Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/vm/memguard.c
39536 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2005, Bosko Milekic <[email protected]>.
5
* Copyright (c) 2010 Isilon Systems, Inc. (http://www.isilon.com/)
6
* All rights reserved.
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice unmodified, this list of conditions, and the following
13
* disclaimer.
14
* 2. Redistributions in binary form must reproduce the above copyright
15
* notice, this list of conditions and the following disclaimer in the
16
* documentation and/or other materials provided with the distribution.
17
*
18
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
*/
29
30
#include <sys/cdefs.h>
31
/*
32
* MemGuard is a simple replacement allocator for debugging only
33
* which provides ElectricFence-style memory barrier protection on
34
* objects being allocated, and is used to detect tampering-after-free
35
* scenarios.
36
*
37
* See the memguard(9) man page for more information on using MemGuard.
38
*/
39
40
#include "opt_vm.h"
41
42
#include <sys/param.h>
43
#include <sys/systm.h>
44
#include <sys/kernel.h>
45
#include <sys/types.h>
46
#include <sys/queue.h>
47
#include <sys/lock.h>
48
#include <sys/mutex.h>
49
#include <sys/malloc.h>
50
#include <sys/sysctl.h>
51
#include <sys/vmem.h>
52
#include <sys/vmmeter.h>
53
54
#include <vm/vm.h>
55
#include <vm/uma.h>
56
#include <vm/vm_param.h>
57
#include <vm/vm_page.h>
58
#include <vm/vm_map.h>
59
#include <vm/vm_object.h>
60
#include <vm/vm_kern.h>
61
#include <vm/vm_extern.h>
62
#include <vm/uma_int.h>
63
#include <vm/memguard.h>
64
65
static SYSCTL_NODE(_vm, OID_AUTO, memguard, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
66
"MemGuard data");
67
/*
68
* The vm_memguard_divisor variable controls how much of kernel_arena should be
69
* reserved for MemGuard.
70
*/
71
static u_int vm_memguard_divisor;
72
SYSCTL_UINT(_vm_memguard, OID_AUTO, divisor, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
73
&vm_memguard_divisor,
74
0, "(kmem_size/memguard_divisor) == memguard submap size");
75
76
/*
77
* Short description (ks_shortdesc) of memory type to monitor.
78
*/
79
static char vm_memguard_desc[128] = "";
80
static struct malloc_type *vm_memguard_mtype = NULL;
81
TUNABLE_STR("vm.memguard.desc", vm_memguard_desc, sizeof(vm_memguard_desc));
82
static int
83
memguard_sysctl_desc(SYSCTL_HANDLER_ARGS)
84
{
85
char desc[sizeof(vm_memguard_desc)];
86
int error;
87
88
strlcpy(desc, vm_memguard_desc, sizeof(desc));
89
error = sysctl_handle_string(oidp, desc, sizeof(desc), req);
90
if (error != 0 || req->newptr == NULL)
91
return (error);
92
93
mtx_lock(&malloc_mtx);
94
/* If mtp is NULL, it will be initialized in memguard_cmp() */
95
vm_memguard_mtype = malloc_desc2type(desc);
96
strlcpy(vm_memguard_desc, desc, sizeof(vm_memguard_desc));
97
mtx_unlock(&malloc_mtx);
98
return (error);
99
}
100
SYSCTL_PROC(_vm_memguard, OID_AUTO, desc,
101
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
102
memguard_sysctl_desc, "A", "Short description of memory type to monitor");
103
104
static int
105
memguard_sysctl_mapused(SYSCTL_HANDLER_ARGS)
106
{
107
vmem_size_t size;
108
109
size = vmem_size(memguard_arena, VMEM_ALLOC);
110
return (sysctl_handle_long(oidp, &size, sizeof(size), req));
111
}
112
113
static vm_offset_t memguard_base;
114
static vm_size_t memguard_mapsize;
115
static vm_size_t memguard_physlimit;
116
static u_long memguard_wasted;
117
static u_long memguard_succ;
118
static u_long memguard_fail_kva;
119
static u_long memguard_fail_pgs;
120
121
SYSCTL_ULONG(_vm_memguard, OID_AUTO, mapsize, CTLFLAG_RD,
122
&memguard_mapsize, 0, "MemGuard private arena size");
123
SYSCTL_ULONG(_vm_memguard, OID_AUTO, phys_limit, CTLFLAG_RD,
124
&memguard_physlimit, 0, "Limit on MemGuard memory consumption");
125
SYSCTL_ULONG(_vm_memguard, OID_AUTO, wasted, CTLFLAG_RD,
126
&memguard_wasted, 0, "Excess memory used through page promotion");
127
SYSCTL_ULONG(_vm_memguard, OID_AUTO, numalloc, CTLFLAG_RD,
128
&memguard_succ, 0, "Count of successful MemGuard allocations");
129
SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_kva, CTLFLAG_RD,
130
&memguard_fail_kva, 0, "MemGuard failures due to lack of KVA");
131
SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_pgs, CTLFLAG_RD,
132
&memguard_fail_pgs, 0, "MemGuard failures due to lack of pages");
133
134
#define MG_GUARD_AROUND 0x001
135
#define MG_GUARD_ALLLARGE 0x002
136
#define MG_GUARD_NOFREE 0x004
137
static int memguard_options = MG_GUARD_AROUND;
138
SYSCTL_INT(_vm_memguard, OID_AUTO, options, CTLFLAG_RWTUN,
139
&memguard_options, 0,
140
"MemGuard options:\n"
141
"\t0x001 - add guard pages around each allocation\n"
142
"\t0x002 - always use MemGuard for allocations over a page\n"
143
"\t0x004 - guard uma(9) zones with UMA_ZONE_NOFREE flag");
144
145
static u_int memguard_minsize;
146
static u_long memguard_minsize_reject;
147
SYSCTL_UINT(_vm_memguard, OID_AUTO, minsize, CTLFLAG_RW,
148
&memguard_minsize, 0, "Minimum size for page promotion");
149
SYSCTL_ULONG(_vm_memguard, OID_AUTO, minsize_reject, CTLFLAG_RD,
150
&memguard_minsize_reject, 0, "# times rejected for size");
151
152
static u_int memguard_frequency;
153
static u_long memguard_frequency_hits;
154
SYSCTL_UINT(_vm_memguard, OID_AUTO, frequency, CTLFLAG_RWTUN,
155
&memguard_frequency, 0, "Times in 100000 that MemGuard will randomly run");
156
SYSCTL_ULONG(_vm_memguard, OID_AUTO, frequency_hits, CTLFLAG_RD,
157
&memguard_frequency_hits, 0, "# times MemGuard randomly chose");
158
159
/*
160
* Return a fudged value to be used for vm_kmem_size for allocating
161
* the kernel_arena.
162
*/
163
unsigned long
164
memguard_fudge(unsigned long km_size, const struct vm_map *parent_map)
165
{
166
u_long mem_pgs, parent_size;
167
168
vm_memguard_divisor = 10;
169
/* CTFLAG_RDTUN doesn't work during the early boot process. */
170
TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor);
171
172
parent_size = vm_map_max(parent_map) - vm_map_min(parent_map) +
173
PAGE_SIZE;
174
/* Pick a conservative value if provided value sucks. */
175
if ((vm_memguard_divisor <= 0) ||
176
((parent_size / vm_memguard_divisor) == 0))
177
vm_memguard_divisor = 10;
178
/*
179
* Limit consumption of physical pages to
180
* 1/vm_memguard_divisor of system memory. If the KVA is
181
* smaller than this then the KVA limit comes into play first.
182
* This prevents memguard's page promotions from completely
183
* using up memory, since most malloc(9) calls are sub-page.
184
*/
185
mem_pgs = vm_cnt.v_page_count;
186
memguard_physlimit = (mem_pgs / vm_memguard_divisor) * PAGE_SIZE;
187
/*
188
* We want as much KVA as we can take safely. Use at most our
189
* allotted fraction of the parent map's size. Limit this to
190
* twice the physical memory to avoid using too much memory as
191
* pagetable pages (size must be multiple of PAGE_SIZE).
192
*/
193
memguard_mapsize = round_page(parent_size / vm_memguard_divisor);
194
if (memguard_mapsize / (2 * PAGE_SIZE) > mem_pgs)
195
memguard_mapsize = mem_pgs * 2 * PAGE_SIZE;
196
if (km_size + memguard_mapsize > parent_size)
197
memguard_mapsize = 0;
198
return (km_size + memguard_mapsize);
199
}
200
201
/*
202
* Initialize the MemGuard mock allocator. All objects from MemGuard come
203
* out of a single contiguous chunk of kernel address space that is managed
204
* by a vmem arena.
205
*/
206
void
207
memguard_init(vmem_t *parent)
208
{
209
vm_offset_t base;
210
211
vmem_alloc(parent, memguard_mapsize, M_BESTFIT | M_WAITOK, &base);
212
vmem_init(memguard_arena, "memguard arena", base, memguard_mapsize,
213
PAGE_SIZE, 0, M_WAITOK);
214
memguard_base = base;
215
216
printf("MEMGUARD DEBUGGING ALLOCATOR INITIALIZED:\n");
217
printf("\tMEMGUARD map base: 0x%lx\n", (u_long)base);
218
printf("\tMEMGUARD map size: %jd KBytes\n",
219
(uintmax_t)memguard_mapsize >> 10);
220
}
221
222
/*
223
* Run things that can't be done as early as memguard_init().
224
*/
225
static void
226
memguard_sysinit(void)
227
{
228
struct sysctl_oid_list *parent;
229
230
parent = SYSCTL_STATIC_CHILDREN(_vm_memguard);
231
SYSCTL_ADD_UAUTO(NULL, parent, OID_AUTO, "mapstart",
232
CTLFLAG_RD, &memguard_base,
233
"MemGuard KVA base");
234
SYSCTL_ADD_UAUTO(NULL, parent, OID_AUTO, "maplimit",
235
CTLFLAG_RD, &memguard_mapsize,
236
"MemGuard KVA size");
237
SYSCTL_ADD_PROC(NULL, parent, OID_AUTO, "mapused",
238
CTLFLAG_RD | CTLFLAG_MPSAFE | CTLTYPE_ULONG, NULL, 0, memguard_sysctl_mapused, "LU",
239
"MemGuard KVA used");
240
}
241
SYSINIT(memguard, SI_SUB_KLD, SI_ORDER_ANY, memguard_sysinit, NULL);
242
243
/*
244
* v2sizep() converts a virtual address of the first page allocated for
245
* an item to a pointer to u_long recording the size of the original
246
* allocation request.
247
*
248
* This routine is very similar to those defined by UMA in uma_int.h.
249
* The difference is that this routine stores the originally allocated
250
* size in one of the page's fields that is unused when the page is
251
* wired rather than the object field, which is used.
252
*/
253
static u_long *
254
v2sizep(vm_offset_t va)
255
{
256
vm_paddr_t pa;
257
struct vm_page *p;
258
259
pa = pmap_kextract(va);
260
if (pa == 0)
261
panic("MemGuard detected double-free of %p", (void *)va);
262
p = PHYS_TO_VM_PAGE(pa);
263
KASSERT(vm_page_wired(p) && p->a.queue == PQ_NONE,
264
("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
265
return (&p->plinks.memguard.p);
266
}
267
268
static u_long *
269
v2sizev(vm_offset_t va)
270
{
271
vm_paddr_t pa;
272
struct vm_page *p;
273
274
pa = pmap_kextract(va);
275
if (pa == 0)
276
panic("MemGuard detected double-free of %p", (void *)va);
277
p = PHYS_TO_VM_PAGE(pa);
278
KASSERT(vm_page_wired(p) && p->a.queue == PQ_NONE,
279
("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
280
return (&p->plinks.memguard.v);
281
}
282
283
/*
284
* Allocate a single object of specified size with specified flags
285
* (either M_WAITOK or M_NOWAIT).
286
*/
287
void *
288
memguard_alloc(unsigned long req_size, int flags)
289
{
290
vm_offset_t addr, origaddr;
291
u_long size_p, size_v;
292
int do_guard, error, rv;
293
294
size_p = round_page(req_size);
295
if (size_p == 0)
296
return (NULL);
297
298
/*
299
* To ensure there are holes on both sides of the allocation,
300
* request 2 extra pages of KVA. Save the value of memguard_options
301
* so that we use a consistent value throughout this function.
302
*/
303
size_v = size_p;
304
do_guard = (memguard_options & MG_GUARD_AROUND) != 0;
305
if (do_guard)
306
size_v += 2 * PAGE_SIZE;
307
308
/*
309
* When we pass our memory limit, reject sub-page allocations.
310
* Page-size and larger allocations will use the same amount
311
* of physical memory whether we allocate or hand off to
312
* malloc_large(), so keep those.
313
*/
314
if (vmem_size(memguard_arena, VMEM_ALLOC) >= memguard_physlimit &&
315
req_size < PAGE_SIZE) {
316
addr = (vm_offset_t)NULL;
317
memguard_fail_pgs++;
318
goto out;
319
}
320
321
/*
322
* Attempt to avoid address reuse for as long as possible, to increase
323
* the likelihood of catching a use-after-free.
324
*/
325
error = vmem_alloc(memguard_arena, size_v, M_NEXTFIT | M_NOWAIT,
326
&origaddr);
327
if (error != 0) {
328
memguard_fail_kva++;
329
addr = (vm_offset_t)NULL;
330
goto out;
331
}
332
addr = origaddr;
333
if (do_guard)
334
addr += PAGE_SIZE;
335
rv = kmem_back(kernel_object, addr, size_p, flags);
336
if (rv != KERN_SUCCESS) {
337
vmem_xfree(memguard_arena, origaddr, size_v);
338
memguard_fail_pgs++;
339
addr = (vm_offset_t)NULL;
340
goto out;
341
}
342
*v2sizep(trunc_page(addr)) = req_size;
343
*v2sizev(trunc_page(addr)) = size_v;
344
memguard_succ++;
345
if (req_size < PAGE_SIZE) {
346
memguard_wasted += (PAGE_SIZE - req_size);
347
if (do_guard) {
348
/*
349
* Align the request to 16 bytes, and return
350
* an address near the end of the page, to
351
* better detect array overrun.
352
*/
353
req_size = roundup2(req_size, 16);
354
addr += (PAGE_SIZE - req_size);
355
}
356
}
357
out:
358
return ((void *)addr);
359
}
360
361
int
362
is_memguard_addr(void *addr)
363
{
364
vm_offset_t a = (vm_offset_t)(uintptr_t)addr;
365
366
return (a >= memguard_base && a < memguard_base + memguard_mapsize);
367
}
368
369
/*
370
* Free specified single object.
371
*/
372
void
373
memguard_free(void *ptr)
374
{
375
vm_offset_t addr;
376
u_long req_size, size, sizev;
377
char *temp;
378
int i;
379
380
addr = trunc_page((uintptr_t)ptr);
381
req_size = *v2sizep(addr);
382
sizev = *v2sizev(addr);
383
size = round_page(req_size);
384
385
/*
386
* Page should not be guarded right now, so force a write.
387
* The purpose of this is to increase the likelihood of
388
* catching a double-free, but not necessarily a
389
* tamper-after-free (the second thread freeing might not
390
* write before freeing, so this forces it to and,
391
* subsequently, trigger a fault).
392
*/
393
temp = ptr;
394
for (i = 0; i < size; i += PAGE_SIZE)
395
temp[i] = 'M';
396
397
/*
398
* This requires carnal knowledge of the implementation of
399
* kmem_free(), but since we've already replaced kmem_malloc()
400
* above, it's not really any worse. We want to use the
401
* vm_map lock to serialize updates to memguard_wasted, since
402
* we had the lock at increment.
403
*/
404
kmem_unback(kernel_object, addr, size);
405
if (sizev > size)
406
addr -= PAGE_SIZE;
407
vmem_xfree(memguard_arena, addr, sizev);
408
if (req_size < PAGE_SIZE)
409
memguard_wasted -= (PAGE_SIZE - req_size);
410
}
411
412
/*
413
* Re-allocate an allocation that was originally guarded.
414
*/
415
void *
416
memguard_realloc(void *addr, unsigned long size, struct malloc_type *mtp,
417
int flags)
418
{
419
void *newaddr;
420
u_long old_size;
421
422
/*
423
* Allocate the new block. Force the allocation to be guarded
424
* as the original may have been guarded through random
425
* chance, and that should be preserved.
426
*/
427
if ((newaddr = memguard_alloc(size, flags)) == NULL)
428
return (NULL);
429
430
/* Copy over original contents. */
431
old_size = *v2sizep(trunc_page((uintptr_t)addr));
432
bcopy(addr, newaddr, min(size, old_size));
433
memguard_free(addr);
434
return (newaddr);
435
}
436
437
static int
438
memguard_cmp(unsigned long size)
439
{
440
441
if (size < memguard_minsize) {
442
memguard_minsize_reject++;
443
return (0);
444
}
445
if ((memguard_options & MG_GUARD_ALLLARGE) != 0 && size >= PAGE_SIZE)
446
return (1);
447
if (memguard_frequency > 0 &&
448
(random() % 100000) < memguard_frequency) {
449
memguard_frequency_hits++;
450
return (1);
451
}
452
453
return (0);
454
}
455
456
int
457
memguard_cmp_mtp(struct malloc_type *mtp, unsigned long size)
458
{
459
460
if (memguard_cmp(size))
461
return(1);
462
463
#if 1
464
/*
465
* The safest way of comparison is to always compare short description
466
* string of memory type, but it is also the slowest way.
467
*/
468
return (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0);
469
#else
470
/*
471
* If we compare pointers, there are two possible problems:
472
* 1. Memory type was unloaded and new memory type was allocated at the
473
* same address.
474
* 2. Memory type was unloaded and loaded again, but allocated at a
475
* different address.
476
*/
477
if (vm_memguard_mtype != NULL)
478
return (mtp == vm_memguard_mtype);
479
if (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0) {
480
vm_memguard_mtype = mtp;
481
return (1);
482
}
483
return (0);
484
#endif
485
}
486
487
int
488
memguard_cmp_zone(uma_zone_t zone)
489
{
490
491
if ((memguard_options & MG_GUARD_NOFREE) == 0 &&
492
zone->uz_flags & UMA_ZONE_NOFREE)
493
return (0);
494
495
if (memguard_cmp(zone->uz_size))
496
return (1);
497
498
/*
499
* The safest way of comparison is to always compare zone name,
500
* but it is also the slowest way.
501
*/
502
return (strcmp(zone->uz_name, vm_memguard_desc) == 0);
503
}
504
505
unsigned long
506
memguard_get_req_size(const void *addr)
507
{
508
return (*v2sizep(trunc_page((uintptr_t)addr)));
509
}
510
511