Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/vm/vm_fault.c
39475 views
1
/*-
2
* SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3
*
4
* Copyright (c) 1991, 1993
5
* The Regents of the University of California. All rights reserved.
6
* Copyright (c) 1994 John S. Dyson
7
* All rights reserved.
8
* Copyright (c) 1994 David Greenman
9
* All rights reserved.
10
*
11
*
12
* This code is derived from software contributed to Berkeley by
13
* The Mach Operating System project at Carnegie-Mellon University.
14
*
15
* Redistribution and use in source and binary forms, with or without
16
* modification, are permitted provided that the following conditions
17
* are met:
18
* 1. Redistributions of source code must retain the above copyright
19
* notice, this list of conditions and the following disclaimer.
20
* 2. Redistributions in binary form must reproduce the above copyright
21
* notice, this list of conditions and the following disclaimer in the
22
* documentation and/or other materials provided with the distribution.
23
* 3. All advertising materials mentioning features or use of this software
24
* must display the following acknowledgement:
25
* This product includes software developed by the University of
26
* California, Berkeley and its contributors.
27
* 4. Neither the name of the University nor the names of its contributors
28
* may be used to endorse or promote products derived from this software
29
* without specific prior written permission.
30
*
31
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41
* SUCH DAMAGE.
42
*
43
*
44
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
45
* All rights reserved.
46
*
47
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
48
*
49
* Permission to use, copy, modify and distribute this software and
50
* its documentation is hereby granted, provided that both the copyright
51
* notice and this permission notice appear in all copies of the
52
* software, derivative works or modified versions, and any portions
53
* thereof, and that both notices appear in supporting documentation.
54
*
55
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58
*
59
* Carnegie Mellon requests users of this software to return to
60
*
61
* Software Distribution Coordinator or [email protected]
62
* School of Computer Science
63
* Carnegie Mellon University
64
* Pittsburgh PA 15213-3890
65
*
66
* any improvements or extensions that they make and grant Carnegie the
67
* rights to redistribute these changes.
68
*/
69
70
/*
71
* Page fault handling module.
72
*/
73
74
#include "opt_ktrace.h"
75
#include "opt_vm.h"
76
77
#include <sys/systm.h>
78
#include <sys/kernel.h>
79
#include <sys/lock.h>
80
#include <sys/mman.h>
81
#include <sys/mutex.h>
82
#include <sys/pctrie.h>
83
#include <sys/proc.h>
84
#include <sys/racct.h>
85
#include <sys/refcount.h>
86
#include <sys/resourcevar.h>
87
#include <sys/rwlock.h>
88
#include <sys/signalvar.h>
89
#include <sys/sysctl.h>
90
#include <sys/sysent.h>
91
#include <sys/vmmeter.h>
92
#include <sys/vnode.h>
93
#ifdef KTRACE
94
#include <sys/ktrace.h>
95
#endif
96
97
#include <vm/vm.h>
98
#include <vm/vm_param.h>
99
#include <vm/pmap.h>
100
#include <vm/vm_map.h>
101
#include <vm/vm_object.h>
102
#include <vm/vm_page.h>
103
#include <vm/vm_pageout.h>
104
#include <vm/vm_kern.h>
105
#include <vm/vm_pager.h>
106
#include <vm/vm_radix.h>
107
#include <vm/vm_extern.h>
108
#include <vm/vm_reserv.h>
109
110
#define PFBAK 4
111
#define PFFOR 4
112
113
#define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT)
114
115
#define VM_FAULT_DONTNEED_MIN 1048576
116
117
struct faultstate {
118
/* Fault parameters. */
119
vm_offset_t vaddr;
120
vm_page_t *m_hold;
121
vm_prot_t fault_type;
122
vm_prot_t prot;
123
int fault_flags;
124
boolean_t wired;
125
126
/* Control state. */
127
struct timeval oom_start_time;
128
bool oom_started;
129
int nera;
130
bool can_read_lock;
131
132
/* Page reference for cow. */
133
vm_page_t m_cow;
134
135
/* Current object. */
136
vm_object_t object;
137
vm_pindex_t pindex;
138
vm_page_t m;
139
140
/* Top-level map object. */
141
vm_object_t first_object;
142
vm_pindex_t first_pindex;
143
vm_page_t first_m;
144
145
/* Map state. */
146
vm_map_t map;
147
vm_map_entry_t entry;
148
int map_generation;
149
bool lookup_still_valid;
150
151
/* Vnode if locked. */
152
struct vnode *vp;
153
};
154
155
/*
156
* Return codes for internal fault routines.
157
*/
158
enum fault_status {
159
FAULT_SUCCESS = 10000, /* Return success to user. */
160
FAULT_FAILURE, /* Return failure to user. */
161
FAULT_CONTINUE, /* Continue faulting. */
162
FAULT_RESTART, /* Restart fault. */
163
FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */
164
FAULT_HARD, /* Performed I/O. */
165
FAULT_SOFT, /* Found valid page. */
166
FAULT_PROTECTION_FAILURE, /* Invalid access. */
167
};
168
169
enum fault_next_status {
170
FAULT_NEXT_GOTOBJ = 1,
171
FAULT_NEXT_NOOBJ,
172
FAULT_NEXT_RESTART,
173
};
174
175
static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
176
int ahead);
177
static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
178
int backward, int forward, bool obj_locked);
179
180
static int vm_pfault_oom_attempts = 3;
181
SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
182
&vm_pfault_oom_attempts, 0,
183
"Number of page allocation attempts in page fault handler before it "
184
"triggers OOM handling");
185
186
static int vm_pfault_oom_wait = 10;
187
SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
188
&vm_pfault_oom_wait, 0,
189
"Number of seconds to wait for free pages before retrying "
190
"the page fault handler");
191
192
static inline void
193
vm_fault_page_release(vm_page_t *mp)
194
{
195
vm_page_t m;
196
197
m = *mp;
198
if (m != NULL) {
199
/*
200
* We are likely to loop around again and attempt to busy
201
* this page. Deactivating it leaves it available for
202
* pageout while optimizing fault restarts.
203
*/
204
vm_page_deactivate(m);
205
if (vm_page_xbusied(m))
206
vm_page_xunbusy(m);
207
else
208
vm_page_sunbusy(m);
209
*mp = NULL;
210
}
211
}
212
213
static inline void
214
vm_fault_page_free(vm_page_t *mp)
215
{
216
vm_page_t m;
217
218
m = *mp;
219
if (m != NULL) {
220
VM_OBJECT_ASSERT_WLOCKED(m->object);
221
if (!vm_page_wired(m))
222
vm_page_free(m);
223
else
224
vm_page_xunbusy(m);
225
*mp = NULL;
226
}
227
}
228
229
/*
230
* Return true if a vm_pager_get_pages() call is needed in order to check
231
* whether the pager might have a particular page, false if it can be determined
232
* immediately that the pager can not have a copy. For swap objects, this can
233
* be checked quickly.
234
*/
235
static inline bool
236
vm_fault_object_needs_getpages(vm_object_t object)
237
{
238
VM_OBJECT_ASSERT_LOCKED(object);
239
240
return ((object->flags & OBJ_SWAP) == 0 ||
241
!pctrie_is_empty(&object->un_pager.swp.swp_blks));
242
}
243
244
static inline void
245
vm_fault_unlock_map(struct faultstate *fs)
246
{
247
248
if (fs->lookup_still_valid) {
249
vm_map_lookup_done(fs->map, fs->entry);
250
fs->lookup_still_valid = false;
251
}
252
}
253
254
static void
255
vm_fault_unlock_vp(struct faultstate *fs)
256
{
257
258
if (fs->vp != NULL) {
259
vput(fs->vp);
260
fs->vp = NULL;
261
}
262
}
263
264
static bool
265
vm_fault_might_be_cow(struct faultstate *fs)
266
{
267
return (fs->object != fs->first_object);
268
}
269
270
static void
271
vm_fault_deallocate(struct faultstate *fs)
272
{
273
274
vm_fault_page_release(&fs->m_cow);
275
vm_fault_page_release(&fs->m);
276
vm_object_pip_wakeup(fs->object);
277
if (vm_fault_might_be_cow(fs)) {
278
VM_OBJECT_WLOCK(fs->first_object);
279
vm_fault_page_free(&fs->first_m);
280
VM_OBJECT_WUNLOCK(fs->first_object);
281
vm_object_pip_wakeup(fs->first_object);
282
}
283
vm_object_deallocate(fs->first_object);
284
vm_fault_unlock_map(fs);
285
vm_fault_unlock_vp(fs);
286
}
287
288
static void
289
vm_fault_unlock_and_deallocate(struct faultstate *fs)
290
{
291
292
VM_OBJECT_UNLOCK(fs->object);
293
vm_fault_deallocate(fs);
294
}
295
296
static void
297
vm_fault_dirty(struct faultstate *fs, vm_page_t m)
298
{
299
bool need_dirty;
300
301
if (((fs->prot & VM_PROT_WRITE) == 0 &&
302
(fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
303
(m->oflags & VPO_UNMANAGED) != 0)
304
return;
305
306
VM_PAGE_OBJECT_BUSY_ASSERT(m);
307
308
need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
309
(fs->fault_flags & VM_FAULT_WIRE) == 0) ||
310
(fs->fault_flags & VM_FAULT_DIRTY) != 0;
311
312
vm_object_set_writeable_dirty(m->object);
313
314
/*
315
* If the fault is a write, we know that this page is being
316
* written NOW so dirty it explicitly to save on
317
* pmap_is_modified() calls later.
318
*
319
* Also, since the page is now dirty, we can possibly tell
320
* the pager to release any swap backing the page.
321
*/
322
if (need_dirty && vm_page_set_dirty(m) == 0) {
323
/*
324
* If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
325
* if the page is already dirty to prevent data written with
326
* the expectation of being synced from not being synced.
327
* Likewise if this entry does not request NOSYNC then make
328
* sure the page isn't marked NOSYNC. Applications sharing
329
* data should use the same flags to avoid ping ponging.
330
*/
331
if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
332
vm_page_aflag_set(m, PGA_NOSYNC);
333
else
334
vm_page_aflag_clear(m, PGA_NOSYNC);
335
}
336
337
}
338
339
static bool
340
vm_fault_is_read(const struct faultstate *fs)
341
{
342
return ((fs->prot & VM_PROT_WRITE) == 0 &&
343
(fs->fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) == 0);
344
}
345
346
/*
347
* Unlocks fs.first_object and fs.map on success.
348
*/
349
static enum fault_status
350
vm_fault_soft_fast(struct faultstate *fs)
351
{
352
vm_page_t m, m_map;
353
#if VM_NRESERVLEVEL > 0
354
vm_page_t m_super;
355
int flags;
356
#endif
357
int psind;
358
vm_offset_t vaddr;
359
360
MPASS(fs->vp == NULL);
361
362
/*
363
* If we fail, vast majority of the time it is because the page is not
364
* there to begin with. Opportunistically perform the lookup and
365
* subsequent checks without the object lock, revalidate later.
366
*
367
* Note: a busy page can be mapped for read|execute access.
368
*/
369
m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
370
if (m == NULL || !vm_page_all_valid(m) ||
371
((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
372
VM_OBJECT_WLOCK(fs->first_object);
373
return (FAULT_FAILURE);
374
}
375
376
vaddr = fs->vaddr;
377
378
VM_OBJECT_RLOCK(fs->first_object);
379
380
/*
381
* Now that we stabilized the state, revalidate the page is in the shape
382
* we encountered above.
383
*/
384
385
if (m->object != fs->first_object || m->pindex != fs->first_pindex)
386
goto fail;
387
388
vm_object_busy(fs->first_object);
389
390
if (!vm_page_all_valid(m) ||
391
((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
392
goto fail_busy;
393
394
m_map = m;
395
psind = 0;
396
#if VM_NRESERVLEVEL > 0
397
if ((m->flags & PG_FICTITIOUS) == 0 &&
398
(m_super = vm_reserv_to_superpage(m)) != NULL) {
399
psind = m_super->psind;
400
KASSERT(psind > 0,
401
("psind %d of m_super %p < 1", psind, m_super));
402
flags = PS_ALL_VALID;
403
if ((fs->prot & VM_PROT_WRITE) != 0) {
404
/*
405
* Create a superpage mapping allowing write access
406
* only if none of the constituent pages are busy and
407
* all of them are already dirty (except possibly for
408
* the page that was faulted on).
409
*/
410
flags |= PS_NONE_BUSY;
411
if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
412
flags |= PS_ALL_DIRTY;
413
}
414
while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start ||
415
roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end ||
416
(vaddr & (pagesizes[psind] - 1)) !=
417
(VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) ||
418
!vm_page_ps_test(m_super, psind, flags, m) ||
419
!pmap_ps_enabled(fs->map->pmap)) {
420
psind--;
421
if (psind == 0)
422
break;
423
m_super += rounddown2(m - m_super,
424
atop(pagesizes[psind]));
425
KASSERT(m_super->psind >= psind,
426
("psind %d of m_super %p < %d", m_super->psind,
427
m_super, psind));
428
}
429
if (psind > 0) {
430
m_map = m_super;
431
vaddr = rounddown2(vaddr, pagesizes[psind]);
432
/* Preset the modified bit for dirty superpages. */
433
if ((flags & PS_ALL_DIRTY) != 0)
434
fs->fault_type |= VM_PROT_WRITE;
435
}
436
}
437
#endif
438
if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
439
PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
440
KERN_SUCCESS)
441
goto fail_busy;
442
if (fs->m_hold != NULL) {
443
(*fs->m_hold) = m;
444
vm_page_wire(m);
445
}
446
if (psind == 0 && !fs->wired)
447
vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
448
VM_OBJECT_RUNLOCK(fs->first_object);
449
vm_fault_dirty(fs, m);
450
vm_object_unbusy(fs->first_object);
451
vm_map_lookup_done(fs->map, fs->entry);
452
curthread->td_ru.ru_minflt++;
453
return (FAULT_SUCCESS);
454
fail_busy:
455
vm_object_unbusy(fs->first_object);
456
fail:
457
if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
458
VM_OBJECT_RUNLOCK(fs->first_object);
459
VM_OBJECT_WLOCK(fs->first_object);
460
}
461
return (FAULT_FAILURE);
462
}
463
464
static void
465
vm_fault_restore_map_lock(struct faultstate *fs)
466
{
467
468
VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
469
MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
470
471
if (!vm_map_trylock_read(fs->map)) {
472
VM_OBJECT_WUNLOCK(fs->first_object);
473
vm_map_lock_read(fs->map);
474
VM_OBJECT_WLOCK(fs->first_object);
475
}
476
fs->lookup_still_valid = true;
477
}
478
479
static void
480
vm_fault_populate_check_page(vm_page_t m)
481
{
482
483
/*
484
* Check each page to ensure that the pager is obeying the
485
* interface: the page must be installed in the object, fully
486
* valid, and exclusively busied.
487
*/
488
MPASS(m != NULL);
489
MPASS(vm_page_all_valid(m));
490
MPASS(vm_page_xbusied(m));
491
}
492
493
static void
494
vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
495
vm_pindex_t last)
496
{
497
struct pctrie_iter pages;
498
vm_page_t m;
499
500
VM_OBJECT_ASSERT_WLOCKED(object);
501
MPASS(first <= last);
502
vm_page_iter_limit_init(&pages, object, last + 1);
503
VM_RADIX_FORALL_FROM(m, &pages, first) {
504
vm_fault_populate_check_page(m);
505
vm_page_deactivate(m);
506
vm_page_xunbusy(m);
507
}
508
KASSERT(pages.index == last, ("%s: pindex mismatch", __func__));
509
}
510
511
static enum fault_status
512
vm_fault_populate(struct faultstate *fs)
513
{
514
vm_offset_t vaddr;
515
vm_page_t m;
516
vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
517
int bdry_idx, i, npages, psind, rv;
518
enum fault_status res;
519
520
MPASS(fs->object == fs->first_object);
521
VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
522
MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
523
MPASS(fs->first_object->backing_object == NULL);
524
MPASS(fs->lookup_still_valid);
525
526
pager_first = OFF_TO_IDX(fs->entry->offset);
527
pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
528
vm_fault_unlock_map(fs);
529
vm_fault_unlock_vp(fs);
530
531
res = FAULT_SUCCESS;
532
533
/*
534
* Call the pager (driver) populate() method.
535
*
536
* There is no guarantee that the method will be called again
537
* if the current fault is for read, and a future fault is
538
* for write. Report the entry's maximum allowed protection
539
* to the driver.
540
*/
541
rv = vm_pager_populate(fs->first_object, fs->first_pindex,
542
fs->fault_type, fs->entry->max_protection, &pager_first,
543
&pager_last);
544
545
VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
546
if (rv == VM_PAGER_BAD) {
547
/*
548
* VM_PAGER_BAD is the backdoor for a pager to request
549
* normal fault handling.
550
*/
551
vm_fault_restore_map_lock(fs);
552
if (fs->map->timestamp != fs->map_generation)
553
return (FAULT_RESTART);
554
return (FAULT_CONTINUE);
555
}
556
if (rv != VM_PAGER_OK)
557
return (FAULT_FAILURE); /* AKA SIGSEGV */
558
559
/* Ensure that the driver is obeying the interface. */
560
MPASS(pager_first <= pager_last);
561
MPASS(fs->first_pindex <= pager_last);
562
MPASS(fs->first_pindex >= pager_first);
563
MPASS(pager_last < fs->first_object->size);
564
565
vm_fault_restore_map_lock(fs);
566
bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry);
567
if (fs->map->timestamp != fs->map_generation) {
568
if (bdry_idx == 0) {
569
vm_fault_populate_cleanup(fs->first_object, pager_first,
570
pager_last);
571
} else {
572
m = vm_page_lookup(fs->first_object, pager_first);
573
if (m != fs->m)
574
vm_page_xunbusy(m);
575
}
576
return (FAULT_RESTART);
577
}
578
579
/*
580
* The map is unchanged after our last unlock. Process the fault.
581
*
582
* First, the special case of largepage mappings, where
583
* populate only busies the first page in superpage run.
584
*/
585
if (bdry_idx != 0) {
586
KASSERT(PMAP_HAS_LARGEPAGES,
587
("missing pmap support for large pages"));
588
m = vm_page_lookup(fs->first_object, pager_first);
589
vm_fault_populate_check_page(m);
590
VM_OBJECT_WUNLOCK(fs->first_object);
591
vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
592
fs->entry->offset;
593
/* assert alignment for entry */
594
KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
595
("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
596
(uintmax_t)fs->entry->start, (uintmax_t)pager_first,
597
(uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
598
KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
599
("unaligned superpage m %p %#jx", m,
600
(uintmax_t)VM_PAGE_TO_PHYS(m)));
601
rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
602
fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
603
PMAP_ENTER_LARGEPAGE, bdry_idx);
604
VM_OBJECT_WLOCK(fs->first_object);
605
vm_page_xunbusy(m);
606
if (rv != KERN_SUCCESS) {
607
res = FAULT_FAILURE;
608
goto out;
609
}
610
if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
611
for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
612
vm_page_wire(m + i);
613
}
614
if (fs->m_hold != NULL) {
615
*fs->m_hold = m + (fs->first_pindex - pager_first);
616
vm_page_wire(*fs->m_hold);
617
}
618
goto out;
619
}
620
621
/*
622
* The range [pager_first, pager_last] that is given to the
623
* pager is only a hint. The pager may populate any range
624
* within the object that includes the requested page index.
625
* In case the pager expanded the range, clip it to fit into
626
* the map entry.
627
*/
628
map_first = OFF_TO_IDX(fs->entry->offset);
629
if (map_first > pager_first) {
630
vm_fault_populate_cleanup(fs->first_object, pager_first,
631
map_first - 1);
632
pager_first = map_first;
633
}
634
map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
635
if (map_last < pager_last) {
636
vm_fault_populate_cleanup(fs->first_object, map_last + 1,
637
pager_last);
638
pager_last = map_last;
639
}
640
for (pidx = pager_first; pidx <= pager_last; pidx += npages) {
641
m = vm_page_lookup(fs->first_object, pidx);
642
vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
643
KASSERT(m != NULL && m->pindex == pidx,
644
("%s: pindex mismatch", __func__));
645
psind = m->psind;
646
while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
647
pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
648
!pmap_ps_enabled(fs->map->pmap)))
649
psind--;
650
651
npages = atop(pagesizes[psind]);
652
for (i = 0; i < npages; i++) {
653
vm_fault_populate_check_page(&m[i]);
654
vm_fault_dirty(fs, &m[i]);
655
}
656
VM_OBJECT_WUNLOCK(fs->first_object);
657
rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
658
(fs->wired ? PMAP_ENTER_WIRED : 0), psind);
659
660
/*
661
* pmap_enter() may fail for a superpage mapping if additional
662
* protection policies prevent the full mapping.
663
* For example, this will happen on amd64 if the entire
664
* address range does not share the same userspace protection
665
* key. Revert to single-page mappings if this happens.
666
*/
667
MPASS(rv == KERN_SUCCESS ||
668
(psind > 0 && rv == KERN_PROTECTION_FAILURE));
669
if (__predict_false(psind > 0 &&
670
rv == KERN_PROTECTION_FAILURE)) {
671
MPASS(!fs->wired);
672
for (i = 0; i < npages; i++) {
673
rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
674
&m[i], fs->prot, fs->fault_type, 0);
675
MPASS(rv == KERN_SUCCESS);
676
}
677
}
678
679
VM_OBJECT_WLOCK(fs->first_object);
680
for (i = 0; i < npages; i++) {
681
if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
682
m[i].pindex == fs->first_pindex)
683
vm_page_wire(&m[i]);
684
else
685
vm_page_activate(&m[i]);
686
if (fs->m_hold != NULL &&
687
m[i].pindex == fs->first_pindex) {
688
(*fs->m_hold) = &m[i];
689
vm_page_wire(&m[i]);
690
}
691
vm_page_xunbusy(&m[i]);
692
}
693
}
694
out:
695
curthread->td_ru.ru_majflt++;
696
return (res);
697
}
698
699
static int prot_fault_translation;
700
SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
701
&prot_fault_translation, 0,
702
"Control signal to deliver on protection fault");
703
704
/* compat definition to keep common code for signal translation */
705
#define UCODE_PAGEFLT 12
706
#ifdef T_PAGEFLT
707
_Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
708
#endif
709
710
/*
711
* vm_fault_trap:
712
*
713
* Helper for the page fault trap handlers, wrapping vm_fault().
714
* Issues ktrace(2) tracepoints for the faults.
715
*
716
* If a fault cannot be handled successfully by satisfying the
717
* required mapping, and the faulted instruction cannot be restarted,
718
* the signal number and si_code values are returned for trapsignal()
719
* to deliver.
720
*
721
* Returns Mach error codes, but callers should only check for
722
* KERN_SUCCESS.
723
*/
724
int
725
vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
726
int fault_flags, int *signo, int *ucode)
727
{
728
int result;
729
730
MPASS(signo == NULL || ucode != NULL);
731
#ifdef KTRACE
732
if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
733
ktrfault(vaddr, fault_type);
734
#endif
735
result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
736
NULL);
737
KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
738
result == KERN_INVALID_ADDRESS ||
739
result == KERN_RESOURCE_SHORTAGE ||
740
result == KERN_PROTECTION_FAILURE ||
741
result == KERN_OUT_OF_BOUNDS,
742
("Unexpected Mach error %d from vm_fault()", result));
743
#ifdef KTRACE
744
if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
745
ktrfaultend(result);
746
#endif
747
if (result != KERN_SUCCESS && signo != NULL) {
748
switch (result) {
749
case KERN_FAILURE:
750
case KERN_INVALID_ADDRESS:
751
*signo = SIGSEGV;
752
*ucode = SEGV_MAPERR;
753
break;
754
case KERN_RESOURCE_SHORTAGE:
755
*signo = SIGBUS;
756
*ucode = BUS_OOMERR;
757
break;
758
case KERN_OUT_OF_BOUNDS:
759
*signo = SIGBUS;
760
*ucode = BUS_OBJERR;
761
break;
762
case KERN_PROTECTION_FAILURE:
763
if (prot_fault_translation == 0) {
764
/*
765
* Autodetect. This check also covers
766
* the images without the ABI-tag ELF
767
* note.
768
*/
769
if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
770
curproc->p_osrel >= P_OSREL_SIGSEGV) {
771
*signo = SIGSEGV;
772
*ucode = SEGV_ACCERR;
773
} else {
774
*signo = SIGBUS;
775
*ucode = UCODE_PAGEFLT;
776
}
777
} else if (prot_fault_translation == 1) {
778
/* Always compat mode. */
779
*signo = SIGBUS;
780
*ucode = UCODE_PAGEFLT;
781
} else {
782
/* Always SIGSEGV mode. */
783
*signo = SIGSEGV;
784
*ucode = SEGV_ACCERR;
785
}
786
break;
787
default:
788
KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
789
result));
790
break;
791
}
792
}
793
return (result);
794
}
795
796
static bool
797
vm_fault_object_ensure_wlocked(struct faultstate *fs)
798
{
799
if (fs->object == fs->first_object)
800
VM_OBJECT_ASSERT_WLOCKED(fs->object);
801
802
if (!fs->can_read_lock) {
803
VM_OBJECT_ASSERT_WLOCKED(fs->object);
804
return (true);
805
}
806
807
if (VM_OBJECT_WOWNED(fs->object))
808
return (true);
809
810
if (VM_OBJECT_TRYUPGRADE(fs->object))
811
return (true);
812
813
return (false);
814
}
815
816
static enum fault_status
817
vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
818
{
819
struct vnode *vp;
820
int error, locked;
821
822
if (fs->object->type != OBJT_VNODE)
823
return (FAULT_CONTINUE);
824
vp = fs->object->handle;
825
if (vp == fs->vp) {
826
ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
827
return (FAULT_CONTINUE);
828
}
829
830
/*
831
* Perform an unlock in case the desired vnode changed while
832
* the map was unlocked during a retry.
833
*/
834
vm_fault_unlock_vp(fs);
835
836
locked = VOP_ISLOCKED(vp);
837
if (locked != LK_EXCLUSIVE)
838
locked = LK_SHARED;
839
840
/*
841
* We must not sleep acquiring the vnode lock while we have
842
* the page exclusive busied or the object's
843
* paging-in-progress count incremented. Otherwise, we could
844
* deadlock.
845
*/
846
error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
847
if (error == 0) {
848
fs->vp = vp;
849
return (FAULT_CONTINUE);
850
}
851
852
vhold(vp);
853
if (objlocked)
854
vm_fault_unlock_and_deallocate(fs);
855
else
856
vm_fault_deallocate(fs);
857
error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
858
vdrop(vp);
859
fs->vp = vp;
860
KASSERT(error == 0, ("vm_fault: vget failed %d", error));
861
return (FAULT_RESTART);
862
}
863
864
/*
865
* Calculate the desired readahead. Handle drop-behind.
866
*
867
* Returns the number of readahead blocks to pass to the pager.
868
*/
869
static int
870
vm_fault_readahead(struct faultstate *fs)
871
{
872
int era, nera;
873
u_char behavior;
874
875
KASSERT(fs->lookup_still_valid, ("map unlocked"));
876
era = fs->entry->read_ahead;
877
behavior = vm_map_entry_behavior(fs->entry);
878
if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
879
nera = 0;
880
} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
881
nera = VM_FAULT_READ_AHEAD_MAX;
882
if (fs->vaddr == fs->entry->next_read)
883
vm_fault_dontneed(fs, fs->vaddr, nera);
884
} else if (fs->vaddr == fs->entry->next_read) {
885
/*
886
* This is a sequential fault. Arithmetically
887
* increase the requested number of pages in
888
* the read-ahead window. The requested
889
* number of pages is "# of sequential faults
890
* x (read ahead min + 1) + read ahead min"
891
*/
892
nera = VM_FAULT_READ_AHEAD_MIN;
893
if (era > 0) {
894
nera += era + 1;
895
if (nera > VM_FAULT_READ_AHEAD_MAX)
896
nera = VM_FAULT_READ_AHEAD_MAX;
897
}
898
if (era == VM_FAULT_READ_AHEAD_MAX)
899
vm_fault_dontneed(fs, fs->vaddr, nera);
900
} else {
901
/*
902
* This is a non-sequential fault.
903
*/
904
nera = 0;
905
}
906
if (era != nera) {
907
/*
908
* A read lock on the map suffices to update
909
* the read ahead count safely.
910
*/
911
fs->entry->read_ahead = nera;
912
}
913
914
return (nera);
915
}
916
917
static int
918
vm_fault_lookup(struct faultstate *fs)
919
{
920
int result;
921
922
KASSERT(!fs->lookup_still_valid,
923
("vm_fault_lookup: Map already locked."));
924
result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
925
VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
926
&fs->first_pindex, &fs->prot, &fs->wired);
927
if (result != KERN_SUCCESS) {
928
vm_fault_unlock_vp(fs);
929
return (result);
930
}
931
932
fs->map_generation = fs->map->timestamp;
933
934
if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
935
panic("%s: fault on nofault entry, addr: %#lx",
936
__func__, (u_long)fs->vaddr);
937
}
938
939
if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
940
fs->entry->wiring_thread != curthread) {
941
vm_map_unlock_read(fs->map);
942
vm_map_lock(fs->map);
943
if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
944
(fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
945
vm_fault_unlock_vp(fs);
946
fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
947
vm_map_unlock_and_wait(fs->map, 0);
948
} else
949
vm_map_unlock(fs->map);
950
return (KERN_RESOURCE_SHORTAGE);
951
}
952
953
MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
954
955
if (fs->wired)
956
fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
957
else
958
KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
959
("!fs->wired && VM_FAULT_WIRE"));
960
fs->lookup_still_valid = true;
961
962
return (KERN_SUCCESS);
963
}
964
965
static int
966
vm_fault_relookup(struct faultstate *fs)
967
{
968
vm_object_t retry_object;
969
vm_pindex_t retry_pindex;
970
vm_prot_t retry_prot;
971
int result;
972
973
if (!vm_map_trylock_read(fs->map))
974
return (KERN_RESTART);
975
976
fs->lookup_still_valid = true;
977
if (fs->map->timestamp == fs->map_generation)
978
return (KERN_SUCCESS);
979
980
result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
981
&fs->entry, &retry_object, &retry_pindex, &retry_prot,
982
&fs->wired);
983
if (result != KERN_SUCCESS) {
984
/*
985
* If retry of map lookup would have blocked then
986
* retry fault from start.
987
*/
988
if (result == KERN_FAILURE)
989
return (KERN_RESTART);
990
return (result);
991
}
992
if (retry_object != fs->first_object ||
993
retry_pindex != fs->first_pindex)
994
return (KERN_RESTART);
995
996
/*
997
* Check whether the protection has changed or the object has
998
* been copied while we left the map unlocked. Changing from
999
* read to write permission is OK - we leave the page
1000
* write-protected, and catch the write fault. Changing from
1001
* write to read permission means that we can't mark the page
1002
* write-enabled after all.
1003
*/
1004
fs->prot &= retry_prot;
1005
fs->fault_type &= retry_prot;
1006
if (fs->prot == 0)
1007
return (KERN_RESTART);
1008
1009
/* Reassert because wired may have changed. */
1010
KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
1011
("!wired && VM_FAULT_WIRE"));
1012
1013
return (KERN_SUCCESS);
1014
}
1015
1016
static bool
1017
vm_fault_can_cow_rename(struct faultstate *fs)
1018
{
1019
return (
1020
/* Only one shadow object and no other refs. */
1021
fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
1022
/* No other ways to look the object up. */
1023
fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0);
1024
}
1025
1026
static void
1027
vm_fault_cow(struct faultstate *fs)
1028
{
1029
bool is_first_object_locked, rename_cow;
1030
1031
KASSERT(vm_fault_might_be_cow(fs),
1032
("source and target COW objects are identical"));
1033
1034
/*
1035
* This allows pages to be virtually copied from a backing_object
1036
* into the first_object, where the backing object has no other
1037
* refs to it, and cannot gain any more refs. Instead of a bcopy,
1038
* we just move the page from the backing object to the first
1039
* object. Note that we must mark the page dirty in the first
1040
* object so that it will go out to swap when needed.
1041
*/
1042
is_first_object_locked = false;
1043
rename_cow = false;
1044
1045
if (vm_fault_can_cow_rename(fs) && vm_page_xbusied(fs->m)) {
1046
/*
1047
* Check that we don't chase down the shadow chain and
1048
* we can acquire locks. Recheck the conditions for
1049
* rename after the shadow chain is stable after the
1050
* object locking.
1051
*/
1052
is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object);
1053
if (is_first_object_locked &&
1054
fs->object == fs->first_object->backing_object) {
1055
if (VM_OBJECT_TRYWLOCK(fs->object)) {
1056
rename_cow = vm_fault_can_cow_rename(fs);
1057
if (!rename_cow)
1058
VM_OBJECT_WUNLOCK(fs->object);
1059
}
1060
}
1061
}
1062
1063
if (rename_cow) {
1064
vm_page_assert_xbusied(fs->m);
1065
1066
/*
1067
* Remove but keep xbusy for replace. fs->m is moved into
1068
* fs->first_object and left busy while fs->first_m is
1069
* conditionally freed.
1070
*/
1071
vm_page_remove_xbusy(fs->m);
1072
vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1073
fs->first_m);
1074
vm_page_dirty(fs->m);
1075
#if VM_NRESERVLEVEL > 0
1076
/*
1077
* Rename the reservation.
1078
*/
1079
vm_reserv_rename(fs->m, fs->first_object, fs->object,
1080
OFF_TO_IDX(fs->first_object->backing_object_offset));
1081
#endif
1082
VM_OBJECT_WUNLOCK(fs->object);
1083
VM_OBJECT_WUNLOCK(fs->first_object);
1084
fs->first_m = fs->m;
1085
fs->m = NULL;
1086
VM_CNT_INC(v_cow_optim);
1087
} else {
1088
if (is_first_object_locked)
1089
VM_OBJECT_WUNLOCK(fs->first_object);
1090
/*
1091
* Oh, well, lets copy it.
1092
*/
1093
pmap_copy_page(fs->m, fs->first_m);
1094
if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1095
vm_page_wire(fs->first_m);
1096
vm_page_unwire(fs->m, PQ_INACTIVE);
1097
}
1098
/*
1099
* Save the COW page to be released after pmap_enter is
1100
* complete. The new copy will be marked valid when we're ready
1101
* to map it.
1102
*/
1103
fs->m_cow = fs->m;
1104
fs->m = NULL;
1105
1106
/*
1107
* Typically, the shadow object is either private to this
1108
* address space (OBJ_ONEMAPPING) or its pages are read only.
1109
* In the highly unusual case where the pages of a shadow object
1110
* are read/write shared between this and other address spaces,
1111
* we need to ensure that any pmap-level mappings to the
1112
* original, copy-on-write page from the backing object are
1113
* removed from those other address spaces.
1114
*
1115
* The flag check is racy, but this is tolerable: if
1116
* OBJ_ONEMAPPING is cleared after the check, the busy state
1117
* ensures that new mappings of m_cow can't be created.
1118
* pmap_enter() will replace an existing mapping in the current
1119
* address space. If OBJ_ONEMAPPING is set after the check,
1120
* removing mappings will at worse trigger some unnecessary page
1121
* faults.
1122
*
1123
* In the fs->m shared busy case, the xbusy state of
1124
* fs->first_m prevents new mappings of fs->m from
1125
* being created because a parallel fault on this
1126
* shadow chain should wait for xbusy on fs->first_m.
1127
*/
1128
if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1129
pmap_remove_all(fs->m_cow);
1130
}
1131
1132
vm_object_pip_wakeup(fs->object);
1133
1134
/*
1135
* Only use the new page below...
1136
*/
1137
fs->object = fs->first_object;
1138
fs->pindex = fs->first_pindex;
1139
fs->m = fs->first_m;
1140
VM_CNT_INC(v_cow_faults);
1141
curthread->td_cow++;
1142
}
1143
1144
static enum fault_next_status
1145
vm_fault_next(struct faultstate *fs)
1146
{
1147
vm_object_t next_object;
1148
1149
if (fs->object == fs->first_object || !fs->can_read_lock)
1150
VM_OBJECT_ASSERT_WLOCKED(fs->object);
1151
else
1152
VM_OBJECT_ASSERT_LOCKED(fs->object);
1153
1154
/*
1155
* The requested page does not exist at this object/
1156
* offset. Remove the invalid page from the object,
1157
* waking up anyone waiting for it, and continue on to
1158
* the next object. However, if this is the top-level
1159
* object, we must leave the busy page in place to
1160
* prevent another process from rushing past us, and
1161
* inserting the page in that object at the same time
1162
* that we are.
1163
*/
1164
if (fs->object == fs->first_object) {
1165
fs->first_m = fs->m;
1166
fs->m = NULL;
1167
} else if (fs->m != NULL) {
1168
if (!vm_fault_object_ensure_wlocked(fs)) {
1169
fs->can_read_lock = false;
1170
vm_fault_unlock_and_deallocate(fs);
1171
return (FAULT_NEXT_RESTART);
1172
}
1173
vm_fault_page_free(&fs->m);
1174
}
1175
1176
/*
1177
* Move on to the next object. Lock the next object before
1178
* unlocking the current one.
1179
*/
1180
next_object = fs->object->backing_object;
1181
if (next_object == NULL)
1182
return (FAULT_NEXT_NOOBJ);
1183
MPASS(fs->first_m != NULL);
1184
KASSERT(fs->object != next_object, ("object loop %p", next_object));
1185
if (fs->can_read_lock)
1186
VM_OBJECT_RLOCK(next_object);
1187
else
1188
VM_OBJECT_WLOCK(next_object);
1189
vm_object_pip_add(next_object, 1);
1190
if (fs->object != fs->first_object)
1191
vm_object_pip_wakeup(fs->object);
1192
fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1193
VM_OBJECT_UNLOCK(fs->object);
1194
fs->object = next_object;
1195
1196
return (FAULT_NEXT_GOTOBJ);
1197
}
1198
1199
static void
1200
vm_fault_zerofill(struct faultstate *fs)
1201
{
1202
1203
/*
1204
* If there's no object left, fill the page in the top
1205
* object with zeros.
1206
*/
1207
if (vm_fault_might_be_cow(fs)) {
1208
vm_object_pip_wakeup(fs->object);
1209
fs->object = fs->first_object;
1210
fs->pindex = fs->first_pindex;
1211
}
1212
MPASS(fs->first_m != NULL);
1213
MPASS(fs->m == NULL);
1214
fs->m = fs->first_m;
1215
fs->first_m = NULL;
1216
1217
/*
1218
* Zero the page if necessary and mark it valid.
1219
*/
1220
if ((fs->m->flags & PG_ZERO) == 0) {
1221
pmap_zero_page(fs->m);
1222
} else {
1223
VM_CNT_INC(v_ozfod);
1224
}
1225
VM_CNT_INC(v_zfod);
1226
vm_page_valid(fs->m);
1227
}
1228
1229
/*
1230
* Initiate page fault after timeout. Returns true if caller should
1231
* do vm_waitpfault() after the call.
1232
*/
1233
static bool
1234
vm_fault_allocate_oom(struct faultstate *fs)
1235
{
1236
struct timeval now;
1237
1238
vm_fault_unlock_and_deallocate(fs);
1239
if (vm_pfault_oom_attempts < 0)
1240
return (true);
1241
if (!fs->oom_started) {
1242
fs->oom_started = true;
1243
getmicrotime(&fs->oom_start_time);
1244
return (true);
1245
}
1246
1247
getmicrotime(&now);
1248
timevalsub(&now, &fs->oom_start_time);
1249
if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1250
return (true);
1251
1252
if (bootverbose)
1253
printf(
1254
"proc %d (%s) failed to alloc page on fault, starting OOM\n",
1255
curproc->p_pid, curproc->p_comm);
1256
vm_pageout_oom(VM_OOM_MEM_PF);
1257
fs->oom_started = false;
1258
return (false);
1259
}
1260
1261
/*
1262
* Allocate a page directly or via the object populate method.
1263
*/
1264
static enum fault_status
1265
vm_fault_allocate(struct faultstate *fs, struct pctrie_iter *pages)
1266
{
1267
struct domainset *dset;
1268
enum fault_status res;
1269
1270
if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1271
res = vm_fault_lock_vnode(fs, true);
1272
MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1273
if (res == FAULT_RESTART)
1274
return (res);
1275
}
1276
1277
if (fs->pindex >= fs->object->size) {
1278
vm_fault_unlock_and_deallocate(fs);
1279
return (FAULT_OUT_OF_BOUNDS);
1280
}
1281
1282
if (fs->object == fs->first_object &&
1283
(fs->first_object->flags & OBJ_POPULATE) != 0 &&
1284
fs->first_object->shadow_count == 0) {
1285
res = vm_fault_populate(fs);
1286
switch (res) {
1287
case FAULT_SUCCESS:
1288
case FAULT_FAILURE:
1289
case FAULT_RESTART:
1290
vm_fault_unlock_and_deallocate(fs);
1291
return (res);
1292
case FAULT_CONTINUE:
1293
pctrie_iter_reset(pages);
1294
/*
1295
* Pager's populate() method
1296
* returned VM_PAGER_BAD.
1297
*/
1298
break;
1299
default:
1300
panic("inconsistent return codes");
1301
}
1302
}
1303
1304
/*
1305
* Allocate a new page for this object/offset pair.
1306
*
1307
* If the process has a fatal signal pending, prioritize the allocation
1308
* with the expectation that the process will exit shortly and free some
1309
* pages. In particular, the signal may have been posted by the page
1310
* daemon in an attempt to resolve an out-of-memory condition.
1311
*
1312
* The unlocked read of the p_flag is harmless. At worst, the P_KILLED
1313
* might be not observed here, and allocation fails, causing a restart
1314
* and new reading of the p_flag.
1315
*/
1316
dset = fs->object->domain.dr_policy;
1317
if (dset == NULL)
1318
dset = curthread->td_domain.dr_policy;
1319
if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1320
#if VM_NRESERVLEVEL > 0
1321
vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1322
#endif
1323
if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1324
vm_fault_unlock_and_deallocate(fs);
1325
return (FAULT_FAILURE);
1326
}
1327
fs->m = vm_page_alloc_iter(fs->object, fs->pindex,
1328
P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0, pages);
1329
}
1330
if (fs->m == NULL) {
1331
if (vm_fault_allocate_oom(fs))
1332
vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1333
return (FAULT_RESTART);
1334
}
1335
fs->oom_started = false;
1336
1337
return (FAULT_CONTINUE);
1338
}
1339
1340
/*
1341
* Call the pager to retrieve the page if there is a chance
1342
* that the pager has it, and potentially retrieve additional
1343
* pages at the same time.
1344
*/
1345
static enum fault_status
1346
vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1347
{
1348
vm_offset_t e_end, e_start;
1349
int ahead, behind, cluster_offset, rv;
1350
enum fault_status status;
1351
u_char behavior;
1352
1353
/*
1354
* Prepare for unlocking the map. Save the map
1355
* entry's start and end addresses, which are used to
1356
* optimize the size of the pager operation below.
1357
* Even if the map entry's addresses change after
1358
* unlocking the map, using the saved addresses is
1359
* safe.
1360
*/
1361
e_start = fs->entry->start;
1362
e_end = fs->entry->end;
1363
behavior = vm_map_entry_behavior(fs->entry);
1364
1365
/*
1366
* If the pager for the current object might have
1367
* the page, then determine the number of additional
1368
* pages to read and potentially reprioritize
1369
* previously read pages for earlier reclamation.
1370
* These operations should only be performed once per
1371
* page fault. Even if the current pager doesn't
1372
* have the page, the number of additional pages to
1373
* read will apply to subsequent objects in the
1374
* shadow chain.
1375
*/
1376
if (fs->nera == -1 && !P_KILLED(curproc))
1377
fs->nera = vm_fault_readahead(fs);
1378
1379
/*
1380
* Release the map lock before locking the vnode or
1381
* sleeping in the pager. (If the current object has
1382
* a shadow, then an earlier iteration of this loop
1383
* may have already unlocked the map.)
1384
*/
1385
vm_fault_unlock_map(fs);
1386
1387
status = vm_fault_lock_vnode(fs, false);
1388
MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1389
if (status == FAULT_RESTART)
1390
return (status);
1391
KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map),
1392
("vm_fault: vnode-backed object mapped by system map"));
1393
1394
/*
1395
* Page in the requested page and hint the pager,
1396
* that it may bring up surrounding pages.
1397
*/
1398
if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1399
P_KILLED(curproc)) {
1400
behind = 0;
1401
ahead = 0;
1402
} else {
1403
/* Is this a sequential fault? */
1404
if (fs->nera > 0) {
1405
behind = 0;
1406
ahead = fs->nera;
1407
} else {
1408
/*
1409
* Request a cluster of pages that is
1410
* aligned to a VM_FAULT_READ_DEFAULT
1411
* page offset boundary within the
1412
* object. Alignment to a page offset
1413
* boundary is more likely to coincide
1414
* with the underlying file system
1415
* block than alignment to a virtual
1416
* address boundary.
1417
*/
1418
cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1419
behind = ulmin(cluster_offset,
1420
atop(fs->vaddr - e_start));
1421
ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1422
}
1423
ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1424
}
1425
*behindp = behind;
1426
*aheadp = ahead;
1427
rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1428
if (rv == VM_PAGER_OK)
1429
return (FAULT_HARD);
1430
if (rv == VM_PAGER_ERROR)
1431
printf("vm_fault: pager read error, pid %d (%s)\n",
1432
curproc->p_pid, curproc->p_comm);
1433
/*
1434
* If an I/O error occurred or the requested page was
1435
* outside the range of the pager, clean up and return
1436
* an error.
1437
*/
1438
if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1439
VM_OBJECT_WLOCK(fs->object);
1440
vm_fault_page_free(&fs->m);
1441
vm_fault_unlock_and_deallocate(fs);
1442
return (FAULT_OUT_OF_BOUNDS);
1443
}
1444
KASSERT(rv == VM_PAGER_FAIL,
1445
("%s: unexpected pager error %d", __func__, rv));
1446
return (FAULT_CONTINUE);
1447
}
1448
1449
/*
1450
* Wait/Retry if the page is busy. We have to do this if the page is
1451
* either exclusive or shared busy because the vm_pager may be using
1452
* read busy for pageouts (and even pageins if it is the vnode pager),
1453
* and we could end up trying to pagein and pageout the same page
1454
* simultaneously.
1455
*
1456
* We allow the busy case on a read fault if the page is valid. We
1457
* cannot under any circumstances mess around with a shared busied
1458
* page except, perhaps, to pmap it. This is controlled by the
1459
* VM_ALLOC_SBUSY bit in the allocflags argument.
1460
*/
1461
static void
1462
vm_fault_busy_sleep(struct faultstate *fs, int allocflags)
1463
{
1464
/*
1465
* Reference the page before unlocking and
1466
* sleeping so that the page daemon is less
1467
* likely to reclaim it.
1468
*/
1469
vm_page_aflag_set(fs->m, PGA_REFERENCED);
1470
if (vm_fault_might_be_cow(fs)) {
1471
vm_fault_page_release(&fs->first_m);
1472
vm_object_pip_wakeup(fs->first_object);
1473
}
1474
vm_object_pip_wakeup(fs->object);
1475
vm_fault_unlock_map(fs);
1476
if (!vm_page_busy_sleep(fs->m, "vmpfw", allocflags))
1477
VM_OBJECT_UNLOCK(fs->object);
1478
VM_CNT_INC(v_intrans);
1479
vm_object_deallocate(fs->first_object);
1480
}
1481
1482
/*
1483
* Handle page lookup, populate, allocate, page-in for the current
1484
* object.
1485
*
1486
* The object is locked on entry and will remain locked with a return
1487
* code of FAULT_CONTINUE so that fault may follow the shadow chain.
1488
* Otherwise, the object will be unlocked upon return.
1489
*/
1490
static enum fault_status
1491
vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1492
{
1493
struct pctrie_iter pages;
1494
enum fault_status res;
1495
bool dead;
1496
1497
if (fs->object == fs->first_object || !fs->can_read_lock)
1498
VM_OBJECT_ASSERT_WLOCKED(fs->object);
1499
else
1500
VM_OBJECT_ASSERT_LOCKED(fs->object);
1501
1502
/*
1503
* If the object is marked for imminent termination, we retry
1504
* here, since the collapse pass has raced with us. Otherwise,
1505
* if we see terminally dead object, return fail.
1506
*/
1507
if ((fs->object->flags & OBJ_DEAD) != 0) {
1508
dead = fs->object->type == OBJT_DEAD;
1509
vm_fault_unlock_and_deallocate(fs);
1510
if (dead)
1511
return (FAULT_PROTECTION_FAILURE);
1512
pause("vmf_de", 1);
1513
return (FAULT_RESTART);
1514
}
1515
1516
/*
1517
* See if the page is resident.
1518
*/
1519
vm_page_iter_init(&pages, fs->object);
1520
fs->m = vm_radix_iter_lookup(&pages, fs->pindex);
1521
if (fs->m != NULL) {
1522
/*
1523
* If the found page is valid, will be either shadowed
1524
* or mapped read-only, and will not be renamed for
1525
* COW, then busy it in shared mode. This allows
1526
* other faults needing this page to proceed in
1527
* parallel.
1528
*
1529
* Unlocked check for validity, rechecked after busy
1530
* is obtained.
1531
*/
1532
if (vm_page_all_valid(fs->m) &&
1533
/*
1534
* No write permissions for the new fs->m mapping,
1535
* or the first object has only one mapping, so
1536
* other writeable COW mappings of fs->m cannot
1537
* appear under us.
1538
*/
1539
(vm_fault_is_read(fs) || vm_fault_might_be_cow(fs)) &&
1540
/*
1541
* fs->m cannot be renamed from object to
1542
* first_object. These conditions will be
1543
* re-checked with proper synchronization in
1544
* vm_fault_cow().
1545
*/
1546
(!vm_fault_can_cow_rename(fs) ||
1547
fs->object != fs->first_object->backing_object)) {
1548
if (!vm_page_trysbusy(fs->m)) {
1549
vm_fault_busy_sleep(fs, VM_ALLOC_SBUSY);
1550
return (FAULT_RESTART);
1551
}
1552
1553
/*
1554
* Now make sure that racily checked
1555
* conditions are still valid.
1556
*/
1557
if (__predict_true(vm_page_all_valid(fs->m) &&
1558
(vm_fault_is_read(fs) ||
1559
vm_fault_might_be_cow(fs)))) {
1560
VM_OBJECT_UNLOCK(fs->object);
1561
return (FAULT_SOFT);
1562
}
1563
1564
vm_page_sunbusy(fs->m);
1565
}
1566
1567
if (!vm_page_tryxbusy(fs->m)) {
1568
vm_fault_busy_sleep(fs, 0);
1569
return (FAULT_RESTART);
1570
}
1571
1572
/*
1573
* The page is marked busy for other processes and the
1574
* pagedaemon. If it is still completely valid we are
1575
* done.
1576
*/
1577
if (vm_page_all_valid(fs->m)) {
1578
VM_OBJECT_UNLOCK(fs->object);
1579
return (FAULT_SOFT);
1580
}
1581
}
1582
1583
/*
1584
* Page is not resident. If the pager might contain the page
1585
* or this is the beginning of the search, allocate a new
1586
* page.
1587
*/
1588
if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1589
fs->object == fs->first_object)) {
1590
if (!vm_fault_object_ensure_wlocked(fs)) {
1591
fs->can_read_lock = false;
1592
vm_fault_unlock_and_deallocate(fs);
1593
return (FAULT_RESTART);
1594
}
1595
res = vm_fault_allocate(fs, &pages);
1596
if (res != FAULT_CONTINUE)
1597
return (res);
1598
}
1599
1600
/*
1601
* Check to see if the pager can possibly satisfy this fault.
1602
* If not, skip to the next object without dropping the lock to
1603
* preserve atomicity of shadow faults.
1604
*/
1605
if (vm_fault_object_needs_getpages(fs->object)) {
1606
/*
1607
* At this point, we have either allocated a new page
1608
* or found an existing page that is only partially
1609
* valid.
1610
*
1611
* We hold a reference on the current object and the
1612
* page is exclusive busied. The exclusive busy
1613
* prevents simultaneous faults and collapses while
1614
* the object lock is dropped.
1615
*/
1616
VM_OBJECT_UNLOCK(fs->object);
1617
res = vm_fault_getpages(fs, behindp, aheadp);
1618
if (res == FAULT_CONTINUE)
1619
VM_OBJECT_WLOCK(fs->object);
1620
} else {
1621
res = FAULT_CONTINUE;
1622
}
1623
return (res);
1624
}
1625
1626
/*
1627
* vm_fault:
1628
*
1629
* Handle a page fault occurring at the given address, requiring the
1630
* given permissions, in the map specified. If successful, the page
1631
* is inserted into the associated physical map, and optionally
1632
* referenced and returned in *m_hold.
1633
*
1634
* The given address should be truncated to the proper page address.
1635
*
1636
* KERN_SUCCESS is returned if the page fault is handled; otherwise, a
1637
* Mach error specifying why the fault is fatal is returned.
1638
*
1639
* The map in question must be alive, either being the map for current
1640
* process, or the owner process hold count incremented to prevent
1641
* exit().
1642
*
1643
* If the thread private TDP_NOFAULTING flag is set, any fault results
1644
* in immediate protection failure. Otherwise the fault is processed,
1645
* and caller may hold no locks.
1646
*/
1647
int
1648
vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1649
int fault_flags, vm_page_t *m_hold)
1650
{
1651
struct pctrie_iter pages;
1652
struct faultstate fs;
1653
int ahead, behind, faultcount, rv;
1654
enum fault_status res;
1655
enum fault_next_status res_next;
1656
bool hardfault;
1657
1658
VM_CNT_INC(v_vm_faults);
1659
1660
if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1661
return (KERN_PROTECTION_FAILURE);
1662
1663
fs.vp = NULL;
1664
fs.vaddr = vaddr;
1665
fs.m_hold = m_hold;
1666
fs.fault_flags = fault_flags;
1667
fs.map = map;
1668
fs.lookup_still_valid = false;
1669
fs.oom_started = false;
1670
fs.nera = -1;
1671
fs.can_read_lock = true;
1672
faultcount = 0;
1673
hardfault = false;
1674
1675
RetryFault:
1676
fs.fault_type = fault_type;
1677
1678
/*
1679
* Find the backing store object and offset into it to begin the
1680
* search.
1681
*/
1682
rv = vm_fault_lookup(&fs);
1683
if (rv != KERN_SUCCESS) {
1684
if (rv == KERN_RESOURCE_SHORTAGE)
1685
goto RetryFault;
1686
return (rv);
1687
}
1688
1689
/*
1690
* Try to avoid lock contention on the top-level object through
1691
* special-case handling of some types of page faults, specifically,
1692
* those that are mapping an existing page from the top-level object.
1693
* Under this condition, a read lock on the object suffices, allowing
1694
* multiple page faults of a similar type to run in parallel.
1695
*/
1696
if (fs.vp == NULL /* avoid locked vnode leak */ &&
1697
(fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1698
(fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1699
res = vm_fault_soft_fast(&fs);
1700
if (res == FAULT_SUCCESS) {
1701
VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
1702
return (KERN_SUCCESS);
1703
}
1704
VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
1705
} else {
1706
vm_page_iter_init(&pages, fs.first_object);
1707
VM_OBJECT_WLOCK(fs.first_object);
1708
}
1709
1710
/*
1711
* Make a reference to this object to prevent its disposal while we
1712
* are messing with it. Once we have the reference, the map is free
1713
* to be diddled. Since objects reference their shadows (and copies),
1714
* they will stay around as well.
1715
*
1716
* Bump the paging-in-progress count to prevent size changes (e.g.
1717
* truncation operations) during I/O.
1718
*/
1719
vm_object_reference_locked(fs.first_object);
1720
vm_object_pip_add(fs.first_object, 1);
1721
1722
fs.m_cow = fs.m = fs.first_m = NULL;
1723
1724
/*
1725
* Search for the page at object/offset.
1726
*/
1727
fs.object = fs.first_object;
1728
fs.pindex = fs.first_pindex;
1729
1730
if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1731
res = vm_fault_allocate(&fs, &pages);
1732
switch (res) {
1733
case FAULT_RESTART:
1734
goto RetryFault;
1735
case FAULT_SUCCESS:
1736
return (KERN_SUCCESS);
1737
case FAULT_FAILURE:
1738
return (KERN_FAILURE);
1739
case FAULT_OUT_OF_BOUNDS:
1740
return (KERN_OUT_OF_BOUNDS);
1741
case FAULT_CONTINUE:
1742
break;
1743
default:
1744
panic("vm_fault: Unhandled status %d", res);
1745
}
1746
}
1747
1748
while (TRUE) {
1749
KASSERT(fs.m == NULL,
1750
("page still set %p at loop start", fs.m));
1751
1752
res = vm_fault_object(&fs, &behind, &ahead);
1753
switch (res) {
1754
case FAULT_SOFT:
1755
goto found;
1756
case FAULT_HARD:
1757
faultcount = behind + 1 + ahead;
1758
hardfault = true;
1759
goto found;
1760
case FAULT_RESTART:
1761
goto RetryFault;
1762
case FAULT_SUCCESS:
1763
return (KERN_SUCCESS);
1764
case FAULT_FAILURE:
1765
return (KERN_FAILURE);
1766
case FAULT_OUT_OF_BOUNDS:
1767
return (KERN_OUT_OF_BOUNDS);
1768
case FAULT_PROTECTION_FAILURE:
1769
return (KERN_PROTECTION_FAILURE);
1770
case FAULT_CONTINUE:
1771
break;
1772
default:
1773
panic("vm_fault: Unhandled status %d", res);
1774
}
1775
1776
/*
1777
* The page was not found in the current object. Try to
1778
* traverse into a backing object or zero fill if none is
1779
* found.
1780
*/
1781
res_next = vm_fault_next(&fs);
1782
if (res_next == FAULT_NEXT_RESTART)
1783
goto RetryFault;
1784
else if (res_next == FAULT_NEXT_GOTOBJ)
1785
continue;
1786
MPASS(res_next == FAULT_NEXT_NOOBJ);
1787
if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1788
if (fs.first_object == fs.object)
1789
vm_fault_page_free(&fs.first_m);
1790
vm_fault_unlock_and_deallocate(&fs);
1791
return (KERN_OUT_OF_BOUNDS);
1792
}
1793
VM_OBJECT_UNLOCK(fs.object);
1794
vm_fault_zerofill(&fs);
1795
/* Don't try to prefault neighboring pages. */
1796
faultcount = 1;
1797
break;
1798
}
1799
1800
found:
1801
/*
1802
* A valid page has been found and busied. The object lock
1803
* must no longer be held if the page was busied.
1804
*
1805
* Regardless of the busy state of fs.m, fs.first_m is always
1806
* exclusively busied after the first iteration of the loop
1807
* calling vm_fault_object(). This is an ordering point for
1808
* the parallel faults occuring in on the same page.
1809
*/
1810
vm_page_assert_busied(fs.m);
1811
VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1812
1813
/*
1814
* If the page is being written, but isn't already owned by the
1815
* top-level object, we have to copy it into a new page owned by the
1816
* top-level object.
1817
*/
1818
if (vm_fault_might_be_cow(&fs)) {
1819
/*
1820
* We only really need to copy if we want to write it.
1821
*/
1822
if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1823
vm_fault_cow(&fs);
1824
/*
1825
* We only try to prefault read-only mappings to the
1826
* neighboring pages when this copy-on-write fault is
1827
* a hard fault. In other cases, trying to prefault
1828
* is typically wasted effort.
1829
*/
1830
if (faultcount == 0)
1831
faultcount = 1;
1832
1833
} else {
1834
fs.prot &= ~VM_PROT_WRITE;
1835
}
1836
}
1837
1838
/*
1839
* We must verify that the maps have not changed since our last
1840
* lookup.
1841
*/
1842
if (!fs.lookup_still_valid) {
1843
rv = vm_fault_relookup(&fs);
1844
if (rv != KERN_SUCCESS) {
1845
vm_fault_deallocate(&fs);
1846
if (rv == KERN_RESTART)
1847
goto RetryFault;
1848
return (rv);
1849
}
1850
}
1851
VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1852
1853
/*
1854
* If the page was filled by a pager, save the virtual address that
1855
* should be faulted on next under a sequential access pattern to the
1856
* map entry. A read lock on the map suffices to update this address
1857
* safely.
1858
*/
1859
if (hardfault)
1860
fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1861
1862
/*
1863
* If the page to be mapped was copied from a backing object, we defer
1864
* marking it valid until here, where the fault handler is guaranteed to
1865
* succeed. Otherwise we can end up with a shadowed, mapped page in the
1866
* backing object, which violates an invariant of vm_object_collapse()
1867
* that shadowed pages are not mapped.
1868
*/
1869
if (fs.m_cow != NULL) {
1870
KASSERT(vm_page_none_valid(fs.m),
1871
("vm_fault: page %p is already valid", fs.m_cow));
1872
vm_page_valid(fs.m);
1873
}
1874
1875
/*
1876
* Page must be completely valid or it is not fit to
1877
* map into user space. vm_pager_get_pages() ensures this.
1878
*/
1879
vm_page_assert_busied(fs.m);
1880
KASSERT(vm_page_all_valid(fs.m),
1881
("vm_fault: page %p partially invalid", fs.m));
1882
1883
vm_fault_dirty(&fs, fs.m);
1884
1885
/*
1886
* Put this page into the physical map. We had to do the unlock above
1887
* because pmap_enter() may sleep. We don't put the page
1888
* back on the active queue until later so that the pageout daemon
1889
* won't find it (yet).
1890
*/
1891
pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1892
fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1893
if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1894
fs.wired == 0)
1895
vm_fault_prefault(&fs, vaddr,
1896
faultcount > 0 ? behind : PFBAK,
1897
faultcount > 0 ? ahead : PFFOR, false);
1898
1899
/*
1900
* If the page is not wired down, then put it where the pageout daemon
1901
* can find it.
1902
*/
1903
if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1904
vm_page_wire(fs.m);
1905
else
1906
vm_page_activate(fs.m);
1907
if (fs.m_hold != NULL) {
1908
(*fs.m_hold) = fs.m;
1909
vm_page_wire(fs.m);
1910
}
1911
1912
KASSERT(fs.first_object == fs.object || vm_page_xbusied(fs.first_m),
1913
("first_m must be xbusy"));
1914
if (vm_page_xbusied(fs.m))
1915
vm_page_xunbusy(fs.m);
1916
else
1917
vm_page_sunbusy(fs.m);
1918
fs.m = NULL;
1919
1920
/*
1921
* Unlock everything, and return
1922
*/
1923
vm_fault_deallocate(&fs);
1924
if (hardfault) {
1925
VM_CNT_INC(v_io_faults);
1926
curthread->td_ru.ru_majflt++;
1927
#ifdef RACCT
1928
if (racct_enable && fs.object->type == OBJT_VNODE) {
1929
PROC_LOCK(curproc);
1930
if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1931
racct_add_force(curproc, RACCT_WRITEBPS,
1932
PAGE_SIZE + behind * PAGE_SIZE);
1933
racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1934
} else {
1935
racct_add_force(curproc, RACCT_READBPS,
1936
PAGE_SIZE + ahead * PAGE_SIZE);
1937
racct_add_force(curproc, RACCT_READIOPS, 1);
1938
}
1939
PROC_UNLOCK(curproc);
1940
}
1941
#endif
1942
} else
1943
curthread->td_ru.ru_minflt++;
1944
1945
return (KERN_SUCCESS);
1946
}
1947
1948
/*
1949
* Speed up the reclamation of pages that precede the faulting pindex within
1950
* the first object of the shadow chain. Essentially, perform the equivalent
1951
* to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1952
* the faulting pindex by the cluster size when the pages read by vm_fault()
1953
* cross a cluster-size boundary. The cluster size is the greater of the
1954
* smallest superpage size and VM_FAULT_DONTNEED_MIN.
1955
*
1956
* When "fs->first_object" is a shadow object, the pages in the backing object
1957
* that precede the faulting pindex are deactivated by vm_fault(). So, this
1958
* function must only be concerned with pages in the first object.
1959
*/
1960
static void
1961
vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1962
{
1963
struct pctrie_iter pages;
1964
vm_map_entry_t entry;
1965
vm_object_t first_object;
1966
vm_offset_t end, start;
1967
vm_page_t m;
1968
vm_size_t size;
1969
1970
VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1971
first_object = fs->first_object;
1972
/* Neither fictitious nor unmanaged pages can be reclaimed. */
1973
if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1974
VM_OBJECT_RLOCK(first_object);
1975
size = VM_FAULT_DONTNEED_MIN;
1976
if (MAXPAGESIZES > 1 && size < pagesizes[1])
1977
size = pagesizes[1];
1978
end = rounddown2(vaddr, size);
1979
if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1980
(entry = fs->entry)->start < end) {
1981
if (end - entry->start < size)
1982
start = entry->start;
1983
else
1984
start = end - size;
1985
pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1986
vm_page_iter_limit_init(&pages, first_object,
1987
OFF_TO_IDX(entry->offset) +
1988
atop(end - entry->start));
1989
VM_RADIX_FOREACH_FROM(m, &pages,
1990
OFF_TO_IDX(entry->offset) +
1991
atop(start - entry->start)) {
1992
if (!vm_page_all_valid(m) ||
1993
vm_page_busied(m))
1994
continue;
1995
1996
/*
1997
* Don't clear PGA_REFERENCED, since it would
1998
* likely represent a reference by a different
1999
* process.
2000
*
2001
* Typically, at this point, prefetched pages
2002
* are still in the inactive queue. Only
2003
* pages that triggered page faults are in the
2004
* active queue. The test for whether the page
2005
* is in the inactive queue is racy; in the
2006
* worst case we will requeue the page
2007
* unnecessarily.
2008
*/
2009
if (!vm_page_inactive(m))
2010
vm_page_deactivate(m);
2011
}
2012
}
2013
VM_OBJECT_RUNLOCK(first_object);
2014
}
2015
}
2016
2017
/*
2018
* vm_fault_prefault provides a quick way of clustering
2019
* pagefaults into a processes address space. It is a "cousin"
2020
* of vm_map_pmap_enter, except it runs at page fault time instead
2021
* of mmap time.
2022
*/
2023
static void
2024
vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
2025
int backward, int forward, bool obj_locked)
2026
{
2027
pmap_t pmap;
2028
vm_map_entry_t entry;
2029
vm_object_t backing_object, lobject;
2030
vm_offset_t addr, starta;
2031
vm_pindex_t pindex;
2032
vm_page_t m;
2033
vm_prot_t prot;
2034
int i;
2035
2036
pmap = fs->map->pmap;
2037
if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
2038
return;
2039
2040
entry = fs->entry;
2041
2042
if (addra < backward * PAGE_SIZE) {
2043
starta = entry->start;
2044
} else {
2045
starta = addra - backward * PAGE_SIZE;
2046
if (starta < entry->start)
2047
starta = entry->start;
2048
}
2049
prot = entry->protection;
2050
2051
/*
2052
* If pmap_enter() has enabled write access on a nearby mapping, then
2053
* don't attempt promotion, because it will fail.
2054
*/
2055
if ((fs->prot & VM_PROT_WRITE) != 0)
2056
prot |= VM_PROT_NO_PROMOTE;
2057
2058
/*
2059
* Generate the sequence of virtual addresses that are candidates for
2060
* prefaulting in an outward spiral from the faulting virtual address,
2061
* "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra
2062
* + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
2063
* If the candidate address doesn't have a backing physical page, then
2064
* the loop immediately terminates.
2065
*/
2066
for (i = 0; i < 2 * imax(backward, forward); i++) {
2067
addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
2068
PAGE_SIZE);
2069
if (addr > addra + forward * PAGE_SIZE)
2070
addr = 0;
2071
2072
if (addr < starta || addr >= entry->end)
2073
continue;
2074
2075
if (!pmap_is_prefaultable(pmap, addr))
2076
continue;
2077
2078
pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2079
lobject = entry->object.vm_object;
2080
if (!obj_locked)
2081
VM_OBJECT_RLOCK(lobject);
2082
while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
2083
!vm_fault_object_needs_getpages(lobject) &&
2084
(backing_object = lobject->backing_object) != NULL) {
2085
KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
2086
0, ("vm_fault_prefault: unaligned object offset"));
2087
pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2088
VM_OBJECT_RLOCK(backing_object);
2089
if (!obj_locked || lobject != entry->object.vm_object)
2090
VM_OBJECT_RUNLOCK(lobject);
2091
lobject = backing_object;
2092
}
2093
if (m == NULL) {
2094
if (!obj_locked || lobject != entry->object.vm_object)
2095
VM_OBJECT_RUNLOCK(lobject);
2096
break;
2097
}
2098
if (vm_page_all_valid(m) &&
2099
(m->flags & PG_FICTITIOUS) == 0)
2100
pmap_enter_quick(pmap, addr, m, prot);
2101
if (!obj_locked || lobject != entry->object.vm_object)
2102
VM_OBJECT_RUNLOCK(lobject);
2103
}
2104
}
2105
2106
/*
2107
* Hold each of the physical pages that are mapped by the specified
2108
* range of virtual addresses, ["addr", "addr" + "len"), if those
2109
* mappings are valid and allow the specified types of access, "prot".
2110
* If all of the implied pages are successfully held, then the number
2111
* of held pages is assigned to *ppages_count, together with pointers
2112
* to those pages in the array "ma". The returned value is zero.
2113
*
2114
* However, if any of the pages cannot be held, an error is returned,
2115
* and no pages are held.
2116
* Error values:
2117
* ENOMEM - the range is not valid
2118
* EINVAL - the provided vm_page array is too small to hold all pages
2119
* EAGAIN - a page was not mapped, and the thread is in nofaulting mode
2120
* EFAULT - a page with requested permissions cannot be mapped
2121
* (more detailed result from vm_fault() is lost)
2122
*/
2123
int
2124
vm_fault_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2125
vm_prot_t prot, vm_page_t *ma, int max_count, int *ppages_count)
2126
{
2127
vm_offset_t end, va;
2128
vm_page_t *mp;
2129
int count, error;
2130
boolean_t pmap_failed;
2131
2132
if (len == 0) {
2133
*ppages_count = 0;
2134
return (0);
2135
}
2136
end = round_page(addr + len);
2137
addr = trunc_page(addr);
2138
2139
if (!vm_map_range_valid(map, addr, end))
2140
return (ENOMEM);
2141
2142
if (atop(end - addr) > max_count)
2143
return (EINVAL);
2144
count = atop(end - addr);
2145
2146
/*
2147
* Most likely, the physical pages are resident in the pmap, so it is
2148
* faster to try pmap_extract_and_hold() first.
2149
*/
2150
pmap_failed = FALSE;
2151
for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2152
*mp = pmap_extract_and_hold(map->pmap, va, prot);
2153
if (*mp == NULL)
2154
pmap_failed = TRUE;
2155
else if ((prot & VM_PROT_WRITE) != 0 &&
2156
(*mp)->dirty != VM_PAGE_BITS_ALL) {
2157
/*
2158
* Explicitly dirty the physical page. Otherwise, the
2159
* caller's changes may go unnoticed because they are
2160
* performed through an unmanaged mapping or by a DMA
2161
* operation.
2162
*
2163
* The object lock is not held here.
2164
* See vm_page_clear_dirty_mask().
2165
*/
2166
vm_page_dirty(*mp);
2167
}
2168
}
2169
if (pmap_failed) {
2170
/*
2171
* One or more pages could not be held by the pmap. Either no
2172
* page was mapped at the specified virtual address or that
2173
* mapping had insufficient permissions. Attempt to fault in
2174
* and hold these pages.
2175
*
2176
* If vm_fault_disable_pagefaults() was called,
2177
* i.e., TDP_NOFAULTING is set, we must not sleep nor
2178
* acquire MD VM locks, which means we must not call
2179
* vm_fault(). Some (out of tree) callers mark
2180
* too wide a code area with vm_fault_disable_pagefaults()
2181
* already, use the VM_PROT_QUICK_NOFAULT flag to request
2182
* the proper behaviour explicitly.
2183
*/
2184
if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2185
(curthread->td_pflags & TDP_NOFAULTING) != 0) {
2186
error = EAGAIN;
2187
goto fail;
2188
}
2189
for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2190
if (*mp == NULL && vm_fault(map, va, prot,
2191
VM_FAULT_NORMAL, mp) != KERN_SUCCESS) {
2192
error = EFAULT;
2193
goto fail;
2194
}
2195
}
2196
}
2197
*ppages_count = count;
2198
return (0);
2199
fail:
2200
for (mp = ma; mp < ma + count; mp++)
2201
if (*mp != NULL)
2202
vm_page_unwire(*mp, PQ_INACTIVE);
2203
return (error);
2204
}
2205
2206
/*
2207
* Hold each of the physical pages that are mapped by the specified range of
2208
* virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2209
* and allow the specified types of access, "prot". If all of the implied
2210
* pages are successfully held, then the number of held pages is returned
2211
* together with pointers to those pages in the array "ma". However, if any
2212
* of the pages cannot be held, -1 is returned.
2213
*/
2214
int
2215
vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2216
vm_prot_t prot, vm_page_t *ma, int max_count)
2217
{
2218
int error, pages_count;
2219
2220
error = vm_fault_hold_pages(map, addr, len, prot, ma,
2221
max_count, &pages_count);
2222
if (error != 0) {
2223
if (error == EINVAL)
2224
panic("vm_fault_quick_hold_pages: count > max_count");
2225
return (-1);
2226
}
2227
return (pages_count);
2228
}
2229
2230
/*
2231
* Routine:
2232
* vm_fault_copy_entry
2233
* Function:
2234
* Create new object backing dst_entry with private copy of all
2235
* underlying pages. When src_entry is equal to dst_entry, function
2236
* implements COW for wired-down map entry. Otherwise, it forks
2237
* wired entry into dst_map.
2238
*
2239
* In/out conditions:
2240
* The source and destination maps must be locked for write.
2241
* The source map entry must be wired down (or be a sharing map
2242
* entry corresponding to a main map entry that is wired down).
2243
*/
2244
void
2245
vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2246
vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2247
vm_ooffset_t *fork_charge)
2248
{
2249
struct pctrie_iter pages;
2250
vm_object_t backing_object, dst_object, object, src_object;
2251
vm_pindex_t dst_pindex, pindex, src_pindex;
2252
vm_prot_t access, prot;
2253
vm_offset_t vaddr;
2254
vm_page_t dst_m;
2255
vm_page_t src_m;
2256
bool upgrade;
2257
2258
upgrade = src_entry == dst_entry;
2259
KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2260
("vm_fault_copy_entry: vm_object not NULL"));
2261
2262
/*
2263
* If not an upgrade, then enter the mappings in the pmap as
2264
* read and/or execute accesses. Otherwise, enter them as
2265
* write accesses.
2266
*
2267
* A writeable large page mapping is only created if all of
2268
* the constituent small page mappings are modified. Marking
2269
* PTEs as modified on inception allows promotion to happen
2270
* without taking potentially large number of soft faults.
2271
*/
2272
access = prot = dst_entry->protection;
2273
if (!upgrade)
2274
access &= ~VM_PROT_WRITE;
2275
2276
src_object = src_entry->object.vm_object;
2277
src_pindex = OFF_TO_IDX(src_entry->offset);
2278
2279
if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2280
dst_object = src_object;
2281
vm_object_reference(dst_object);
2282
} else {
2283
/*
2284
* Create the top-level object for the destination entry.
2285
* Doesn't actually shadow anything - we copy the pages
2286
* directly.
2287
*/
2288
dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2289
dst_entry->start), NULL, NULL, 0);
2290
#if VM_NRESERVLEVEL > 0
2291
dst_object->flags |= OBJ_COLORED;
2292
dst_object->pg_color = atop(dst_entry->start);
2293
#endif
2294
dst_object->domain = src_object->domain;
2295
dst_object->charge = dst_entry->end - dst_entry->start;
2296
2297
dst_entry->object.vm_object = dst_object;
2298
dst_entry->offset = 0;
2299
dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2300
}
2301
2302
VM_OBJECT_WLOCK(dst_object);
2303
if (fork_charge != NULL) {
2304
KASSERT(dst_entry->cred == NULL,
2305
("vm_fault_copy_entry: leaked swp charge"));
2306
dst_object->cred = curthread->td_ucred;
2307
crhold(dst_object->cred);
2308
*fork_charge += dst_object->charge;
2309
} else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2310
dst_object->cred == NULL) {
2311
KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2312
dst_entry));
2313
dst_object->cred = dst_entry->cred;
2314
dst_entry->cred = NULL;
2315
}
2316
2317
/*
2318
* Loop through all of the virtual pages within the entry's
2319
* range, copying each page from the source object to the
2320
* destination object. Since the source is wired, those pages
2321
* must exist. In contrast, the destination is pageable.
2322
* Since the destination object doesn't share any backing storage
2323
* with the source object, all of its pages must be dirtied,
2324
* regardless of whether they can be written.
2325
*/
2326
vm_page_iter_init(&pages, dst_object);
2327
for (vaddr = dst_entry->start, dst_pindex = 0;
2328
vaddr < dst_entry->end;
2329
vaddr += PAGE_SIZE, dst_pindex++) {
2330
again:
2331
/*
2332
* Find the page in the source object, and copy it in.
2333
* Because the source is wired down, the page will be
2334
* in memory.
2335
*/
2336
if (src_object != dst_object)
2337
VM_OBJECT_RLOCK(src_object);
2338
object = src_object;
2339
pindex = src_pindex + dst_pindex;
2340
while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2341
(backing_object = object->backing_object) != NULL) {
2342
/*
2343
* Unless the source mapping is read-only or
2344
* it is presently being upgraded from
2345
* read-only, the first object in the shadow
2346
* chain should provide all of the pages. In
2347
* other words, this loop body should never be
2348
* executed when the source mapping is already
2349
* read/write.
2350
*/
2351
KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2352
upgrade,
2353
("vm_fault_copy_entry: main object missing page"));
2354
2355
VM_OBJECT_RLOCK(backing_object);
2356
pindex += OFF_TO_IDX(object->backing_object_offset);
2357
if (object != dst_object)
2358
VM_OBJECT_RUNLOCK(object);
2359
object = backing_object;
2360
}
2361
KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2362
2363
if (object != dst_object) {
2364
/*
2365
* Allocate a page in the destination object.
2366
*/
2367
pindex = (src_object == dst_object ? src_pindex : 0) +
2368
dst_pindex;
2369
dst_m = vm_page_alloc_iter(dst_object, pindex,
2370
VM_ALLOC_NORMAL, &pages);
2371
if (dst_m == NULL) {
2372
VM_OBJECT_WUNLOCK(dst_object);
2373
VM_OBJECT_RUNLOCK(object);
2374
vm_wait(dst_object);
2375
VM_OBJECT_WLOCK(dst_object);
2376
pctrie_iter_reset(&pages);
2377
goto again;
2378
}
2379
2380
/*
2381
* See the comment in vm_fault_cow().
2382
*/
2383
if (src_object == dst_object &&
2384
(object->flags & OBJ_ONEMAPPING) == 0)
2385
pmap_remove_all(src_m);
2386
pmap_copy_page(src_m, dst_m);
2387
2388
/*
2389
* The object lock does not guarantee that "src_m" will
2390
* transition from invalid to valid, but it does ensure
2391
* that "src_m" will not transition from valid to
2392
* invalid.
2393
*/
2394
dst_m->dirty = dst_m->valid = src_m->valid;
2395
VM_OBJECT_RUNLOCK(object);
2396
} else {
2397
dst_m = src_m;
2398
if (vm_page_busy_acquire(
2399
dst_m, VM_ALLOC_WAITFAIL) == 0) {
2400
pctrie_iter_reset(&pages);
2401
goto again;
2402
}
2403
if (dst_m->pindex >= dst_object->size) {
2404
/*
2405
* We are upgrading. Index can occur
2406
* out of bounds if the object type is
2407
* vnode and the file was truncated.
2408
*/
2409
vm_page_xunbusy(dst_m);
2410
break;
2411
}
2412
}
2413
2414
/*
2415
* Enter it in the pmap. If a wired, copy-on-write
2416
* mapping is being replaced by a write-enabled
2417
* mapping, then wire that new mapping.
2418
*
2419
* The page can be invalid if the user called
2420
* msync(MS_INVALIDATE) or truncated the backing vnode
2421
* or shared memory object. In this case, do not
2422
* insert it into pmap, but still do the copy so that
2423
* all copies of the wired map entry have similar
2424
* backing pages.
2425
*/
2426
if (vm_page_all_valid(dst_m)) {
2427
VM_OBJECT_WUNLOCK(dst_object);
2428
pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2429
access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2430
VM_OBJECT_WLOCK(dst_object);
2431
}
2432
2433
/*
2434
* Mark it no longer busy, and put it on the active list.
2435
*/
2436
if (upgrade) {
2437
if (src_m != dst_m) {
2438
vm_page_unwire(src_m, PQ_INACTIVE);
2439
vm_page_wire(dst_m);
2440
} else {
2441
KASSERT(vm_page_wired(dst_m),
2442
("dst_m %p is not wired", dst_m));
2443
}
2444
} else {
2445
vm_page_activate(dst_m);
2446
}
2447
vm_page_xunbusy(dst_m);
2448
}
2449
VM_OBJECT_WUNLOCK(dst_object);
2450
if (upgrade) {
2451
dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2452
vm_object_deallocate(src_object);
2453
}
2454
}
2455
2456
/*
2457
* Block entry into the machine-independent layer's page fault handler by
2458
* the calling thread. Subsequent calls to vm_fault() by that thread will
2459
* return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of
2460
* spurious page faults.
2461
*/
2462
int
2463
vm_fault_disable_pagefaults(void)
2464
{
2465
2466
return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2467
}
2468
2469
void
2470
vm_fault_enable_pagefaults(int save)
2471
{
2472
2473
curthread_pflags_restore(save);
2474
}
2475
2476