Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/vm/swap_pager.c
39536 views
1
/*-
2
* SPDX-License-Identifier: BSD-4-Clause
3
*
4
* Copyright (c) 1998 Matthew Dillon,
5
* Copyright (c) 1994 John S. Dyson
6
* Copyright (c) 1990 University of Utah.
7
* Copyright (c) 1982, 1986, 1989, 1993
8
* The Regents of the University of California. All rights reserved.
9
*
10
* This code is derived from software contributed to Berkeley by
11
* the Systems Programming Group of the University of Utah Computer
12
* Science Department.
13
*
14
* Redistribution and use in source and binary forms, with or without
15
* modification, are permitted provided that the following conditions
16
* are met:
17
* 1. Redistributions of source code must retain the above copyright
18
* notice, this list of conditions and the following disclaimer.
19
* 2. Redistributions in binary form must reproduce the above copyright
20
* notice, this list of conditions and the following disclaimer in the
21
* documentation and/or other materials provided with the distribution.
22
* 3. All advertising materials mentioning features or use of this software
23
* must display the following acknowledgement:
24
* This product includes software developed by the University of
25
* California, Berkeley and its contributors.
26
* 4. Neither the name of the University nor the names of its contributors
27
* may be used to endorse or promote products derived from this software
28
* without specific prior written permission.
29
*
30
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40
* SUCH DAMAGE.
41
*
42
* New Swap System
43
* Matthew Dillon
44
*
45
* Radix Bitmap 'blists'.
46
*
47
* - The new swapper uses the new radix bitmap code. This should scale
48
* to arbitrarily small or arbitrarily large swap spaces and an almost
49
* arbitrary degree of fragmentation.
50
*
51
* Features:
52
*
53
* - on the fly reallocation of swap during putpages. The new system
54
* does not try to keep previously allocated swap blocks for dirty
55
* pages.
56
*
57
* - on the fly deallocation of swap
58
*
59
* - No more garbage collection required. Unnecessarily allocated swap
60
* blocks only exist for dirty vm_page_t's now and these are already
61
* cycled (in a high-load system) by the pager. We also do on-the-fly
62
* removal of invalidated swap blocks when a page is destroyed
63
* or renamed.
64
*
65
* from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66
*/
67
68
#include "opt_vm.h"
69
70
#define EXTERR_CATEGORY EXTERR_CAT_SWAP
71
#include <sys/param.h>
72
#include <sys/bio.h>
73
#include <sys/blist.h>
74
#include <sys/buf.h>
75
#include <sys/conf.h>
76
#include <sys/disk.h>
77
#include <sys/disklabel.h>
78
#include <sys/eventhandler.h>
79
#include <sys/exterrvar.h>
80
#include <sys/fcntl.h>
81
#include <sys/limits.h>
82
#include <sys/lock.h>
83
#include <sys/kernel.h>
84
#include <sys/mount.h>
85
#include <sys/namei.h>
86
#include <sys/malloc.h>
87
#include <sys/pctrie.h>
88
#include <sys/priv.h>
89
#include <sys/proc.h>
90
#include <sys/racct.h>
91
#include <sys/resource.h>
92
#include <sys/resourcevar.h>
93
#include <sys/rwlock.h>
94
#include <sys/sbuf.h>
95
#include <sys/sysctl.h>
96
#include <sys/sysproto.h>
97
#include <sys/systm.h>
98
#include <sys/sx.h>
99
#include <sys/unistd.h>
100
#include <sys/user.h>
101
#include <sys/vmmeter.h>
102
#include <sys/vnode.h>
103
104
#include <security/mac/mac_framework.h>
105
106
#include <vm/vm.h>
107
#include <vm/pmap.h>
108
#include <vm/vm_map.h>
109
#include <vm/vm_kern.h>
110
#include <vm/vm_object.h>
111
#include <vm/vm_page.h>
112
#include <vm/vm_pager.h>
113
#include <vm/vm_pageout.h>
114
#include <vm/vm_param.h>
115
#include <vm/vm_radix.h>
116
#include <vm/swap_pager.h>
117
#include <vm/vm_extern.h>
118
#include <vm/uma.h>
119
120
#include <geom/geom.h>
121
122
/*
123
* MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124
* The 64-page limit is due to the radix code (kern/subr_blist.c).
125
*/
126
#ifndef MAX_PAGEOUT_CLUSTER
127
#define MAX_PAGEOUT_CLUSTER 32
128
#endif
129
130
#if !defined(SWB_NPAGES)
131
#define SWB_NPAGES MAX_PAGEOUT_CLUSTER
132
#endif
133
134
#define SWAP_META_PAGES PCTRIE_COUNT
135
136
/*
137
* A swblk structure maps each page index within a
138
* SWAP_META_PAGES-aligned and sized range to the address of an
139
* on-disk swap block (or SWAPBLK_NONE). The collection of these
140
* mappings for an entire vm object is implemented as a pc-trie.
141
*/
142
struct swblk {
143
vm_pindex_t p;
144
daddr_t d[SWAP_META_PAGES];
145
};
146
147
/*
148
* A page_range structure records the start address and length of a sequence of
149
* mapped page addresses.
150
*/
151
struct page_range {
152
daddr_t start;
153
daddr_t num;
154
};
155
156
static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
157
static struct mtx sw_dev_mtx;
158
static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
159
static struct swdevt *swdevhd; /* Allocate from here next */
160
static int nswapdev; /* Number of swap devices */
161
int swap_pager_avail;
162
static struct sx swdev_syscall_lock; /* serialize swap(on|off) */
163
164
static __exclusive_cache_line u_long swap_reserved;
165
static u_long swap_total;
166
static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
167
168
static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
169
"VM swap stats");
170
171
SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
172
&swap_reserved, 0, sysctl_page_shift, "QU",
173
"Amount of swap storage needed to back all allocated anonymous memory.");
174
SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
175
&swap_total, 0, sysctl_page_shift, "QU",
176
"Total amount of available swap storage.");
177
178
int vm_overcommit __read_mostly = 0;
179
SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &vm_overcommit, 0,
180
"Configure virtual memory overcommit behavior. See tuning(7) "
181
"for details.");
182
static unsigned long swzone;
183
SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
184
"Actual size of swap metadata zone");
185
static unsigned long swap_maxpages;
186
SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
187
"Maximum amount of swap supported");
188
189
static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
190
SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
191
CTLFLAG_RD, &swap_free_deferred,
192
"Number of pages that deferred freeing swap space");
193
194
static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
195
SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
196
CTLFLAG_RD, &swap_free_completed,
197
"Number of deferred frees completed");
198
199
static int
200
sysctl_page_shift(SYSCTL_HANDLER_ARGS)
201
{
202
uint64_t newval;
203
u_long value = *(u_long *)arg1;
204
205
newval = ((uint64_t)value) << PAGE_SHIFT;
206
return (sysctl_handle_64(oidp, &newval, 0, req));
207
}
208
209
static bool
210
swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
211
{
212
struct uidinfo *uip;
213
u_long prev;
214
215
uip = cred->cr_ruidinfo;
216
217
prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
218
if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
219
prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
220
priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
221
prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
222
KASSERT(prev >= pincr,
223
("negative vmsize for uid %d\n", uip->ui_uid));
224
return (false);
225
}
226
return (true);
227
}
228
229
static void
230
swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
231
{
232
struct uidinfo *uip;
233
#ifdef INVARIANTS
234
u_long prev;
235
#endif
236
237
uip = cred->cr_ruidinfo;
238
239
#ifdef INVARIANTS
240
prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
241
KASSERT(prev >= pdecr,
242
("negative vmsize for uid %d\n", uip->ui_uid));
243
#else
244
atomic_subtract_long(&uip->ui_vmsize, pdecr);
245
#endif
246
}
247
248
static void
249
swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
250
{
251
struct uidinfo *uip;
252
253
uip = cred->cr_ruidinfo;
254
atomic_add_long(&uip->ui_vmsize, pincr);
255
}
256
257
bool
258
swap_reserve(vm_ooffset_t incr)
259
{
260
261
return (swap_reserve_by_cred(incr, curthread->td_ucred));
262
}
263
264
bool
265
swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
266
{
267
u_long r, s, prev, pincr;
268
#ifdef RACCT
269
int error;
270
#endif
271
int oc;
272
static int curfail;
273
static struct timeval lastfail;
274
275
KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK",
276
__func__, (uintmax_t)incr));
277
278
#ifdef RACCT
279
if (RACCT_ENABLED()) {
280
PROC_LOCK(curproc);
281
error = racct_add(curproc, RACCT_SWAP, incr);
282
PROC_UNLOCK(curproc);
283
if (error != 0)
284
return (false);
285
}
286
#endif
287
288
pincr = atop(incr);
289
prev = atomic_fetchadd_long(&swap_reserved, pincr);
290
r = prev + pincr;
291
s = swap_total;
292
oc = atomic_load_int(&vm_overcommit);
293
if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
294
s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
295
vm_wire_count();
296
}
297
if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
298
priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
299
prev = atomic_fetchadd_long(&swap_reserved, -pincr);
300
KASSERT(prev >= pincr,
301
("swap_reserved < incr on overcommit fail"));
302
goto out_error;
303
}
304
305
if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
306
prev = atomic_fetchadd_long(&swap_reserved, -pincr);
307
KASSERT(prev >= pincr,
308
("swap_reserved < incr on overcommit fail"));
309
goto out_error;
310
}
311
312
return (true);
313
314
out_error:
315
if (ppsratecheck(&lastfail, &curfail, 1)) {
316
printf("uid %d, pid %d: swap reservation "
317
"for %jd bytes failed\n",
318
cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
319
}
320
#ifdef RACCT
321
if (RACCT_ENABLED()) {
322
PROC_LOCK(curproc);
323
racct_sub(curproc, RACCT_SWAP, incr);
324
PROC_UNLOCK(curproc);
325
}
326
#endif
327
328
return (false);
329
}
330
331
void
332
swap_reserve_force(vm_ooffset_t incr)
333
{
334
u_long pincr;
335
336
KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK",
337
__func__, (uintmax_t)incr));
338
339
#ifdef RACCT
340
if (RACCT_ENABLED()) {
341
PROC_LOCK(curproc);
342
racct_add_force(curproc, RACCT_SWAP, incr);
343
PROC_UNLOCK(curproc);
344
}
345
#endif
346
pincr = atop(incr);
347
atomic_add_long(&swap_reserved, pincr);
348
swap_reserve_force_rlimit(pincr, curthread->td_ucred);
349
}
350
351
void
352
swap_release(vm_ooffset_t decr)
353
{
354
struct ucred *cred;
355
356
PROC_LOCK(curproc);
357
cred = curproc->p_ucred;
358
swap_release_by_cred(decr, cred);
359
PROC_UNLOCK(curproc);
360
}
361
362
void
363
swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
364
{
365
u_long pdecr;
366
#ifdef INVARIANTS
367
u_long prev;
368
#endif
369
370
KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK",
371
__func__, (uintmax_t)decr));
372
373
pdecr = atop(decr);
374
#ifdef INVARIANTS
375
prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
376
KASSERT(prev >= pdecr, ("swap_reserved < decr"));
377
#else
378
atomic_subtract_long(&swap_reserved, pdecr);
379
#endif
380
381
swap_release_by_cred_rlimit(pdecr, cred);
382
#ifdef RACCT
383
if (racct_enable)
384
racct_sub_cred(cred, RACCT_SWAP, decr);
385
#endif
386
}
387
388
static bool swap_pager_full = true; /* swap space exhaustion (task killing) */
389
bool swap_pager_almost_full = true; /* swap space exhaustion (w/hysteresis) */
390
static struct mtx swbuf_mtx; /* to sync nsw_wcount_async */
391
static int nsw_wcount_async; /* limit async write buffers */
392
static int nsw_wcount_async_max;/* assigned maximum */
393
int nsw_cluster_max; /* maximum VOP I/O allowed */
394
395
static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
396
SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
397
CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
398
"Maximum running async swap ops");
399
static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
400
SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
401
CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
402
"Swap Fragmentation Info");
403
404
static struct sx sw_alloc_sx;
405
406
/*
407
* "named" and "unnamed" anon region objects. Try to reduce the overhead
408
* of searching a named list by hashing it just a little.
409
*/
410
411
#define NOBJLISTS 8
412
413
#define NOBJLIST(handle) \
414
(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
415
416
static struct pagerlst swap_pager_object_list[NOBJLISTS];
417
static uma_zone_t swwbuf_zone;
418
static uma_zone_t swrbuf_zone;
419
static uma_zone_t swblk_zone;
420
static uma_zone_t swpctrie_zone;
421
422
/*
423
* pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
424
* calls hooked from other parts of the VM system and do not appear here.
425
* (see vm/swap_pager.h).
426
*/
427
static vm_object_t
428
swap_pager_alloc(void *handle, vm_ooffset_t size,
429
vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
430
static void swap_pager_dealloc(vm_object_t object);
431
static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
432
int *);
433
static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
434
int *, pgo_getpages_iodone_t, void *);
435
static void swap_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
436
static boolean_t
437
swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
438
static void swap_pager_init(void);
439
static void swap_pager_unswapped(vm_page_t);
440
static void swap_pager_swapoff(struct swdevt *sp);
441
static void swap_pager_update_writecount(vm_object_t object,
442
vm_offset_t start, vm_offset_t end);
443
static void swap_pager_release_writecount(vm_object_t object,
444
vm_offset_t start, vm_offset_t end);
445
static void swap_pager_freespace_pgo(vm_object_t object, vm_pindex_t start,
446
vm_size_t size);
447
448
const struct pagerops swappagerops = {
449
.pgo_kvme_type = KVME_TYPE_SWAP,
450
.pgo_init = swap_pager_init, /* early system initialization of pager */
451
.pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */
452
.pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
453
.pgo_getpages = swap_pager_getpages, /* pagein */
454
.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */
455
.pgo_putpages = swap_pager_putpages, /* pageout */
456
.pgo_haspage = swap_pager_haspage, /* get backing store status for page */
457
.pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
458
.pgo_update_writecount = swap_pager_update_writecount,
459
.pgo_release_writecount = swap_pager_release_writecount,
460
.pgo_freespace = swap_pager_freespace_pgo,
461
};
462
463
/*
464
* swap_*() routines are externally accessible. swp_*() routines are
465
* internal.
466
*/
467
static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
468
static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
469
470
SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
471
"Maximum size of a swap block in pages");
472
473
static void swp_sizecheck(void);
474
static void swp_pager_async_iodone(struct buf *bp);
475
static bool swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
476
static void swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
477
static int swapongeom(struct vnode *);
478
static int swaponvp(struct thread *, struct vnode *, u_long);
479
static int swapoff_one(struct swdevt *sp, struct ucred *cred,
480
u_int flags);
481
482
/*
483
* Swap bitmap functions
484
*/
485
static void swp_pager_freeswapspace(const struct page_range *range);
486
static daddr_t swp_pager_getswapspace(int *npages);
487
488
/*
489
* Metadata functions
490
*/
491
static daddr_t swp_pager_meta_build(struct pctrie_iter *, vm_object_t object,
492
vm_pindex_t, daddr_t, bool);
493
static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t,
494
vm_size_t *);
495
static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
496
vm_pindex_t pindex, vm_pindex_t count);
497
static void swp_pager_meta_free_all(vm_object_t);
498
static daddr_t swp_pager_meta_lookup(struct pctrie_iter *, vm_pindex_t);
499
500
static void
501
swp_pager_init_freerange(struct page_range *range)
502
{
503
range->start = SWAPBLK_NONE;
504
range->num = 0;
505
}
506
507
static void
508
swp_pager_update_freerange(struct page_range *range, daddr_t addr)
509
{
510
if (range->start + range->num == addr) {
511
range->num++;
512
} else {
513
swp_pager_freeswapspace(range);
514
range->start = addr;
515
range->num = 1;
516
}
517
}
518
519
static void *
520
swblk_trie_alloc(struct pctrie *ptree)
521
{
522
523
return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
524
M_USE_RESERVE : 0)));
525
}
526
527
static void
528
swblk_trie_free(struct pctrie *ptree, void *node)
529
{
530
531
uma_zfree(swpctrie_zone, node);
532
}
533
534
static int
535
swblk_start(struct swblk *sb, vm_pindex_t pindex)
536
{
537
return (sb == NULL || sb->p >= pindex ?
538
0 : pindex % SWAP_META_PAGES);
539
}
540
541
PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
542
543
static struct swblk *
544
swblk_lookup(vm_object_t object, vm_pindex_t pindex)
545
{
546
return (SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
547
rounddown(pindex, SWAP_META_PAGES)));
548
}
549
550
static void
551
swblk_lookup_remove(vm_object_t object, struct swblk *sb)
552
{
553
SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
554
}
555
556
static bool
557
swblk_is_empty(vm_object_t object)
558
{
559
return (pctrie_is_empty(&object->un_pager.swp.swp_blks));
560
}
561
562
static struct swblk *
563
swblk_iter_lookup_ge(struct pctrie_iter *blks, vm_pindex_t pindex)
564
{
565
return (SWAP_PCTRIE_ITER_LOOKUP_GE(blks,
566
rounddown(pindex, SWAP_META_PAGES)));
567
}
568
569
static void
570
swblk_iter_init_only(struct pctrie_iter *blks, vm_object_t object)
571
{
572
VM_OBJECT_ASSERT_LOCKED(object);
573
MPASS((object->flags & OBJ_SWAP) != 0);
574
pctrie_iter_init(blks, &object->un_pager.swp.swp_blks);
575
}
576
577
578
static struct swblk *
579
swblk_iter_init(struct pctrie_iter *blks, vm_object_t object,
580
vm_pindex_t pindex)
581
{
582
swblk_iter_init_only(blks, object);
583
return (swblk_iter_lookup_ge(blks, pindex));
584
}
585
586
static struct swblk *
587
swblk_iter_reinit(struct pctrie_iter *blks, vm_object_t object,
588
vm_pindex_t pindex)
589
{
590
swblk_iter_init_only(blks, object);
591
return (SWAP_PCTRIE_ITER_LOOKUP(blks,
592
rounddown(pindex, SWAP_META_PAGES)));
593
}
594
595
static struct swblk *
596
swblk_iter_limit_init(struct pctrie_iter *blks, vm_object_t object,
597
vm_pindex_t pindex, vm_pindex_t limit)
598
{
599
VM_OBJECT_ASSERT_LOCKED(object);
600
MPASS((object->flags & OBJ_SWAP) != 0);
601
pctrie_iter_limit_init(blks, &object->un_pager.swp.swp_blks, limit);
602
return (swblk_iter_lookup_ge(blks, pindex));
603
}
604
605
static struct swblk *
606
swblk_iter_next(struct pctrie_iter *blks)
607
{
608
return (SWAP_PCTRIE_ITER_JUMP_GE(blks, SWAP_META_PAGES));
609
}
610
611
static struct swblk *
612
swblk_iter_lookup(struct pctrie_iter *blks, vm_pindex_t pindex)
613
{
614
return (SWAP_PCTRIE_ITER_LOOKUP(blks,
615
rounddown(pindex, SWAP_META_PAGES)));
616
}
617
618
static int
619
swblk_iter_insert(struct pctrie_iter *blks, struct swblk *sb)
620
{
621
return (SWAP_PCTRIE_ITER_INSERT(blks, sb));
622
}
623
624
static void
625
swblk_iter_remove(struct pctrie_iter *blks)
626
{
627
SWAP_PCTRIE_ITER_REMOVE(blks);
628
}
629
630
/*
631
* SWP_SIZECHECK() - update swap_pager_full indication
632
*
633
* update the swap_pager_almost_full indication and warn when we are
634
* about to run out of swap space, using lowat/hiwat hysteresis.
635
*
636
* Clear swap_pager_full ( task killing ) indication when lowat is met.
637
*
638
* No restrictions on call
639
* This routine may not block.
640
*/
641
static void
642
swp_sizecheck(void)
643
{
644
645
if (swap_pager_avail < nswap_lowat) {
646
if (!swap_pager_almost_full) {
647
printf("swap_pager: out of swap space\n");
648
swap_pager_almost_full = true;
649
}
650
} else {
651
swap_pager_full = false;
652
if (swap_pager_avail > nswap_hiwat)
653
swap_pager_almost_full = false;
654
}
655
}
656
657
/*
658
* SWAP_PAGER_INIT() - initialize the swap pager!
659
*
660
* Expected to be started from system init. NOTE: This code is run
661
* before much else so be careful what you depend on. Most of the VM
662
* system has yet to be initialized at this point.
663
*/
664
static void
665
swap_pager_init(void)
666
{
667
/*
668
* Initialize object lists
669
*/
670
int i;
671
672
for (i = 0; i < NOBJLISTS; ++i)
673
TAILQ_INIT(&swap_pager_object_list[i]);
674
mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
675
sx_init(&sw_alloc_sx, "swspsx");
676
sx_init(&swdev_syscall_lock, "swsysc");
677
678
/*
679
* The nsw_cluster_max is constrained by the bp->b_pages[]
680
* array, which has maxphys / PAGE_SIZE entries, and our locally
681
* defined MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
682
* constrained by the swap device interleave stripe size.
683
*
684
* Initialized early so that GEOM_ELI can see it.
685
*/
686
nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
687
}
688
689
/*
690
* SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
691
*
692
* Expected to be started from pageout process once, prior to entering
693
* its main loop.
694
*/
695
void
696
swap_pager_swap_init(void)
697
{
698
unsigned long n, n2;
699
700
/*
701
* Number of in-transit swap bp operations. Don't
702
* exhaust the pbufs completely. Make sure we
703
* initialize workable values (0 will work for hysteresis
704
* but it isn't very efficient).
705
*
706
* Currently we hardwire nsw_wcount_async to 4. This limit is
707
* designed to prevent other I/O from having high latencies due to
708
* our pageout I/O. The value 4 works well for one or two active swap
709
* devices but is probably a little low if you have more. Even so,
710
* a higher value would probably generate only a limited improvement
711
* with three or four active swap devices since the system does not
712
* typically have to pageout at extreme bandwidths. We will want
713
* at least 2 per swap devices, and 4 is a pretty good value if you
714
* have one NFS swap device due to the command/ack latency over NFS.
715
* So it all works out pretty well.
716
*
717
* nsw_cluster_max is initialized in swap_pager_init().
718
*/
719
720
nsw_wcount_async = 4;
721
nsw_wcount_async_max = nsw_wcount_async;
722
mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
723
724
swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
725
swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
726
727
/*
728
* Initialize our zone, taking the user's requested size or
729
* estimating the number we need based on the number of pages
730
* in the system.
731
*/
732
n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
733
vm_cnt.v_page_count / 2;
734
swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
735
pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
736
swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
737
NULL, NULL, _Alignof(struct swblk) - 1, 0);
738
n2 = n;
739
do {
740
if (uma_zone_reserve_kva(swblk_zone, n))
741
break;
742
/*
743
* if the allocation failed, try a zone two thirds the
744
* size of the previous attempt.
745
*/
746
n -= ((n + 2) / 3);
747
} while (n > 0);
748
749
/*
750
* Often uma_zone_reserve_kva() cannot reserve exactly the
751
* requested size. Account for the difference when
752
* calculating swap_maxpages.
753
*/
754
n = uma_zone_get_max(swblk_zone);
755
756
if (n < n2)
757
printf("Swap blk zone entries changed from %lu to %lu.\n",
758
n2, n);
759
/* absolute maximum we can handle assuming 100% efficiency */
760
swap_maxpages = n * SWAP_META_PAGES;
761
swzone = n * sizeof(struct swblk);
762
if (!uma_zone_reserve_kva(swpctrie_zone, n))
763
printf("Cannot reserve swap pctrie zone, "
764
"reduce kern.maxswzone.\n");
765
}
766
767
bool
768
swap_pager_init_object(vm_object_t object, void *handle, struct ucred *cred,
769
vm_ooffset_t size, vm_ooffset_t offset)
770
{
771
if (cred != NULL) {
772
if (!swap_reserve_by_cred(size, cred))
773
return (false);
774
crhold(cred);
775
}
776
777
object->un_pager.swp.writemappings = 0;
778
object->handle = handle;
779
if (cred != NULL) {
780
object->cred = cred;
781
object->charge = size;
782
}
783
return (true);
784
}
785
786
static vm_object_t
787
swap_pager_alloc_init(objtype_t otype, void *handle, struct ucred *cred,
788
vm_ooffset_t size, vm_ooffset_t offset)
789
{
790
vm_object_t object;
791
792
/*
793
* The un_pager.swp.swp_blks trie is initialized by
794
* vm_object_allocate() to ensure the correct order of
795
* visibility to other threads.
796
*/
797
object = vm_object_allocate(otype, OFF_TO_IDX(offset +
798
PAGE_MASK + size));
799
800
if (!swap_pager_init_object(object, handle, cred, size, offset)) {
801
vm_object_deallocate(object);
802
return (NULL);
803
}
804
return (object);
805
}
806
807
/*
808
* SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
809
* its metadata structures.
810
*
811
* This routine is called from the mmap and fork code to create a new
812
* OBJT_SWAP object.
813
*
814
* This routine must ensure that no live duplicate is created for
815
* the named object request, which is protected against by
816
* holding the sw_alloc_sx lock in case handle != NULL.
817
*/
818
static vm_object_t
819
swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
820
vm_ooffset_t offset, struct ucred *cred)
821
{
822
vm_object_t object;
823
824
if (handle != NULL) {
825
/*
826
* Reference existing named region or allocate new one. There
827
* should not be a race here against swp_pager_meta_build()
828
* as called from vm_page_remove() in regards to the lookup
829
* of the handle.
830
*/
831
sx_xlock(&sw_alloc_sx);
832
object = vm_pager_object_lookup(NOBJLIST(handle), handle);
833
if (object == NULL) {
834
object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
835
size, offset);
836
if (object != NULL) {
837
TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
838
object, pager_object_list);
839
}
840
}
841
sx_xunlock(&sw_alloc_sx);
842
} else {
843
object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
844
size, offset);
845
}
846
return (object);
847
}
848
849
/*
850
* SWAP_PAGER_DEALLOC() - remove swap metadata from object
851
*
852
* The swap backing for the object is destroyed. The code is
853
* designed such that we can reinstantiate it later, but this
854
* routine is typically called only when the entire object is
855
* about to be destroyed.
856
*
857
* The object must be locked.
858
*/
859
static void
860
swap_pager_dealloc(vm_object_t object)
861
{
862
863
VM_OBJECT_ASSERT_WLOCKED(object);
864
KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
865
866
/*
867
* Remove from list right away so lookups will fail if we block for
868
* pageout completion.
869
*/
870
if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
871
VM_OBJECT_WUNLOCK(object);
872
sx_xlock(&sw_alloc_sx);
873
TAILQ_REMOVE(NOBJLIST(object->handle), object,
874
pager_object_list);
875
sx_xunlock(&sw_alloc_sx);
876
VM_OBJECT_WLOCK(object);
877
}
878
879
vm_object_pip_wait(object, "swpdea");
880
881
/*
882
* Free all remaining metadata. We only bother to free it from
883
* the swap meta data. We do not attempt to free swapblk's still
884
* associated with vm_page_t's for this object. We do not care
885
* if paging is still in progress on some objects.
886
*/
887
swp_pager_meta_free_all(object);
888
object->handle = NULL;
889
object->type = OBJT_DEAD;
890
891
/*
892
* Release the allocation charge.
893
*/
894
if (object->cred != NULL) {
895
swap_release_by_cred(object->charge, object->cred);
896
object->charge = 0;
897
crfree(object->cred);
898
object->cred = NULL;
899
}
900
901
/*
902
* Hide the object from swap_pager_swapoff().
903
*/
904
vm_object_clear_flag(object, OBJ_SWAP);
905
}
906
907
/************************************************************************
908
* SWAP PAGER BITMAP ROUTINES *
909
************************************************************************/
910
911
/*
912
* SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
913
*
914
* Allocate swap for up to the requested number of pages. The
915
* starting swap block number (a page index) is returned or
916
* SWAPBLK_NONE if the allocation failed.
917
*
918
* Also has the side effect of advising that somebody made a mistake
919
* when they configured swap and didn't configure enough.
920
*
921
* This routine may not sleep.
922
*
923
* We allocate in round-robin fashion from the configured devices.
924
*/
925
static daddr_t
926
swp_pager_getswapspace(int *io_npages)
927
{
928
daddr_t blk;
929
struct swdevt *sp;
930
int mpages, npages;
931
932
KASSERT(*io_npages >= 1,
933
("%s: npages not positive", __func__));
934
blk = SWAPBLK_NONE;
935
mpages = *io_npages;
936
npages = imin(BLIST_MAX_ALLOC, mpages);
937
mtx_lock(&sw_dev_mtx);
938
sp = swdevhd;
939
while (!TAILQ_EMPTY(&swtailq)) {
940
if (sp == NULL)
941
sp = TAILQ_FIRST(&swtailq);
942
if ((sp->sw_flags & SW_CLOSING) == 0)
943
blk = blist_alloc(sp->sw_blist, &npages, mpages);
944
if (blk != SWAPBLK_NONE)
945
break;
946
sp = TAILQ_NEXT(sp, sw_list);
947
if (swdevhd == sp) {
948
if (npages == 1)
949
break;
950
mpages = npages - 1;
951
npages >>= 1;
952
}
953
}
954
if (blk != SWAPBLK_NONE) {
955
*io_npages = npages;
956
blk += sp->sw_first;
957
sp->sw_used += npages;
958
swap_pager_avail -= npages;
959
swp_sizecheck();
960
swdevhd = TAILQ_NEXT(sp, sw_list);
961
} else {
962
if (!swap_pager_full) {
963
printf("swp_pager_getswapspace(%d): failed\n",
964
*io_npages);
965
swap_pager_full = swap_pager_almost_full = true;
966
}
967
swdevhd = NULL;
968
}
969
mtx_unlock(&sw_dev_mtx);
970
return (blk);
971
}
972
973
static bool
974
swp_pager_isondev(daddr_t blk, struct swdevt *sp)
975
{
976
977
return (blk >= sp->sw_first && blk < sp->sw_end);
978
}
979
980
static void
981
swp_pager_strategy(struct buf *bp)
982
{
983
struct swdevt *sp;
984
985
mtx_lock(&sw_dev_mtx);
986
TAILQ_FOREACH(sp, &swtailq, sw_list) {
987
if (swp_pager_isondev(bp->b_blkno, sp)) {
988
mtx_unlock(&sw_dev_mtx);
989
if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
990
unmapped_buf_allowed) {
991
bp->b_data = unmapped_buf;
992
bp->b_offset = 0;
993
} else {
994
pmap_qenter((vm_offset_t)bp->b_data,
995
&bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
996
}
997
sp->sw_strategy(bp, sp);
998
return;
999
}
1000
}
1001
panic("Swapdev not found");
1002
}
1003
1004
/*
1005
* SWP_PAGER_FREESWAPSPACE() - free raw swap space
1006
*
1007
* This routine returns the specified swap blocks back to the bitmap.
1008
*
1009
* This routine may not sleep.
1010
*/
1011
static void
1012
swp_pager_freeswapspace(const struct page_range *range)
1013
{
1014
daddr_t blk, npages;
1015
struct swdevt *sp;
1016
1017
blk = range->start;
1018
npages = range->num;
1019
if (npages == 0)
1020
return;
1021
mtx_lock(&sw_dev_mtx);
1022
TAILQ_FOREACH(sp, &swtailq, sw_list) {
1023
if (swp_pager_isondev(blk, sp)) {
1024
sp->sw_used -= npages;
1025
/*
1026
* If we are attempting to stop swapping on
1027
* this device, we don't want to mark any
1028
* blocks free lest they be reused.
1029
*/
1030
if ((sp->sw_flags & SW_CLOSING) == 0) {
1031
blist_free(sp->sw_blist, blk - sp->sw_first,
1032
npages);
1033
swap_pager_avail += npages;
1034
swp_sizecheck();
1035
}
1036
mtx_unlock(&sw_dev_mtx);
1037
return;
1038
}
1039
}
1040
panic("Swapdev not found");
1041
}
1042
1043
/*
1044
* SYSCTL_SWAP_FRAGMENTATION() - produce raw swap space stats
1045
*/
1046
static int
1047
sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
1048
{
1049
struct sbuf sbuf;
1050
struct swdevt *sp;
1051
const char *devname;
1052
int error;
1053
1054
error = sysctl_wire_old_buffer(req, 0);
1055
if (error != 0)
1056
return (error);
1057
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1058
mtx_lock(&sw_dev_mtx);
1059
TAILQ_FOREACH(sp, &swtailq, sw_list) {
1060
if (vn_isdisk(sp->sw_vp))
1061
devname = devtoname(sp->sw_vp->v_rdev);
1062
else
1063
devname = "[file]";
1064
sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
1065
blist_stats(sp->sw_blist, &sbuf);
1066
}
1067
mtx_unlock(&sw_dev_mtx);
1068
error = sbuf_finish(&sbuf);
1069
sbuf_delete(&sbuf);
1070
return (error);
1071
}
1072
1073
/*
1074
* SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
1075
* range within an object.
1076
*
1077
* This routine removes swapblk assignments from swap metadata.
1078
*
1079
* The external callers of this routine typically have already destroyed
1080
* or renamed vm_page_t's associated with this range in the object so
1081
* we should be ok.
1082
*
1083
* The object must be locked.
1084
*/
1085
void
1086
swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size,
1087
vm_size_t *freed)
1088
{
1089
MPASS((object->flags & OBJ_SWAP) != 0);
1090
1091
swp_pager_meta_free(object, start, size, freed);
1092
}
1093
1094
static void
1095
swap_pager_freespace_pgo(vm_object_t object, vm_pindex_t start, vm_size_t size)
1096
{
1097
MPASS((object->flags & OBJ_SWAP) != 0);
1098
1099
swp_pager_meta_free(object, start, size, NULL);
1100
}
1101
1102
/*
1103
* SWAP_PAGER_RESERVE() - reserve swap blocks in object
1104
*
1105
* Assigns swap blocks to the specified range within the object. The
1106
* swap blocks are not zeroed. Any previous swap assignment is destroyed.
1107
*
1108
* Returns 0 on success, -1 on failure.
1109
*/
1110
int
1111
swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
1112
{
1113
struct pctrie_iter blks;
1114
struct page_range range;
1115
daddr_t addr, blk;
1116
vm_pindex_t i, j;
1117
int n;
1118
1119
swp_pager_init_freerange(&range);
1120
VM_OBJECT_WLOCK(object);
1121
swblk_iter_init_only(&blks, object);
1122
for (i = 0; i < size; i += n) {
1123
n = MIN(size - i, INT_MAX);
1124
blk = swp_pager_getswapspace(&n);
1125
if (blk == SWAPBLK_NONE) {
1126
swp_pager_meta_free(object, start, i, NULL);
1127
VM_OBJECT_WUNLOCK(object);
1128
return (-1);
1129
}
1130
for (j = 0; j < n; ++j) {
1131
addr = swp_pager_meta_build(&blks, object,
1132
start + i + j, blk + j, false);
1133
if (addr != SWAPBLK_NONE)
1134
swp_pager_update_freerange(&range, addr);
1135
}
1136
}
1137
swp_pager_freeswapspace(&range);
1138
VM_OBJECT_WUNLOCK(object);
1139
return (0);
1140
}
1141
1142
/*
1143
* SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
1144
* and destroy the source.
1145
*
1146
* Copy any valid swapblks from the source to the destination. In
1147
* cases where both the source and destination have a valid swapblk,
1148
* we keep the destination's.
1149
*
1150
* This routine is allowed to sleep. It may sleep allocating metadata
1151
* indirectly through swp_pager_meta_build().
1152
*
1153
* The source object contains no vm_page_t's (which is just as well)
1154
*
1155
* The source and destination objects must be locked.
1156
* Both object locks may temporarily be released.
1157
*/
1158
void
1159
swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1160
vm_pindex_t offset, int destroysource)
1161
{
1162
VM_OBJECT_ASSERT_WLOCKED(srcobject);
1163
VM_OBJECT_ASSERT_WLOCKED(dstobject);
1164
1165
/*
1166
* If destroysource is set, we remove the source object from the
1167
* swap_pager internal queue now.
1168
*/
1169
if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1170
srcobject->handle != NULL) {
1171
VM_OBJECT_WUNLOCK(srcobject);
1172
VM_OBJECT_WUNLOCK(dstobject);
1173
sx_xlock(&sw_alloc_sx);
1174
TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1175
pager_object_list);
1176
sx_xunlock(&sw_alloc_sx);
1177
VM_OBJECT_WLOCK(dstobject);
1178
VM_OBJECT_WLOCK(srcobject);
1179
}
1180
1181
/*
1182
* Transfer source to destination.
1183
*/
1184
swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1185
1186
/*
1187
* Free left over swap blocks in source.
1188
*/
1189
if (destroysource)
1190
swp_pager_meta_free_all(srcobject);
1191
}
1192
1193
/*
1194
* SWP_PAGER_HASPAGE_ITER() - determine if we have good backing store for
1195
* the requested page, accessed with the given
1196
* iterator.
1197
*
1198
* We determine whether good backing store exists for the requested
1199
* page and return TRUE if it does, FALSE if it doesn't.
1200
*
1201
* If TRUE, we also try to determine how much valid, contiguous backing
1202
* store exists before and after the requested page.
1203
*/
1204
static boolean_t
1205
swp_pager_haspage_iter(vm_pindex_t pindex, int *before, int *after,
1206
struct pctrie_iter *blks)
1207
{
1208
daddr_t blk, blk0;
1209
int i;
1210
1211
/*
1212
* do we have good backing store at the requested index ?
1213
*/
1214
blk0 = swp_pager_meta_lookup(blks, pindex);
1215
if (blk0 == SWAPBLK_NONE) {
1216
if (before)
1217
*before = 0;
1218
if (after)
1219
*after = 0;
1220
return (FALSE);
1221
}
1222
1223
/*
1224
* find backwards-looking contiguous good backing store
1225
*/
1226
if (before != NULL) {
1227
for (i = 1; i < SWB_NPAGES; i++) {
1228
if (i > pindex)
1229
break;
1230
blk = swp_pager_meta_lookup(blks, pindex - i);
1231
if (blk != blk0 - i)
1232
break;
1233
}
1234
*before = i - 1;
1235
}
1236
1237
/*
1238
* find forward-looking contiguous good backing store
1239
*/
1240
if (after != NULL) {
1241
for (i = 1; i < SWB_NPAGES; i++) {
1242
blk = swp_pager_meta_lookup(blks, pindex + i);
1243
if (blk != blk0 + i)
1244
break;
1245
}
1246
*after = i - 1;
1247
}
1248
return (TRUE);
1249
}
1250
1251
/*
1252
* SWAP_PAGER_HASPAGE() - determine if we have good backing store for
1253
* the requested page, in the given object.
1254
*
1255
* We determine whether good backing store exists for the requested
1256
* page and return TRUE if it does, FALSE if it doesn't.
1257
*
1258
* If TRUE, we also try to determine how much valid, contiguous backing
1259
* store exists before and after the requested page.
1260
*/
1261
static boolean_t
1262
swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1263
int *after)
1264
{
1265
struct pctrie_iter blks;
1266
1267
swblk_iter_init_only(&blks, object);
1268
return (swp_pager_haspage_iter(pindex, before, after, &blks));
1269
}
1270
1271
static void
1272
swap_pager_unswapped_acct(vm_page_t m)
1273
{
1274
KASSERT((m->object->flags & OBJ_SWAP) != 0,
1275
("Free object not swappable"));
1276
if ((m->a.flags & PGA_SWAP_FREE) != 0)
1277
counter_u64_add(swap_free_completed, 1);
1278
vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1279
1280
/*
1281
* The meta data only exists if the object is OBJT_SWAP
1282
* and even then might not be allocated yet.
1283
*/
1284
}
1285
1286
/*
1287
* SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1288
*
1289
* This removes any associated swap backing store, whether valid or
1290
* not, from the page.
1291
*
1292
* This routine is typically called when a page is made dirty, at
1293
* which point any associated swap can be freed. MADV_FREE also
1294
* calls us in a special-case situation
1295
*
1296
* NOTE!!! If the page is clean and the swap was valid, the caller
1297
* should make the page dirty before calling this routine. This routine
1298
* does NOT change the m->dirty status of the page. Also: MADV_FREE
1299
* depends on it.
1300
*
1301
* This routine may not sleep.
1302
*
1303
* The object containing the page may be locked.
1304
*/
1305
static void
1306
swap_pager_unswapped(vm_page_t m)
1307
{
1308
struct page_range range;
1309
struct swblk *sb;
1310
vm_object_t obj;
1311
1312
/*
1313
* Handle enqueing deferred frees first. If we do not have the
1314
* object lock we wait for the page daemon to clear the space.
1315
*/
1316
obj = m->object;
1317
if (!VM_OBJECT_WOWNED(obj)) {
1318
VM_PAGE_OBJECT_BUSY_ASSERT(m);
1319
/*
1320
* The caller is responsible for synchronization but we
1321
* will harmlessly handle races. This is typically provided
1322
* by only calling unswapped() when a page transitions from
1323
* clean to dirty.
1324
*/
1325
if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1326
PGA_SWAP_SPACE) {
1327
vm_page_aflag_set(m, PGA_SWAP_FREE);
1328
counter_u64_add(swap_free_deferred, 1);
1329
}
1330
return;
1331
}
1332
swap_pager_unswapped_acct(m);
1333
1334
sb = swblk_lookup(m->object, m->pindex);
1335
if (sb == NULL)
1336
return;
1337
range.start = sb->d[m->pindex % SWAP_META_PAGES];
1338
if (range.start == SWAPBLK_NONE)
1339
return;
1340
range.num = 1;
1341
swp_pager_freeswapspace(&range);
1342
sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1343
swp_pager_free_empty_swblk(m->object, sb);
1344
}
1345
1346
/*
1347
* swap_pager_getpages_locked() - bring pages in from swap
1348
*
1349
* Attempt to page in the pages in array "ma" of length "count". The
1350
* caller may optionally specify that additional pages preceding and
1351
* succeeding the specified range be paged in. The number of such pages
1352
* is returned in the "a_rbehind" and "a_rahead" parameters, and they will
1353
* be in the inactive queue upon return.
1354
*
1355
* The pages in "ma" must be busied and will remain busied upon return.
1356
*/
1357
static int
1358
swap_pager_getpages_locked(struct pctrie_iter *blks, vm_object_t object,
1359
vm_page_t *ma, int count, int *a_rbehind, int *a_rahead, struct buf *bp)
1360
{
1361
vm_pindex_t pindex;
1362
int rahead, rbehind;
1363
1364
VM_OBJECT_ASSERT_WLOCKED(object);
1365
1366
KASSERT((object->flags & OBJ_SWAP) != 0,
1367
("%s: object not swappable", __func__));
1368
pindex = ma[0]->pindex;
1369
if (!swp_pager_haspage_iter(pindex, &rbehind, &rahead, blks)) {
1370
VM_OBJECT_WUNLOCK(object);
1371
uma_zfree(swrbuf_zone, bp);
1372
return (VM_PAGER_FAIL);
1373
}
1374
1375
KASSERT(count - 1 <= rahead,
1376
("page count %d extends beyond swap block", count));
1377
1378
/*
1379
* Do not transfer any pages other than those that are xbusied
1380
* when running during a split or collapse operation. This
1381
* prevents clustering from re-creating pages which are being
1382
* moved into another object.
1383
*/
1384
if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1385
rahead = count - 1;
1386
rbehind = 0;
1387
}
1388
/* Clip readbehind/ahead ranges to exclude already resident pages. */
1389
rbehind = a_rbehind != NULL ? imin(*a_rbehind, rbehind) : 0;
1390
rahead = a_rahead != NULL ? imin(*a_rahead, rahead - count + 1) : 0;
1391
/* Allocate pages. */
1392
vm_object_prepare_buf_pages(object, bp->b_pages, count, &rbehind,
1393
&rahead, ma);
1394
bp->b_npages = rbehind + count + rahead;
1395
for (int i = 0; i < bp->b_npages; i++)
1396
bp->b_pages[i]->oflags |= VPO_SWAPINPROG;
1397
bp->b_blkno = swp_pager_meta_lookup(blks, pindex - rbehind);
1398
KASSERT(bp->b_blkno != SWAPBLK_NONE,
1399
("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1400
1401
vm_object_pip_add(object, bp->b_npages);
1402
VM_OBJECT_WUNLOCK(object);
1403
MPASS((bp->b_flags & B_MAXPHYS) != 0);
1404
1405
/* Report back actual behind/ahead read. */
1406
if (a_rbehind != NULL)
1407
*a_rbehind = rbehind;
1408
if (a_rahead != NULL)
1409
*a_rahead = rahead;
1410
1411
bp->b_flags |= B_PAGING;
1412
bp->b_iocmd = BIO_READ;
1413
bp->b_iodone = swp_pager_async_iodone;
1414
bp->b_rcred = crhold(thread0.td_ucred);
1415
bp->b_wcred = crhold(thread0.td_ucred);
1416
bp->b_bufsize = bp->b_bcount = ptoa(bp->b_npages);
1417
bp->b_pgbefore = rbehind;
1418
bp->b_pgafter = rahead;
1419
1420
VM_CNT_INC(v_swapin);
1421
VM_CNT_ADD(v_swappgsin, bp->b_npages);
1422
1423
/*
1424
* perform the I/O. NOTE!!! bp cannot be considered valid after
1425
* this point because we automatically release it on completion.
1426
* Instead, we look at the one page we are interested in which we
1427
* still hold a lock on even through the I/O completion.
1428
*
1429
* The other pages in our ma[] array are also released on completion,
1430
* so we cannot assume they are valid anymore either.
1431
*
1432
* NOTE: b_blkno is destroyed by the call to swapdev_strategy
1433
*/
1434
BUF_KERNPROC(bp);
1435
swp_pager_strategy(bp);
1436
1437
/*
1438
* Wait for the pages we want to complete. VPO_SWAPINPROG is always
1439
* cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1440
* is set in the metadata for each page in the request.
1441
*/
1442
VM_OBJECT_WLOCK(object);
1443
/* This could be implemented more efficiently with aflags */
1444
while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1445
ma[0]->oflags |= VPO_SWAPSLEEP;
1446
VM_CNT_INC(v_intrans);
1447
if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1448
"swread", hz * 20)) {
1449
printf(
1450
"swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1451
bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1452
}
1453
}
1454
VM_OBJECT_WUNLOCK(object);
1455
1456
/*
1457
* If we had an unrecoverable read error pages will not be valid.
1458
*/
1459
for (int i = 0; i < count; i++)
1460
if (ma[i]->valid != VM_PAGE_BITS_ALL)
1461
return (VM_PAGER_ERROR);
1462
1463
return (VM_PAGER_OK);
1464
1465
/*
1466
* A final note: in a low swap situation, we cannot deallocate swap
1467
* and mark a page dirty here because the caller is likely to mark
1468
* the page clean when we return, causing the page to possibly revert
1469
* to all-zero's later.
1470
*/
1471
}
1472
1473
static int
1474
swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1475
int *rbehind, int *rahead)
1476
{
1477
struct buf *bp;
1478
struct pctrie_iter blks;
1479
1480
bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1481
VM_OBJECT_WLOCK(object);
1482
swblk_iter_init_only(&blks, object);
1483
return (swap_pager_getpages_locked(&blks, object, ma, count, rbehind,
1484
rahead, bp));
1485
}
1486
1487
/*
1488
* swap_pager_getpages_async():
1489
*
1490
* Right now this is emulation of asynchronous operation on top of
1491
* swap_pager_getpages().
1492
*/
1493
static int
1494
swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1495
int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1496
{
1497
int r, error;
1498
1499
r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1500
switch (r) {
1501
case VM_PAGER_OK:
1502
error = 0;
1503
break;
1504
case VM_PAGER_ERROR:
1505
error = EIO;
1506
break;
1507
case VM_PAGER_FAIL:
1508
error = EINVAL;
1509
break;
1510
default:
1511
panic("unhandled swap_pager_getpages() error %d", r);
1512
}
1513
(iodone)(arg, ma, count, error);
1514
1515
return (r);
1516
}
1517
1518
/*
1519
* swap_pager_putpages:
1520
*
1521
* Assign swap (if necessary) and initiate I/O on the specified pages.
1522
*
1523
* In a low memory situation we may block in VOP_STRATEGY(), but the new
1524
* vm_page reservation system coupled with properly written VFS devices
1525
* should ensure that no low-memory deadlock occurs. This is an area
1526
* which needs work.
1527
*
1528
* The parent has N vm_object_pip_add() references prior to
1529
* calling us and will remove references for rtvals[] that are
1530
* not set to VM_PAGER_PEND. We need to remove the rest on I/O
1531
* completion.
1532
*
1533
* The parent has soft-busy'd the pages it passes us and will unbusy
1534
* those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1535
* We need to unbusy the rest on I/O completion.
1536
*/
1537
static void
1538
swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1539
int flags, int *rtvals)
1540
{
1541
struct pctrie_iter blks;
1542
struct page_range range;
1543
struct buf *bp;
1544
daddr_t addr, blk;
1545
vm_page_t mreq;
1546
int i, j, n;
1547
bool async;
1548
1549
KASSERT(count == 0 || ma[0]->object == object,
1550
("%s: object mismatch %p/%p",
1551
__func__, object, ma[0]->object));
1552
1553
VM_OBJECT_WUNLOCK(object);
1554
async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1555
swp_pager_init_freerange(&range);
1556
1557
/*
1558
* Assign swap blocks and issue I/O. We reallocate swap on the fly.
1559
* The page is left dirty until the pageout operation completes
1560
* successfully.
1561
*/
1562
for (i = 0; i < count; i += n) {
1563
/* Maximum I/O size is limited by maximum swap block size. */
1564
n = min(count - i, nsw_cluster_max);
1565
1566
if (async) {
1567
mtx_lock(&swbuf_mtx);
1568
while (nsw_wcount_async == 0)
1569
msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1570
"swbufa", 0);
1571
nsw_wcount_async--;
1572
mtx_unlock(&swbuf_mtx);
1573
}
1574
1575
/* Get a block of swap of size up to size n. */
1576
blk = swp_pager_getswapspace(&n);
1577
if (blk == SWAPBLK_NONE) {
1578
mtx_lock(&swbuf_mtx);
1579
if (++nsw_wcount_async == 1)
1580
wakeup(&nsw_wcount_async);
1581
mtx_unlock(&swbuf_mtx);
1582
for (j = 0; j < n; ++j)
1583
rtvals[i + j] = VM_PAGER_FAIL;
1584
continue;
1585
}
1586
VM_OBJECT_WLOCK(object);
1587
swblk_iter_init_only(&blks, object);
1588
for (j = 0; j < n; ++j) {
1589
mreq = ma[i + j];
1590
vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1591
KASSERT(mreq->object == object,
1592
("%s: object mismatch %p/%p",
1593
__func__, mreq->object, object));
1594
addr = swp_pager_meta_build(&blks, object,
1595
mreq->pindex, blk + j, false);
1596
if (addr != SWAPBLK_NONE)
1597
swp_pager_update_freerange(&range, addr);
1598
MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1599
mreq->oflags |= VPO_SWAPINPROG;
1600
}
1601
VM_OBJECT_WUNLOCK(object);
1602
1603
bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1604
MPASS((bp->b_flags & B_MAXPHYS) != 0);
1605
if (async)
1606
bp->b_flags |= B_ASYNC;
1607
bp->b_flags |= B_PAGING;
1608
bp->b_iocmd = BIO_WRITE;
1609
1610
bp->b_rcred = crhold(thread0.td_ucred);
1611
bp->b_wcred = crhold(thread0.td_ucred);
1612
bp->b_bcount = PAGE_SIZE * n;
1613
bp->b_bufsize = PAGE_SIZE * n;
1614
bp->b_blkno = blk;
1615
for (j = 0; j < n; j++)
1616
bp->b_pages[j] = ma[i + j];
1617
bp->b_npages = n;
1618
1619
/*
1620
* Must set dirty range for NFS to work.
1621
*/
1622
bp->b_dirtyoff = 0;
1623
bp->b_dirtyend = bp->b_bcount;
1624
1625
VM_CNT_INC(v_swapout);
1626
VM_CNT_ADD(v_swappgsout, bp->b_npages);
1627
1628
/*
1629
* We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1630
* can call the async completion routine at the end of a
1631
* synchronous I/O operation. Otherwise, our caller would
1632
* perform duplicate unbusy and wakeup operations on the page
1633
* and object, respectively.
1634
*/
1635
for (j = 0; j < n; j++)
1636
rtvals[i + j] = VM_PAGER_PEND;
1637
1638
/*
1639
* asynchronous
1640
*
1641
* NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1642
*/
1643
if (async) {
1644
bp->b_iodone = swp_pager_async_iodone;
1645
BUF_KERNPROC(bp);
1646
swp_pager_strategy(bp);
1647
continue;
1648
}
1649
1650
/*
1651
* synchronous
1652
*
1653
* NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1654
*/
1655
bp->b_iodone = bdone;
1656
swp_pager_strategy(bp);
1657
1658
/*
1659
* Wait for the sync I/O to complete.
1660
*/
1661
bwait(bp, PVM, "swwrt");
1662
1663
/*
1664
* Now that we are through with the bp, we can call the
1665
* normal async completion, which frees everything up.
1666
*/
1667
swp_pager_async_iodone(bp);
1668
}
1669
swp_pager_freeswapspace(&range);
1670
VM_OBJECT_WLOCK(object);
1671
}
1672
1673
/*
1674
* swp_pager_async_iodone:
1675
*
1676
* Completion routine for asynchronous reads and writes from/to swap.
1677
* Also called manually by synchronous code to finish up a bp.
1678
*
1679
* This routine may not sleep.
1680
*/
1681
static void
1682
swp_pager_async_iodone(struct buf *bp)
1683
{
1684
int i;
1685
vm_object_t object = NULL;
1686
1687
/*
1688
* Report error - unless we ran out of memory, in which case
1689
* we've already logged it in swapgeom_strategy().
1690
*/
1691
if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1692
printf(
1693
"swap_pager: I/O error - %s failed; blkno %ld,"
1694
"size %ld, error %d\n",
1695
((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1696
(long)bp->b_blkno,
1697
(long)bp->b_bcount,
1698
bp->b_error
1699
);
1700
}
1701
1702
/*
1703
* remove the mapping for kernel virtual
1704
*/
1705
if (buf_mapped(bp))
1706
pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1707
else
1708
bp->b_data = bp->b_kvabase;
1709
1710
if (bp->b_npages) {
1711
object = bp->b_pages[0]->object;
1712
VM_OBJECT_WLOCK(object);
1713
}
1714
1715
/*
1716
* cleanup pages. If an error occurs writing to swap, we are in
1717
* very serious trouble. If it happens to be a disk error, though,
1718
* we may be able to recover by reassigning the swap later on. So
1719
* in this case we remove the m->swapblk assignment for the page
1720
* but do not free it in the rlist. The errornous block(s) are thus
1721
* never reallocated as swap. Redirty the page and continue.
1722
*/
1723
for (i = 0; i < bp->b_npages; ++i) {
1724
vm_page_t m = bp->b_pages[i];
1725
1726
m->oflags &= ~VPO_SWAPINPROG;
1727
if (m->oflags & VPO_SWAPSLEEP) {
1728
m->oflags &= ~VPO_SWAPSLEEP;
1729
wakeup(&object->handle);
1730
}
1731
1732
/* We always have space after I/O, successful or not. */
1733
vm_page_aflag_set(m, PGA_SWAP_SPACE);
1734
1735
if (bp->b_ioflags & BIO_ERROR) {
1736
/*
1737
* If an error occurs I'd love to throw the swapblk
1738
* away without freeing it back to swapspace, so it
1739
* can never be used again. But I can't from an
1740
* interrupt.
1741
*/
1742
if (bp->b_iocmd == BIO_READ) {
1743
/*
1744
* NOTE: for reads, m->dirty will probably
1745
* be overridden by the original caller of
1746
* getpages so don't play cute tricks here.
1747
*/
1748
vm_page_invalid(m);
1749
if (i < bp->b_pgbefore ||
1750
i >= bp->b_npages - bp->b_pgafter)
1751
vm_page_free_invalid(m);
1752
} else {
1753
/*
1754
* If a write error occurs, reactivate page
1755
* so it doesn't clog the inactive list,
1756
* then finish the I/O.
1757
*/
1758
MPASS(m->dirty == VM_PAGE_BITS_ALL);
1759
1760
/* PQ_UNSWAPPABLE? */
1761
vm_page_activate(m);
1762
vm_page_sunbusy(m);
1763
}
1764
} else if (bp->b_iocmd == BIO_READ) {
1765
/*
1766
* NOTE: for reads, m->dirty will probably be
1767
* overridden by the original caller of getpages so
1768
* we cannot set them in order to free the underlying
1769
* swap in a low-swap situation. I don't think we'd
1770
* want to do that anyway, but it was an optimization
1771
* that existed in the old swapper for a time before
1772
* it got ripped out due to precisely this problem.
1773
*/
1774
KASSERT(!pmap_page_is_mapped(m),
1775
("swp_pager_async_iodone: page %p is mapped", m));
1776
KASSERT(m->dirty == 0,
1777
("swp_pager_async_iodone: page %p is dirty", m));
1778
1779
vm_page_valid(m);
1780
if (i < bp->b_pgbefore ||
1781
i >= bp->b_npages - bp->b_pgafter)
1782
vm_page_readahead_finish(m);
1783
} else {
1784
/*
1785
* For write success, clear the dirty
1786
* status, then finish the I/O ( which decrements the
1787
* busy count and possibly wakes waiter's up ).
1788
* A page is only written to swap after a period of
1789
* inactivity. Therefore, we do not expect it to be
1790
* reused.
1791
*/
1792
KASSERT(!pmap_page_is_write_mapped(m),
1793
("swp_pager_async_iodone: page %p is not write"
1794
" protected", m));
1795
vm_page_undirty(m);
1796
vm_page_deactivate_noreuse(m);
1797
vm_page_sunbusy(m);
1798
}
1799
}
1800
1801
/*
1802
* adjust pip. NOTE: the original parent may still have its own
1803
* pip refs on the object.
1804
*/
1805
if (object != NULL) {
1806
vm_object_pip_wakeupn(object, bp->b_npages);
1807
VM_OBJECT_WUNLOCK(object);
1808
}
1809
1810
/*
1811
* swapdev_strategy() manually sets b_vp and b_bufobj before calling
1812
* bstrategy(). Set them back to NULL now we're done with it, or we'll
1813
* trigger a KASSERT in relpbuf().
1814
*/
1815
if (bp->b_vp) {
1816
bp->b_vp = NULL;
1817
bp->b_bufobj = NULL;
1818
}
1819
/*
1820
* release the physical I/O buffer
1821
*/
1822
if (bp->b_flags & B_ASYNC) {
1823
mtx_lock(&swbuf_mtx);
1824
if (++nsw_wcount_async == 1)
1825
wakeup(&nsw_wcount_async);
1826
mtx_unlock(&swbuf_mtx);
1827
}
1828
uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1829
}
1830
1831
int
1832
swap_pager_nswapdev(void)
1833
{
1834
1835
return (nswapdev);
1836
}
1837
1838
static void
1839
swp_pager_force_dirty(struct page_range *range, vm_page_t m, daddr_t *blk)
1840
{
1841
vm_page_dirty(m);
1842
swap_pager_unswapped_acct(m);
1843
swp_pager_update_freerange(range, *blk);
1844
*blk = SWAPBLK_NONE;
1845
vm_page_launder(m);
1846
}
1847
1848
u_long
1849
swap_pager_swapped_pages(vm_object_t object)
1850
{
1851
struct pctrie_iter blks;
1852
struct swblk *sb;
1853
u_long res;
1854
int i;
1855
1856
VM_OBJECT_ASSERT_LOCKED(object);
1857
1858
if (swblk_is_empty(object))
1859
return (0);
1860
1861
res = 0;
1862
for (sb = swblk_iter_init(&blks, object, 0); sb != NULL;
1863
sb = swblk_iter_next(&blks)) {
1864
for (i = 0; i < SWAP_META_PAGES; i++) {
1865
if (sb->d[i] != SWAPBLK_NONE)
1866
res++;
1867
}
1868
}
1869
return (res);
1870
}
1871
1872
/*
1873
* swap_pager_swapoff_object:
1874
*
1875
* Page in all of the pages that have been paged out for an object
1876
* to a swap device.
1877
*/
1878
static void
1879
swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object,
1880
struct buf **bp)
1881
{
1882
struct pctrie_iter blks, pages;
1883
struct page_range range;
1884
struct swblk *sb;
1885
vm_page_t m;
1886
int i, rahead, rv;
1887
bool sb_empty;
1888
1889
VM_OBJECT_ASSERT_WLOCKED(object);
1890
KASSERT((object->flags & OBJ_SWAP) != 0,
1891
("%s: Object not swappable", __func__));
1892
KASSERT((object->flags & OBJ_DEAD) == 0,
1893
("%s: Object already dead", __func__));
1894
KASSERT((sp->sw_flags & SW_CLOSING) != 0,
1895
("%s: Device not blocking further allocations", __func__));
1896
1897
vm_page_iter_init(&pages, object);
1898
swp_pager_init_freerange(&range);
1899
sb = swblk_iter_init(&blks, object, 0);
1900
while (sb != NULL) {
1901
sb_empty = true;
1902
for (i = 0; i < SWAP_META_PAGES; i++) {
1903
/* Skip an invalid block. */
1904
if (sb->d[i] == SWAPBLK_NONE)
1905
continue;
1906
/* Skip a block not of this device. */
1907
if (!swp_pager_isondev(sb->d[i], sp)) {
1908
sb_empty = false;
1909
continue;
1910
}
1911
1912
/*
1913
* Look for a page corresponding to this block. If the
1914
* found page has pending operations, sleep and restart
1915
* the scan.
1916
*/
1917
m = vm_radix_iter_lookup(&pages, blks.index + i);
1918
if (m != NULL && (m->oflags & VPO_SWAPINPROG) != 0) {
1919
m->oflags |= VPO_SWAPSLEEP;
1920
VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1921
"swpoff", 0);
1922
break;
1923
}
1924
1925
/*
1926
* If the found page is valid, mark it dirty and free
1927
* the swap block.
1928
*/
1929
if (m != NULL && vm_page_all_valid(m)) {
1930
swp_pager_force_dirty(&range, m, &sb->d[i]);
1931
continue;
1932
}
1933
/* Is there a page we can acquire or allocate? */
1934
if (m != NULL) {
1935
if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1936
break;
1937
} else {
1938
m = vm_page_alloc_iter(object, blks.index + i,
1939
VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL,
1940
&pages);
1941
if (m == NULL)
1942
break;
1943
}
1944
1945
/* Get the page from swap, and restart the scan. */
1946
vm_object_pip_add(object, 1);
1947
rahead = SWAP_META_PAGES;
1948
rv = swap_pager_getpages_locked(&blks, object, &m, 1,
1949
NULL, &rahead, *bp);
1950
if (rv != VM_PAGER_OK)
1951
panic("%s: read from swap failed: %d",
1952
__func__, rv);
1953
*bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1954
VM_OBJECT_WLOCK(object);
1955
vm_object_pip_wakeupn(object, 1);
1956
KASSERT(vm_page_all_valid(m),
1957
("%s: Page %p not all valid", __func__, m));
1958
vm_page_deactivate_noreuse(m);
1959
vm_page_xunbusy(m);
1960
break;
1961
}
1962
if (i < SWAP_META_PAGES) {
1963
/*
1964
* The object lock has been released and regained.
1965
* Perhaps the object is now dead.
1966
*/
1967
if ((object->flags & OBJ_DEAD) != 0) {
1968
/*
1969
* Make sure that pending writes finish before
1970
* returning.
1971
*/
1972
vm_object_pip_wait(object, "swpoff");
1973
swp_pager_meta_free_all(object);
1974
break;
1975
}
1976
1977
/*
1978
* The swapblk could have been freed, so reset the pages
1979
* iterator and search again for the first swblk at or
1980
* after blks.index.
1981
*/
1982
pctrie_iter_reset(&pages);
1983
sb = swblk_iter_init(&blks, object, blks.index);
1984
continue;
1985
}
1986
if (sb_empty) {
1987
swblk_iter_remove(&blks);
1988
uma_zfree(swblk_zone, sb);
1989
}
1990
1991
/*
1992
* It is safe to advance to the next block. No allocations
1993
* before blk.index have happened, even with the lock released,
1994
* because allocations on this device are blocked.
1995
*/
1996
sb = swblk_iter_next(&blks);
1997
}
1998
swp_pager_freeswapspace(&range);
1999
}
2000
2001
/*
2002
* swap_pager_swapoff:
2003
*
2004
* Page in all of the pages that have been paged out to the
2005
* given device. The corresponding blocks in the bitmap must be
2006
* marked as allocated and the device must be flagged SW_CLOSING.
2007
* There may be no processes swapped out to the device.
2008
*
2009
* This routine may block.
2010
*/
2011
static void
2012
swap_pager_swapoff(struct swdevt *sp)
2013
{
2014
vm_object_t object;
2015
struct buf *bp;
2016
int retries;
2017
2018
sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2019
2020
retries = 0;
2021
full_rescan:
2022
bp = uma_zalloc(swrbuf_zone, M_WAITOK);
2023
mtx_lock(&vm_object_list_mtx);
2024
TAILQ_FOREACH(object, &vm_object_list, object_list) {
2025
if ((object->flags & OBJ_SWAP) == 0)
2026
continue;
2027
mtx_unlock(&vm_object_list_mtx);
2028
/* Depends on type-stability. */
2029
VM_OBJECT_WLOCK(object);
2030
2031
/*
2032
* Dead objects are eventually terminated on their own.
2033
*/
2034
if ((object->flags & OBJ_DEAD) != 0)
2035
goto next_obj;
2036
2037
/*
2038
* Sync with fences placed after pctrie
2039
* initialization. We must not access pctrie below
2040
* unless we checked that our object is swap and not
2041
* dead.
2042
*/
2043
atomic_thread_fence_acq();
2044
if ((object->flags & OBJ_SWAP) == 0)
2045
goto next_obj;
2046
2047
swap_pager_swapoff_object(sp, object, &bp);
2048
next_obj:
2049
VM_OBJECT_WUNLOCK(object);
2050
mtx_lock(&vm_object_list_mtx);
2051
}
2052
mtx_unlock(&vm_object_list_mtx);
2053
uma_zfree(swrbuf_zone, bp);
2054
2055
if (sp->sw_used) {
2056
/*
2057
* Objects may be locked or paging to the device being
2058
* removed, so we will miss their pages and need to
2059
* make another pass. We have marked this device as
2060
* SW_CLOSING, so the activity should finish soon.
2061
*/
2062
retries++;
2063
if (retries > 100) {
2064
panic("swapoff: failed to locate %d swap blocks",
2065
sp->sw_used);
2066
}
2067
pause("swpoff", hz / 20);
2068
goto full_rescan;
2069
}
2070
EVENTHANDLER_INVOKE(swapoff, sp);
2071
}
2072
2073
/************************************************************************
2074
* SWAP META DATA *
2075
************************************************************************
2076
*
2077
* These routines manipulate the swap metadata stored in the
2078
* OBJT_SWAP object.
2079
*
2080
* Swap metadata is implemented with a global hash and not directly
2081
* linked into the object. Instead the object simply contains
2082
* appropriate tracking counters.
2083
*/
2084
2085
/*
2086
* SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
2087
*/
2088
static bool
2089
swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
2090
{
2091
int i;
2092
2093
MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
2094
for (i = start; i < limit; i++) {
2095
if (sb->d[i] != SWAPBLK_NONE)
2096
return (false);
2097
}
2098
return (true);
2099
}
2100
2101
/*
2102
* SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
2103
*
2104
* Nothing is done if the block is still in use.
2105
*/
2106
static void
2107
swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
2108
{
2109
2110
if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2111
swblk_lookup_remove(object, sb);
2112
uma_zfree(swblk_zone, sb);
2113
}
2114
}
2115
2116
/*
2117
* SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
2118
*
2119
* Try to add the specified swapblk to the object's swap metadata. If
2120
* nowait_noreplace is set, add the specified swapblk only if there is no
2121
* previously assigned swapblk at pindex. If the swapblk is invalid, and
2122
* replaces a valid swapblk, empty swap metadata is freed. If memory
2123
* allocation fails, and nowait_noreplace is set, return the specified
2124
* swapblk immediately to indicate failure; otherwise, wait and retry until
2125
* memory allocation succeeds. Return the previously assigned swapblk, if
2126
* any.
2127
*/
2128
static daddr_t
2129
swp_pager_meta_build(struct pctrie_iter *blks, vm_object_t object,
2130
vm_pindex_t pindex, daddr_t swapblk, bool nowait_noreplace)
2131
{
2132
static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
2133
struct swblk *sb, *sb1;
2134
vm_pindex_t modpi;
2135
daddr_t prev_swapblk;
2136
int error, i;
2137
2138
VM_OBJECT_ASSERT_WLOCKED(object);
2139
2140
sb = swblk_iter_lookup(blks, pindex);
2141
if (sb == NULL) {
2142
if (swapblk == SWAPBLK_NONE)
2143
return (SWAPBLK_NONE);
2144
for (;;) {
2145
sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2146
pageproc ? M_USE_RESERVE : 0));
2147
if (sb != NULL) {
2148
sb->p = rounddown(pindex, SWAP_META_PAGES);
2149
for (i = 0; i < SWAP_META_PAGES; i++)
2150
sb->d[i] = SWAPBLK_NONE;
2151
if (atomic_cmpset_int(&swblk_zone_exhausted,
2152
1, 0))
2153
printf("swblk zone ok\n");
2154
break;
2155
}
2156
if (nowait_noreplace)
2157
return (swapblk);
2158
VM_OBJECT_WUNLOCK(object);
2159
if (uma_zone_exhausted(swblk_zone)) {
2160
if (atomic_cmpset_int(&swblk_zone_exhausted,
2161
0, 1))
2162
printf("swap blk zone exhausted, "
2163
"increase kern.maxswzone\n");
2164
vm_pageout_oom(VM_OOM_SWAPZ);
2165
pause("swzonxb", 10);
2166
} else
2167
uma_zwait(swblk_zone);
2168
VM_OBJECT_WLOCK(object);
2169
sb = swblk_iter_reinit(blks, object, pindex);
2170
if (sb != NULL)
2171
/*
2172
* Somebody swapped out a nearby page,
2173
* allocating swblk at the pindex index,
2174
* while we dropped the object lock.
2175
*/
2176
goto allocated;
2177
}
2178
for (;;) {
2179
error = swblk_iter_insert(blks, sb);
2180
if (error == 0) {
2181
if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2182
1, 0))
2183
printf("swpctrie zone ok\n");
2184
break;
2185
}
2186
if (nowait_noreplace) {
2187
uma_zfree(swblk_zone, sb);
2188
return (swapblk);
2189
}
2190
VM_OBJECT_WUNLOCK(object);
2191
if (uma_zone_exhausted(swpctrie_zone)) {
2192
if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2193
0, 1))
2194
printf("swap pctrie zone exhausted, "
2195
"increase kern.maxswzone\n");
2196
vm_pageout_oom(VM_OOM_SWAPZ);
2197
pause("swzonxp", 10);
2198
} else
2199
uma_zwait(swpctrie_zone);
2200
VM_OBJECT_WLOCK(object);
2201
sb1 = swblk_iter_reinit(blks, object, pindex);
2202
if (sb1 != NULL) {
2203
uma_zfree(swblk_zone, sb);
2204
sb = sb1;
2205
goto allocated;
2206
}
2207
}
2208
}
2209
allocated:
2210
MPASS(sb->p == rounddown(pindex, SWAP_META_PAGES));
2211
2212
modpi = pindex % SWAP_META_PAGES;
2213
/* Return prior contents of metadata. */
2214
prev_swapblk = sb->d[modpi];
2215
if (!nowait_noreplace || prev_swapblk == SWAPBLK_NONE) {
2216
/* Enter block into metadata. */
2217
sb->d[modpi] = swapblk;
2218
2219
/*
2220
* Free the swblk if we end up with the empty page run.
2221
*/
2222
if (swapblk == SWAPBLK_NONE &&
2223
swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2224
swblk_iter_remove(blks);
2225
uma_zfree(swblk_zone, sb);
2226
}
2227
}
2228
return (prev_swapblk);
2229
}
2230
2231
/*
2232
* SWP_PAGER_META_TRANSFER() - transfer a range of blocks in the srcobject's
2233
* swap metadata into dstobject.
2234
*
2235
* Blocks in src that correspond to holes in dst are transferred. Blocks
2236
* in src that correspond to blocks in dst are freed.
2237
*/
2238
static void
2239
swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2240
vm_pindex_t pindex, vm_pindex_t count)
2241
{
2242
struct pctrie_iter dstblks, srcblks;
2243
struct page_range range;
2244
struct swblk *sb;
2245
daddr_t blk, d[SWAP_META_PAGES];
2246
vm_pindex_t last;
2247
int d_mask, i, limit, start;
2248
_Static_assert(8 * sizeof(d_mask) >= SWAP_META_PAGES,
2249
"d_mask not big enough");
2250
2251
VM_OBJECT_ASSERT_WLOCKED(srcobject);
2252
VM_OBJECT_ASSERT_WLOCKED(dstobject);
2253
2254
if (count == 0 || swblk_is_empty(srcobject))
2255
return;
2256
2257
swp_pager_init_freerange(&range);
2258
d_mask = 0;
2259
last = pindex + count;
2260
swblk_iter_init_only(&dstblks, dstobject);
2261
for (sb = swblk_iter_limit_init(&srcblks, srcobject, pindex, last),
2262
start = swblk_start(sb, pindex);
2263
sb != NULL; sb = swblk_iter_next(&srcblks), start = 0) {
2264
limit = MIN(last - srcblks.index, SWAP_META_PAGES);
2265
for (i = start; i < limit; i++) {
2266
if (sb->d[i] == SWAPBLK_NONE)
2267
continue;
2268
blk = swp_pager_meta_build(&dstblks, dstobject,
2269
srcblks.index + i - pindex, sb->d[i], true);
2270
if (blk == sb->d[i]) {
2271
/*
2272
* Failed memory allocation stopped transfer;
2273
* save this block for transfer with lock
2274
* released.
2275
*/
2276
d[i] = blk;
2277
d_mask |= 1 << i;
2278
} else if (blk != SWAPBLK_NONE) {
2279
/* Dst has a block at pindex, so free block. */
2280
swp_pager_update_freerange(&range, sb->d[i]);
2281
}
2282
sb->d[i] = SWAPBLK_NONE;
2283
}
2284
if (swp_pager_swblk_empty(sb, 0, start) &&
2285
swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2286
swblk_iter_remove(&srcblks);
2287
uma_zfree(swblk_zone, sb);
2288
}
2289
if (d_mask != 0) {
2290
/* Finish block transfer, with the lock released. */
2291
VM_OBJECT_WUNLOCK(srcobject);
2292
do {
2293
i = ffs(d_mask) - 1;
2294
swp_pager_meta_build(&dstblks, dstobject,
2295
srcblks.index + i - pindex, d[i], false);
2296
d_mask &= ~(1 << i);
2297
} while (d_mask != 0);
2298
VM_OBJECT_WLOCK(srcobject);
2299
2300
/*
2301
* While the lock was not held, the iterator path could
2302
* have become stale, so discard it.
2303
*/
2304
pctrie_iter_reset(&srcblks);
2305
}
2306
}
2307
swp_pager_freeswapspace(&range);
2308
}
2309
2310
/*
2311
* SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2312
*
2313
* Return freed swap blocks to the swap bitmap, and free emptied swblk
2314
* metadata. With 'freed' set, provide a count of freed blocks that were
2315
* not associated with valid resident pages.
2316
*/
2317
static void
2318
swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count,
2319
vm_size_t *freed)
2320
{
2321
struct pctrie_iter blks, pages;
2322
struct page_range range;
2323
struct swblk *sb;
2324
vm_page_t m;
2325
vm_pindex_t last;
2326
vm_size_t fc;
2327
int i, limit, start;
2328
2329
VM_OBJECT_ASSERT_WLOCKED(object);
2330
2331
fc = 0;
2332
if (count == 0 || swblk_is_empty(object))
2333
goto out;
2334
2335
swp_pager_init_freerange(&range);
2336
vm_page_iter_init(&pages, object);
2337
last = pindex + count;
2338
for (sb = swblk_iter_limit_init(&blks, object, pindex, last),
2339
start = swblk_start(sb, pindex);
2340
sb != NULL; sb = swblk_iter_next(&blks), start = 0) {
2341
limit = MIN(last - blks.index, SWAP_META_PAGES);
2342
for (i = start; i < limit; i++) {
2343
if (sb->d[i] == SWAPBLK_NONE)
2344
continue;
2345
swp_pager_update_freerange(&range, sb->d[i]);
2346
if (freed != NULL) {
2347
m = vm_radix_iter_lookup(&pages, blks.index + i);
2348
if (m == NULL || vm_page_none_valid(m))
2349
fc++;
2350
}
2351
sb->d[i] = SWAPBLK_NONE;
2352
}
2353
if (swp_pager_swblk_empty(sb, 0, start) &&
2354
swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2355
swblk_iter_remove(&blks);
2356
uma_zfree(swblk_zone, sb);
2357
}
2358
}
2359
swp_pager_freeswapspace(&range);
2360
out:
2361
if (freed != NULL)
2362
*freed = fc;
2363
}
2364
2365
static void
2366
swp_pager_meta_free_block(struct swblk *sb, void *rangev)
2367
{
2368
struct page_range *range = rangev;
2369
2370
for (int i = 0; i < SWAP_META_PAGES; i++) {
2371
if (sb->d[i] != SWAPBLK_NONE)
2372
swp_pager_update_freerange(range, sb->d[i]);
2373
}
2374
uma_zfree(swblk_zone, sb);
2375
}
2376
2377
/*
2378
* SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2379
*
2380
* This routine locates and destroys all swap metadata associated with
2381
* an object.
2382
*/
2383
static void
2384
swp_pager_meta_free_all(vm_object_t object)
2385
{
2386
struct page_range range;
2387
2388
VM_OBJECT_ASSERT_WLOCKED(object);
2389
2390
swp_pager_init_freerange(&range);
2391
SWAP_PCTRIE_RECLAIM_CALLBACK(&object->un_pager.swp.swp_blks,
2392
swp_pager_meta_free_block, &range);
2393
swp_pager_freeswapspace(&range);
2394
}
2395
2396
/*
2397
* SWP_PAGER_METACTL() - misc control of swap meta data.
2398
*
2399
* This routine is capable of looking up, or removing swapblk
2400
* assignments in the swap meta data. It returns the swapblk being
2401
* looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2402
*
2403
* When acting on a busy resident page and paging is in progress, we
2404
* have to wait until paging is complete but otherwise can act on the
2405
* busy page.
2406
*/
2407
static daddr_t
2408
swp_pager_meta_lookup(struct pctrie_iter *blks, vm_pindex_t pindex)
2409
{
2410
struct swblk *sb;
2411
2412
sb = swblk_iter_lookup(blks, pindex);
2413
if (sb == NULL)
2414
return (SWAPBLK_NONE);
2415
return (sb->d[pindex % SWAP_META_PAGES]);
2416
}
2417
2418
/*
2419
* Returns the least page index which is greater than or equal to the parameter
2420
* pindex and for which there is a swap block allocated. Returns OBJ_MAX_SIZE
2421
* if are no allocated swap blocks for the object after the requested pindex.
2422
*/
2423
static vm_pindex_t
2424
swap_pager_iter_find_least(struct pctrie_iter *blks, vm_pindex_t pindex)
2425
{
2426
struct swblk *sb;
2427
int i;
2428
2429
if ((sb = swblk_iter_lookup_ge(blks, pindex)) == NULL)
2430
return (OBJ_MAX_SIZE);
2431
if (blks->index < pindex) {
2432
for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2433
if (sb->d[i] != SWAPBLK_NONE)
2434
return (blks->index + i);
2435
}
2436
if ((sb = swblk_iter_next(blks)) == NULL)
2437
return (OBJ_MAX_SIZE);
2438
}
2439
for (i = 0; i < SWAP_META_PAGES; i++) {
2440
if (sb->d[i] != SWAPBLK_NONE)
2441
return (blks->index + i);
2442
}
2443
2444
/*
2445
* We get here if a swblk is present in the trie but it
2446
* doesn't map any blocks.
2447
*/
2448
MPASS(0);
2449
return (OBJ_MAX_SIZE);
2450
}
2451
2452
/*
2453
* Find the first index >= pindex that has either a valid page or a swap
2454
* block.
2455
*/
2456
vm_pindex_t
2457
swap_pager_seek_data(vm_object_t object, vm_pindex_t pindex)
2458
{
2459
struct pctrie_iter blks, pages;
2460
vm_page_t m;
2461
vm_pindex_t swap_index;
2462
2463
VM_OBJECT_ASSERT_RLOCKED(object);
2464
vm_page_iter_init(&pages, object);
2465
m = vm_radix_iter_lookup_ge(&pages, pindex);
2466
if (m != NULL && pages.index == pindex && vm_page_any_valid(m))
2467
return (pages.index);
2468
swblk_iter_init_only(&blks, object);
2469
swap_index = swap_pager_iter_find_least(&blks, pindex);
2470
if (swap_index == pindex)
2471
return (swap_index);
2472
2473
/*
2474
* Find the first resident page after m, before swap_index.
2475
*/
2476
while (m != NULL && pages.index < swap_index) {
2477
if (vm_page_any_valid(m))
2478
return (pages.index);
2479
m = vm_radix_iter_step(&pages);
2480
}
2481
if (swap_index == OBJ_MAX_SIZE)
2482
swap_index = object->size;
2483
return (swap_index);
2484
}
2485
2486
/*
2487
* Find the first index >= pindex that has neither a valid page nor a swap
2488
* block.
2489
*/
2490
vm_pindex_t
2491
swap_pager_seek_hole(vm_object_t object, vm_pindex_t pindex)
2492
{
2493
struct pctrie_iter blks, pages;
2494
struct swblk *sb;
2495
vm_page_t m;
2496
2497
VM_OBJECT_ASSERT_RLOCKED(object);
2498
vm_page_iter_init(&pages, object);
2499
swblk_iter_init_only(&blks, object);
2500
while (((m = vm_radix_iter_lookup(&pages, pindex)) != NULL &&
2501
vm_page_any_valid(m)) ||
2502
((sb = swblk_iter_lookup(&blks, pindex)) != NULL &&
2503
sb->d[pindex % SWAP_META_PAGES] != SWAPBLK_NONE))
2504
pindex++;
2505
return (pindex);
2506
}
2507
2508
/*
2509
* Is every page in the backing object or swap shadowed in the parent, and
2510
* unbusy and valid in swap?
2511
*/
2512
bool
2513
swap_pager_scan_all_shadowed(vm_object_t object)
2514
{
2515
struct pctrie_iter backing_blks, backing_pages, blks, pages;
2516
vm_object_t backing_object;
2517
vm_page_t p, pp;
2518
vm_pindex_t backing_offset_index, new_pindex, pi, pi_ubound, ps, pv;
2519
2520
VM_OBJECT_ASSERT_WLOCKED(object);
2521
VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
2522
2523
backing_object = object->backing_object;
2524
2525
if ((backing_object->flags & OBJ_ANON) == 0)
2526
return (false);
2527
2528
KASSERT((object->flags & OBJ_ANON) != 0,
2529
("Shadow object is not anonymous"));
2530
backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
2531
pi_ubound = MIN(backing_object->size,
2532
backing_offset_index + object->size);
2533
vm_page_iter_init(&pages, object);
2534
vm_page_iter_init(&backing_pages, backing_object);
2535
swblk_iter_init_only(&blks, object);
2536
swblk_iter_init_only(&backing_blks, backing_object);
2537
2538
/*
2539
* Only check pages inside the parent object's range and inside the
2540
* parent object's mapping of the backing object.
2541
*/
2542
pv = ps = pi = backing_offset_index - 1;
2543
for (;;) {
2544
if (pi == pv) {
2545
p = vm_radix_iter_lookup_ge(&backing_pages, pv + 1);
2546
pv = p != NULL ? p->pindex : backing_object->size;
2547
}
2548
if (pi == ps)
2549
ps = swap_pager_iter_find_least(&backing_blks, ps + 1);
2550
pi = MIN(pv, ps);
2551
if (pi >= pi_ubound)
2552
break;
2553
2554
if (pi == pv) {
2555
/*
2556
* If the backing object page is busy a grandparent or
2557
* older page may still be undergoing CoW. It is not
2558
* safe to collapse the backing object until it is
2559
* quiesced.
2560
*/
2561
if (vm_page_tryxbusy(p) == 0)
2562
return (false);
2563
2564
/*
2565
* We raced with the fault handler that left newly
2566
* allocated invalid page on the object queue and
2567
* retried.
2568
*/
2569
if (!vm_page_all_valid(p))
2570
break;
2571
2572
/*
2573
* Busy of p disallows fault handler to validate parent
2574
* page (pp, below).
2575
*/
2576
}
2577
2578
/*
2579
* See if the parent has the page or if the parent's object
2580
* pager has the page. If the parent has the page but the page
2581
* is not valid, the parent's object pager must have the page.
2582
*
2583
* If this fails, the parent does not completely shadow the
2584
* object and we might as well give up now.
2585
*/
2586
new_pindex = pi - backing_offset_index;
2587
pp = vm_radix_iter_lookup(&pages, new_pindex);
2588
2589
/*
2590
* The valid check here is stable due to object lock being
2591
* required to clear valid and initiate paging.
2592
*/
2593
if ((pp == NULL || vm_page_none_valid(pp)) &&
2594
!swp_pager_haspage_iter(new_pindex, NULL, NULL, &blks))
2595
break;
2596
if (pi == pv)
2597
vm_page_xunbusy(p);
2598
}
2599
if (pi < pi_ubound) {
2600
if (pi == pv)
2601
vm_page_xunbusy(p);
2602
return (false);
2603
}
2604
return (true);
2605
}
2606
2607
/*
2608
* System call swapon(name) enables swapping on device name,
2609
* which must be in the swdevsw. Return EBUSY
2610
* if already swapping on this device.
2611
*/
2612
#ifndef _SYS_SYSPROTO_H_
2613
struct swapon_args {
2614
char *name;
2615
};
2616
#endif
2617
2618
int
2619
sys_swapon(struct thread *td, struct swapon_args *uap)
2620
{
2621
struct vattr attr;
2622
struct vnode *vp;
2623
struct nameidata nd;
2624
int error;
2625
2626
error = priv_check(td, PRIV_SWAPON);
2627
if (error)
2628
return (error);
2629
2630
sx_xlock(&swdev_syscall_lock);
2631
2632
/*
2633
* Swap metadata may not fit in the KVM if we have physical
2634
* memory of >1GB.
2635
*/
2636
if (swblk_zone == NULL) {
2637
error = ENOMEM;
2638
goto done;
2639
}
2640
2641
NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
2642
UIO_USERSPACE, uap->name);
2643
error = namei(&nd);
2644
if (error)
2645
goto done;
2646
2647
NDFREE_PNBUF(&nd);
2648
vp = nd.ni_vp;
2649
2650
if (vn_isdisk_error(vp, &error)) {
2651
error = swapongeom(vp);
2652
} else if (vp->v_type == VREG &&
2653
(vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2654
(error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2655
/*
2656
* Allow direct swapping to NFS regular files in the same
2657
* way that nfs_mountroot() sets up diskless swapping.
2658
*/
2659
error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2660
}
2661
2662
if (error != 0)
2663
vput(vp);
2664
else
2665
VOP_UNLOCK(vp);
2666
done:
2667
sx_xunlock(&swdev_syscall_lock);
2668
return (error);
2669
}
2670
2671
/*
2672
* Check that the total amount of swap currently configured does not
2673
* exceed half the theoretical maximum. If it does, print a warning
2674
* message.
2675
*/
2676
static void
2677
swapon_check_swzone(void)
2678
{
2679
2680
/* recommend using no more than half that amount */
2681
if (swap_total > swap_maxpages / 2) {
2682
printf("warning: total configured swap (%lu pages) "
2683
"exceeds maximum recommended amount (%lu pages).\n",
2684
swap_total, swap_maxpages / 2);
2685
printf("warning: increase kern.maxswzone "
2686
"or reduce amount of swap.\n");
2687
}
2688
}
2689
2690
static int
2691
swaponsomething(struct vnode *vp, void *id, u_long nblks,
2692
sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2693
{
2694
struct swdevt *sp, *tsp;
2695
daddr_t dvbase;
2696
2697
/*
2698
* nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2699
* First chop nblks off to page-align it, then convert.
2700
*
2701
* sw->sw_nblks is in page-sized chunks now too.
2702
*/
2703
nblks &= ~(ctodb(1) - 1);
2704
nblks = dbtoc(nblks);
2705
if (nblks == 0)
2706
return (EXTERROR(EINVAL, "swap device too small"));
2707
2708
sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2709
sp->sw_blist = blist_create(nblks, M_WAITOK);
2710
sp->sw_vp = vp;
2711
sp->sw_id = id;
2712
sp->sw_dev = dev;
2713
sp->sw_nblks = nblks;
2714
sp->sw_used = 0;
2715
sp->sw_strategy = strategy;
2716
sp->sw_close = close;
2717
sp->sw_flags = flags;
2718
2719
/*
2720
* Do not free the first blocks in order to avoid overwriting
2721
* any bsd label at the front of the partition
2722
*/
2723
blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2724
nblks - howmany(BBSIZE, PAGE_SIZE));
2725
2726
dvbase = 0;
2727
mtx_lock(&sw_dev_mtx);
2728
TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2729
if (tsp->sw_end >= dvbase) {
2730
/*
2731
* We put one uncovered page between the devices
2732
* in order to definitively prevent any cross-device
2733
* I/O requests
2734
*/
2735
dvbase = tsp->sw_end + 1;
2736
}
2737
}
2738
sp->sw_first = dvbase;
2739
sp->sw_end = dvbase + nblks;
2740
TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2741
nswapdev++;
2742
swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2743
swap_total += nblks;
2744
swapon_check_swzone();
2745
swp_sizecheck();
2746
mtx_unlock(&sw_dev_mtx);
2747
EVENTHANDLER_INVOKE(swapon, sp);
2748
2749
return (0);
2750
}
2751
2752
/*
2753
* SYSCALL: swapoff(devname)
2754
*
2755
* Disable swapping on the given device.
2756
*
2757
* XXX: Badly designed system call: it should use a device index
2758
* rather than filename as specification. We keep sw_vp around
2759
* only to make this work.
2760
*/
2761
static int
2762
kern_swapoff(struct thread *td, const char *name, enum uio_seg name_seg,
2763
u_int flags)
2764
{
2765
struct vnode *vp;
2766
struct nameidata nd;
2767
struct swdevt *sp;
2768
int error;
2769
2770
error = priv_check(td, PRIV_SWAPOFF);
2771
if (error != 0)
2772
return (error);
2773
if ((flags & ~(SWAPOFF_FORCE)) != 0)
2774
return (EINVAL);
2775
2776
sx_xlock(&swdev_syscall_lock);
2777
2778
NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, name_seg, name);
2779
error = namei(&nd);
2780
if (error)
2781
goto done;
2782
NDFREE_PNBUF(&nd);
2783
vp = nd.ni_vp;
2784
2785
mtx_lock(&sw_dev_mtx);
2786
TAILQ_FOREACH(sp, &swtailq, sw_list) {
2787
if (sp->sw_vp == vp)
2788
break;
2789
}
2790
mtx_unlock(&sw_dev_mtx);
2791
if (sp == NULL) {
2792
error = EINVAL;
2793
goto done;
2794
}
2795
error = swapoff_one(sp, td->td_ucred, flags);
2796
done:
2797
sx_xunlock(&swdev_syscall_lock);
2798
return (error);
2799
}
2800
2801
2802
#ifdef COMPAT_FREEBSD13
2803
int
2804
freebsd13_swapoff(struct thread *td, struct freebsd13_swapoff_args *uap)
2805
{
2806
return (kern_swapoff(td, uap->name, UIO_USERSPACE, 0));
2807
}
2808
#endif
2809
2810
int
2811
sys_swapoff(struct thread *td, struct swapoff_args *uap)
2812
{
2813
return (kern_swapoff(td, uap->name, UIO_USERSPACE, uap->flags));
2814
}
2815
2816
static int
2817
swapoff_one(struct swdevt *sp, struct ucred *cred, u_int flags)
2818
{
2819
u_long nblks;
2820
#ifdef MAC
2821
int error;
2822
#endif
2823
2824
sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2825
#ifdef MAC
2826
(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2827
error = mac_system_check_swapoff(cred, sp->sw_vp);
2828
(void) VOP_UNLOCK(sp->sw_vp);
2829
if (error != 0)
2830
return (error);
2831
#endif
2832
nblks = sp->sw_nblks;
2833
2834
/*
2835
* We can turn off this swap device safely only if the
2836
* available virtual memory in the system will fit the amount
2837
* of data we will have to page back in, plus an epsilon so
2838
* the system doesn't become critically low on swap space.
2839
* The vm_free_count() part does not account e.g. for clean
2840
* pages that can be immediately reclaimed without paging, so
2841
* this is a very rough estimation.
2842
*
2843
* On the other hand, not turning swap off on swapoff_all()
2844
* means that we can lose swap data when filesystems go away,
2845
* which is arguably worse.
2846
*/
2847
if ((flags & SWAPOFF_FORCE) == 0 &&
2848
vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2849
return (ENOMEM);
2850
2851
/*
2852
* Prevent further allocations on this device.
2853
*/
2854
mtx_lock(&sw_dev_mtx);
2855
sp->sw_flags |= SW_CLOSING;
2856
swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2857
swap_total -= nblks;
2858
mtx_unlock(&sw_dev_mtx);
2859
2860
/*
2861
* Page in the contents of the device and close it.
2862
*/
2863
swap_pager_swapoff(sp);
2864
2865
sp->sw_close(curthread, sp);
2866
mtx_lock(&sw_dev_mtx);
2867
sp->sw_id = NULL;
2868
TAILQ_REMOVE(&swtailq, sp, sw_list);
2869
nswapdev--;
2870
if (nswapdev == 0)
2871
swap_pager_full = swap_pager_almost_full = true;
2872
if (swdevhd == sp)
2873
swdevhd = NULL;
2874
mtx_unlock(&sw_dev_mtx);
2875
blist_destroy(sp->sw_blist);
2876
free(sp, M_VMPGDATA);
2877
return (0);
2878
}
2879
2880
void
2881
swapoff_all(void)
2882
{
2883
struct swdevt *sp, *spt;
2884
const char *devname;
2885
int error;
2886
2887
sx_xlock(&swdev_syscall_lock);
2888
2889
mtx_lock(&sw_dev_mtx);
2890
TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2891
mtx_unlock(&sw_dev_mtx);
2892
if (vn_isdisk(sp->sw_vp))
2893
devname = devtoname(sp->sw_vp->v_rdev);
2894
else
2895
devname = "[file]";
2896
error = swapoff_one(sp, thread0.td_ucred, SWAPOFF_FORCE);
2897
if (error != 0) {
2898
printf("Cannot remove swap device %s (error=%d), "
2899
"skipping.\n", devname, error);
2900
} else if (bootverbose) {
2901
printf("Swap device %s removed.\n", devname);
2902
}
2903
mtx_lock(&sw_dev_mtx);
2904
}
2905
mtx_unlock(&sw_dev_mtx);
2906
2907
sx_xunlock(&swdev_syscall_lock);
2908
}
2909
2910
void
2911
swap_pager_status(int *total, int *used)
2912
{
2913
2914
*total = swap_total;
2915
*used = swap_total - swap_pager_avail -
2916
nswapdev * howmany(BBSIZE, PAGE_SIZE);
2917
}
2918
2919
int
2920
swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2921
{
2922
struct swdevt *sp;
2923
const char *tmp_devname;
2924
int error, n;
2925
2926
n = 0;
2927
error = ENOENT;
2928
mtx_lock(&sw_dev_mtx);
2929
TAILQ_FOREACH(sp, &swtailq, sw_list) {
2930
if (n != name) {
2931
n++;
2932
continue;
2933
}
2934
xs->xsw_version = XSWDEV_VERSION;
2935
xs->xsw_dev = sp->sw_dev;
2936
xs->xsw_flags = sp->sw_flags;
2937
xs->xsw_nblks = sp->sw_nblks;
2938
xs->xsw_used = sp->sw_used;
2939
if (devname != NULL) {
2940
if (vn_isdisk(sp->sw_vp))
2941
tmp_devname = devtoname(sp->sw_vp->v_rdev);
2942
else
2943
tmp_devname = "[file]";
2944
strncpy(devname, tmp_devname, len);
2945
}
2946
error = 0;
2947
break;
2948
}
2949
mtx_unlock(&sw_dev_mtx);
2950
return (error);
2951
}
2952
2953
#if defined(COMPAT_FREEBSD11)
2954
#define XSWDEV_VERSION_11 1
2955
struct xswdev11 {
2956
u_int xsw_version;
2957
uint32_t xsw_dev;
2958
int xsw_flags;
2959
int xsw_nblks;
2960
int xsw_used;
2961
};
2962
#endif
2963
2964
#if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2965
struct xswdev32 {
2966
u_int xsw_version;
2967
u_int xsw_dev1, xsw_dev2;
2968
int xsw_flags;
2969
int xsw_nblks;
2970
int xsw_used;
2971
};
2972
#endif
2973
2974
static int
2975
sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2976
{
2977
struct xswdev xs;
2978
#if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2979
struct xswdev32 xs32;
2980
#endif
2981
#if defined(COMPAT_FREEBSD11)
2982
struct xswdev11 xs11;
2983
#endif
2984
int error;
2985
2986
if (arg2 != 1) /* name length */
2987
return (EINVAL);
2988
2989
memset(&xs, 0, sizeof(xs));
2990
error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2991
if (error != 0)
2992
return (error);
2993
#if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2994
if (req->oldlen == sizeof(xs32)) {
2995
memset(&xs32, 0, sizeof(xs32));
2996
xs32.xsw_version = XSWDEV_VERSION;
2997
xs32.xsw_dev1 = xs.xsw_dev;
2998
xs32.xsw_dev2 = xs.xsw_dev >> 32;
2999
xs32.xsw_flags = xs.xsw_flags;
3000
xs32.xsw_nblks = xs.xsw_nblks;
3001
xs32.xsw_used = xs.xsw_used;
3002
error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
3003
return (error);
3004
}
3005
#endif
3006
#if defined(COMPAT_FREEBSD11)
3007
if (req->oldlen == sizeof(xs11)) {
3008
memset(&xs11, 0, sizeof(xs11));
3009
xs11.xsw_version = XSWDEV_VERSION_11;
3010
xs11.xsw_dev = xs.xsw_dev; /* truncation */
3011
xs11.xsw_flags = xs.xsw_flags;
3012
xs11.xsw_nblks = xs.xsw_nblks;
3013
xs11.xsw_used = xs.xsw_used;
3014
error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
3015
return (error);
3016
}
3017
#endif
3018
error = SYSCTL_OUT(req, &xs, sizeof(xs));
3019
return (error);
3020
}
3021
3022
SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
3023
"Number of swap devices");
3024
SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
3025
sysctl_vm_swap_info,
3026
"Swap statistics by device");
3027
3028
/*
3029
* Count the approximate swap usage in pages for a vmspace. The
3030
* shadowed or not yet copied on write swap blocks are not accounted.
3031
* The map must be locked.
3032
*/
3033
long
3034
vmspace_swap_count(struct vmspace *vmspace)
3035
{
3036
struct pctrie_iter blks;
3037
vm_map_t map;
3038
vm_map_entry_t cur;
3039
vm_object_t object;
3040
struct swblk *sb;
3041
vm_pindex_t e, pi;
3042
long count;
3043
int i, limit, start;
3044
3045
map = &vmspace->vm_map;
3046
count = 0;
3047
3048
VM_MAP_ENTRY_FOREACH(cur, map) {
3049
if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3050
continue;
3051
object = cur->object.vm_object;
3052
if (object == NULL || (object->flags & OBJ_SWAP) == 0)
3053
continue;
3054
VM_OBJECT_RLOCK(object);
3055
if ((object->flags & OBJ_SWAP) == 0)
3056
goto unlock;
3057
pi = OFF_TO_IDX(cur->offset);
3058
e = pi + OFF_TO_IDX(cur->end - cur->start);
3059
for (sb = swblk_iter_limit_init(&blks, object, pi, e),
3060
start = swblk_start(sb, pi);
3061
sb != NULL; sb = swblk_iter_next(&blks), start = 0) {
3062
limit = MIN(e - blks.index, SWAP_META_PAGES);
3063
for (i = start; i < limit; i++) {
3064
if (sb->d[i] != SWAPBLK_NONE)
3065
count++;
3066
}
3067
}
3068
unlock:
3069
VM_OBJECT_RUNLOCK(object);
3070
}
3071
return (count);
3072
}
3073
3074
/*
3075
* GEOM backend
3076
*
3077
* Swapping onto disk devices.
3078
*
3079
*/
3080
3081
static g_orphan_t swapgeom_orphan;
3082
3083
static struct g_class g_swap_class = {
3084
.name = "SWAP",
3085
.version = G_VERSION,
3086
.orphan = swapgeom_orphan,
3087
};
3088
3089
DECLARE_GEOM_CLASS(g_swap_class, g_class);
3090
3091
static void
3092
swapgeom_close_ev(void *arg, int flags)
3093
{
3094
struct g_consumer *cp;
3095
3096
cp = arg;
3097
g_access(cp, -1, -1, 0);
3098
g_detach(cp);
3099
g_destroy_consumer(cp);
3100
}
3101
3102
/*
3103
* Add a reference to the g_consumer for an inflight transaction.
3104
*/
3105
static void
3106
swapgeom_acquire(struct g_consumer *cp)
3107
{
3108
3109
mtx_assert(&sw_dev_mtx, MA_OWNED);
3110
cp->index++;
3111
}
3112
3113
/*
3114
* Remove a reference from the g_consumer. Post a close event if all
3115
* references go away, since the function might be called from the
3116
* biodone context.
3117
*/
3118
static void
3119
swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
3120
{
3121
3122
mtx_assert(&sw_dev_mtx, MA_OWNED);
3123
cp->index--;
3124
if (cp->index == 0) {
3125
if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
3126
sp->sw_id = NULL;
3127
}
3128
}
3129
3130
static void
3131
swapgeom_done(struct bio *bp2)
3132
{
3133
struct swdevt *sp;
3134
struct buf *bp;
3135
struct g_consumer *cp;
3136
3137
bp = bp2->bio_caller2;
3138
cp = bp2->bio_from;
3139
bp->b_ioflags = bp2->bio_flags;
3140
if (bp2->bio_error)
3141
bp->b_ioflags |= BIO_ERROR;
3142
bp->b_resid = bp->b_bcount - bp2->bio_completed;
3143
bp->b_error = bp2->bio_error;
3144
bp->b_caller1 = NULL;
3145
bufdone(bp);
3146
sp = bp2->bio_caller1;
3147
mtx_lock(&sw_dev_mtx);
3148
swapgeom_release(cp, sp);
3149
mtx_unlock(&sw_dev_mtx);
3150
g_destroy_bio(bp2);
3151
}
3152
3153
static void
3154
swapgeom_strategy(struct buf *bp, struct swdevt *sp)
3155
{
3156
struct bio *bio;
3157
struct g_consumer *cp;
3158
3159
mtx_lock(&sw_dev_mtx);
3160
cp = sp->sw_id;
3161
if (cp == NULL) {
3162
mtx_unlock(&sw_dev_mtx);
3163
bp->b_error = ENXIO;
3164
bp->b_ioflags |= BIO_ERROR;
3165
bufdone(bp);
3166
return;
3167
}
3168
swapgeom_acquire(cp);
3169
mtx_unlock(&sw_dev_mtx);
3170
if (bp->b_iocmd == BIO_WRITE)
3171
bio = g_new_bio();
3172
else
3173
bio = g_alloc_bio();
3174
if (bio == NULL) {
3175
mtx_lock(&sw_dev_mtx);
3176
swapgeom_release(cp, sp);
3177
mtx_unlock(&sw_dev_mtx);
3178
bp->b_error = ENOMEM;
3179
bp->b_ioflags |= BIO_ERROR;
3180
printf("swap_pager: cannot allocate bio\n");
3181
bufdone(bp);
3182
return;
3183
}
3184
3185
bp->b_caller1 = bio;
3186
bio->bio_caller1 = sp;
3187
bio->bio_caller2 = bp;
3188
bio->bio_cmd = bp->b_iocmd;
3189
bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
3190
bio->bio_length = bp->b_bcount;
3191
bio->bio_done = swapgeom_done;
3192
bio->bio_flags |= BIO_SWAP;
3193
if (!buf_mapped(bp)) {
3194
bio->bio_ma = bp->b_pages;
3195
bio->bio_data = unmapped_buf;
3196
bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
3197
bio->bio_ma_n = bp->b_npages;
3198
bio->bio_flags |= BIO_UNMAPPED;
3199
} else {
3200
bio->bio_data = bp->b_data;
3201
bio->bio_ma = NULL;
3202
}
3203
g_io_request(bio, cp);
3204
return;
3205
}
3206
3207
static void
3208
swapgeom_orphan(struct g_consumer *cp)
3209
{
3210
struct swdevt *sp;
3211
int destroy;
3212
3213
mtx_lock(&sw_dev_mtx);
3214
TAILQ_FOREACH(sp, &swtailq, sw_list) {
3215
if (sp->sw_id == cp) {
3216
sp->sw_flags |= SW_CLOSING;
3217
break;
3218
}
3219
}
3220
/*
3221
* Drop reference we were created with. Do directly since we're in a
3222
* special context where we don't have to queue the call to
3223
* swapgeom_close_ev().
3224
*/
3225
cp->index--;
3226
destroy = ((sp != NULL) && (cp->index == 0));
3227
if (destroy)
3228
sp->sw_id = NULL;
3229
mtx_unlock(&sw_dev_mtx);
3230
if (destroy)
3231
swapgeom_close_ev(cp, 0);
3232
}
3233
3234
static void
3235
swapgeom_close(struct thread *td, struct swdevt *sw)
3236
{
3237
struct g_consumer *cp;
3238
3239
mtx_lock(&sw_dev_mtx);
3240
cp = sw->sw_id;
3241
sw->sw_id = NULL;
3242
mtx_unlock(&sw_dev_mtx);
3243
3244
/*
3245
* swapgeom_close() may be called from the biodone context,
3246
* where we cannot perform topology changes. Delegate the
3247
* work to the events thread.
3248
*/
3249
if (cp != NULL)
3250
g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
3251
}
3252
3253
static int
3254
swapongeom_locked(struct cdev *dev, struct vnode *vp)
3255
{
3256
struct g_provider *pp;
3257
struct g_consumer *cp;
3258
static struct g_geom *gp;
3259
struct swdevt *sp;
3260
u_long nblks;
3261
int error;
3262
3263
pp = g_dev_getprovider(dev);
3264
if (pp == NULL)
3265
return (ENODEV);
3266
mtx_lock(&sw_dev_mtx);
3267
TAILQ_FOREACH(sp, &swtailq, sw_list) {
3268
cp = sp->sw_id;
3269
if (cp != NULL && cp->provider == pp) {
3270
mtx_unlock(&sw_dev_mtx);
3271
return (EBUSY);
3272
}
3273
}
3274
mtx_unlock(&sw_dev_mtx);
3275
if (gp == NULL)
3276
gp = g_new_geomf(&g_swap_class, "swap");
3277
cp = g_new_consumer(gp);
3278
cp->index = 1; /* Number of active I/Os, plus one for being active. */
3279
cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
3280
g_attach(cp, pp);
3281
3282
/*
3283
* XXX: Every time you think you can improve the margin for
3284
* footshooting, somebody depends on the ability to do so:
3285
* savecore(8) wants to write to our swapdev so we cannot
3286
* set an exclusive count :-(
3287
*/
3288
error = g_access(cp, 1, 1, 0);
3289
3290
if (error == 0) {
3291
nblks = pp->mediasize / DEV_BSIZE;
3292
error = swaponsomething(vp, cp, nblks, swapgeom_strategy,
3293
swapgeom_close, dev2udev(dev),
3294
(pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
3295
if (error != 0)
3296
g_access(cp, -1, -1, 0);
3297
}
3298
if (error != 0) {
3299
g_detach(cp);
3300
g_destroy_consumer(cp);
3301
}
3302
return (error);
3303
}
3304
3305
static int
3306
swapongeom(struct vnode *vp)
3307
{
3308
int error;
3309
3310
ASSERT_VOP_ELOCKED(vp, "swapongeom");
3311
if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
3312
error = ENOENT;
3313
} else {
3314
g_topology_lock();
3315
error = swapongeom_locked(vp->v_rdev, vp);
3316
g_topology_unlock();
3317
}
3318
return (error);
3319
}
3320
3321
/*
3322
* VNODE backend
3323
*
3324
* This is used mainly for network filesystem (read: probably only tested
3325
* with NFS) swapfiles.
3326
*
3327
*/
3328
3329
static void
3330
swapdev_strategy(struct buf *bp, struct swdevt *sp)
3331
{
3332
struct vnode *vp2;
3333
3334
bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
3335
3336
vp2 = sp->sw_id;
3337
vhold(vp2);
3338
if (bp->b_iocmd == BIO_WRITE) {
3339
vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY);
3340
if (bp->b_bufobj)
3341
bufobj_wdrop(bp->b_bufobj);
3342
bufobj_wref(&vp2->v_bufobj);
3343
} else {
3344
vn_lock(vp2, LK_SHARED | LK_RETRY);
3345
}
3346
if (bp->b_bufobj != &vp2->v_bufobj)
3347
bp->b_bufobj = &vp2->v_bufobj;
3348
bp->b_vp = vp2;
3349
bp->b_iooffset = dbtob(bp->b_blkno);
3350
bstrategy(bp);
3351
VOP_UNLOCK(vp2);
3352
}
3353
3354
static void
3355
swapdev_close(struct thread *td, struct swdevt *sp)
3356
{
3357
struct vnode *vp;
3358
3359
vp = sp->sw_vp;
3360
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3361
VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td);
3362
vput(vp);
3363
}
3364
3365
static int
3366
swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3367
{
3368
struct swdevt *sp;
3369
int error;
3370
3371
ASSERT_VOP_ELOCKED(vp, "swaponvp");
3372
if (nblks == 0)
3373
return (ENXIO);
3374
mtx_lock(&sw_dev_mtx);
3375
TAILQ_FOREACH(sp, &swtailq, sw_list) {
3376
if (sp->sw_id == vp) {
3377
mtx_unlock(&sw_dev_mtx);
3378
return (EBUSY);
3379
}
3380
}
3381
mtx_unlock(&sw_dev_mtx);
3382
3383
#ifdef MAC
3384
error = mac_system_check_swapon(td->td_ucred, vp);
3385
if (error == 0)
3386
#endif
3387
error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3388
if (error != 0)
3389
return (error);
3390
3391
error = swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3392
NODEV, 0);
3393
if (error != 0)
3394
VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td);
3395
return (error);
3396
}
3397
3398
static int
3399
sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3400
{
3401
int error, new, n;
3402
3403
new = nsw_wcount_async_max;
3404
error = sysctl_handle_int(oidp, &new, 0, req);
3405
if (error != 0 || req->newptr == NULL)
3406
return (error);
3407
3408
if (new > nswbuf / 2 || new < 1)
3409
return (EINVAL);
3410
3411
mtx_lock(&swbuf_mtx);
3412
while (nsw_wcount_async_max != new) {
3413
/*
3414
* Adjust difference. If the current async count is too low,
3415
* we will need to sqeeze our update slowly in. Sleep with a
3416
* higher priority than getpbuf() to finish faster.
3417
*/
3418
n = new - nsw_wcount_async_max;
3419
if (nsw_wcount_async + n >= 0) {
3420
nsw_wcount_async += n;
3421
nsw_wcount_async_max += n;
3422
wakeup(&nsw_wcount_async);
3423
} else {
3424
nsw_wcount_async_max -= nsw_wcount_async;
3425
nsw_wcount_async = 0;
3426
msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3427
"swpsysctl", 0);
3428
}
3429
}
3430
mtx_unlock(&swbuf_mtx);
3431
3432
return (0);
3433
}
3434
3435
static void
3436
swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3437
vm_offset_t end)
3438
{
3439
3440
VM_OBJECT_WLOCK(object);
3441
KASSERT((object->flags & OBJ_ANON) == 0,
3442
("Splittable object with writecount"));
3443
object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3444
VM_OBJECT_WUNLOCK(object);
3445
}
3446
3447
static void
3448
swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3449
vm_offset_t end)
3450
{
3451
3452
VM_OBJECT_WLOCK(object);
3453
KASSERT((object->flags & OBJ_ANON) == 0,
3454
("Splittable object with writecount"));
3455
KASSERT(object->un_pager.swp.writemappings >= (vm_ooffset_t)end - start,
3456
("swap obj %p writecount %jx dec %jx", object,
3457
(uintmax_t)object->un_pager.swp.writemappings,
3458
(uintmax_t)((vm_ooffset_t)end - start)));
3459
object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3460
VM_OBJECT_WUNLOCK(object);
3461
}
3462
3463