12382
ep = (struct direct *)
12383
((char *)bp->b_data + dap->da_offset);
12384
ep->d_ino = dap->da_newinum;
12385
dap->da_state &= ~UNDONE;
12386
dap->da_state |= ATTACHED;
12387
chgs = 1;
12388
/*
12389
* If the inode referenced by the directory has
12390
* been written out, then the dependency can be
12391
* moved to the pending list.
12392
*/
12393
if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12394
LIST_REMOVE(dap, da_pdlist);
12395
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12396
da_pdlist);
12397
}
12398
}
12399
}
12400
/*
12401
* If there were any rollbacks in the directory, then it must be
12402
* marked dirty so that its will eventually get written back in
12403
* its correct form.
12404
*/
12405
if (chgs || (flags & WRITESUCCEEDED) == 0) {
12406
if ((bp->b_flags & B_DELWRI) == 0)
12407
stat_dir_entry++;
12408
bdirty(bp);
12409
return (1);
12410
}
12411
/*
12412
* If we are not waiting for a new directory block to be
12413
* claimed by its inode, then the pagedep will be freed.
12414
* Otherwise it will remain to track any new entries on
12415
* the page in case they are fsync'ed.
12416
*/
12417
free_pagedep(pagedep);
12418
return (0);
12419
}
12420
12421
/*
12422
* Writing back in-core inode structures.
12423
*
12424
* The filesystem only accesses an inode's contents when it occupies an
12425
* "in-core" inode structure. These "in-core" structures are separate from
12426
* the page frames used to cache inode blocks. Only the latter are
12427
* transferred to/from the disk. So, when the updated contents of the
12428
* "in-core" inode structure are copied to the corresponding in-memory inode
12429
* block, the dependencies are also transferred. The following procedure is
12430
* called when copying a dirty "in-core" inode to a cached inode block.
12431
*/
12432
12433
/*
12434
* Called when an inode is loaded from disk. If the effective link count
12435
* differed from the actual link count when it was last flushed, then we
12436
* need to ensure that the correct effective link count is put back.
12437
*/
12438
void
12439
softdep_load_inodeblock(
12440
struct inode *ip) /* the "in_core" copy of the inode */
12441
{
12442
struct inodedep *inodedep;
12443
struct ufsmount *ump;
12444
12445
ump = ITOUMP(ip);
12446
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12447
("softdep_load_inodeblock called on non-softdep filesystem"));
12448
/*
12449
* Check for alternate nlink count.
12450
*/
12451
ip->i_effnlink = ip->i_nlink;
12452
ACQUIRE_LOCK(ump);
12453
if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12454
FREE_LOCK(ump);
12455
return;
12456
}
12457
if (ip->i_nlink != inodedep->id_nlinkwrote &&
12458
inodedep->id_nlinkwrote != -1) {
12459
KASSERT(ip->i_nlink == 0 &&
12460
(ump->um_flags & UM_FSFAIL_CLEANUP) != 0,
12461
("read bad i_nlink value"));
12462
ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote;
12463
}
12464
ip->i_effnlink -= inodedep->id_nlinkdelta;
12465
KASSERT(ip->i_effnlink >= 0,
12466
("softdep_load_inodeblock: negative i_effnlink"));
12467
FREE_LOCK(ump);
12468
}
12469
12470
/*
12471
* This routine is called just before the "in-core" inode
12472
* information is to be copied to the in-memory inode block.
12473
* Recall that an inode block contains several inodes. If
12474
* the force flag is set, then the dependencies will be
12475
* cleared so that the update can always be made. Note that
12476
* the buffer is locked when this routine is called, so we
12477
* will never be in the middle of writing the inode block
12478
* to disk.
12479
*/
12480
void
12481
softdep_update_inodeblock(
12482
struct inode *ip, /* the "in_core" copy of the inode */
12483
struct buf *bp, /* the buffer containing the inode block */
12484
int waitfor) /* nonzero => update must be allowed */
12485
{
12486
struct inodedep *inodedep;
12487
struct inoref *inoref;
12488
struct ufsmount *ump;
12489
struct worklist *wk;
12490
struct mount *mp;
12491
struct buf *ibp;
12492
struct fs *fs;
12493
int error;
12494
12495
ump = ITOUMP(ip);
12496
mp = UFSTOVFS(ump);
12497
KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12498
("softdep_update_inodeblock called on non-softdep filesystem"));
12499
fs = ump->um_fs;
12500
/*
12501
* If the effective link count is not equal to the actual link
12502
* count, then we must track the difference in an inodedep while
12503
* the inode is (potentially) tossed out of the cache. Otherwise,
12504
* if there is no existing inodedep, then there are no dependencies
12505
* to track.
12506
*/
12507
ACQUIRE_LOCK(ump);
12508
again:
12509
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12510
FREE_LOCK(ump);
12511
if (ip->i_effnlink != ip->i_nlink)
12512
panic("softdep_update_inodeblock: bad link count");
12513
return;
12514
}
12515
/*
12516
* Preserve the freelink that is on disk. clear_unlinked_inodedep()
12517
* does not have access to the in-core ip so must write directly into
12518
* the inode block buffer when setting freelink.
12519
*/
12520
if ((inodedep->id_state & UNLINKED) != 0) {
12521
if (fs->fs_magic == FS_UFS1_MAGIC)
12522
DIP_SET(ip, i_freelink,
12523
((struct ufs1_dinode *)bp->b_data +
12524
ino_to_fsbo(fs, ip->i_number))->di_freelink);
12525
else
12526
DIP_SET(ip, i_freelink,
12527
((struct ufs2_dinode *)bp->b_data +
12528
ino_to_fsbo(fs, ip->i_number))->di_freelink);
12529
}
12530
KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta,
12531
("softdep_update_inodeblock inconsistent ip %p i_nlink %d "
12532
"inodedep %p id_nlinkdelta %jd",
12533
ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta));
12534
inodedep->id_nlinkwrote = ip->i_nlink;
12535
if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12536
panic("softdep_update_inodeblock: bad delta");
12537
/*
12538
* If we're flushing all dependencies we must also move any waiting
12539
* for journal writes onto the bufwait list prior to I/O.
12540
*/
12541
if (waitfor) {
12542
TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12543
if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12544
== DEPCOMPLETE) {
12545
jwait(&inoref->if_list, MNT_WAIT);
12546
goto again;
12547
}
12548
}
12549
}
12550
/*
12551
* Changes have been initiated. Anything depending on these
12552
* changes cannot occur until this inode has been written.
12553
*/
12554
inodedep->id_state &= ~COMPLETE;
12555
if ((inodedep->id_state & ONWORKLIST) == 0)
12556
WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12557
/*
12558
* Any new dependencies associated with the incore inode must
12559
* now be moved to the list associated with the buffer holding
12560
* the in-memory copy of the inode. Once merged process any
12561
* allocdirects that are completed by the merger.
12562
*/
12563
merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12564
if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12565
handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12566
NULL);
12567
merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12568
if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12569
handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12570
NULL);
12571
/*
12572
* Now that the inode has been pushed into the buffer, the
12573
* operations dependent on the inode being written to disk
12574
* can be moved to the id_bufwait so that they will be
12575
* processed when the buffer I/O completes.
12576
*/
12577
while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12578
WORKLIST_REMOVE(wk);
12579
WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12580
}
12581
/*
12582
* Newly allocated inodes cannot be written until the bitmap
12583
* that allocates them have been written (indicated by
12584
* DEPCOMPLETE being set in id_state). If we are doing a
12585
* forced sync (e.g., an fsync on a file), we force the bitmap
12586
* to be written so that the update can be done.
12587
*/
12588
if (waitfor == 0) {
12589
FREE_LOCK(ump);
12590
return;
12591
}
12592
retry:
12593
if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12594
FREE_LOCK(ump);
12595
return;
12596
}
12597
ibp = inodedep->id_bmsafemap->sm_buf;
12598
ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12599
if (ibp == NULL) {
12600
/*
12601
* If ibp came back as NULL, the dependency could have been
12602
* freed while we slept. Look it up again, and check to see
12603
* that it has completed.
12604
*/
12605
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12606
goto retry;
12607
FREE_LOCK(ump);
12608
return;
12609
}
12610
FREE_LOCK(ump);
12611
if ((error = bwrite(ibp)) != 0)
12612
softdep_error("softdep_update_inodeblock: bwrite", error);
12613
}
12614
12615
/*
12616
* Merge the a new inode dependency list (such as id_newinoupdt) into an
12617
* old inode dependency list (such as id_inoupdt).
12618
*/
12619
static void
12620
merge_inode_lists(
12621
struct allocdirectlst *newlisthead,
12622
struct allocdirectlst *oldlisthead)
12623
{
12624
struct allocdirect *listadp, *newadp;
12625
12626
newadp = TAILQ_FIRST(newlisthead);
12627
if (newadp != NULL)
12628
LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp));
12629
for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12630
if (listadp->ad_offset < newadp->ad_offset) {
12631
listadp = TAILQ_NEXT(listadp, ad_next);
12632
continue;
12633
}
12634
TAILQ_REMOVE(newlisthead, newadp, ad_next);
12635
TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12636
if (listadp->ad_offset == newadp->ad_offset) {
12637
allocdirect_merge(oldlisthead, newadp,
12638
listadp);
12639
listadp = newadp;
12640
}
12641
newadp = TAILQ_FIRST(newlisthead);
12642
}
12643
while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12644
TAILQ_REMOVE(newlisthead, newadp, ad_next);
12645
TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12646
}
12647
}
12648
12649
/*
12650
* If we are doing an fsync, then we must ensure that any directory
12651
* entries for the inode have been written after the inode gets to disk.
12652
*/
12653
int
12654
softdep_fsync(
12655
struct vnode *vp) /* the "in_core" copy of the inode */
12656
{
12657
struct inodedep *inodedep;
12658
struct pagedep *pagedep;
12659
struct inoref *inoref;
12660
struct ufsmount *ump;
12661
struct worklist *wk;
12662
struct diradd *dap;
12663
struct mount *mp;
12664
struct vnode *pvp;
12665
struct inode *ip;
12666
struct buf *bp;
12667
struct fs *fs;
12668
struct thread *td = curthread;
12669
int error, flushparent, pagedep_new_block;
12670
ino_t parentino;
12671
ufs_lbn_t lbn;
12672
12673
ip = VTOI(vp);
12674
mp = vp->v_mount;
12675
ump = VFSTOUFS(mp);
12676
fs = ump->um_fs;
12677
if (MOUNTEDSOFTDEP(mp) == 0)
12678
return (0);
12679
ACQUIRE_LOCK(ump);
12680
restart:
12681
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12682
FREE_LOCK(ump);
12683
return (0);
12684
}
12685
TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12686
if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12687
== DEPCOMPLETE) {
12688
jwait(&inoref->if_list, MNT_WAIT);
12689
goto restart;
12690
}
12691
}
12692
if (!LIST_EMPTY(&inodedep->id_inowait) ||
12693
!TAILQ_EMPTY(&inodedep->id_extupdt) ||
12694
!TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12695
!TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12696
!TAILQ_EMPTY(&inodedep->id_newinoupdt))
12697
panic("softdep_fsync: pending ops %p", inodedep);
12698
for (error = 0, flushparent = 0; ; ) {
12699
if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12700
break;
12701
if (wk->wk_type != D_DIRADD)
12702
panic("softdep_fsync: Unexpected type %s",
12703
TYPENAME(wk->wk_type));
12704
dap = WK_DIRADD(wk);
12705
/*
12706
* Flush our parent if this directory entry has a MKDIR_PARENT
12707
* dependency or is contained in a newly allocated block.
12708
*/
12709
if (dap->da_state & DIRCHG)
12710
pagedep = dap->da_previous->dm_pagedep;
12711
else
12712
pagedep = dap->da_pagedep;
12713
parentino = pagedep->pd_ino;
12714
lbn = pagedep->pd_lbn;
12715
if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12716
panic("softdep_fsync: dirty");
12717
if ((dap->da_state & MKDIR_PARENT) ||
12718
(pagedep->pd_state & NEWBLOCK))
12719
flushparent = 1;
12720
else
12721
flushparent = 0;
12722
/*
12723
* If we are being fsync'ed as part of vgone'ing this vnode,
12724
* then we will not be able to release and recover the
12725
* vnode below, so we just have to give up on writing its
12726
* directory entry out. It will eventually be written, just
12727
* not now, but then the user was not asking to have it
12728
* written, so we are not breaking any promises.
12729
*/
12730
if (VN_IS_DOOMED(vp))
12731
break;
12732
/*
12733
* We prevent deadlock by always fetching inodes from the
12734
* root, moving down the directory tree. Thus, when fetching
12735
* our parent directory, we first try to get the lock. If
12736
* that fails, we must unlock ourselves before requesting
12737
* the lock on our parent. See the comment in ufs_lookup
12738
* for details on possible races.
12739
*/
12740
FREE_LOCK(ump);
12741
error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL,
12742
&pvp);
12743
if (error == ERELOOKUP)
12744
error = 0;
12745
if (error != 0)
12746
return (error);
12747
/*
12748
* All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12749
* that are contained in direct blocks will be resolved by
12750
* doing a ffs_update. Pagedeps contained in indirect blocks
12751
* may require a complete sync'ing of the directory. So, we
12752
* try the cheap and fast ffs_update first, and if that fails,
12753
* then we do the slower ffs_syncvnode of the directory.
12754
*/
12755
if (flushparent) {
12756
int locked;
12757
12758
if ((error = ffs_update(pvp, 1)) != 0) {
12759
vput(pvp);
12760
return (error);
12761
}
12762
ACQUIRE_LOCK(ump);
12763
locked = 1;
12764
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12765
if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12766
if (wk->wk_type != D_DIRADD)
12767
panic("softdep_fsync: Unexpected type %s",
12768
TYPENAME(wk->wk_type));
12769
dap = WK_DIRADD(wk);
12770
if (dap->da_state & DIRCHG)
12771
pagedep = dap->da_previous->dm_pagedep;
12772
else
12773
pagedep = dap->da_pagedep;
12774
pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12775
FREE_LOCK(ump);
12776
locked = 0;
12777
if (pagedep_new_block) {
12778
VOP_UNLOCK(vp);
12779
error = ffs_syncvnode(pvp,
12780
MNT_WAIT, 0);
12781
if (error == 0)
12782
error = ERELOOKUP;
12783
vput(pvp);
12784
vn_lock(vp, LK_EXCLUSIVE |
12785
LK_RETRY);
12786
return (error);
12787
}
12788
}
12789
}
12790
if (locked)
12791
FREE_LOCK(ump);
12792
}
12793
/*
12794
* Flush directory page containing the inode's name.
12795
*/
12796
error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12797
&bp);
12798
if (error == 0)
12799
error = bwrite(bp);
12800
else
12801
brelse(bp);
12802
vput(pvp);
12803
if (!ffs_fsfail_cleanup(ump, error))
12804
return (error);
12805
ACQUIRE_LOCK(ump);
12806
if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12807
break;
12808
}
12809
FREE_LOCK(ump);
12810
return (0);
12811
}
12812
12813
/*
12814
* Flush all the dirty bitmaps associated with the block device
12815
* before flushing the rest of the dirty blocks so as to reduce
12816
* the number of dependencies that will have to be rolled back.
12817
*
12818
* XXX Unused?
12819
*/
12820
void
12821
softdep_fsync_mountdev(struct vnode *vp)
12822
{
12823
struct buf *bp, *nbp;
12824
struct worklist *wk;
12825
struct bufobj *bo;
12826
12827
if (!vn_isdisk(vp))
12828
panic("softdep_fsync_mountdev: vnode not a disk");
12829
bo = &vp->v_bufobj;
12830
restart:
12831
BO_LOCK(bo);
12832
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12833
/*
12834
* If it is already scheduled, skip to the next buffer.
12835
*/
12836
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12837
continue;
12838
12839
if ((bp->b_flags & B_DELWRI) == 0)
12840
panic("softdep_fsync_mountdev: not dirty");
12841
/*
12842
* We are only interested in bitmaps with outstanding
12843
* dependencies.
12844
*/
12845
if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12846
wk->wk_type != D_BMSAFEMAP ||
12847
(bp->b_vflags & BV_BKGRDINPROG)) {
12848
BUF_UNLOCK(bp);
12849
continue;
12850
}
12851
BO_UNLOCK(bo);
12852
bremfree(bp);
12853
(void) bawrite(bp);
12854
goto restart;
12855
}
12856
drain_output(vp);
12857
BO_UNLOCK(bo);
12858
}
12859
12860
/*
12861
* Sync all cylinder groups that were dirty at the time this function is
12862
* called. Newly dirtied cgs will be inserted before the sentinel. This
12863
* is used to flush freedep activity that may be holding up writes to a
12864
* indirect block.
12865
*/
12866
static int
12867
sync_cgs(struct mount *mp, int waitfor)
12868
{
12869
struct bmsafemap *bmsafemap;
12870
struct bmsafemap *sentinel;
12871
struct ufsmount *ump;
12872
struct buf *bp;
12873
int error;
12874
12875
sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12876
sentinel->sm_cg = -1;
12877
ump = VFSTOUFS(mp);
12878
error = 0;
12879
ACQUIRE_LOCK(ump);
12880
LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12881
for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12882
bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12883
/* Skip sentinels and cgs with no work to release. */
12884
if (bmsafemap->sm_cg == -1 ||
12885
(LIST_EMPTY(&bmsafemap->sm_freehd) &&
12886
LIST_EMPTY(&bmsafemap->sm_freewr))) {
12887
LIST_REMOVE(sentinel, sm_next);
12888
LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12889
continue;
12890
}
12891
/*
12892
* If we don't get the lock and we're waiting try again, if
12893
* not move on to the next buf and try to sync it.
12894
*/
12895
bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12896
if (bp == NULL && waitfor == MNT_WAIT)
12897
continue;
12898
LIST_REMOVE(sentinel, sm_next);
12899
LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12900
if (bp == NULL)
12901
continue;
12902
FREE_LOCK(ump);
12903
if (waitfor == MNT_NOWAIT)
12904
bawrite(bp);
12905
else
12906
error = bwrite(bp);
12907
ACQUIRE_LOCK(ump);
12908
if (error)
12909
break;
12910
}
12911
LIST_REMOVE(sentinel, sm_next);
12912
FREE_LOCK(ump);
12913
free(sentinel, M_BMSAFEMAP);
12914
return (error);
12915
}
12916
12917
/*
12918
* This routine is called when we are trying to synchronously flush a
12919
* file. This routine must eliminate any filesystem metadata dependencies
12920
* so that the syncing routine can succeed.
12921
*/
12922
int
12923
softdep_sync_metadata(struct vnode *vp)
12924
{
12925
struct inode *ip;
12926
int error;
12927
12928
ip = VTOI(vp);
12929
KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12930
("softdep_sync_metadata called on non-softdep filesystem"));
12931
/*
12932
* Ensure that any direct block dependencies have been cleared,
12933
* truncations are started, and inode references are journaled.
12934
*/
12935
ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
12936
/*
12937
* Write all journal records to prevent rollbacks on devvp.
12938
*/
12939
if (vp->v_type == VCHR)
12940
softdep_flushjournal(vp->v_mount);
12941
error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12942
/*
12943
* Ensure that all truncates are written so we won't find deps on
12944
* indirect blocks.
12945
*/
12946
process_truncates(vp);
12947
FREE_LOCK(VFSTOUFS(vp->v_mount));
12948
12949
return (error);
12950
}
12951
12952
/*
12953
* This routine is called when we are attempting to sync a buf with
12954
* dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any
12955
* other IO it can but returns EBUSY if the buffer is not yet able to
12956
* be written. Dependencies which will not cause rollbacks will always
12957
* return 0.
12958
*/
12959
int
12960
softdep_sync_buf(struct vnode *vp,
12961
struct buf *bp,
12962
int waitfor)
12963
{
12964
struct indirdep *indirdep;
12965
struct pagedep *pagedep;
12966
struct allocindir *aip;
12967
struct newblk *newblk;
12968
struct ufsmount *ump;
12969
struct buf *nbp;
12970
struct worklist *wk;
12971
int i, error;
12972
12973
KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12974
("softdep_sync_buf called on non-softdep filesystem"));
12975
/*
12976
* For VCHR we just don't want to force flush any dependencies that
12977
* will cause rollbacks.
12978
*/
12979
if (vp->v_type == VCHR) {
12980
if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12981
return (EBUSY);
12982
return (0);
12983
}
12984
ump = VFSTOUFS(vp->v_mount);
12985
ACQUIRE_LOCK(ump);
12986
/*
12987
* As we hold the buffer locked, none of its dependencies
12988
* will disappear.
12989
*/
12990
error = 0;
12991
top:
12992
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12993
switch (wk->wk_type) {
12994
case D_ALLOCDIRECT:
12995
case D_ALLOCINDIR:
12996
newblk = WK_NEWBLK(wk);
12997
if (newblk->nb_jnewblk != NULL) {
12998
if (waitfor == MNT_NOWAIT) {
12999
error = EBUSY;
13000
goto out_unlock;
13001
}
13002
jwait(&newblk->nb_jnewblk->jn_list, waitfor);
13003
goto top;
13004
}
13005
if (newblk->nb_state & DEPCOMPLETE ||
13006
waitfor == MNT_NOWAIT)
13007
continue;
13008
nbp = newblk->nb_bmsafemap->sm_buf;
13009
nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
13010
if (nbp == NULL)
13011
goto top;
13012
FREE_LOCK(ump);
13013
if ((error = bwrite(nbp)) != 0)
13014
goto out;
13015
ACQUIRE_LOCK(ump);
13016
continue;
13017
13018
case D_INDIRDEP:
13019
indirdep = WK_INDIRDEP(wk);
13020
if (waitfor == MNT_NOWAIT) {
13021
if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
13022
!LIST_EMPTY(&indirdep->ir_deplisthd)) {
13023
error = EBUSY;
13024
goto out_unlock;
13025
}
13026
}
13027
if (!TAILQ_EMPTY(&indirdep->ir_trunc))
13028
panic("softdep_sync_buf: truncation pending.");
13029
restart:
13030
LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13031
newblk = (struct newblk *)aip;
13032
if (newblk->nb_jnewblk != NULL) {
13033
jwait(&newblk->nb_jnewblk->jn_list,
13034
waitfor);
13035
goto restart;
13036
}
13037
if (newblk->nb_state & DEPCOMPLETE)
13038
continue;
13039
nbp = newblk->nb_bmsafemap->sm_buf;
13040
nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
13041
if (nbp == NULL)
13042
goto restart;
13043
FREE_LOCK(ump);
13044
if ((error = bwrite(nbp)) != 0)
13045
goto out;
13046
ACQUIRE_LOCK(ump);
13047
goto restart;
13048
}
13049
continue;
13050
13051
case D_PAGEDEP:
13052
/*
13053
* Only flush directory entries in synchronous passes.
13054
*/
13055
if (waitfor != MNT_WAIT) {
13056
error = EBUSY;
13057
goto out_unlock;
13058
}
13059
/*
13060
* While syncing snapshots, we must allow recursive
13061
* lookups.
13062
*/
13063
BUF_AREC(bp);
13064
/*
13065
* We are trying to sync a directory that may
13066
* have dependencies on both its own metadata
13067
* and/or dependencies on the inodes of any
13068
* recently allocated files. We walk its diradd
13069
* lists pushing out the associated inode.
13070
*/
13071
pagedep = WK_PAGEDEP(wk);
13072
for (i = 0; i < DAHASHSZ; i++) {
13073
if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
13074
continue;
13075
error = flush_pagedep_deps(vp, wk->wk_mp,
13076
&pagedep->pd_diraddhd[i], bp);
13077
if (error != 0) {
13078
if (error != ERELOOKUP)
13079
BUF_NOREC(bp);
13080
goto out_unlock;
13081
}
13082
}
13083
BUF_NOREC(bp);
13084
continue;
13085
13086
case D_FREEWORK:
13087
case D_FREEDEP:
13088
case D_JSEGDEP:
13089
case D_JNEWBLK:
13090
continue;
13091
13092
default:
13093
panic("softdep_sync_buf: Unknown type %s",
13094
TYPENAME(wk->wk_type));
13095
/* NOTREACHED */
13096
}
13097
}
13098
out_unlock:
13099
FREE_LOCK(ump);
13100
out:
13101
return (error);
13102
}
13103
13104
/*
13105
* Flush the dependencies associated with an inodedep.
13106
*/
13107
static int
13108
flush_inodedep_deps(
13109
struct vnode *vp,
13110
struct mount *mp,
13111
ino_t ino)
13112
{
13113
struct inodedep *inodedep;
13114
struct inoref *inoref;
13115
struct ufsmount *ump;
13116
int error, waitfor;
13117
13118
/*
13119
* This work is done in two passes. The first pass grabs most
13120
* of the buffers and begins asynchronously writing them. The
13121
* only way to wait for these asynchronous writes is to sleep
13122
* on the filesystem vnode which may stay busy for a long time
13123
* if the filesystem is active. So, instead, we make a second
13124
* pass over the dependencies blocking on each write. In the
13125
* usual case we will be blocking against a write that we
13126
* initiated, so when it is done the dependency will have been
13127
* resolved. Thus the second pass is expected to end quickly.
13128
* We give a brief window at the top of the loop to allow
13129
* any pending I/O to complete.
13130
*/
13131
ump = VFSTOUFS(mp);
13132
LOCK_OWNED(ump);
13133
for (error = 0, waitfor = MNT_NOWAIT; ; ) {
13134
if (error)
13135
return (error);
13136
FREE_LOCK(ump);
13137
ACQUIRE_LOCK(ump);
13138
restart:
13139
if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13140
return (0);
13141
TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13142
if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13143
== DEPCOMPLETE) {
13144
jwait(&inoref->if_list, MNT_WAIT);
13145
goto restart;
13146
}
13147
}
13148
if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
13149
flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
13150
flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
13151
flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
13152
continue;
13153
/*
13154
* If pass2, we are done, otherwise do pass 2.
13155
*/
13156
if (waitfor == MNT_WAIT)
13157
break;
13158
waitfor = MNT_WAIT;
13159
}
13160
/*
13161
* Try freeing inodedep in case all dependencies have been removed.
13162
*/
13163
if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
13164
(void) free_inodedep(inodedep);
13165
return (0);
13166
}
13167
13168
/*
13169
* Flush an inode dependency list.
13170
*/
13171
static int
13172
flush_deplist(
13173
struct allocdirectlst *listhead,
13174
int waitfor,
13175
int *errorp)
13176
{
13177
struct allocdirect *adp;
13178
struct newblk *newblk;
13179
struct ufsmount *ump;
13180
struct buf *bp;
13181
13182
if ((adp = TAILQ_FIRST(listhead)) == NULL)
13183
return (0);
13184
ump = VFSTOUFS(adp->ad_list.wk_mp);
13185
LOCK_OWNED(ump);
13186
TAILQ_FOREACH(adp, listhead, ad_next) {
13187
newblk = (struct newblk *)adp;
13188
if (newblk->nb_jnewblk != NULL) {
13189
jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13190
return (1);
13191
}
13192
if (newblk->nb_state & DEPCOMPLETE)
13193
continue;
13194
bp = newblk->nb_bmsafemap->sm_buf;
13195
bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
13196
if (bp == NULL) {
13197
if (waitfor == MNT_NOWAIT)
13198
continue;
13199
return (1);
13200
}
13201
FREE_LOCK(ump);
13202
if (waitfor == MNT_NOWAIT)
13203
bawrite(bp);
13204
else
13205
*errorp = bwrite(bp);
13206
ACQUIRE_LOCK(ump);
13207
return (1);
13208
}
13209
return (0);
13210
}
13211
13212
/*
13213
* Flush dependencies associated with an allocdirect block.
13214
*/
13215
static int
13216
flush_newblk_dep(
13217
struct vnode *vp,
13218
struct mount *mp,
13219
ufs_lbn_t lbn)
13220
{
13221
struct newblk *newblk;
13222
struct ufsmount *ump;
13223
struct bufobj *bo;
13224
struct inode *ip;
13225
struct buf *bp;
13226
ufs2_daddr_t blkno;
13227
int error;
13228
13229
error = 0;
13230
bo = &vp->v_bufobj;
13231
ip = VTOI(vp);
13232
blkno = DIP(ip, i_db[lbn]);
13233
if (blkno == 0)
13234
panic("flush_newblk_dep: Missing block");
13235
ump = VFSTOUFS(mp);
13236
ACQUIRE_LOCK(ump);
13237
/*
13238
* Loop until all dependencies related to this block are satisfied.
13239
* We must be careful to restart after each sleep in case a write
13240
* completes some part of this process for us.
13241
*/
13242
for (;;) {
13243
if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
13244
FREE_LOCK(ump);
13245
break;
13246
}
13247
if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
13248
panic("flush_newblk_dep: Bad newblk %p", newblk);
13249
/*
13250
* Flush the journal.
13251
*/
13252
if (newblk->nb_jnewblk != NULL) {
13253
jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13254
continue;
13255
}
13256
/*
13257
* Write the bitmap dependency.
13258
*/
13259
if ((newblk->nb_state & DEPCOMPLETE) == 0) {
13260
bp = newblk->nb_bmsafemap->sm_buf;
13261
bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13262
if (bp == NULL)
13263
continue;
13264
FREE_LOCK(ump);
13265
error = bwrite(bp);
13266
if (error)
13267
break;
13268
ACQUIRE_LOCK(ump);
13269
continue;
13270
}
13271
/*
13272
* Write the buffer.
13273
*/
13274
FREE_LOCK(ump);
13275
BO_LOCK(bo);
13276
bp = gbincore(bo, lbn);
13277
if (bp != NULL) {
13278
error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
13279
LK_INTERLOCK, BO_LOCKPTR(bo));
13280
if (error == ENOLCK) {
13281
ACQUIRE_LOCK(ump);
13282
error = 0;
13283
continue; /* Slept, retry */
13284
}
13285
if (error != 0)
13286
break; /* Failed */
13287
if (bp->b_flags & B_DELWRI) {
13288
bremfree(bp);
13289
error = bwrite(bp);
13290
if (error)
13291
break;
13292
} else
13293
BUF_UNLOCK(bp);
13294
} else
13295
BO_UNLOCK(bo);
13296
/*
13297
* We have to wait for the direct pointers to
13298
* point at the newdirblk before the dependency
13299
* will go away.
13300
*/
13301
error = ffs_update(vp, 1);
13302
if (error)
13303
break;
13304
ACQUIRE_LOCK(ump);
13305
}
13306
return (error);
13307
}
13308
13309
/*
13310
* Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13311
*/
13312
static int
13313
flush_pagedep_deps(
13314
struct vnode *pvp,
13315
struct mount *mp,
13316
struct diraddhd *diraddhdp,
13317
struct buf *locked_bp)
13318
{
13319
struct inodedep *inodedep;
13320
struct inoref *inoref;
13321
struct ufsmount *ump;
13322
struct diradd *dap;
13323
struct vnode *vp;
13324
int error = 0;
13325
struct buf *bp;
13326
ino_t inum;
13327
struct diraddhd unfinished;
13328
13329
LIST_INIT(&unfinished);
13330
ump = VFSTOUFS(mp);
13331
LOCK_OWNED(ump);
13332
restart:
13333
while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13334
/*
13335
* Flush ourselves if this directory entry
13336
* has a MKDIR_PARENT dependency.
13337
*/
13338
if (dap->da_state & MKDIR_PARENT) {
13339
FREE_LOCK(ump);
13340
if ((error = ffs_update(pvp, 1)) != 0)
13341
break;
13342
ACQUIRE_LOCK(ump);
13343
/*
13344
* If that cleared dependencies, go on to next.
13345
*/
13346
if (dap != LIST_FIRST(diraddhdp))
13347
continue;
13348
/*
13349
* All MKDIR_PARENT dependencies and all the
13350
* NEWBLOCK pagedeps that are contained in direct
13351
* blocks were resolved by doing above ffs_update.
13352
* Pagedeps contained in indirect blocks may
13353
* require a complete sync'ing of the directory.
13354
* We are in the midst of doing a complete sync,
13355
* so if they are not resolved in this pass we
13356
* defer them for now as they will be sync'ed by
13357
* our caller shortly.
13358
*/
13359
LIST_REMOVE(dap, da_pdlist);
13360
LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13361
continue;
13362
}
13363
/*
13364
* A newly allocated directory must have its "." and
13365
* ".." entries written out before its name can be
13366
* committed in its parent.
13367
*/
13368
inum = dap->da_newinum;
13369
if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13370
panic("flush_pagedep_deps: lost inode1");
13371
/*
13372
* Wait for any pending journal adds to complete so we don't
13373
* cause rollbacks while syncing.
13374
*/
13375
TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13376
if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13377
== DEPCOMPLETE) {
13378
jwait(&inoref->if_list, MNT_WAIT);
13379
goto restart;
13380
}
13381
}
13382
if (dap->da_state & MKDIR_BODY) {
13383
FREE_LOCK(ump);
13384
error = get_parent_vp(pvp, mp, inum, locked_bp,
13385
diraddhdp, &unfinished, &vp);
13386
if (error != 0)
13387
break;
13388
error = flush_newblk_dep(vp, mp, 0);
13389
/*
13390
* If we still have the dependency we might need to
13391
* update the vnode to sync the new link count to
13392
* disk.
13393
*/
13394
if (error == 0 && dap == LIST_FIRST(diraddhdp))
13395
error = ffs_update(vp, 1);
13396
vput(vp);
13397
if (error != 0)
13398
break;
13399
ACQUIRE_LOCK(ump);
13400
/*
13401
* If that cleared dependencies, go on to next.
13402
*/
13403
if (dap != LIST_FIRST(diraddhdp))
13404
continue;
13405
if (dap->da_state & MKDIR_BODY) {
13406
inodedep_lookup(UFSTOVFS(ump), inum, 0,
13407
&inodedep);
13408
panic("flush_pagedep_deps: MKDIR_BODY "
13409
"inodedep %p dap %p vp %p",
13410
inodedep, dap, vp);
13411
}
13412
}
13413
/*
13414
* Flush the inode on which the directory entry depends.
13415
* Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13416
* the only remaining dependency is that the updated inode
13417
* count must get pushed to disk. The inode has already
13418
* been pushed into its inode buffer (via VOP_UPDATE) at
13419
* the time of the reference count change. So we need only
13420
* locate that buffer, ensure that there will be no rollback
13421
* caused by a bitmap dependency, then write the inode buffer.
13422
*/
13423
retry:
13424
if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13425
panic("flush_pagedep_deps: lost inode");
13426
/*
13427
* If the inode still has bitmap dependencies,
13428
* push them to disk.
13429
*/
13430
if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13431
bp = inodedep->id_bmsafemap->sm_buf;
13432
bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13433
if (bp == NULL)
13434
goto retry;
13435
FREE_LOCK(ump);
13436
if ((error = bwrite(bp)) != 0)
13437
break;
13438
ACQUIRE_LOCK(ump);
13439
if (dap != LIST_FIRST(diraddhdp))
13440
continue;
13441
}
13442
/*
13443
* If the inode is still sitting in a buffer waiting
13444
* to be written or waiting for the link count to be
13445
* adjusted update it here to flush it to disk.
13446
*/
13447
if (dap == LIST_FIRST(diraddhdp)) {
13448
FREE_LOCK(ump);
13449
error = get_parent_vp(pvp, mp, inum, locked_bp,
13450
diraddhdp, &unfinished, &vp);
13451
if (error != 0)
13452
break;
13453
error = ffs_update(vp, 1);
13454
vput(vp);
13455
if (error)
13456
break;
13457
ACQUIRE_LOCK(ump);
13458
}
13459
/*
13460
* If we have failed to get rid of all the dependencies
13461
* then something is seriously wrong.
13462
*/
13463
if (dap == LIST_FIRST(diraddhdp)) {
13464
inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13465
panic("flush_pagedep_deps: failed to flush "
13466
"inodedep %p ino %ju dap %p",
13467
inodedep, (uintmax_t)inum, dap);
13468
}
13469
}
13470
if (error)
13471
ACQUIRE_LOCK(ump);
13472
while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13473
LIST_REMOVE(dap, da_pdlist);
13474
LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13475
}
13476
return (error);
13477
}
13478
13479
/*
13480
* A large burst of file addition or deletion activity can drive the
13481
* memory load excessively high. First attempt to slow things down
13482
* using the techniques below. If that fails, this routine requests
13483
* the offending operations to fall back to running synchronously
13484
* until the memory load returns to a reasonable level.
13485
*/
13486
int
13487
softdep_slowdown(struct vnode *vp)
13488
{
13489
struct ufsmount *ump;
13490
int jlow;
13491
int max_softdeps_hard;
13492
13493
KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13494
("softdep_slowdown called on non-softdep filesystem"));
13495
ump = VFSTOUFS(vp->v_mount);
13496
ACQUIRE_LOCK(ump);
13497
jlow = 0;
13498
/*
13499
* Check for journal space if needed.
13500
*/
13501
if (DOINGSUJ(vp)) {
13502
if (journal_space(ump, 0) == 0)
13503
jlow = 1;
13504
}
13505
/*
13506
* If the system is under its limits and our filesystem is
13507
* not responsible for more than our share of the usage and
13508
* we are not low on journal space, then no need to slow down.
13509
*/
13510
max_softdeps_hard = max_softdeps * 11 / 10;
13511
if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13512
dep_current[D_INODEDEP] < max_softdeps_hard &&
13513
dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13514
dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13515
ump->softdep_curdeps[D_DIRREM] <
13516
(max_softdeps_hard / 2) / stat_flush_threads &&
13517
ump->softdep_curdeps[D_INODEDEP] <
13518
max_softdeps_hard / stat_flush_threads &&
13519
ump->softdep_curdeps[D_INDIRDEP] <
13520
(max_softdeps_hard / 1000) / stat_flush_threads &&
13521
ump->softdep_curdeps[D_FREEBLKS] <
13522
max_softdeps_hard / stat_flush_threads) {
13523
FREE_LOCK(ump);
13524
return (0);
13525
}
13526
/*
13527
* If the journal is low or our filesystem is over its limit
13528
* then speedup the cleanup.
13529
*/
13530
if (ump->softdep_curdeps[D_INDIRDEP] <
13531
(max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13532
softdep_speedup(ump);
13533
stat_sync_limit_hit += 1;
13534
FREE_LOCK(ump);
13535
/*
13536
* We only slow down the rate at which new dependencies are
13537
* generated if we are not using journaling. With journaling,
13538
* the cleanup should always be sufficient to keep things
13539
* under control.
13540
*/
13541
if (DOINGSUJ(vp))
13542
return (0);
13543
return (1);
13544
}
13545
13546
static int
13547
softdep_request_cleanup_filter(struct vnode *vp, void *arg __unused)
13548
{
13549
return ((vp->v_iflag & VI_OWEINACT) != 0 && vp->v_usecount == 0 &&
13550
((vp->v_vflag & VV_NOSYNC) != 0 || VTOI(vp)->i_effnlink == 0));
13551
}
13552
13553
static void
13554
softdep_request_cleanup_inactivate(struct mount *mp)
13555
{
13556
struct vnode *vp, *mvp;
13557
int error;
13558
13559
MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, softdep_request_cleanup_filter,
13560
NULL) {
13561
vholdl(vp);
13562
vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
13563
VI_LOCK(vp);
13564
if (IS_UFS(vp) && vp->v_usecount == 0) {
13565
while ((vp->v_iflag & VI_OWEINACT) != 0) {
13566
error = vinactive(vp);
13567
if (error != 0 && error != ERELOOKUP)
13568
break;
13569
}
13570
atomic_add_int(&stat_delayed_inact, 1);
13571
}
13572
VOP_UNLOCK(vp);
13573
vdropl(vp);
13574
}
13575
}
13576
13577
/*
13578
* Called by the allocation routines when they are about to fail
13579
* in the hope that we can free up the requested resource (inodes
13580
* or disk space).
13581
*
13582
* First check to see if the work list has anything on it. If it has,
13583
* clean up entries until we successfully free the requested resource.
13584
* Because this process holds inodes locked, we cannot handle any remove
13585
* requests that might block on a locked inode as that could lead to
13586
* deadlock. If the worklist yields none of the requested resource,
13587
* start syncing out vnodes to free up the needed space.
13588
*/
13589
int
13590
softdep_request_cleanup(
13591
struct fs *fs,
13592
struct vnode *vp,
13593
struct ucred *cred,
13594
int resource)
13595
{
13596
struct ufsmount *ump;
13597
struct mount *mp;
13598
long starttime;
13599
ufs2_daddr_t needed;
13600
int error, failed_vnode;
13601
13602
/*
13603
* If we are being called because of a process doing a
13604
* copy-on-write, then it is not safe to process any
13605
* worklist items as we will recurse into the copyonwrite
13606
* routine. This will result in an incoherent snapshot.
13607
* If the vnode that we hold is a snapshot, we must avoid
13608
* handling other resources that could cause deadlock.
13609
*/
13610
if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13611
return (0);
13612
13613
if (resource == FLUSH_BLOCKS_WAIT)
13614
stat_cleanup_blkrequests += 1;
13615
else
13616
stat_cleanup_inorequests += 1;
13617
13618
mp = vp->v_mount;
13619
ump = VFSTOUFS(mp);
13620
mtx_assert(UFS_MTX(ump), MA_OWNED);
13621
UFS_UNLOCK(ump);
13622
error = ffs_update(vp, 1);
13623
if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13624
UFS_LOCK(ump);
13625
return (0);
13626
}
13627
/*
13628
* If we are in need of resources, start by cleaning up
13629
* any block removals associated with our inode.
13630
*/
13631
ACQUIRE_LOCK(ump);
13632
process_removes(vp);
13633
process_truncates(vp);
13634
FREE_LOCK(ump);
13635
/*
13636
* Now clean up at least as many resources as we will need.
13637
*
13638
* When requested to clean up inodes, the number that are needed
13639
* is set by the number of simultaneous writers (mnt_writeopcount)
13640
* plus a bit of slop (2) in case some more writers show up while
13641
* we are cleaning.
13642
*
13643
* When requested to free up space, the amount of space that
13644
* we need is enough blocks to allocate a full-sized segment
13645
* (fs_contigsumsize). The number of such segments that will
13646
* be needed is set by the number of simultaneous writers
13647
* (mnt_writeopcount) plus a bit of slop (2) in case some more
13648
* writers show up while we are cleaning.
13649
*
13650
* Additionally, if we are unpriviledged and allocating space,
13651
* we need to ensure that we clean up enough blocks to get the
13652
* needed number of blocks over the threshold of the minimum
13653
* number of blocks required to be kept free by the filesystem
13654
* (fs_minfree).
13655
*/
13656
if (resource == FLUSH_INODES_WAIT) {
13657
needed = vfs_mount_fetch_counter(vp->v_mount,
13658
MNT_COUNT_WRITEOPCOUNT) + 2;
13659
} else if (resource == FLUSH_BLOCKS_WAIT) {
13660
needed = (vfs_mount_fetch_counter(vp->v_mount,
13661
MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize;
13662
if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
13663
needed += fragstoblks(fs,
13664
roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13665
fs->fs_cstotal.cs_nffree, fs->fs_frag));
13666
} else {
13667
printf("softdep_request_cleanup: Unknown resource type %d\n",
13668
resource);
13669
UFS_LOCK(ump);
13670
return (0);
13671
}
13672
starttime = time_second;
13673
retry:
13674
if (resource == FLUSH_BLOCKS_WAIT &&
13675
fs->fs_cstotal.cs_nbfree <= needed)
13676
softdep_send_speedup(ump, needed * fs->fs_bsize,
13677
BIO_SPEEDUP_TRIM);
13678
if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13679
fs->fs_cstotal.cs_nbfree <= needed) ||
13680
(resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13681
fs->fs_cstotal.cs_nifree <= needed)) {
13682
ACQUIRE_LOCK(ump);
13683
if (ump->softdep_on_worklist > 0 &&
13684
process_worklist_item(UFSTOVFS(ump),
13685
ump->softdep_on_worklist, LK_NOWAIT) != 0)
13686
stat_worklist_push += 1;
13687
FREE_LOCK(ump);
13688
}
13689
13690
/*
13691
* Check that there are vnodes pending inactivation. As they
13692
* have been unlinked, inactivating them will free up their
13693
* inodes.
13694
*/
13695
ACQUIRE_LOCK(ump);
13696
if (resource == FLUSH_INODES_WAIT &&
13697
fs->fs_cstotal.cs_nifree <= needed &&
13698
fs->fs_pendinginodes <= needed) {
13699
if ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) == 0) {
13700
ump->um_softdep->sd_flags |= FLUSH_DI_ACTIVE;
13701
FREE_LOCK(ump);
13702
softdep_request_cleanup_inactivate(mp);
13703
ACQUIRE_LOCK(ump);
13704
ump->um_softdep->sd_flags &= ~FLUSH_DI_ACTIVE;
13705
wakeup(&ump->um_softdep->sd_flags);
13706
} else {
13707
while ((ump->um_softdep->sd_flags &
13708
FLUSH_DI_ACTIVE) != 0) {
13709
msleep(&ump->um_softdep->sd_flags,
13710
LOCK_PTR(ump), PVM, "ffsvina", hz);
13711
}
13712
}
13713
}
13714
FREE_LOCK(ump);
13715
13716
/*
13717
* If we still need resources and there are no more worklist
13718
* entries to process to obtain them, we have to start flushing
13719
* the dirty vnodes to force the release of additional requests
13720
* to the worklist that we can then process to reap addition
13721
* resources. We walk the vnodes associated with the mount point
13722
* until we get the needed worklist requests that we can reap.
13723
*
13724
* If there are several threads all needing to clean the same
13725
* mount point, only one is allowed to walk the mount list.
13726
* When several threads all try to walk the same mount list,
13727
* they end up competing with each other and often end up in
13728
* livelock. This approach ensures that forward progress is
13729
* made at the cost of occational ENOSPC errors being returned
13730
* that might otherwise have been avoided.
13731
*/
13732
error = 1;
13733
if ((resource == FLUSH_BLOCKS_WAIT &&
13734
fs->fs_cstotal.cs_nbfree <= needed) ||
13735
(resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13736
fs->fs_cstotal.cs_nifree <= needed)) {
13737
ACQUIRE_LOCK(ump);
13738
if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13739
ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13740
FREE_LOCK(ump);
13741
failed_vnode = softdep_request_cleanup_flush(mp, ump);
13742
ACQUIRE_LOCK(ump);
13743
ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13744
wakeup(&ump->um_softdep->sd_flags);
13745
FREE_LOCK(ump);
13746
if (ump->softdep_on_worklist > 0) {
13747
stat_cleanup_retries += 1;
13748
if (!failed_vnode)
13749
goto retry;
13750
}
13751
} else {
13752
while ((ump->um_softdep->sd_flags &
13753
FLUSH_RC_ACTIVE) != 0) {
13754
msleep(&ump->um_softdep->sd_flags,
13755
LOCK_PTR(ump), PVM, "ffsrca", hz);
13756
}
13757
FREE_LOCK(ump);
13758
error = 0;
13759
}
13760
stat_cleanup_failures += 1;
13761
}
13762
if (time_second - starttime > stat_cleanup_high_delay)
13763
stat_cleanup_high_delay = time_second - starttime;
13764
UFS_LOCK(ump);
13765
return (error);
13766
}
13767
13768
/*
13769
* Scan the vnodes for the specified mount point flushing out any
13770
* vnodes that can be locked without waiting. Finally, try to flush
13771
* the device associated with the mount point if it can be locked
13772
* without waiting.
13773
*
13774
* We return 0 if we were able to lock every vnode in our scan.
13775
* If we had to skip one or more vnodes, we return 1.
13776
*/
13777
static int
13778
softdep_request_cleanup_flush(struct mount *mp, struct ufsmount *ump)
13779
{
13780
struct thread *td;
13781
struct vnode *lvp, *mvp;
13782
int failed_vnode;
13783
13784
failed_vnode = 0;
13785
td = curthread;
13786
MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13787
if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13788
VI_UNLOCK(lvp);
13789
continue;
13790
}
13791
if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) {
13792
failed_vnode = 1;
13793
continue;
13794
}
13795
if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */
13796
vput(lvp);
13797
continue;
13798
}
13799
(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13800
vput(lvp);
13801
}
13802
lvp = ump->um_devvp;
13803
if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13804
VOP_FSYNC(lvp, MNT_NOWAIT, td);
13805
VOP_UNLOCK(lvp);
13806
}
13807
return (failed_vnode);
13808
}
13809
13810
static bool
13811
softdep_excess_items(struct ufsmount *ump, int item)
13812
{
13813
13814
KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13815
return (dep_current[item] > max_softdeps &&
13816
ump->softdep_curdeps[item] > max_softdeps /
13817
stat_flush_threads);
13818
}
13819
13820
static void
13821
schedule_cleanup(struct mount *mp)
13822
{
13823
struct ufsmount *ump;
13824
struct thread *td;
13825
13826
ump = VFSTOUFS(mp);
13827
LOCK_OWNED(ump);
13828
FREE_LOCK(ump);
13829
td = curthread;
13830
if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13831
(td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13832
/*
13833
* No ast is delivered to kernel threads, so nobody
13834
* would deref the mp. Some kernel threads
13835
* explicitly check for AST, e.g. NFS daemon does
13836
* this in the serving loop.
13837
*/
13838
return;
13839
}
13840
if (td->td_su != NULL)
13841
vfs_rel(td->td_su);
13842
vfs_ref(mp);
13843
td->td_su = mp;
13844
ast_sched(td, TDA_UFS);
13845
}
13846
13847
static void
13848
softdep_ast_cleanup_proc(struct thread *td, int ast __unused)
13849
{
13850
struct mount *mp;
13851
struct ufsmount *ump;
13852
int error;
13853
bool req;
13854
13855
while ((mp = td->td_su) != NULL) {
13856
td->td_su = NULL;
13857
error = vfs_busy(mp, MBF_NOWAIT);
13858
vfs_rel(mp);
13859
if (error != 0)
13860
return;
13861
if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13862
ump = VFSTOUFS(mp);
13863
for (;;) {
13864
req = false;
13865
ACQUIRE_LOCK(ump);
13866
if (softdep_excess_items(ump, D_INODEDEP)) {
13867
req = true;
13868
request_cleanup(mp, FLUSH_INODES);
13869
}
13870
if (softdep_excess_items(ump, D_DIRREM)) {
13871
req = true;
13872
request_cleanup(mp, FLUSH_BLOCKS);
13873
}
13874
FREE_LOCK(ump);
13875
if (softdep_excess_items(ump, D_NEWBLK) ||
13876
softdep_excess_items(ump, D_ALLOCDIRECT) ||
13877
softdep_excess_items(ump, D_ALLOCINDIR)) {
13878
error = vn_start_write(NULL, &mp,
13879
V_WAIT);
13880
if (error == 0) {
13881
req = true;
13882
VFS_SYNC(mp, MNT_WAIT);
13883
vn_finished_write(mp);
13884
}
13885
}
13886
if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13887
break;
13888
}
13889
}
13890
vfs_unbusy(mp);
13891
}
13892
if ((mp = td->td_su) != NULL) {
13893
td->td_su = NULL;
13894
vfs_rel(mp);
13895
}
13896
}
13897
13898
/*
13899
* If memory utilization has gotten too high, deliberately slow things
13900
* down and speed up the I/O processing.
13901
*/
13902
static int
13903
request_cleanup(struct mount *mp, int resource)
13904
{
13905
struct thread *td = curthread;
13906
struct ufsmount *ump;
13907
13908
ump = VFSTOUFS(mp);
13909
LOCK_OWNED(ump);
13910
/*
13911
* We never hold up the filesystem syncer or buf daemon.
13912
*/
13913
if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13914
return (0);
13915
/*
13916
* First check to see if the work list has gotten backlogged.
13917
* If it has, co-opt this process to help clean up two entries.
13918
* Because this process may hold inodes locked, we cannot
13919
* handle any remove requests that might block on a locked
13920
* inode as that could lead to deadlock. We set TDP_SOFTDEP
13921
* to avoid recursively processing the worklist.
13922
*/
13923
if (ump->softdep_on_worklist > max_softdeps / 10) {
13924
td->td_pflags |= TDP_SOFTDEP;
13925
process_worklist_item(mp, 2, LK_NOWAIT);
13926
td->td_pflags &= ~TDP_SOFTDEP;
13927
stat_worklist_push += 2;
13928
return(1);
13929
}
13930
/*
13931
* Next, we attempt to speed up the syncer process. If that
13932
* is successful, then we allow the process to continue.
13933
*/
13934
if (softdep_speedup(ump) &&
13935
resource != FLUSH_BLOCKS_WAIT &&
13936
resource != FLUSH_INODES_WAIT)
13937
return(0);
13938
/*
13939
* If we are resource constrained on inode dependencies, try
13940
* flushing some dirty inodes. Otherwise, we are constrained
13941
* by file deletions, so try accelerating flushes of directories
13942
* with removal dependencies. We would like to do the cleanup
13943
* here, but we probably hold an inode locked at this point and
13944
* that might deadlock against one that we try to clean. So,
13945
* the best that we can do is request the syncer daemon to do
13946
* the cleanup for us.
13947
*/
13948
switch (resource) {
13949
case FLUSH_INODES:
13950
case FLUSH_INODES_WAIT:
13951
ACQUIRE_GBLLOCK(&lk);
13952
stat_ino_limit_push += 1;
13953
req_clear_inodedeps += 1;
13954
FREE_GBLLOCK(&lk);
13955
stat_countp = &stat_ino_limit_hit;
13956
break;
13957
13958
case FLUSH_BLOCKS:
13959
case FLUSH_BLOCKS_WAIT:
13960
ACQUIRE_GBLLOCK(&lk);
13961
stat_blk_limit_push += 1;
13962
req_clear_remove += 1;
13963
FREE_GBLLOCK(&lk);
13964
stat_countp = &stat_blk_limit_hit;
13965
break;
13966
13967
default:
13968
panic("request_cleanup: unknown type");
13969
}
13970
/*
13971
* Hopefully the syncer daemon will catch up and awaken us.
13972
* We wait at most tickdelay before proceeding in any case.
13973
*/
13974
ACQUIRE_GBLLOCK(&lk);
13975
FREE_LOCK(ump);
13976
proc_waiting += 1;
13977
if (callout_pending(&softdep_callout) == FALSE)
13978
callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13979
pause_timer, 0);
13980
13981
if ((td->td_pflags & TDP_KTHREAD) == 0)
13982
msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13983
proc_waiting -= 1;
13984
FREE_GBLLOCK(&lk);
13985
ACQUIRE_LOCK(ump);
13986
return (1);
13987
}
13988
13989
/*
13990
* Awaken processes pausing in request_cleanup and clear proc_waiting
13991
* to indicate that there is no longer a timer running. Pause_timer
13992
* will be called with the global softdep mutex (&lk) locked.
13993
*/
13994
static void
13995
pause_timer(void *arg)
13996
{
13997
13998
GBLLOCK_OWNED(&lk);
13999
/*
14000
* The callout_ API has acquired mtx and will hold it around this
14001
* function call.
14002
*/
14003
*stat_countp += proc_waiting;
14004
wakeup(&proc_waiting);
14005
}
14006
14007
/*
14008
* If requested, try removing inode or removal dependencies.
14009
*/
14010
static void
14011
check_clear_deps(struct mount *mp)
14012
{
14013
struct ufsmount *ump;
14014
bool suj_susp;
14015
14016
/*
14017
* Tell the lower layers that any TRIM or WRITE transactions that have
14018
* been delayed for performance reasons should proceed to help alleviate
14019
* the shortage faster. The race between checking req_* and the softdep
14020
* mutex (lk) is fine since this is an advisory operation that at most
14021
* causes deferred work to be done sooner.
14022
*/
14023
ump = VFSTOUFS(mp);
14024
suj_susp = ump->um_softdep->sd_jblocks != NULL &&
14025
ump->softdep_jblocks->jb_suspended;
14026
if (req_clear_remove || req_clear_inodedeps || suj_susp) {
14027
FREE_LOCK(ump);
14028
softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE);
14029
ACQUIRE_LOCK(ump);
14030
}
14031
14032
/*
14033
* If we are suspended, it may be because of our using
14034
* too many inodedeps, so help clear them out.
14035
*/
14036
if (suj_susp)
14037
clear_inodedeps(mp);
14038
14039
/*
14040
* General requests for cleanup of backed up dependencies
14041
*/
14042
ACQUIRE_GBLLOCK(&lk);
14043
if (req_clear_inodedeps) {
14044
req_clear_inodedeps -= 1;
14045
FREE_GBLLOCK(&lk);
14046
clear_inodedeps(mp);
14047
ACQUIRE_GBLLOCK(&lk);
14048
wakeup(&proc_waiting);
14049
}
14050
if (req_clear_remove) {
14051
req_clear_remove -= 1;
14052
FREE_GBLLOCK(&lk);
14053
clear_remove(mp);
14054
ACQUIRE_GBLLOCK(&lk);
14055
wakeup(&proc_waiting);
14056
}
14057
FREE_GBLLOCK(&lk);
14058
}
14059
14060
/*
14061
* Flush out a directory with at least one removal dependency in an effort to
14062
* reduce the number of dirrem, freefile, and freeblks dependency structures.
14063
*/
14064
static void
14065
clear_remove(struct mount *mp)
14066
{
14067
struct pagedep_hashhead *pagedephd;
14068
struct pagedep *pagedep;
14069
struct ufsmount *ump;
14070
struct vnode *vp;
14071
struct bufobj *bo;
14072
int error, cnt;
14073
ino_t ino;
14074
14075
ump = VFSTOUFS(mp);
14076
LOCK_OWNED(ump);
14077
14078
for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
14079
pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
14080
if (ump->pagedep_nextclean > ump->pagedep_hash_size)
14081
ump->pagedep_nextclean = 0;
14082
LIST_FOREACH(pagedep, pagedephd, pd_hash) {
14083
if (LIST_EMPTY(&pagedep->pd_dirremhd))
14084
continue;
14085
ino = pagedep->pd_ino;
14086
if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14087
continue;
14088
FREE_LOCK(ump);
14089
14090
/*
14091
* Let unmount clear deps
14092
*/
14093
error = vfs_busy(mp, MBF_NOWAIT);
14094
if (error != 0)
14095
goto finish_write;
14096
error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14097
FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
14098
vfs_unbusy(mp);
14099
if (error != 0) {
14100
softdep_error("clear_remove: vget", error);
14101
goto finish_write;
14102
}
14103
MPASS(VTOI(vp)->i_mode != 0);
14104
if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14105
softdep_error("clear_remove: fsync", error);
14106
bo = &vp->v_bufobj;
14107
BO_LOCK(bo);
14108
drain_output(vp);
14109
BO_UNLOCK(bo);
14110
vput(vp);
14111
finish_write:
14112
vn_finished_write(mp);
14113
ACQUIRE_LOCK(ump);
14114
return;
14115
}
14116
}
14117
}
14118
14119
/*
14120
* Clear out a block of dirty inodes in an effort to reduce
14121
* the number of inodedep dependency structures.
14122
*/
14123
static void
14124
clear_inodedeps(struct mount *mp)
14125
{
14126
struct inodedep_hashhead *inodedephd;
14127
struct inodedep *inodedep;
14128
struct ufsmount *ump;
14129
struct vnode *vp;
14130
struct fs *fs;
14131
int error, cnt;
14132
ino_t firstino, lastino, ino;
14133
14134
ump = VFSTOUFS(mp);
14135
fs = ump->um_fs;
14136
LOCK_OWNED(ump);
14137
/*
14138
* Pick a random inode dependency to be cleared.
14139
* We will then gather up all the inodes in its block
14140
* that have dependencies and flush them out.
14141
*/
14142
for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
14143
inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
14144
if (ump->inodedep_nextclean > ump->inodedep_hash_size)
14145
ump->inodedep_nextclean = 0;
14146
if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
14147
break;
14148
}
14149
if (inodedep == NULL)
14150
return;
14151
/*
14152
* Find the last inode in the block with dependencies.
14153
*/
14154
firstino = rounddown2(inodedep->id_ino, INOPB(fs));
14155
for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
14156
if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
14157
break;
14158
/*
14159
* Asynchronously push all but the last inode with dependencies.
14160
* Synchronously push the last inode with dependencies to ensure
14161
* that the inode block gets written to free up the inodedeps.
14162
*/
14163
for (ino = firstino; ino <= lastino; ino++) {
14164
if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
14165
continue;
14166
if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14167
continue;
14168
FREE_LOCK(ump);
14169
error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
14170
if (error != 0) {
14171
vn_finished_write(mp);
14172
ACQUIRE_LOCK(ump);
14173
return;
14174
}
14175
if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14176
FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP)) != 0) {
14177
softdep_error("clear_inodedeps: vget", error);
14178
vfs_unbusy(mp);
14179
vn_finished_write(mp);
14180
ACQUIRE_LOCK(ump);
14181
return;
14182
}
14183
vfs_unbusy(mp);
14184
if (VTOI(vp)->i_mode == 0) {
14185
vgone(vp);
14186
} else if (ino == lastino) {
14187
do {
14188
error = ffs_syncvnode(vp, MNT_WAIT, 0);
14189
} while (error == ERELOOKUP);
14190
if (error != 0)
14191
softdep_error("clear_inodedeps: fsync1", error);
14192
} else {
14193
if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14194
softdep_error("clear_inodedeps: fsync2", error);
14195
BO_LOCK(&vp->v_bufobj);
14196
drain_output(vp);
14197
BO_UNLOCK(&vp->v_bufobj);
14198
}
14199
vput(vp);
14200
vn_finished_write(mp);
14201
ACQUIRE_LOCK(ump);
14202
}
14203
}
14204
14205
void
14206
softdep_buf_append(struct buf *bp, struct workhead *wkhd)
14207
{
14208
struct worklist *wk;
14209
struct ufsmount *ump;
14210
14211
if ((wk = LIST_FIRST(wkhd)) == NULL)
14212
return;
14213
KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14214
("softdep_buf_append called on non-softdep filesystem"));
14215
ump = VFSTOUFS(wk->wk_mp);
14216
ACQUIRE_LOCK(ump);
14217
while ((wk = LIST_FIRST(wkhd)) != NULL) {
14218
WORKLIST_REMOVE(wk);
14219
WORKLIST_INSERT(&bp->b_dep, wk);
14220
}
14221
FREE_LOCK(ump);
14222
14223
}
14224
14225
void
14226
softdep_inode_append(
14227
struct inode *ip,
14228
struct ucred *cred,
14229
struct workhead *wkhd)
14230
{
14231
struct buf *bp;
14232
struct fs *fs;
14233
struct ufsmount *ump;
14234
int error;
14235
14236
ump = ITOUMP(ip);
14237
KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
14238
("softdep_inode_append called on non-softdep filesystem"));
14239
fs = ump->um_fs;
14240
error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
14241
(int)fs->fs_bsize, cred, &bp);
14242
if (error) {
14243
bqrelse(bp);
14244
softdep_freework(wkhd);
14245
return;
14246
}
14247
softdep_buf_append(bp, wkhd);
14248
bqrelse(bp);
14249
}
14250
14251
void
14252
softdep_freework(struct workhead *wkhd)
14253
{
14254
struct worklist *wk;
14255
struct ufsmount *ump;
14256
14257
if ((wk = LIST_FIRST(wkhd)) == NULL)
14258
return;
14259
KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14260
("softdep_freework called on non-softdep filesystem"));
14261
ump = VFSTOUFS(wk->wk_mp);
14262
ACQUIRE_LOCK(ump);
14263
handle_jwork(wkhd);
14264
FREE_LOCK(ump);
14265
}
14266
14267
static struct ufsmount *
14268
softdep_bp_to_mp(struct buf *bp)
14269
{
14270
struct mount *mp;
14271
struct vnode *vp;
14272
14273
if (LIST_EMPTY(&bp->b_dep))
14274
return (NULL);
14275
vp = bp->b_vp;
14276
KASSERT(vp != NULL,
14277
("%s, buffer with dependencies lacks vnode", __func__));
14278
14279
/*
14280
* The ump mount point is stable after we get a correct
14281
* pointer, since bp is locked and this prevents unmount from
14282
* proceeding. But to get to it, we cannot dereference bp->b_dep
14283
* head wk_mp, because we do not yet own SU ump lock and
14284
* workitem might be freed while dereferenced.
14285
*/
14286
retry:
14287
switch (vp->v_type) {
14288
case VCHR:
14289
VI_LOCK(vp);
14290
mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
14291
VI_UNLOCK(vp);
14292
if (mp == NULL)
14293
goto retry;
14294
break;
14295
case VREG:
14296
case VDIR:
14297
case VLNK:
14298
case VFIFO:
14299
case VSOCK:
14300
mp = vp->v_mount;
14301
break;
14302
case VBLK:
14303
vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
14304
/* FALLTHROUGH */
14305
case VNON:
14306
case VBAD:
14307
case VMARKER:
14308
mp = NULL;
14309
break;
14310
default:
14311
vn_printf(vp, "unknown vnode type");
14312
mp = NULL;
14313
break;
14314
}
14315
return (VFSTOUFS(mp));
14316
}
14317
14318
/*
14319
* Function to determine if the buffer has outstanding dependencies
14320
* that will cause a roll-back if the buffer is written. If wantcount
14321
* is set, return number of dependencies, otherwise just yes or no.
14322
*/
14323
static int
14324
softdep_count_dependencies(struct buf *bp, int wantcount)
14325
{
14326
struct worklist *wk;
14327
struct ufsmount *ump;
14328
struct bmsafemap *bmsafemap;
14329
struct freework *freework;
14330
struct inodedep *inodedep;
14331
struct indirdep *indirdep;
14332
struct freeblks *freeblks;
14333
struct allocindir *aip;
14334
struct pagedep *pagedep;
14335
struct dirrem *dirrem;
14336
struct newblk *newblk;
14337
struct mkdir *mkdir;
14338
struct diradd *dap;
14339
int i, retval;
14340
14341
ump = softdep_bp_to_mp(bp);
14342
if (ump == NULL)
14343
return (0);
14344
retval = 0;
14345
ACQUIRE_LOCK(ump);
14346
LIST_FOREACH(wk, &bp->b_dep, wk_list) {
14347
switch (wk->wk_type) {
14348
case D_INODEDEP:
14349
inodedep = WK_INODEDEP(wk);
14350
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
14351
/* bitmap allocation dependency */
14352
retval += 1;
14353
if (!wantcount)
14354
goto out;
14355
}
14356
if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
14357
/* direct block pointer dependency */
14358
retval += 1;
14359
if (!wantcount)
14360
goto out;
14361
}
14362
if (TAILQ_FIRST(&inodedep->id_extupdt)) {
14363
/* direct block pointer dependency */
14364
retval += 1;
14365
if (!wantcount)
14366
goto out;
14367
}
14368
if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
14369
/* Add reference dependency. */
14370
retval += 1;
14371
if (!wantcount)
14372
goto out;
14373
}
14374
continue;
14375
14376
case D_INDIRDEP:
14377
indirdep = WK_INDIRDEP(wk);
14378
14379
TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14380
/* indirect truncation dependency */
14381
retval += 1;
14382
if (!wantcount)
14383
goto out;
14384
}
14385
14386
LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14387
/* indirect block pointer dependency */
14388
retval += 1;
14389
if (!wantcount)
14390
goto out;
14391
}
14392
continue;
14393
14394
case D_PAGEDEP:
14395
pagedep = WK_PAGEDEP(wk);
14396
LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14397
if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14398
/* Journal remove ref dependency. */
14399
retval += 1;
14400
if (!wantcount)
14401
goto out;
14402
}
14403
}
14404
for (i = 0; i < DAHASHSZ; i++) {
14405
LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14406
/* directory entry dependency */
14407
retval += 1;
14408
if (!wantcount)
14409
goto out;
14410
}
14411
}
14412
continue;
14413
14414
case D_BMSAFEMAP:
14415
bmsafemap = WK_BMSAFEMAP(wk);
14416
if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14417
/* Add reference dependency. */
14418
retval += 1;
14419
if (!wantcount)
14420
goto out;
14421
}
14422
if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14423
/* Allocate block dependency. */
14424
retval += 1;
14425
if (!wantcount)
14426
goto out;
14427
}
14428
continue;
14429
14430
case D_FREEBLKS:
14431
freeblks = WK_FREEBLKS(wk);
14432
if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14433
/* Freeblk journal dependency. */
14434
retval += 1;
14435
if (!wantcount)
14436
goto out;
14437
}
14438
continue;
14439
14440
case D_ALLOCDIRECT:
14441
case D_ALLOCINDIR:
14442
newblk = WK_NEWBLK(wk);
14443
if (newblk->nb_jnewblk) {
14444
/* Journal allocate dependency. */
14445
retval += 1;
14446
if (!wantcount)
14447
goto out;
14448
}
14449
continue;
14450
14451
case D_MKDIR:
14452
mkdir = WK_MKDIR(wk);
14453
if (mkdir->md_jaddref) {
14454
/* Journal reference dependency. */
14455
retval += 1;
14456
if (!wantcount)
14457
goto out;
14458
}
14459
continue;
14460
14461
case D_FREEWORK:
14462
case D_FREEDEP:
14463
case D_JSEGDEP:
14464
case D_JSEG:
14465
case D_SBDEP:
14466
/* never a dependency on these blocks */
14467
continue;
14468
14469
default:
14470
panic("softdep_count_dependencies: Unexpected type %s",
14471
TYPENAME(wk->wk_type));
14472
/* NOTREACHED */
14473
}
14474
}
14475
out:
14476
FREE_LOCK(ump);
14477
return (retval);
14478
}
14479
14480
/*
14481
* Acquire exclusive access to a buffer.
14482
* Must be called with a locked mtx parameter.
14483
* Return acquired buffer or NULL on failure.
14484
*/
14485
static struct buf *
14486
getdirtybuf(struct buf *bp,
14487
struct rwlock *lock,
14488
int waitfor)
14489
{
14490
int error;
14491
14492
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14493
if (waitfor != MNT_WAIT)
14494
return (NULL);
14495
error = BUF_LOCK(bp,
14496
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14497
/*
14498
* Even if we successfully acquire bp here, we have dropped
14499
* lock, which may violates our guarantee.
14500
*/
14501
if (error == 0)
14502
BUF_UNLOCK(bp);
14503
else if (error != ENOLCK)
14504
panic("getdirtybuf: inconsistent lock: %d", error);
14505
rw_wlock(lock);
14506
return (NULL);
14507
}
14508
if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14509
if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14510
rw_wunlock(lock);
14511
BO_LOCK(bp->b_bufobj);
14512
BUF_UNLOCK(bp);
14513
if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14514
bp->b_vflags |= BV_BKGRDWAIT;
14515
msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14516
PRIBIO | PDROP, "getbuf", 0);
14517
} else
14518
BO_UNLOCK(bp->b_bufobj);
14519
rw_wlock(lock);
14520
return (NULL);
14521
}
14522
BUF_UNLOCK(bp);
14523
if (waitfor != MNT_WAIT)
14524
return (NULL);
14525
if (bp->b_vp->v_type != VCHR)
14526
ASSERT_BO_WLOCKED(bp->b_bufobj);
14527
bp->b_vflags |= BV_BKGRDWAIT;
14528
rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14529
return (NULL);
14530
}
14531
if ((bp->b_flags & B_DELWRI) == 0) {
14532
BUF_UNLOCK(bp);
14533
return (NULL);
14534
}
14535
bremfree(bp);
14536
return (bp);
14537
}
14538
14539
/*
14540
* Check if it is safe to suspend the file system now. On entry,
14541
* the vnode interlock for devvp should be held. Return 0 with
14542
* the mount interlock held if the file system can be suspended now,
14543
* otherwise return EAGAIN with the mount interlock held.
14544
*/
14545
int
14546
softdep_check_suspend(struct mount *mp,
14547
struct vnode *devvp,
14548
int softdep_depcnt,
14549
int softdep_accdepcnt,
14550
int secondary_writes,
14551
int secondary_accwrites)
14552
{
14553
struct buf *bp;
14554
struct bufobj *bo;
14555
struct ufsmount *ump;
14556
struct inodedep *inodedep;
14557
struct indirdep *indirdep;
14558
struct worklist *wk, *nextwk;
14559
int error, unlinked;
14560
14561
bo = &devvp->v_bufobj;
14562
ASSERT_BO_WLOCKED(bo);
14563
14564
/*
14565
* If we are not running with soft updates, then we need only
14566
* deal with secondary writes as we try to suspend.
14567
*/
14568
if (MOUNTEDSOFTDEP(mp) == 0) {
14569
MNT_ILOCK(mp);
14570
while (mp->mnt_secondary_writes != 0) {
14571
BO_UNLOCK(bo);
14572
msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14573
PRI_MAX_KERN | PDROP, "secwr", 0);
14574
BO_LOCK(bo);
14575
MNT_ILOCK(mp);
14576
}
14577
14578
/*
14579
* Reasons for needing more work before suspend:
14580
* - Dirty buffers on devvp.
14581
* - Secondary writes occurred after start of vnode sync loop
14582
*/
14583
error = 0;
14584
if (bo->bo_numoutput > 0 ||
14585
bo->bo_dirty.bv_cnt > 0 ||
14586
secondary_writes != 0 ||
14587
mp->mnt_secondary_writes != 0 ||
14588
secondary_accwrites != mp->mnt_secondary_accwrites)
14589
error = EAGAIN;
14590
BO_UNLOCK(bo);
14591
return (error);
14592
}
14593
14594
/*
14595
* If we are running with soft updates, then we need to coordinate
14596
* with them as we try to suspend.
14597
*/
14598
ump = VFSTOUFS(mp);
14599
for (;;) {
14600
if (!TRY_ACQUIRE_LOCK(ump)) {
14601
BO_UNLOCK(bo);
14602
ACQUIRE_LOCK(ump);
14603
FREE_LOCK(ump);
14604
BO_LOCK(bo);
14605
continue;
14606
}
14607
MNT_ILOCK(mp);
14608
if (mp->mnt_secondary_writes != 0) {
14609
FREE_LOCK(ump);
14610
BO_UNLOCK(bo);
14611
msleep(&mp->mnt_secondary_writes,
14612
MNT_MTX(mp),
14613
PRI_MAX_KERN | PDROP, "secwr", 0);
14614
BO_LOCK(bo);
14615
continue;
14616
}
14617
break;
14618
}
14619
14620
unlinked = 0;
14621
if (MOUNTEDSUJ(mp)) {
14622
for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14623
inodedep != NULL;
14624
inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14625
if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14626
UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14627
UNLINKONLIST) ||
14628
!check_inodedep_free(inodedep))
14629
continue;
14630
unlinked++;
14631
}
14632
}
14633
14634
/*
14635
* XXX Check for orphaned indirdep dependency structures.
14636
*
14637
* During forcible unmount after a disk failure there is a
14638
* bug that causes one or more indirdep dependency structures
14639
* to fail to be deallocated. We check for them here and clean
14640
* them up so that the unmount can succeed.
14641
*/
14642
if ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0 && ump->softdep_deps > 0 &&
14643
ump->softdep_deps == ump->softdep_curdeps[D_INDIRDEP]) {
14644
LIST_FOREACH_SAFE(wk, &ump->softdep_alldeps[D_INDIRDEP],
14645
wk_all, nextwk) {
14646
indirdep = WK_INDIRDEP(wk);
14647
if ((indirdep->ir_state & (GOINGAWAY | DEPCOMPLETE)) !=
14648
(GOINGAWAY | DEPCOMPLETE) ||
14649
!TAILQ_EMPTY(&indirdep->ir_trunc) ||
14650
!LIST_EMPTY(&indirdep->ir_completehd) ||
14651
!LIST_EMPTY(&indirdep->ir_writehd) ||
14652
!LIST_EMPTY(&indirdep->ir_donehd) ||
14653
!LIST_EMPTY(&indirdep->ir_deplisthd) ||
14654
indirdep->ir_saveddata != NULL ||
14655
indirdep->ir_savebp == NULL) {
14656
printf("%s: skipping orphaned indirdep %p\n",
14657
__FUNCTION__, indirdep);
14658
continue;
14659
}
14660
printf("%s: freeing orphaned indirdep %p\n",
14661
__FUNCTION__, indirdep);
14662
bp = indirdep->ir_savebp;
14663
indirdep->ir_savebp = NULL;
14664
free_indirdep(indirdep);
14665
FREE_LOCK(ump);
14666
brelse(bp);
14667
while (!TRY_ACQUIRE_LOCK(ump)) {
14668
BO_UNLOCK(bo);
14669
ACQUIRE_LOCK(ump);
14670
FREE_LOCK(ump);
14671
BO_LOCK(bo);
14672
}
14673
}
14674
}
14675
14676
/*
14677
* Reasons for needing more work before suspend:
14678
* - Dirty buffers on devvp.
14679
* - Dependency structures still exist
14680
* - Softdep activity occurred after start of vnode sync loop
14681
* - Secondary writes occurred after start of vnode sync loop
14682
*/
14683
error = 0;
14684
if (bo->bo_numoutput > 0 ||
14685
bo->bo_dirty.bv_cnt > 0 ||
14686
softdep_depcnt != unlinked ||
14687
ump->softdep_deps != unlinked ||
14688
softdep_accdepcnt != ump->softdep_accdeps ||
14689
secondary_writes != 0 ||
14690
mp->mnt_secondary_writes != 0 ||
14691
secondary_accwrites != mp->mnt_secondary_accwrites)
14692
error = EAGAIN;
14693
FREE_LOCK(ump);
14694
BO_UNLOCK(bo);
14695
return (error);
14696
}
14697
14698
/*
14699
* Get the number of dependency structures for the file system, both
14700
* the current number and the total number allocated. These will
14701
* later be used to detect that softdep processing has occurred.
14702
*/
14703
void
14704
softdep_get_depcounts(struct mount *mp,
14705
int *softdep_depsp,
14706
int *softdep_accdepsp)
14707
{
14708
struct ufsmount *ump;
14709
14710
if (MOUNTEDSOFTDEP(mp) == 0) {
14711
*softdep_depsp = 0;
14712
*softdep_accdepsp = 0;
14713
return;
14714
}
14715
ump = VFSTOUFS(mp);
14716
ACQUIRE_LOCK(ump);
14717
*softdep_depsp = ump->softdep_deps;
14718
*softdep_accdepsp = ump->softdep_accdeps;
14719
FREE_LOCK(ump);
14720
}
14721
14722
/*
14723
* Wait for pending output on a vnode to complete.
14724
*/
14725
static void
14726
drain_output(struct vnode *vp)
14727
{
14728
14729
ASSERT_VOP_LOCKED(vp, "drain_output");
14730
(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14731
}
14732
14733
/*
14734
* Called whenever a buffer that is being invalidated or reallocated
14735
* contains dependencies. This should only happen if an I/O error has
14736
* occurred. The routine is called with the buffer locked.
14737
*/
14738
static void
14739
softdep_deallocate_dependencies(struct buf *bp)
14740
{
14741
14742
if ((bp->b_ioflags & BIO_ERROR) == 0)
14743
panic("softdep_deallocate_dependencies: dangling deps");
14744
if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14745
softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14746
else
14747
printf("softdep_deallocate_dependencies: "
14748
"got error %d while accessing filesystem\n", bp->b_error);
14749
if (bp->b_error != ENXIO)
14750
panic("softdep_deallocate_dependencies: unrecovered I/O error");
14751
}
14752
14753
/*
14754
* Function to handle asynchronous write errors in the filesystem.
14755
*/
14756
static void
14757
softdep_error(char *func, int error)
14758
{
14759
14760
/* XXX should do something better! */
14761
printf("%s: got error %d while accessing filesystem\n", func, error);
14762
}
14763
14764
#ifdef DDB
14765
14766
/* exported to ffs_vfsops.c */
14767
extern void db_print_ffs(struct ufsmount *ump);
14768
void
14769
db_print_ffs(struct ufsmount *ump)
14770
{
14771
db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
14772
ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
14773
db_printf(" fs %p ", ump->um_fs);
14774
14775
if (ump->um_softdep != NULL) {
14776
db_printf("su_wl %d su_deps %d su_req %d\n",
14777
ump->softdep_on_worklist, ump->softdep_deps,
14778
ump->softdep_req);
14779
} else {
14780
db_printf("su disabled\n");
14781
}
14782
}
14783
14784
static void
14785
worklist_print(struct worklist *wk, int verbose)
14786
{
14787
14788
if (!verbose) {
14789
db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
14790
wk->wk_state, PRINT_SOFTDEP_FLAGS);
14791
return;
14792
}
14793
db_printf("worklist: %p type %s state 0x%b next %p\n ", wk,
14794
TYPENAME(wk->wk_type), wk->wk_state, PRINT_SOFTDEP_FLAGS,
14795
LIST_NEXT(wk, wk_list));
14796
db_print_ffs(VFSTOUFS(wk->wk_mp));
14797
}
14798
14799
static void
14800
inodedep_print(struct inodedep *inodedep, int verbose)
14801
{
14802
14803
worklist_print(&inodedep->id_list, 0);
14804
db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
14805
inodedep->id_fs,
14806
(intmax_t)inodedep->id_ino,
14807
(intmax_t)fsbtodb(inodedep->id_fs,
14808
ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14809
(intmax_t)inodedep->id_nlinkdelta,
14810
(intmax_t)inodedep->id_savednlink);
14811
14812
if (verbose == 0)
14813
return;
14814
14815
db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n",
14816
inodedep->id_bmsafemap,
14817
inodedep->id_mkdiradd,
14818
TAILQ_FIRST(&inodedep->id_inoreflst));
14819
db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n",
14820
LIST_FIRST(&inodedep->id_dirremhd),
14821
LIST_FIRST(&inodedep->id_pendinghd),
14822
LIST_FIRST(&inodedep->id_bufwait));
14823
db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n",
14824
LIST_FIRST(&inodedep->id_inowait),
14825
TAILQ_FIRST(&inodedep->id_inoupdt),
14826
TAILQ_FIRST(&inodedep->id_newinoupdt));
14827
db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n",
14828
TAILQ_FIRST(&inodedep->id_extupdt),
14829
TAILQ_FIRST(&inodedep->id_newextupdt),
14830
TAILQ_FIRST(&inodedep->id_freeblklst));
14831
db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n",
14832
inodedep->id_savedino1,
14833
(intmax_t)inodedep->id_savedsize,
14834
(intmax_t)inodedep->id_savedextsize);
14835
}
14836
14837
static void
14838
newblk_print(struct newblk *nbp)
14839
{
14840
14841
worklist_print(&nbp->nb_list, 0);
14842
db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
14843
db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n",
14844
&nbp->nb_jnewblk,
14845
&nbp->nb_bmsafemap,
14846
&nbp->nb_freefrag);
14847
db_printf(" indirdeps %p, newdirblk %p, jwork %p\n",
14848
LIST_FIRST(&nbp->nb_indirdeps),
14849
LIST_FIRST(&nbp->nb_newdirblk),
14850
LIST_FIRST(&nbp->nb_jwork));
14851
}
14852
14853
static void
14854
allocdirect_print(struct allocdirect *adp)
14855
{
14856
14857
newblk_print(&adp->ad_block);
14858
db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n",
14859
adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
14860
db_printf(" offset %d, inodedep %p\n",
14861
adp->ad_offset, adp->ad_inodedep);
14862
}
14863
14864
static void
14865
allocindir_print(struct allocindir *aip)
14866
{
14867
14868
newblk_print(&aip->ai_block);
14869
db_printf(" oldblkno %jd, lbn %jd\n",
14870
(intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
14871
db_printf(" offset %d, indirdep %p\n",
14872
aip->ai_offset, aip->ai_indirdep);
14873
}
14874
14875
static void
14876
mkdir_print(struct mkdir *mkdir)
14877
{
14878
14879
worklist_print(&mkdir->md_list, 0);
14880
db_printf(" diradd %p, jaddref %p, buf %p\n",
14881
mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
14882
}
14883
14884
DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
14885
{
14886
14887
if (have_addr == 0) {
14888
db_printf("inodedep address required\n");
14889
return;
14890
}
14891
inodedep_print((struct inodedep*)addr, 1);
14892
}
14893
14894
DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
14895
{
14896
struct inodedep_hashhead *inodedephd;
14897
struct inodedep *inodedep;
14898
struct ufsmount *ump;
14899
int cnt;
14900
14901
if (have_addr == 0) {
14902
db_printf("ufsmount address required\n");
14903
return;
14904
}
14905
ump = (struct ufsmount *)addr;
14906
for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14907
inodedephd = &ump->inodedep_hashtbl[cnt];
14908
LIST_FOREACH(inodedep, inodedephd, id_hash) {
14909
inodedep_print(inodedep, 0);
14910
}
14911
}
14912
}
14913
14914
DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
14915
{
14916
14917
if (have_addr == 0) {
14918
db_printf("worklist address required\n");
14919
return;
14920
}
14921
worklist_print((struct worklist *)addr, 1);
14922
}
14923
14924
DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
14925
{
14926
struct worklist *wk;
14927
struct workhead *wkhd;
14928
14929
if (have_addr == 0) {
14930
db_printf("worklist address required "
14931
"(for example value in bp->b_dep)\n");
14932
return;
14933
}
14934
/*
14935
* We often do not have the address of the worklist head but
14936
* instead a pointer to its first entry (e.g., we have the
14937
* contents of bp->b_dep rather than &bp->b_dep). But the back
14938
* pointer of bp->b_dep will point at the head of the list, so
14939
* we cheat and use that instead. If we are in the middle of
14940
* a list we will still get the same result, so nothing
14941
* unexpected will result.
14942
*/
14943
wk = (struct worklist *)addr;
14944
if (wk == NULL)
14945
return;
14946
wkhd = (struct workhead *)wk->wk_list.le_prev;
14947
LIST_FOREACH(wk, wkhd, wk_list) {
14948
switch(wk->wk_type) {
14949
case D_INODEDEP:
14950
inodedep_print(WK_INODEDEP(wk), 0);
14951
continue;
14952
case D_ALLOCDIRECT:
14953
allocdirect_print(WK_ALLOCDIRECT(wk));
14954
continue;
14955
case D_ALLOCINDIR:
14956
allocindir_print(WK_ALLOCINDIR(wk));
14957
continue;
14958
case D_MKDIR:
14959
mkdir_print(WK_MKDIR(wk));
14960
continue;
14961
default:
14962
worklist_print(wk, 0);
14963
continue;
14964
}
14965
}
14966
}
14967
14968
DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
14969
{
14970
if (have_addr == 0) {
14971
db_printf("mkdir address required\n");
14972
return;
14973
}
14974
mkdir_print((struct mkdir *)addr);
14975
}
14976
14977
DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
14978
{
14979
struct mkdirlist *mkdirlisthd;
14980
struct mkdir *mkdir;
14981
14982
if (have_addr == 0) {
14983
db_printf("mkdir listhead address required\n");
14984
return;
14985
}
14986
mkdirlisthd = (struct mkdirlist *)addr;
14987
LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14988
mkdir_print(mkdir);
14989
if (mkdir->md_diradd != NULL) {
14990
db_printf(" ");
14991
worklist_print(&mkdir->md_diradd->da_list, 0);
14992
}
14993
if (mkdir->md_jaddref != NULL) {
14994
db_printf(" ");
14995
worklist_print(&mkdir->md_jaddref->ja_list, 0);
14996
}
14997
}
14998
}
14999
15000
DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
15001
{
15002
if (have_addr == 0) {
15003
db_printf("allocdirect address required\n");
15004
return;
15005
}
15006
allocdirect_print((struct allocdirect *)addr);
15007
}
15008
15009
DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
15010
{
15011
if (have_addr == 0) {
15012
db_printf("allocindir address required\n");
15013
return;
15014
}
15015
allocindir_print((struct allocindir *)addr);
15016
}
15017
15018
#endif /* DDB */
15019
15020
#endif /* SOFTUPDATES */
15021
15022