Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/vm/uma_int.h
39478 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2002-2019 Jeffrey Roberson <[email protected]>
5
* Copyright (c) 2004, 2005 Bosko Milekic <[email protected]>
6
* All rights reserved.
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice unmodified, this list of conditions, and the following
13
* disclaimer.
14
* 2. Redistributions in binary form must reproduce the above copyright
15
* notice, this list of conditions and the following disclaimer in the
16
* documentation and/or other materials provided with the distribution.
17
*
18
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
*
29
*/
30
31
#include <sys/counter.h>
32
#include <sys/_bitset.h>
33
#include <sys/_domainset.h>
34
#include <sys/_task.h>
35
36
/*
37
* This file includes definitions, structures, prototypes, and inlines that
38
* should not be used outside of the actual implementation of UMA.
39
*/
40
41
/*
42
* The brief summary; Zones describe unique allocation types. Zones are
43
* organized into per-CPU caches which are filled by buckets. Buckets are
44
* organized according to memory domains. Buckets are filled from kegs which
45
* are also organized according to memory domains. Kegs describe a unique
46
* allocation type, backend memory provider, and layout. Kegs are associated
47
* with one or more zones and zones reference one or more kegs. Kegs provide
48
* slabs which are virtually contiguous collections of pages. Each slab is
49
* broken down int one or more items that will satisfy an individual allocation.
50
*
51
* Allocation is satisfied in the following order:
52
* 1) Per-CPU cache
53
* 2) Per-domain cache of buckets
54
* 3) Slab from any of N kegs
55
* 4) Backend page provider
56
*
57
* More detail on individual objects is contained below:
58
*
59
* Kegs contain lists of slabs which are stored in either the full bin, empty
60
* bin, or partially allocated bin, to reduce fragmentation. They also contain
61
* the user supplied value for size, which is adjusted for alignment purposes
62
* and rsize is the result of that. The Keg also stores information for
63
* managing a hash of page addresses that maps pages to uma_slab_t structures
64
* for pages that don't have embedded uma_slab_t's.
65
*
66
* Keg slab lists are organized by memory domain to support NUMA allocation
67
* policies. By default allocations are spread across domains to reduce the
68
* potential for hotspots. Special keg creation flags may be specified to
69
* prefer location allocation. However there is no strict enforcement as frees
70
* may happen on any CPU and these are returned to the CPU-local cache
71
* regardless of the originating domain.
72
*
73
* The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
74
* be allocated off the page from a special slab zone. The free list within a
75
* slab is managed with a bitmask. For item sizes that would yield more than
76
* 10% memory waste we potentially allocate a separate uma_slab_t if this will
77
* improve the number of items per slab that will fit.
78
*
79
* The only really gross cases, with regards to memory waste, are for those
80
* items that are just over half the page size. You can get nearly 50% waste,
81
* so you fall back to the memory footprint of the power of two allocator. I
82
* have looked at memory allocation sizes on many of the machines available to
83
* me, and there does not seem to be an abundance of allocations at this range
84
* so at this time it may not make sense to optimize for it. This can, of
85
* course, be solved with dynamic slab sizes.
86
*
87
* Kegs may serve multiple Zones but by far most of the time they only serve
88
* one. When a Zone is created, a Keg is allocated and setup for it. While
89
* the backing Keg stores slabs, the Zone caches Buckets of items allocated
90
* from the slabs. Each Zone is equipped with an init/fini and ctor/dtor
91
* pair, as well as with its own set of small per-CPU caches, layered above
92
* the Zone's general Bucket cache.
93
*
94
* The PCPU caches are protected by critical sections, and may be accessed
95
* safely only from their associated CPU, while the Zones backed by the same
96
* Keg all share a common Keg lock (to coalesce contention on the backing
97
* slabs). The backing Keg typically only serves one Zone but in the case of
98
* multiple Zones, one of the Zones is considered the Primary Zone and all
99
* Zone-related stats from the Keg are done in the Primary Zone. For an
100
* example of a Multi-Zone setup, refer to the Mbuf allocation code.
101
*/
102
103
/*
104
* This is the representation for normal (Non OFFPAGE slab)
105
*
106
* i == item
107
* s == slab pointer
108
*
109
* <---------------- Page (UMA_SLAB_SIZE) ------------------>
110
* ___________________________________________________________
111
* | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ |
112
* ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
113
* ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
114
* |___________________________________________________________|
115
*
116
*
117
* This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
118
*
119
* ___________________________________________________________
120
* | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
121
* ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |
122
* ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |
123
* |___________________________________________________________|
124
* ___________ ^
125
* |slab header| |
126
* |___________|---*
127
*
128
*/
129
130
#ifndef VM_UMA_INT_H
131
#define VM_UMA_INT_H
132
133
#define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */
134
#define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */
135
#define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */
136
137
/* Max waste percentage before going to off page slab management */
138
#define UMA_MAX_WASTE 10
139
140
/* Max size of a CACHESPREAD slab. */
141
#define UMA_CACHESPREAD_MAX_SIZE (128 * 1024)
142
143
/*
144
* These flags must not overlap with the UMA_ZONE flags specified in uma.h.
145
*/
146
#define UMA_ZFLAG_OFFPAGE 0x00200000 /*
147
* Force the slab structure
148
* allocation off of the real
149
* memory.
150
*/
151
#define UMA_ZFLAG_HASH 0x00400000 /*
152
* Use a hash table instead of
153
* caching information in the
154
* vm_page.
155
*/
156
#define UMA_ZFLAG_VTOSLAB 0x00800000 /*
157
* Zone uses vtoslab for
158
* lookup.
159
*/
160
#define UMA_ZFLAG_CTORDTOR 0x01000000 /* Zone has ctor/dtor set. */
161
#define UMA_ZFLAG_LIMIT 0x02000000 /* Zone has limit set. */
162
#define UMA_ZFLAG_CACHE 0x04000000 /* uma_zcache_create()d it */
163
#define UMA_ZFLAG_BUCKET 0x10000000 /* Bucket zone. */
164
#define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */
165
#define UMA_ZFLAG_TRASH 0x40000000 /* Add trash ctor/dtor. */
166
167
#define UMA_ZFLAG_INHERIT \
168
(UMA_ZFLAG_OFFPAGE | UMA_ZFLAG_HASH | UMA_ZFLAG_VTOSLAB | \
169
UMA_ZFLAG_BUCKET | UMA_ZFLAG_INTERNAL)
170
171
#define PRINT_UMA_ZFLAGS "\20" \
172
"\37TRASH" \
173
"\36INTERNAL" \
174
"\35BUCKET" \
175
"\33CACHE" \
176
"\32LIMIT" \
177
"\31CTORDTOR" \
178
"\30VTOSLAB" \
179
"\27HASH" \
180
"\26OFFPAGE" \
181
"\23SMR" \
182
"\22ROUNDROBIN" \
183
"\21FIRSTTOUCH" \
184
"\20PCPU" \
185
"\17NODUMP" \
186
"\16CACHESPREAD" \
187
"\14MAXBUCKET" \
188
"\13NOBUCKET" \
189
"\12SECONDARY" \
190
"\11NOTPAGE" \
191
"\10VM" \
192
"\7MTXCLASS" \
193
"\6NOFREE" \
194
"\5MALLOC" \
195
"\4NOTOUCH" \
196
"\3CONTIG" \
197
"\2ZINIT"
198
199
/*
200
* Hash table for freed address -> slab translation.
201
*
202
* Only zones with memory not touchable by the allocator use the
203
* hash table. Otherwise slabs are found with vtoslab().
204
*/
205
#define UMA_HASH_SIZE_INIT 32
206
207
#define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
208
209
#define UMA_HASH_INSERT(h, s, mem) \
210
LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \
211
(mem))], slab_tohashslab(s), uhs_hlink)
212
213
#define UMA_HASH_REMOVE(h, s) \
214
LIST_REMOVE(slab_tohashslab(s), uhs_hlink)
215
216
LIST_HEAD(slabhashhead, uma_hash_slab);
217
218
struct uma_hash {
219
struct slabhashhead *uh_slab_hash; /* Hash table for slabs */
220
u_int uh_hashsize; /* Current size of the hash table */
221
u_int uh_hashmask; /* Mask used during hashing */
222
};
223
224
/*
225
* Align field or structure to cache 'sector' in intel terminology. This
226
* is more efficient with adjacent line prefetch.
227
*/
228
#if defined(__amd64__) || defined(__powerpc64__)
229
#define UMA_SUPER_ALIGN (CACHE_LINE_SIZE * 2)
230
#else
231
#define UMA_SUPER_ALIGN CACHE_LINE_SIZE
232
#endif
233
234
#define UMA_ALIGN __aligned(UMA_SUPER_ALIGN)
235
236
/*
237
* The uma_bucket structure is used to queue and manage buckets divorced
238
* from per-cpu caches. They are loaded into uma_cache_bucket structures
239
* for use.
240
*/
241
struct uma_bucket {
242
STAILQ_ENTRY(uma_bucket) ub_link; /* Link into the zone */
243
int16_t ub_cnt; /* Count of items in bucket. */
244
int16_t ub_entries; /* Max items. */
245
smr_seq_t ub_seq; /* SMR sequence number. */
246
void *ub_bucket[]; /* actual allocation storage */
247
};
248
249
typedef struct uma_bucket * uma_bucket_t;
250
251
/*
252
* The uma_cache_bucket structure is statically allocated on each per-cpu
253
* cache. Its use reduces branches and cache misses in the fast path.
254
*/
255
struct uma_cache_bucket {
256
uma_bucket_t ucb_bucket;
257
int16_t ucb_cnt;
258
int16_t ucb_entries;
259
uint32_t ucb_spare;
260
};
261
262
typedef struct uma_cache_bucket * uma_cache_bucket_t;
263
264
/*
265
* The uma_cache structure is allocated for each cpu for every zone
266
* type. This optimizes synchronization out of the allocator fast path.
267
*/
268
struct uma_cache {
269
struct uma_cache_bucket uc_freebucket; /* Bucket we're freeing to */
270
struct uma_cache_bucket uc_allocbucket; /* Bucket to allocate from */
271
struct uma_cache_bucket uc_crossbucket; /* cross domain bucket */
272
uint64_t uc_allocs; /* Count of allocations */
273
uint64_t uc_frees; /* Count of frees */
274
} UMA_ALIGN;
275
276
typedef struct uma_cache * uma_cache_t;
277
278
LIST_HEAD(slabhead, uma_slab);
279
280
/*
281
* The cache structure pads perfectly into 64 bytes so we use spare
282
* bits from the embedded cache buckets to store information from the zone
283
* and keep all fast-path allocations accessing a single per-cpu line.
284
*/
285
static inline void
286
cache_set_uz_flags(uma_cache_t cache, uint32_t flags)
287
{
288
289
cache->uc_freebucket.ucb_spare = flags;
290
}
291
292
static inline void
293
cache_set_uz_size(uma_cache_t cache, uint32_t size)
294
{
295
296
cache->uc_allocbucket.ucb_spare = size;
297
}
298
299
static inline uint32_t
300
cache_uz_flags(uma_cache_t cache)
301
{
302
303
return (cache->uc_freebucket.ucb_spare);
304
}
305
306
static inline uint32_t
307
cache_uz_size(uma_cache_t cache)
308
{
309
310
return (cache->uc_allocbucket.ucb_spare);
311
}
312
313
/*
314
* Per-domain slab lists. Embedded in the kegs.
315
*/
316
struct uma_domain {
317
struct mtx_padalign ud_lock; /* Lock for the domain lists. */
318
struct slabhead ud_part_slab; /* partially allocated slabs */
319
struct slabhead ud_free_slab; /* completely unallocated slabs */
320
struct slabhead ud_full_slab; /* fully allocated slabs */
321
uint32_t ud_pages; /* Total page count */
322
uint32_t ud_free_items; /* Count of items free in all slabs */
323
uint32_t ud_free_slabs; /* Count of free slabs */
324
} __aligned(CACHE_LINE_SIZE);
325
326
typedef struct uma_domain * uma_domain_t;
327
328
/*
329
* Keg management structure
330
*
331
* TODO: Optimize for cache line size
332
*
333
*/
334
struct uma_keg {
335
struct uma_hash uk_hash;
336
LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */
337
338
struct domainset_ref uk_dr; /* Domain selection policy. */
339
uint32_t uk_align; /* Alignment mask */
340
uint32_t uk_reserve; /* Number of reserved items. */
341
uint32_t uk_size; /* Requested size of each item */
342
uint32_t uk_rsize; /* Real size of each item */
343
344
uma_init uk_init; /* Keg's init routine */
345
uma_fini uk_fini; /* Keg's fini routine */
346
uma_alloc uk_allocf; /* Allocation function */
347
uma_free uk_freef; /* Free routine */
348
349
u_long uk_offset; /* Next free offset from base KVA */
350
vm_offset_t uk_kva; /* Zone base KVA */
351
352
uint32_t uk_pgoff; /* Offset to uma_slab struct */
353
uint16_t uk_ppera; /* pages per allocation from backend */
354
uint16_t uk_ipers; /* Items per slab */
355
uint32_t uk_flags; /* Internal flags */
356
357
/* Least used fields go to the last cache line. */
358
const char *uk_name; /* Name of creating zone. */
359
LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */
360
361
/* Must be last, variable sized. */
362
struct uma_domain uk_domain[]; /* Keg's slab lists. */
363
};
364
typedef struct uma_keg * uma_keg_t;
365
366
/*
367
* Free bits per-slab.
368
*/
369
#define SLAB_MAX_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT)
370
#define SLAB_MIN_SETSIZE _BITSET_BITS
371
BITSET_DEFINE(noslabbits, 0);
372
373
/*
374
* The slab structure manages a single contiguous allocation from backing
375
* store and subdivides it into individually allocatable items.
376
*/
377
struct uma_slab {
378
LIST_ENTRY(uma_slab) us_link; /* slabs in zone */
379
uint16_t us_freecount; /* How many are free? */
380
uint8_t us_flags; /* Page flags see uma.h */
381
uint8_t us_domain; /* Backing NUMA domain. */
382
struct noslabbits us_free; /* Free bitmask, flexible. */
383
};
384
_Static_assert(sizeof(struct uma_slab) == __offsetof(struct uma_slab, us_free),
385
"us_free field must be last");
386
_Static_assert(MAXMEMDOM < 255,
387
"us_domain field is not wide enough");
388
389
typedef struct uma_slab * uma_slab_t;
390
391
/*
392
* Slab structure with a full sized bitset and hash link for both
393
* HASH and OFFPAGE zones.
394
*/
395
struct uma_hash_slab {
396
LIST_ENTRY(uma_hash_slab) uhs_hlink; /* Link for hash table */
397
uint8_t *uhs_data; /* First item */
398
struct uma_slab uhs_slab; /* Must be last. */
399
};
400
401
typedef struct uma_hash_slab * uma_hash_slab_t;
402
403
static inline uma_hash_slab_t
404
slab_tohashslab(uma_slab_t slab)
405
{
406
407
return (__containerof(slab, struct uma_hash_slab, uhs_slab));
408
}
409
410
static inline void *
411
slab_data(uma_slab_t slab, uma_keg_t keg)
412
{
413
414
if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) == 0)
415
return ((void *)((uintptr_t)slab - keg->uk_pgoff));
416
else
417
return (slab_tohashslab(slab)->uhs_data);
418
}
419
420
static inline void *
421
slab_item(uma_slab_t slab, uma_keg_t keg, int index)
422
{
423
uintptr_t data;
424
425
data = (uintptr_t)slab_data(slab, keg);
426
return ((void *)(data + keg->uk_rsize * index));
427
}
428
429
static inline int
430
slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item)
431
{
432
uintptr_t data;
433
434
data = (uintptr_t)slab_data(slab, keg);
435
return (((uintptr_t)item - data) / keg->uk_rsize);
436
}
437
438
STAILQ_HEAD(uma_bucketlist, uma_bucket);
439
440
struct uma_zone_domain {
441
struct uma_bucketlist uzd_buckets; /* full buckets */
442
uma_bucket_t uzd_cross; /* Fills from cross buckets. */
443
long uzd_nitems; /* total item count */
444
long uzd_imax; /* maximum item count this period */
445
long uzd_imin; /* minimum item count this period */
446
long uzd_bimin; /* Minimum item count this batch. */
447
long uzd_wss; /* working set size estimate */
448
long uzd_limin; /* Longtime minimum item count. */
449
u_int uzd_timin; /* Time since uzd_limin == 0. */
450
smr_seq_t uzd_seq; /* Lowest queued seq. */
451
struct mtx uzd_lock; /* Lock for the domain */
452
} __aligned(CACHE_LINE_SIZE);
453
454
typedef struct uma_zone_domain * uma_zone_domain_t;
455
456
/*
457
* Zone structure - per memory type.
458
*/
459
struct uma_zone {
460
/* Offset 0, used in alloc/free fast/medium fast path and const. */
461
uint32_t uz_flags; /* Flags inherited from kegs */
462
uint32_t uz_size; /* Size inherited from kegs */
463
uma_ctor uz_ctor; /* Constructor for each allocation */
464
uma_dtor uz_dtor; /* Destructor */
465
smr_t uz_smr; /* Safe memory reclaim context. */
466
uint64_t uz_max_items; /* Maximum number of items to alloc */
467
uint64_t uz_bucket_max; /* Maximum bucket cache size */
468
uint16_t uz_bucket_size; /* Number of items in full bucket */
469
uint16_t uz_bucket_size_max; /* Maximum number of bucket items */
470
uint32_t uz_sleepers; /* Threads sleeping on limit */
471
counter_u64_t uz_xdomain; /* Total number of cross-domain frees */
472
473
/* Offset 64, used in bucket replenish. */
474
uma_keg_t uz_keg; /* This zone's keg if !CACHE */
475
uma_import uz_import; /* Import new memory to cache. */
476
uma_release uz_release; /* Release memory from cache. */
477
void *uz_arg; /* Import/release argument. */
478
uma_init uz_init; /* Initializer for each item */
479
uma_fini uz_fini; /* Finalizer for each item. */
480
volatile uint64_t uz_items; /* Total items count & sleepers */
481
uint64_t uz_sleeps; /* Total number of alloc sleeps */
482
483
/* Offset 128 Rare stats, misc read-only. */
484
LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */
485
counter_u64_t uz_allocs; /* Total number of allocations */
486
counter_u64_t uz_frees; /* Total number of frees */
487
counter_u64_t uz_fails; /* Total number of alloc failures */
488
const char *uz_name; /* Text name of the zone */
489
char *uz_ctlname; /* sysctl safe name string. */
490
int uz_namecnt; /* duplicate name count. */
491
uint16_t uz_bucket_size_min; /* Min number of items in bucket */
492
uint16_t uz_reclaimers; /* pending reclaim operations. */
493
494
/* Offset 192, rare read-only. */
495
struct sysctl_oid *uz_oid; /* sysctl oid pointer. */
496
const char *uz_warning; /* Warning to print on failure */
497
struct timeval uz_ratecheck; /* Warnings rate-limiting */
498
struct task uz_maxaction; /* Task to run when at limit */
499
500
/* Offset 256. */
501
struct mtx uz_cross_lock; /* Cross domain free lock */
502
503
/*
504
* This HAS to be the last item because we adjust the zone size
505
* based on NCPU and then allocate the space for the zones.
506
*/
507
struct uma_cache uz_cpu[]; /* Per cpu caches */
508
509
/* domains follow here. */
510
};
511
512
/*
513
* Macros for interpreting the uz_items field. 20 bits of sleeper count
514
* and 44 bit of item count.
515
*/
516
#define UZ_ITEMS_SLEEPER_SHIFT 44LL
517
#define UZ_ITEMS_SLEEPERS_MAX ((1 << (64 - UZ_ITEMS_SLEEPER_SHIFT)) - 1)
518
#define UZ_ITEMS_COUNT_MASK ((1LL << UZ_ITEMS_SLEEPER_SHIFT) - 1)
519
#define UZ_ITEMS_COUNT(x) ((x) & UZ_ITEMS_COUNT_MASK)
520
#define UZ_ITEMS_SLEEPERS(x) ((x) >> UZ_ITEMS_SLEEPER_SHIFT)
521
#define UZ_ITEMS_SLEEPER (1LL << UZ_ITEMS_SLEEPER_SHIFT)
522
523
#define ZONE_ASSERT_COLD(z) \
524
KASSERT(uma_zone_get_allocs((z)) == 0, \
525
("zone %s initialization after use.", (z)->uz_name))
526
527
/* Domains are contiguous after the last CPU */
528
#define ZDOM_GET(z, n) \
529
(&((uma_zone_domain_t)&(z)->uz_cpu[mp_maxid + 1])[n])
530
531
#undef UMA_ALIGN
532
533
#ifdef _KERNEL
534
/* Internal prototypes */
535
static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
536
537
/* Lock Macros */
538
539
#define KEG_LOCKPTR(k, d) (struct mtx *)&(k)->uk_domain[(d)].ud_lock
540
#define KEG_LOCK_INIT(k, d, lc) \
541
do { \
542
if ((lc)) \
543
mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \
544
(k)->uk_name, MTX_DEF | MTX_DUPOK); \
545
else \
546
mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \
547
"UMA zone", MTX_DEF | MTX_DUPOK); \
548
} while (0)
549
550
#define KEG_LOCK_FINI(k, d) mtx_destroy(KEG_LOCKPTR(k, d))
551
#define KEG_LOCK(k, d) \
552
({ mtx_lock(KEG_LOCKPTR(k, d)); KEG_LOCKPTR(k, d); })
553
#define KEG_UNLOCK(k, d) mtx_unlock(KEG_LOCKPTR(k, d))
554
#define KEG_LOCK_ASSERT(k, d) mtx_assert(KEG_LOCKPTR(k, d), MA_OWNED)
555
556
#define KEG_GET(zone, keg) do { \
557
(keg) = (zone)->uz_keg; \
558
KASSERT((void *)(keg) != NULL, \
559
("%s: Invalid zone %p type", __func__, (zone))); \
560
} while (0)
561
562
#define KEG_ASSERT_COLD(k) \
563
KASSERT(uma_keg_get_allocs((k)) == 0, \
564
("keg %s initialization after use.", (k)->uk_name))
565
566
#define ZDOM_LOCK_INIT(z, zdom, lc) \
567
do { \
568
if ((lc)) \
569
mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \
570
(z)->uz_name, MTX_DEF | MTX_DUPOK); \
571
else \
572
mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \
573
"UMA zone", MTX_DEF | MTX_DUPOK); \
574
} while (0)
575
#define ZDOM_LOCK_FINI(z) mtx_destroy(&(z)->uzd_lock)
576
#define ZDOM_LOCK_ASSERT(z) mtx_assert(&(z)->uzd_lock, MA_OWNED)
577
578
#define ZDOM_LOCK(z) mtx_lock(&(z)->uzd_lock)
579
#define ZDOM_OWNED(z) (mtx_owner(&(z)->uzd_lock) != NULL)
580
#define ZDOM_UNLOCK(z) mtx_unlock(&(z)->uzd_lock)
581
582
#define ZONE_LOCK(z) ZDOM_LOCK(ZDOM_GET((z), 0))
583
#define ZONE_UNLOCK(z) ZDOM_UNLOCK(ZDOM_GET((z), 0))
584
#define ZONE_LOCKPTR(z) (&ZDOM_GET((z), 0)->uzd_lock)
585
586
#define ZONE_CROSS_LOCK_INIT(z) \
587
mtx_init(&(z)->uz_cross_lock, "UMA Cross", NULL, MTX_DEF)
588
#define ZONE_CROSS_LOCK(z) mtx_lock(&(z)->uz_cross_lock)
589
#define ZONE_CROSS_UNLOCK(z) mtx_unlock(&(z)->uz_cross_lock)
590
#define ZONE_CROSS_LOCK_FINI(z) mtx_destroy(&(z)->uz_cross_lock)
591
592
/*
593
* Find a slab within a hash table. This is used for OFFPAGE zones to lookup
594
* the slab structure.
595
*
596
* Arguments:
597
* hash The hash table to search.
598
* data The base page of the item.
599
*
600
* Returns:
601
* A pointer to a slab if successful, else NULL.
602
*/
603
static __inline uma_slab_t
604
hash_sfind(struct uma_hash *hash, uint8_t *data)
605
{
606
uma_hash_slab_t slab;
607
u_int hval;
608
609
hval = UMA_HASH(hash, data);
610
611
LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) {
612
if ((uint8_t *)slab->uhs_data == data)
613
return (&slab->uhs_slab);
614
}
615
return (NULL);
616
}
617
618
static __inline uma_slab_t
619
vtoslab(vm_offset_t va)
620
{
621
vm_page_t p;
622
623
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
624
return (p->plinks.uma.slab);
625
}
626
627
static __inline void
628
vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab)
629
{
630
vm_page_t p;
631
632
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
633
*slab = p->plinks.uma.slab;
634
*zone = p->plinks.uma.zone;
635
}
636
637
static __inline void
638
vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab)
639
{
640
vm_page_t p;
641
642
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
643
p->plinks.uma.slab = slab;
644
p->plinks.uma.zone = zone;
645
}
646
647
extern unsigned long uma_kmem_limit;
648
extern unsigned long uma_kmem_total;
649
650
/* Adjust bytes under management by UMA. */
651
static inline void
652
uma_total_dec(unsigned long size)
653
{
654
655
atomic_subtract_long(&uma_kmem_total, size);
656
}
657
658
static inline void
659
uma_total_inc(unsigned long size)
660
{
661
662
if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit)
663
uma_reclaim_wakeup();
664
}
665
666
/*
667
* The following two functions may be defined by architecture specific code
668
* if they can provide more efficient allocation functions. This is useful
669
* for using direct mapped addresses.
670
*/
671
void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
672
uint8_t *pflag, int wait);
673
void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
674
675
/* Set a global soft limit on UMA managed memory. */
676
void uma_set_limit(unsigned long limit);
677
678
#endif /* _KERNEL */
679
680
#endif /* VM_UMA_INT_H */
681
682