#include "opt_ktrace.h"
#include "opt_vm.h"
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mman.h>
#include <sys/mutex.h>
#include <sys/pctrie.h>
#include <sys/proc.h>
#include <sys/racct.h>
#include <sys/refcount.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/signalvar.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#ifdef KTRACE
#include <sys/ktrace.h>
#endif
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_kern.h>
#include <vm/vm_pager.h>
#include <vm/vm_radix.h>
#include <vm/vm_extern.h>
#include <vm/vm_reserv.h>
#define PFBAK 4
#define PFFOR 4
#define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT)
#define VM_FAULT_DONTNEED_MIN 1048576
struct faultstate {
vm_offset_t vaddr;
vm_page_t *m_hold;
vm_prot_t fault_type;
vm_prot_t prot;
int fault_flags;
boolean_t wired;
struct timeval oom_start_time;
bool oom_started;
int nera;
bool can_read_lock;
vm_page_t m_cow;
vm_object_t object;
vm_pindex_t pindex;
vm_page_t m;
vm_object_t first_object;
vm_pindex_t first_pindex;
vm_page_t first_m;
vm_map_t map;
vm_map_entry_t entry;
int map_generation;
bool lookup_still_valid;
struct vnode *vp;
};
enum fault_status {
FAULT_SUCCESS = 10000,
FAULT_FAILURE,
FAULT_CONTINUE,
FAULT_RESTART,
FAULT_OUT_OF_BOUNDS,
FAULT_HARD,
FAULT_SOFT,
FAULT_PROTECTION_FAILURE,
};
enum fault_next_status {
FAULT_NEXT_GOTOBJ = 1,
FAULT_NEXT_NOOBJ,
FAULT_NEXT_RESTART,
};
static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
int ahead);
static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
int backward, int forward, bool obj_locked);
static int vm_pfault_oom_attempts = 3;
SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
&vm_pfault_oom_attempts, 0,
"Number of page allocation attempts in page fault handler before it "
"triggers OOM handling");
static int vm_pfault_oom_wait = 10;
SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
&vm_pfault_oom_wait, 0,
"Number of seconds to wait for free pages before retrying "
"the page fault handler");
static inline void
vm_fault_page_release(vm_page_t *mp)
{
vm_page_t m;
m = *mp;
if (m != NULL) {
vm_page_deactivate(m);
if (vm_page_xbusied(m))
vm_page_xunbusy(m);
else
vm_page_sunbusy(m);
*mp = NULL;
}
}
static inline void
vm_fault_page_free(vm_page_t *mp)
{
vm_page_t m;
m = *mp;
if (m != NULL) {
VM_OBJECT_ASSERT_WLOCKED(m->object);
if (!vm_page_wired(m))
vm_page_free(m);
else
vm_page_xunbusy(m);
*mp = NULL;
}
}
static inline bool
vm_fault_object_needs_getpages(vm_object_t object)
{
VM_OBJECT_ASSERT_LOCKED(object);
return ((object->flags & OBJ_SWAP) == 0 ||
!pctrie_is_empty(&object->un_pager.swp.swp_blks));
}
static inline void
vm_fault_unlock_map(struct faultstate *fs)
{
if (fs->lookup_still_valid) {
vm_map_lookup_done(fs->map, fs->entry);
fs->lookup_still_valid = false;
}
}
static void
vm_fault_unlock_vp(struct faultstate *fs)
{
if (fs->vp != NULL) {
vput(fs->vp);
fs->vp = NULL;
}
}
static bool
vm_fault_might_be_cow(struct faultstate *fs)
{
return (fs->object != fs->first_object);
}
static void
vm_fault_deallocate(struct faultstate *fs)
{
vm_fault_page_release(&fs->m_cow);
vm_fault_page_release(&fs->m);
vm_object_pip_wakeup(fs->object);
if (vm_fault_might_be_cow(fs)) {
VM_OBJECT_WLOCK(fs->first_object);
vm_fault_page_free(&fs->first_m);
VM_OBJECT_WUNLOCK(fs->first_object);
vm_object_pip_wakeup(fs->first_object);
}
vm_object_deallocate(fs->first_object);
vm_fault_unlock_map(fs);
vm_fault_unlock_vp(fs);
}
static void
vm_fault_unlock_and_deallocate(struct faultstate *fs)
{
VM_OBJECT_UNLOCK(fs->object);
vm_fault_deallocate(fs);
}
static void
vm_fault_dirty(struct faultstate *fs, vm_page_t m)
{
bool need_dirty;
if (((fs->prot & VM_PROT_WRITE) == 0 &&
(fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
(m->oflags & VPO_UNMANAGED) != 0)
return;
VM_PAGE_OBJECT_BUSY_ASSERT(m);
need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
(fs->fault_flags & VM_FAULT_WIRE) == 0) ||
(fs->fault_flags & VM_FAULT_DIRTY) != 0;
vm_object_set_writeable_dirty(m->object);
if (need_dirty && vm_page_set_dirty(m) == 0) {
if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
vm_page_aflag_set(m, PGA_NOSYNC);
else
vm_page_aflag_clear(m, PGA_NOSYNC);
}
}
static bool
vm_fault_is_read(const struct faultstate *fs)
{
return ((fs->prot & VM_PROT_WRITE) == 0 &&
(fs->fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) == 0);
}
static enum fault_status
vm_fault_soft_fast(struct faultstate *fs)
{
vm_page_t m, m_map;
#if VM_NRESERVLEVEL > 0
vm_page_t m_super;
int flags;
#endif
int psind;
vm_offset_t vaddr;
MPASS(fs->vp == NULL);
m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
if (m == NULL || !vm_page_all_valid(m) ||
((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
VM_OBJECT_WLOCK(fs->first_object);
return (FAULT_FAILURE);
}
vaddr = fs->vaddr;
VM_OBJECT_RLOCK(fs->first_object);
if (m->object != fs->first_object || m->pindex != fs->first_pindex)
goto fail;
vm_object_busy(fs->first_object);
if (!vm_page_all_valid(m) ||
((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
goto fail_busy;
m_map = m;
psind = 0;
#if VM_NRESERVLEVEL > 0
if ((m->flags & PG_FICTITIOUS) == 0 &&
(m_super = vm_reserv_to_superpage(m)) != NULL) {
psind = m_super->psind;
KASSERT(psind > 0,
("psind %d of m_super %p < 1", psind, m_super));
flags = PS_ALL_VALID;
if ((fs->prot & VM_PROT_WRITE) != 0) {
flags |= PS_NONE_BUSY;
if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
flags |= PS_ALL_DIRTY;
}
while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start ||
roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end ||
(vaddr & (pagesizes[psind] - 1)) !=
(VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) ||
!vm_page_ps_test(m_super, psind, flags, m) ||
!pmap_ps_enabled(fs->map->pmap)) {
psind--;
if (psind == 0)
break;
m_super += rounddown2(m - m_super,
atop(pagesizes[psind]));
KASSERT(m_super->psind >= psind,
("psind %d of m_super %p < %d", m_super->psind,
m_super, psind));
}
if (psind > 0) {
m_map = m_super;
vaddr = rounddown2(vaddr, pagesizes[psind]);
if ((flags & PS_ALL_DIRTY) != 0)
fs->fault_type |= VM_PROT_WRITE;
}
}
#endif
if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
KERN_SUCCESS)
goto fail_busy;
if (fs->m_hold != NULL) {
(*fs->m_hold) = m;
vm_page_wire(m);
}
if (psind == 0 && !fs->wired)
vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
VM_OBJECT_RUNLOCK(fs->first_object);
vm_fault_dirty(fs, m);
vm_object_unbusy(fs->first_object);
vm_map_lookup_done(fs->map, fs->entry);
curthread->td_ru.ru_minflt++;
return (FAULT_SUCCESS);
fail_busy:
vm_object_unbusy(fs->first_object);
fail:
if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
VM_OBJECT_RUNLOCK(fs->first_object);
VM_OBJECT_WLOCK(fs->first_object);
}
return (FAULT_FAILURE);
}
static void
vm_fault_restore_map_lock(struct faultstate *fs)
{
VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
if (!vm_map_trylock_read(fs->map)) {
VM_OBJECT_WUNLOCK(fs->first_object);
vm_map_lock_read(fs->map);
VM_OBJECT_WLOCK(fs->first_object);
}
fs->lookup_still_valid = true;
}
static void
vm_fault_populate_check_page(vm_page_t m)
{
MPASS(m != NULL);
MPASS(vm_page_all_valid(m));
MPASS(vm_page_xbusied(m));
}
static void
vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
vm_pindex_t last)
{
struct pctrie_iter pages;
vm_page_t m;
VM_OBJECT_ASSERT_WLOCKED(object);
MPASS(first <= last);
vm_page_iter_limit_init(&pages, object, last + 1);
VM_RADIX_FORALL_FROM(m, &pages, first) {
vm_fault_populate_check_page(m);
vm_page_deactivate(m);
vm_page_xunbusy(m);
}
KASSERT(pages.index == last, ("%s: pindex mismatch", __func__));
}
static enum fault_status
vm_fault_populate(struct faultstate *fs)
{
vm_offset_t vaddr;
vm_page_t m;
vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
int bdry_idx, i, npages, psind, rv;
enum fault_status res;
MPASS(fs->object == fs->first_object);
VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
MPASS(fs->first_object->backing_object == NULL);
MPASS(fs->lookup_still_valid);
pager_first = OFF_TO_IDX(fs->entry->offset);
pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
vm_fault_unlock_map(fs);
vm_fault_unlock_vp(fs);
res = FAULT_SUCCESS;
rv = vm_pager_populate(fs->first_object, fs->first_pindex,
fs->fault_type, fs->entry->max_protection, &pager_first,
&pager_last);
VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
if (rv == VM_PAGER_BAD) {
vm_fault_restore_map_lock(fs);
if (fs->map->timestamp != fs->map_generation)
return (FAULT_RESTART);
return (FAULT_CONTINUE);
}
if (rv != VM_PAGER_OK)
return (FAULT_FAILURE);
MPASS(pager_first <= pager_last);
MPASS(fs->first_pindex <= pager_last);
MPASS(fs->first_pindex >= pager_first);
MPASS(pager_last < fs->first_object->size);
vm_fault_restore_map_lock(fs);
bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry);
if (fs->map->timestamp != fs->map_generation) {
if (bdry_idx == 0) {
vm_fault_populate_cleanup(fs->first_object, pager_first,
pager_last);
} else {
m = vm_page_lookup(fs->first_object, pager_first);
if (m != fs->m)
vm_page_xunbusy(m);
}
return (FAULT_RESTART);
}
if (bdry_idx != 0) {
KASSERT(PMAP_HAS_LARGEPAGES,
("missing pmap support for large pages"));
m = vm_page_lookup(fs->first_object, pager_first);
vm_fault_populate_check_page(m);
VM_OBJECT_WUNLOCK(fs->first_object);
vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
fs->entry->offset;
KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
(uintmax_t)fs->entry->start, (uintmax_t)pager_first,
(uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
("unaligned superpage m %p %#jx", m,
(uintmax_t)VM_PAGE_TO_PHYS(m)));
rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
PMAP_ENTER_LARGEPAGE, bdry_idx);
VM_OBJECT_WLOCK(fs->first_object);
vm_page_xunbusy(m);
if (rv != KERN_SUCCESS) {
res = FAULT_FAILURE;
goto out;
}
if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
vm_page_wire(m + i);
}
if (fs->m_hold != NULL) {
*fs->m_hold = m + (fs->first_pindex - pager_first);
vm_page_wire(*fs->m_hold);
}
goto out;
}
map_first = OFF_TO_IDX(fs->entry->offset);
if (map_first > pager_first) {
vm_fault_populate_cleanup(fs->first_object, pager_first,
map_first - 1);
pager_first = map_first;
}
map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
if (map_last < pager_last) {
vm_fault_populate_cleanup(fs->first_object, map_last + 1,
pager_last);
pager_last = map_last;
}
for (pidx = pager_first; pidx <= pager_last; pidx += npages) {
m = vm_page_lookup(fs->first_object, pidx);
vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
KASSERT(m != NULL && m->pindex == pidx,
("%s: pindex mismatch", __func__));
psind = m->psind;
while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
!pmap_ps_enabled(fs->map->pmap)))
psind--;
npages = atop(pagesizes[psind]);
for (i = 0; i < npages; i++) {
vm_fault_populate_check_page(&m[i]);
vm_fault_dirty(fs, &m[i]);
}
VM_OBJECT_WUNLOCK(fs->first_object);
rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
(fs->wired ? PMAP_ENTER_WIRED : 0), psind);
MPASS(rv == KERN_SUCCESS ||
(psind > 0 && rv == KERN_PROTECTION_FAILURE));
if (__predict_false(psind > 0 &&
rv == KERN_PROTECTION_FAILURE)) {
MPASS(!fs->wired);
for (i = 0; i < npages; i++) {
rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
&m[i], fs->prot, fs->fault_type, 0);
MPASS(rv == KERN_SUCCESS);
}
}
VM_OBJECT_WLOCK(fs->first_object);
for (i = 0; i < npages; i++) {
if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
m[i].pindex == fs->first_pindex)
vm_page_wire(&m[i]);
else
vm_page_activate(&m[i]);
if (fs->m_hold != NULL &&
m[i].pindex == fs->first_pindex) {
(*fs->m_hold) = &m[i];
vm_page_wire(&m[i]);
}
vm_page_xunbusy(&m[i]);
}
}
out:
curthread->td_ru.ru_majflt++;
return (res);
}
static int prot_fault_translation;
SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
&prot_fault_translation, 0,
"Control signal to deliver on protection fault");
#define UCODE_PAGEFLT 12
#ifdef T_PAGEFLT
_Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
#endif
int
vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
int fault_flags, int *signo, int *ucode)
{
int result;
MPASS(signo == NULL || ucode != NULL);
#ifdef KTRACE
if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
ktrfault(vaddr, fault_type);
#endif
result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
NULL);
KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
result == KERN_INVALID_ADDRESS ||
result == KERN_RESOURCE_SHORTAGE ||
result == KERN_PROTECTION_FAILURE ||
result == KERN_OUT_OF_BOUNDS,
("Unexpected Mach error %d from vm_fault()", result));
#ifdef KTRACE
if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
ktrfaultend(result);
#endif
if (result != KERN_SUCCESS && signo != NULL) {
switch (result) {
case KERN_FAILURE:
case KERN_INVALID_ADDRESS:
*signo = SIGSEGV;
*ucode = SEGV_MAPERR;
break;
case KERN_RESOURCE_SHORTAGE:
*signo = SIGBUS;
*ucode = BUS_OOMERR;
break;
case KERN_OUT_OF_BOUNDS:
*signo = SIGBUS;
*ucode = BUS_OBJERR;
break;
case KERN_PROTECTION_FAILURE:
if (prot_fault_translation == 0) {
if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
curproc->p_osrel >= P_OSREL_SIGSEGV) {
*signo = SIGSEGV;
*ucode = SEGV_ACCERR;
} else {
*signo = SIGBUS;
*ucode = UCODE_PAGEFLT;
}
} else if (prot_fault_translation == 1) {
*signo = SIGBUS;
*ucode = UCODE_PAGEFLT;
} else {
*signo = SIGSEGV;
*ucode = SEGV_ACCERR;
}
break;
default:
KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
result));
break;
}
}
return (result);
}
static bool
vm_fault_object_ensure_wlocked(struct faultstate *fs)
{
if (fs->object == fs->first_object)
VM_OBJECT_ASSERT_WLOCKED(fs->object);
if (!fs->can_read_lock) {
VM_OBJECT_ASSERT_WLOCKED(fs->object);
return (true);
}
if (VM_OBJECT_WOWNED(fs->object))
return (true);
if (VM_OBJECT_TRYUPGRADE(fs->object))
return (true);
return (false);
}
static enum fault_status
vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
{
struct vnode *vp;
int error, locked;
if (fs->object->type != OBJT_VNODE)
return (FAULT_CONTINUE);
vp = fs->object->handle;
if (vp == fs->vp) {
ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
return (FAULT_CONTINUE);
}
vm_fault_unlock_vp(fs);
locked = VOP_ISLOCKED(vp);
if (locked != LK_EXCLUSIVE)
locked = LK_SHARED;
error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
if (error == 0) {
fs->vp = vp;
return (FAULT_CONTINUE);
}
vhold(vp);
if (objlocked)
vm_fault_unlock_and_deallocate(fs);
else
vm_fault_deallocate(fs);
error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
vdrop(vp);
fs->vp = vp;
KASSERT(error == 0, ("vm_fault: vget failed %d", error));
return (FAULT_RESTART);
}
static int
vm_fault_readahead(struct faultstate *fs)
{
int era, nera;
u_char behavior;
KASSERT(fs->lookup_still_valid, ("map unlocked"));
era = fs->entry->read_ahead;
behavior = vm_map_entry_behavior(fs->entry);
if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
nera = 0;
} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
nera = VM_FAULT_READ_AHEAD_MAX;
if (fs->vaddr == fs->entry->next_read)
vm_fault_dontneed(fs, fs->vaddr, nera);
} else if (fs->vaddr == fs->entry->next_read) {
nera = VM_FAULT_READ_AHEAD_MIN;
if (era > 0) {
nera += era + 1;
if (nera > VM_FAULT_READ_AHEAD_MAX)
nera = VM_FAULT_READ_AHEAD_MAX;
}
if (era == VM_FAULT_READ_AHEAD_MAX)
vm_fault_dontneed(fs, fs->vaddr, nera);
} else {
nera = 0;
}
if (era != nera) {
fs->entry->read_ahead = nera;
}
return (nera);
}
static int
vm_fault_lookup(struct faultstate *fs)
{
int result;
KASSERT(!fs->lookup_still_valid,
("vm_fault_lookup: Map already locked."));
result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
&fs->first_pindex, &fs->prot, &fs->wired);
if (result != KERN_SUCCESS) {
vm_fault_unlock_vp(fs);
return (result);
}
fs->map_generation = fs->map->timestamp;
if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
panic("%s: fault on nofault entry, addr: %#lx",
__func__, (u_long)fs->vaddr);
}
if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
fs->entry->wiring_thread != curthread) {
vm_map_unlock_read(fs->map);
vm_map_lock(fs->map);
if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
(fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
vm_fault_unlock_vp(fs);
fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
vm_map_unlock_and_wait(fs->map, 0);
} else
vm_map_unlock(fs->map);
return (KERN_RESOURCE_SHORTAGE);
}
MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
if (fs->wired)
fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
else
KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
("!fs->wired && VM_FAULT_WIRE"));
fs->lookup_still_valid = true;
return (KERN_SUCCESS);
}
static int
vm_fault_relookup(struct faultstate *fs)
{
vm_object_t retry_object;
vm_pindex_t retry_pindex;
vm_prot_t retry_prot;
int result;
if (!vm_map_trylock_read(fs->map))
return (KERN_RESTART);
fs->lookup_still_valid = true;
if (fs->map->timestamp == fs->map_generation)
return (KERN_SUCCESS);
result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
&fs->entry, &retry_object, &retry_pindex, &retry_prot,
&fs->wired);
if (result != KERN_SUCCESS) {
if (result == KERN_FAILURE)
return (KERN_RESTART);
return (result);
}
if (retry_object != fs->first_object ||
retry_pindex != fs->first_pindex)
return (KERN_RESTART);
fs->prot &= retry_prot;
fs->fault_type &= retry_prot;
if (fs->prot == 0)
return (KERN_RESTART);
KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
("!wired && VM_FAULT_WIRE"));
return (KERN_SUCCESS);
}
static bool
vm_fault_can_cow_rename(struct faultstate *fs)
{
return (
fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0);
}
static void
vm_fault_cow(struct faultstate *fs)
{
bool is_first_object_locked, rename_cow;
KASSERT(vm_fault_might_be_cow(fs),
("source and target COW objects are identical"));
is_first_object_locked = false;
rename_cow = false;
if (vm_fault_can_cow_rename(fs) && vm_page_xbusied(fs->m)) {
is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object);
if (is_first_object_locked &&
fs->object == fs->first_object->backing_object) {
if (VM_OBJECT_TRYWLOCK(fs->object)) {
rename_cow = vm_fault_can_cow_rename(fs);
if (!rename_cow)
VM_OBJECT_WUNLOCK(fs->object);
}
}
}
if (rename_cow) {
vm_page_assert_xbusied(fs->m);
vm_page_remove_xbusy(fs->m);
vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
fs->first_m);
vm_page_dirty(fs->m);
#if VM_NRESERVLEVEL > 0
vm_reserv_rename(fs->m, fs->first_object, fs->object,
OFF_TO_IDX(fs->first_object->backing_object_offset));
#endif
VM_OBJECT_WUNLOCK(fs->object);
VM_OBJECT_WUNLOCK(fs->first_object);
fs->first_m = fs->m;
fs->m = NULL;
VM_CNT_INC(v_cow_optim);
} else {
if (is_first_object_locked)
VM_OBJECT_WUNLOCK(fs->first_object);
pmap_copy_page(fs->m, fs->first_m);
if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
vm_page_wire(fs->first_m);
vm_page_unwire(fs->m, PQ_INACTIVE);
}
fs->m_cow = fs->m;
fs->m = NULL;
if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
pmap_remove_all(fs->m_cow);
}
vm_object_pip_wakeup(fs->object);
fs->object = fs->first_object;
fs->pindex = fs->first_pindex;
fs->m = fs->first_m;
VM_CNT_INC(v_cow_faults);
curthread->td_cow++;
}
static enum fault_next_status
vm_fault_next(struct faultstate *fs)
{
vm_object_t next_object;
if (fs->object == fs->first_object || !fs->can_read_lock)
VM_OBJECT_ASSERT_WLOCKED(fs->object);
else
VM_OBJECT_ASSERT_LOCKED(fs->object);
if (fs->object == fs->first_object) {
fs->first_m = fs->m;
fs->m = NULL;
} else if (fs->m != NULL) {
if (!vm_fault_object_ensure_wlocked(fs)) {
fs->can_read_lock = false;
vm_fault_unlock_and_deallocate(fs);
return (FAULT_NEXT_RESTART);
}
vm_fault_page_free(&fs->m);
}
next_object = fs->object->backing_object;
if (next_object == NULL)
return (FAULT_NEXT_NOOBJ);
MPASS(fs->first_m != NULL);
KASSERT(fs->object != next_object, ("object loop %p", next_object));
if (fs->can_read_lock)
VM_OBJECT_RLOCK(next_object);
else
VM_OBJECT_WLOCK(next_object);
vm_object_pip_add(next_object, 1);
if (fs->object != fs->first_object)
vm_object_pip_wakeup(fs->object);
fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
VM_OBJECT_UNLOCK(fs->object);
fs->object = next_object;
return (FAULT_NEXT_GOTOBJ);
}
static void
vm_fault_zerofill(struct faultstate *fs)
{
if (vm_fault_might_be_cow(fs)) {
vm_object_pip_wakeup(fs->object);
fs->object = fs->first_object;
fs->pindex = fs->first_pindex;
}
MPASS(fs->first_m != NULL);
MPASS(fs->m == NULL);
fs->m = fs->first_m;
fs->first_m = NULL;
if ((fs->m->flags & PG_ZERO) == 0) {
pmap_zero_page(fs->m);
} else {
VM_CNT_INC(v_ozfod);
}
VM_CNT_INC(v_zfod);
vm_page_valid(fs->m);
}
static bool
vm_fault_allocate_oom(struct faultstate *fs)
{
struct timeval now;
vm_fault_unlock_and_deallocate(fs);
if (vm_pfault_oom_attempts < 0)
return (true);
if (!fs->oom_started) {
fs->oom_started = true;
getmicrotime(&fs->oom_start_time);
return (true);
}
getmicrotime(&now);
timevalsub(&now, &fs->oom_start_time);
if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
return (true);
if (bootverbose)
printf(
"proc %d (%s) failed to alloc page on fault, starting OOM\n",
curproc->p_pid, curproc->p_comm);
vm_pageout_oom(VM_OOM_MEM_PF);
fs->oom_started = false;
return (false);
}
static enum fault_status
vm_fault_allocate(struct faultstate *fs, struct pctrie_iter *pages)
{
struct domainset *dset;
enum fault_status res;
if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
res = vm_fault_lock_vnode(fs, true);
MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
if (res == FAULT_RESTART)
return (res);
}
if (fs->pindex >= fs->object->size) {
vm_fault_unlock_and_deallocate(fs);
return (FAULT_OUT_OF_BOUNDS);
}
if (fs->object == fs->first_object &&
(fs->first_object->flags & OBJ_POPULATE) != 0 &&
fs->first_object->shadow_count == 0) {
res = vm_fault_populate(fs);
switch (res) {
case FAULT_SUCCESS:
case FAULT_FAILURE:
case FAULT_RESTART:
vm_fault_unlock_and_deallocate(fs);
return (res);
case FAULT_CONTINUE:
pctrie_iter_reset(pages);
break;
default:
panic("inconsistent return codes");
}
}
dset = fs->object->domain.dr_policy;
if (dset == NULL)
dset = curthread->td_domain.dr_policy;
if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
#if VM_NRESERVLEVEL > 0
vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
#endif
if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
vm_fault_unlock_and_deallocate(fs);
return (FAULT_FAILURE);
}
fs->m = vm_page_alloc_iter(fs->object, fs->pindex,
P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0, pages);
}
if (fs->m == NULL) {
if (vm_fault_allocate_oom(fs))
vm_waitpfault(dset, vm_pfault_oom_wait * hz);
return (FAULT_RESTART);
}
fs->oom_started = false;
return (FAULT_CONTINUE);
}
static enum fault_status
vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
{
vm_offset_t e_end, e_start;
int ahead, behind, cluster_offset, rv;
enum fault_status status;
u_char behavior;
e_start = fs->entry->start;
e_end = fs->entry->end;
behavior = vm_map_entry_behavior(fs->entry);
if (fs->nera == -1 && !P_KILLED(curproc))
fs->nera = vm_fault_readahead(fs);
vm_fault_unlock_map(fs);
status = vm_fault_lock_vnode(fs, false);
MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
if (status == FAULT_RESTART)
return (status);
KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map),
("vm_fault: vnode-backed object mapped by system map"));
if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
P_KILLED(curproc)) {
behind = 0;
ahead = 0;
} else {
if (fs->nera > 0) {
behind = 0;
ahead = fs->nera;
} else {
cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
behind = ulmin(cluster_offset,
atop(fs->vaddr - e_start));
ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
}
ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
}
*behindp = behind;
*aheadp = ahead;
rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
if (rv == VM_PAGER_OK)
return (FAULT_HARD);
if (rv == VM_PAGER_ERROR)
printf("vm_fault: pager read error, pid %d (%s)\n",
curproc->p_pid, curproc->p_comm);
if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
VM_OBJECT_WLOCK(fs->object);
vm_fault_page_free(&fs->m);
vm_fault_unlock_and_deallocate(fs);
return (FAULT_OUT_OF_BOUNDS);
}
KASSERT(rv == VM_PAGER_FAIL,
("%s: unexpected pager error %d", __func__, rv));
return (FAULT_CONTINUE);
}
static void
vm_fault_busy_sleep(struct faultstate *fs, int allocflags)
{
vm_page_aflag_set(fs->m, PGA_REFERENCED);
if (vm_fault_might_be_cow(fs)) {
vm_fault_page_release(&fs->first_m);
vm_object_pip_wakeup(fs->first_object);
}
vm_object_pip_wakeup(fs->object);
vm_fault_unlock_map(fs);
if (!vm_page_busy_sleep(fs->m, "vmpfw", allocflags))
VM_OBJECT_UNLOCK(fs->object);
VM_CNT_INC(v_intrans);
vm_object_deallocate(fs->first_object);
}
static enum fault_status
vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
{
struct pctrie_iter pages;
enum fault_status res;
bool dead;
if (fs->object == fs->first_object || !fs->can_read_lock)
VM_OBJECT_ASSERT_WLOCKED(fs->object);
else
VM_OBJECT_ASSERT_LOCKED(fs->object);
if ((fs->object->flags & OBJ_DEAD) != 0) {
dead = fs->object->type == OBJT_DEAD;
vm_fault_unlock_and_deallocate(fs);
if (dead)
return (FAULT_PROTECTION_FAILURE);
pause("vmf_de", 1);
return (FAULT_RESTART);
}
vm_page_iter_init(&pages, fs->object);
fs->m = vm_radix_iter_lookup(&pages, fs->pindex);
if (fs->m != NULL) {
if (vm_page_all_valid(fs->m) &&
(vm_fault_is_read(fs) || vm_fault_might_be_cow(fs)) &&
(!vm_fault_can_cow_rename(fs) ||
fs->object != fs->first_object->backing_object)) {
if (!vm_page_trysbusy(fs->m)) {
vm_fault_busy_sleep(fs, VM_ALLOC_SBUSY);
return (FAULT_RESTART);
}
if (__predict_true(vm_page_all_valid(fs->m) &&
(vm_fault_is_read(fs) ||
vm_fault_might_be_cow(fs)))) {
VM_OBJECT_UNLOCK(fs->object);
return (FAULT_SOFT);
}
vm_page_sunbusy(fs->m);
}
if (!vm_page_tryxbusy(fs->m)) {
vm_fault_busy_sleep(fs, 0);
return (FAULT_RESTART);
}
if (vm_page_all_valid(fs->m)) {
VM_OBJECT_UNLOCK(fs->object);
return (FAULT_SOFT);
}
}
if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
fs->object == fs->first_object)) {
if (!vm_fault_object_ensure_wlocked(fs)) {
fs->can_read_lock = false;
vm_fault_unlock_and_deallocate(fs);
return (FAULT_RESTART);
}
res = vm_fault_allocate(fs, &pages);
if (res != FAULT_CONTINUE)
return (res);
}
if (vm_fault_object_needs_getpages(fs->object)) {
VM_OBJECT_UNLOCK(fs->object);
res = vm_fault_getpages(fs, behindp, aheadp);
if (res == FAULT_CONTINUE)
VM_OBJECT_WLOCK(fs->object);
} else {
res = FAULT_CONTINUE;
}
return (res);
}
int
vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
int fault_flags, vm_page_t *m_hold)
{
struct pctrie_iter pages;
struct faultstate fs;
int ahead, behind, faultcount, rv;
enum fault_status res;
enum fault_next_status res_next;
bool hardfault;
VM_CNT_INC(v_vm_faults);
if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
return (KERN_PROTECTION_FAILURE);
fs.vp = NULL;
fs.vaddr = vaddr;
fs.m_hold = m_hold;
fs.fault_flags = fault_flags;
fs.map = map;
fs.lookup_still_valid = false;
fs.oom_started = false;
fs.nera = -1;
fs.can_read_lock = true;
faultcount = 0;
hardfault = false;
RetryFault:
fs.fault_type = fault_type;
rv = vm_fault_lookup(&fs);
if (rv != KERN_SUCCESS) {
if (rv == KERN_RESOURCE_SHORTAGE)
goto RetryFault;
return (rv);
}
if (fs.vp == NULL &&
(fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
(fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
res = vm_fault_soft_fast(&fs);
if (res == FAULT_SUCCESS) {
VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
return (KERN_SUCCESS);
}
VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
} else {
vm_page_iter_init(&pages, fs.first_object);
VM_OBJECT_WLOCK(fs.first_object);
}
vm_object_reference_locked(fs.first_object);
vm_object_pip_add(fs.first_object, 1);
fs.m_cow = fs.m = fs.first_m = NULL;
fs.object = fs.first_object;
fs.pindex = fs.first_pindex;
if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
res = vm_fault_allocate(&fs, &pages);
switch (res) {
case FAULT_RESTART:
goto RetryFault;
case FAULT_SUCCESS:
return (KERN_SUCCESS);
case FAULT_FAILURE:
return (KERN_FAILURE);
case FAULT_OUT_OF_BOUNDS:
return (KERN_OUT_OF_BOUNDS);
case FAULT_CONTINUE:
break;
default:
panic("vm_fault: Unhandled status %d", res);
}
}
while (TRUE) {
KASSERT(fs.m == NULL,
("page still set %p at loop start", fs.m));
res = vm_fault_object(&fs, &behind, &ahead);
switch (res) {
case FAULT_SOFT:
goto found;
case FAULT_HARD:
faultcount = behind + 1 + ahead;
hardfault = true;
goto found;
case FAULT_RESTART:
goto RetryFault;
case FAULT_SUCCESS:
return (KERN_SUCCESS);
case FAULT_FAILURE:
return (KERN_FAILURE);
case FAULT_OUT_OF_BOUNDS:
return (KERN_OUT_OF_BOUNDS);
case FAULT_PROTECTION_FAILURE:
return (KERN_PROTECTION_FAILURE);
case FAULT_CONTINUE:
break;
default:
panic("vm_fault: Unhandled status %d", res);
}
res_next = vm_fault_next(&fs);
if (res_next == FAULT_NEXT_RESTART)
goto RetryFault;
else if (res_next == FAULT_NEXT_GOTOBJ)
continue;
MPASS(res_next == FAULT_NEXT_NOOBJ);
if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
if (fs.first_object == fs.object)
vm_fault_page_free(&fs.first_m);
vm_fault_unlock_and_deallocate(&fs);
return (KERN_OUT_OF_BOUNDS);
}
VM_OBJECT_UNLOCK(fs.object);
vm_fault_zerofill(&fs);
faultcount = 1;
break;
}
found:
vm_page_assert_busied(fs.m);
VM_OBJECT_ASSERT_UNLOCKED(fs.object);
if (vm_fault_might_be_cow(&fs)) {
if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
vm_fault_cow(&fs);
if (faultcount == 0)
faultcount = 1;
} else {
fs.prot &= ~VM_PROT_WRITE;
}
}
if (!fs.lookup_still_valid) {
rv = vm_fault_relookup(&fs);
if (rv != KERN_SUCCESS) {
vm_fault_deallocate(&fs);
if (rv == KERN_RESTART)
goto RetryFault;
return (rv);
}
}
VM_OBJECT_ASSERT_UNLOCKED(fs.object);
if (hardfault)
fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
if (fs.m_cow != NULL) {
KASSERT(vm_page_none_valid(fs.m),
("vm_fault: page %p is already valid", fs.m_cow));
vm_page_valid(fs.m);
}
vm_page_assert_busied(fs.m);
KASSERT(vm_page_all_valid(fs.m),
("vm_fault: page %p partially invalid", fs.m));
vm_fault_dirty(&fs, fs.m);
pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
fs.wired == 0)
vm_fault_prefault(&fs, vaddr,
faultcount > 0 ? behind : PFBAK,
faultcount > 0 ? ahead : PFFOR, false);
if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
vm_page_wire(fs.m);
else
vm_page_activate(fs.m);
if (fs.m_hold != NULL) {
(*fs.m_hold) = fs.m;
vm_page_wire(fs.m);
}
KASSERT(fs.first_object == fs.object || vm_page_xbusied(fs.first_m),
("first_m must be xbusy"));
if (vm_page_xbusied(fs.m))
vm_page_xunbusy(fs.m);
else
vm_page_sunbusy(fs.m);
fs.m = NULL;
vm_fault_deallocate(&fs);
if (hardfault) {
VM_CNT_INC(v_io_faults);
curthread->td_ru.ru_majflt++;
#ifdef RACCT
if (racct_enable && fs.object->type == OBJT_VNODE) {
PROC_LOCK(curproc);
if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
racct_add_force(curproc, RACCT_WRITEBPS,
PAGE_SIZE + behind * PAGE_SIZE);
racct_add_force(curproc, RACCT_WRITEIOPS, 1);
} else {
racct_add_force(curproc, RACCT_READBPS,
PAGE_SIZE + ahead * PAGE_SIZE);
racct_add_force(curproc, RACCT_READIOPS, 1);
}
PROC_UNLOCK(curproc);
}
#endif
} else
curthread->td_ru.ru_minflt++;
return (KERN_SUCCESS);
}
static void
vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
{
struct pctrie_iter pages;
vm_map_entry_t entry;
vm_object_t first_object;
vm_offset_t end, start;
vm_page_t m;
vm_size_t size;
VM_OBJECT_ASSERT_UNLOCKED(fs->object);
first_object = fs->first_object;
if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
VM_OBJECT_RLOCK(first_object);
size = VM_FAULT_DONTNEED_MIN;
if (MAXPAGESIZES > 1 && size < pagesizes[1])
size = pagesizes[1];
end = rounddown2(vaddr, size);
if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
(entry = fs->entry)->start < end) {
if (end - entry->start < size)
start = entry->start;
else
start = end - size;
pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
vm_page_iter_limit_init(&pages, first_object,
OFF_TO_IDX(entry->offset) +
atop(end - entry->start));
VM_RADIX_FOREACH_FROM(m, &pages,
OFF_TO_IDX(entry->offset) +
atop(start - entry->start)) {
if (!vm_page_all_valid(m) ||
vm_page_busied(m))
continue;
if (!vm_page_inactive(m))
vm_page_deactivate(m);
}
}
VM_OBJECT_RUNLOCK(first_object);
}
}
static void
vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
int backward, int forward, bool obj_locked)
{
pmap_t pmap;
vm_map_entry_t entry;
vm_object_t backing_object, lobject;
vm_offset_t addr, starta;
vm_pindex_t pindex;
vm_page_t m;
vm_prot_t prot;
int i;
pmap = fs->map->pmap;
if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
return;
entry = fs->entry;
if (addra < backward * PAGE_SIZE) {
starta = entry->start;
} else {
starta = addra - backward * PAGE_SIZE;
if (starta < entry->start)
starta = entry->start;
}
prot = entry->protection;
if ((fs->prot & VM_PROT_WRITE) != 0)
prot |= VM_PROT_NO_PROMOTE;
for (i = 0; i < 2 * imax(backward, forward); i++) {
addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
PAGE_SIZE);
if (addr > addra + forward * PAGE_SIZE)
addr = 0;
if (addr < starta || addr >= entry->end)
continue;
if (!pmap_is_prefaultable(pmap, addr))
continue;
pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
lobject = entry->object.vm_object;
if (!obj_locked)
VM_OBJECT_RLOCK(lobject);
while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
!vm_fault_object_needs_getpages(lobject) &&
(backing_object = lobject->backing_object) != NULL) {
KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
0, ("vm_fault_prefault: unaligned object offset"));
pindex += lobject->backing_object_offset >> PAGE_SHIFT;
VM_OBJECT_RLOCK(backing_object);
if (!obj_locked || lobject != entry->object.vm_object)
VM_OBJECT_RUNLOCK(lobject);
lobject = backing_object;
}
if (m == NULL) {
if (!obj_locked || lobject != entry->object.vm_object)
VM_OBJECT_RUNLOCK(lobject);
break;
}
if (vm_page_all_valid(m) &&
(m->flags & PG_FICTITIOUS) == 0)
pmap_enter_quick(pmap, addr, m, prot);
if (!obj_locked || lobject != entry->object.vm_object)
VM_OBJECT_RUNLOCK(lobject);
}
}
int
vm_fault_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
vm_prot_t prot, vm_page_t *ma, int max_count, int *ppages_count)
{
vm_offset_t end, va;
vm_page_t *mp;
int count, error;
boolean_t pmap_failed;
if (len == 0) {
*ppages_count = 0;
return (0);
}
end = round_page(addr + len);
addr = trunc_page(addr);
if (!vm_map_range_valid(map, addr, end))
return (ENOMEM);
if (atop(end - addr) > max_count)
return (EINVAL);
count = atop(end - addr);
pmap_failed = FALSE;
for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
*mp = pmap_extract_and_hold(map->pmap, va, prot);
if (*mp == NULL)
pmap_failed = TRUE;
else if ((prot & VM_PROT_WRITE) != 0 &&
(*mp)->dirty != VM_PAGE_BITS_ALL) {
vm_page_dirty(*mp);
}
}
if (pmap_failed) {
if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
(curthread->td_pflags & TDP_NOFAULTING) != 0) {
error = EAGAIN;
goto fail;
}
for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
if (*mp == NULL && vm_fault(map, va, prot,
VM_FAULT_NORMAL, mp) != KERN_SUCCESS) {
error = EFAULT;
goto fail;
}
}
}
*ppages_count = count;
return (0);
fail:
for (mp = ma; mp < ma + count; mp++)
if (*mp != NULL)
vm_page_unwire(*mp, PQ_INACTIVE);
return (error);
}
int
vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
vm_prot_t prot, vm_page_t *ma, int max_count)
{
int error, pages_count;
error = vm_fault_hold_pages(map, addr, len, prot, ma,
max_count, &pages_count);
if (error != 0) {
if (error == EINVAL)
panic("vm_fault_quick_hold_pages: count > max_count");
return (-1);
}
return (pages_count);
}
void
vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
vm_ooffset_t *fork_charge)
{
struct pctrie_iter pages;
vm_object_t backing_object, dst_object, object, src_object;
vm_pindex_t dst_pindex, pindex, src_pindex;
vm_prot_t access, prot;
vm_offset_t vaddr;
vm_page_t dst_m;
vm_page_t src_m;
bool upgrade;
upgrade = src_entry == dst_entry;
KASSERT(upgrade || dst_entry->object.vm_object == NULL,
("vm_fault_copy_entry: vm_object not NULL"));
access = prot = dst_entry->protection;
if (!upgrade)
access &= ~VM_PROT_WRITE;
src_object = src_entry->object.vm_object;
src_pindex = OFF_TO_IDX(src_entry->offset);
if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
dst_object = src_object;
vm_object_reference(dst_object);
} else {
dst_object = vm_object_allocate_anon(atop(dst_entry->end -
dst_entry->start), NULL, NULL, 0);
#if VM_NRESERVLEVEL > 0
dst_object->flags |= OBJ_COLORED;
dst_object->pg_color = atop(dst_entry->start);
#endif
dst_object->domain = src_object->domain;
dst_object->charge = dst_entry->end - dst_entry->start;
dst_entry->object.vm_object = dst_object;
dst_entry->offset = 0;
dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
}
VM_OBJECT_WLOCK(dst_object);
if (fork_charge != NULL) {
KASSERT(dst_entry->cred == NULL,
("vm_fault_copy_entry: leaked swp charge"));
dst_object->cred = curthread->td_ucred;
crhold(dst_object->cred);
*fork_charge += dst_object->charge;
} else if ((dst_object->flags & OBJ_SWAP) != 0 &&
dst_object->cred == NULL) {
KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
dst_entry));
dst_object->cred = dst_entry->cred;
dst_entry->cred = NULL;
}
vm_page_iter_init(&pages, dst_object);
for (vaddr = dst_entry->start, dst_pindex = 0;
vaddr < dst_entry->end;
vaddr += PAGE_SIZE, dst_pindex++) {
again:
if (src_object != dst_object)
VM_OBJECT_RLOCK(src_object);
object = src_object;
pindex = src_pindex + dst_pindex;
while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
(backing_object = object->backing_object) != NULL) {
KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
upgrade,
("vm_fault_copy_entry: main object missing page"));
VM_OBJECT_RLOCK(backing_object);
pindex += OFF_TO_IDX(object->backing_object_offset);
if (object != dst_object)
VM_OBJECT_RUNLOCK(object);
object = backing_object;
}
KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
if (object != dst_object) {
pindex = (src_object == dst_object ? src_pindex : 0) +
dst_pindex;
dst_m = vm_page_alloc_iter(dst_object, pindex,
VM_ALLOC_NORMAL, &pages);
if (dst_m == NULL) {
VM_OBJECT_WUNLOCK(dst_object);
VM_OBJECT_RUNLOCK(object);
vm_wait(dst_object);
VM_OBJECT_WLOCK(dst_object);
pctrie_iter_reset(&pages);
goto again;
}
if (src_object == dst_object &&
(object->flags & OBJ_ONEMAPPING) == 0)
pmap_remove_all(src_m);
pmap_copy_page(src_m, dst_m);
dst_m->dirty = dst_m->valid = src_m->valid;
VM_OBJECT_RUNLOCK(object);
} else {
dst_m = src_m;
if (vm_page_busy_acquire(
dst_m, VM_ALLOC_WAITFAIL) == 0) {
pctrie_iter_reset(&pages);
goto again;
}
if (dst_m->pindex >= dst_object->size) {
vm_page_xunbusy(dst_m);
break;
}
}
if (vm_page_all_valid(dst_m)) {
VM_OBJECT_WUNLOCK(dst_object);
pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
VM_OBJECT_WLOCK(dst_object);
}
if (upgrade) {
if (src_m != dst_m) {
vm_page_unwire(src_m, PQ_INACTIVE);
vm_page_wire(dst_m);
} else {
KASSERT(vm_page_wired(dst_m),
("dst_m %p is not wired", dst_m));
}
} else {
vm_page_activate(dst_m);
}
vm_page_xunbusy(dst_m);
}
VM_OBJECT_WUNLOCK(dst_object);
if (upgrade) {
dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
vm_object_deallocate(src_object);
}
}
int
vm_fault_disable_pagefaults(void)
{
return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
}
void
vm_fault_enable_pagefaults(int save)
{
curthread_pflags_restore(save);
}