Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/vm/vm_glue.c
103373 views
1
/*-
2
* SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3
*
4
* Copyright (c) 1991, 1993
5
* The Regents of the University of California. All rights reserved.
6
*
7
* This code is derived from software contributed to Berkeley by
8
* The Mach Operating System project at Carnegie-Mellon University.
9
*
10
* Redistribution and use in source and binary forms, with or without
11
* modification, are permitted provided that the following conditions
12
* are met:
13
* 1. Redistributions of source code must retain the above copyright
14
* notice, this list of conditions and the following disclaimer.
15
* 2. Redistributions in binary form must reproduce the above copyright
16
* notice, this list of conditions and the following disclaimer in the
17
* documentation and/or other materials provided with the distribution.
18
* 3. Neither the name of the University nor the names of its contributors
19
* may be used to endorse or promote products derived from this software
20
* without specific prior written permission.
21
*
22
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32
* SUCH DAMAGE.
33
*
34
*
35
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
36
* All rights reserved.
37
*
38
* Permission to use, copy, modify and distribute this software and
39
* its documentation is hereby granted, provided that both the copyright
40
* notice and this permission notice appear in all copies of the
41
* software, derivative works or modified versions, and any portions
42
* thereof, and that both notices appear in supporting documentation.
43
*
44
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47
*
48
* Carnegie Mellon requests users of this software to return to
49
*
50
* Software Distribution Coordinator or [email protected]
51
* School of Computer Science
52
* Carnegie Mellon University
53
* Pittsburgh PA 15213-3890
54
*
55
* any improvements or extensions that they make and grant Carnegie the
56
* rights to redistribute these changes.
57
*/
58
59
#include "opt_vm.h"
60
#include "opt_kstack_pages.h"
61
#include "opt_kstack_max_pages.h"
62
#include "opt_kstack_usage_prof.h"
63
64
#include <sys/param.h>
65
#include <sys/systm.h>
66
#include <sys/asan.h>
67
#include <sys/domainset.h>
68
#include <sys/limits.h>
69
#include <sys/lock.h>
70
#include <sys/malloc.h>
71
#include <sys/msan.h>
72
#include <sys/mutex.h>
73
#include <sys/proc.h>
74
#include <sys/racct.h>
75
#include <sys/refcount.h>
76
#include <sys/resourcevar.h>
77
#include <sys/rwlock.h>
78
#include <sys/sched.h>
79
#include <sys/sf_buf.h>
80
#include <sys/shm.h>
81
#include <sys/smp.h>
82
#include <sys/vmmeter.h>
83
#include <sys/vmem.h>
84
#include <sys/sx.h>
85
#include <sys/sysctl.h>
86
#include <sys/kernel.h>
87
#include <sys/ktr.h>
88
#include <sys/unistd.h>
89
90
#include <vm/uma.h>
91
#include <vm/vm.h>
92
#include <vm/vm_param.h>
93
#include <vm/pmap.h>
94
#include <vm/vm_domainset.h>
95
#include <vm/vm_map.h>
96
#include <vm/vm_page.h>
97
#include <vm/vm_pageout.h>
98
#include <vm/vm_pagequeue.h>
99
#include <vm/vm_object.h>
100
#include <vm/vm_kern.h>
101
#include <vm/vm_radix.h>
102
#include <vm/vm_extern.h>
103
#include <vm/vm_pager.h>
104
#include <vm/vm_phys.h>
105
106
#include <machine/cpu.h>
107
108
#if VM_NRESERVLEVEL > 1
109
#define KVA_KSTACK_QUANTUM_SHIFT (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER + \
110
PAGE_SHIFT)
111
#elif VM_NRESERVLEVEL > 0
112
#define KVA_KSTACK_QUANTUM_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT)
113
#else
114
#define KVA_KSTACK_QUANTUM_SHIFT (8 + PAGE_SHIFT)
115
#endif
116
#define KVA_KSTACK_QUANTUM (1ul << KVA_KSTACK_QUANTUM_SHIFT)
117
118
/*
119
* MPSAFE
120
*
121
* WARNING! This code calls vm_map_check_protection() which only checks
122
* the associated vm_map_entry range. It does not determine whether the
123
* contents of the memory is actually readable or writable. In most cases
124
* just checking the vm_map_entry is sufficient within the kernel's address
125
* space.
126
*/
127
bool
128
kernacc(void *addr, int len, int rw)
129
{
130
boolean_t rv;
131
vm_offset_t saddr, eaddr;
132
vm_prot_t prot;
133
134
KASSERT((rw & ~VM_PROT_ALL) == 0,
135
("illegal ``rw'' argument to kernacc (%x)\n", rw));
136
137
if ((vm_offset_t)addr + len > vm_map_max(kernel_map) ||
138
(vm_offset_t)addr + len < (vm_offset_t)addr)
139
return (false);
140
141
prot = rw;
142
saddr = trunc_page((vm_offset_t)addr);
143
eaddr = round_page((vm_offset_t)addr + len);
144
vm_map_lock_read(kernel_map);
145
rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
146
vm_map_unlock_read(kernel_map);
147
return (rv == TRUE);
148
}
149
150
/*
151
* MPSAFE
152
*
153
* WARNING! This code calls vm_map_check_protection() which only checks
154
* the associated vm_map_entry range. It does not determine whether the
155
* contents of the memory is actually readable or writable. vmapbuf(),
156
* vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
157
* used in conjunction with this call.
158
*/
159
bool
160
useracc(void *addr, int len, int rw)
161
{
162
boolean_t rv;
163
vm_prot_t prot;
164
vm_map_t map;
165
166
KASSERT((rw & ~VM_PROT_ALL) == 0,
167
("illegal ``rw'' argument to useracc (%x)\n", rw));
168
prot = rw;
169
map = &curproc->p_vmspace->vm_map;
170
if ((vm_offset_t)addr + len > vm_map_max(map) ||
171
(vm_offset_t)addr + len < (vm_offset_t)addr) {
172
return (false);
173
}
174
vm_map_lock_read(map);
175
rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
176
round_page((vm_offset_t)addr + len), prot);
177
vm_map_unlock_read(map);
178
return (rv == TRUE);
179
}
180
181
int
182
vslock(void *addr, size_t len)
183
{
184
vm_offset_t end, last, start;
185
vm_size_t npages;
186
int error;
187
188
last = (vm_offset_t)addr + len;
189
start = trunc_page((vm_offset_t)addr);
190
end = round_page(last);
191
if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
192
return (EINVAL);
193
npages = atop(end - start);
194
if (npages > vm_page_max_user_wired)
195
return (ENOMEM);
196
error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
197
VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
198
if (error == KERN_SUCCESS) {
199
curthread->td_vslock_sz += len;
200
return (0);
201
}
202
203
/*
204
* Return EFAULT on error to match copy{in,out}() behaviour
205
* rather than returning ENOMEM like mlock() would.
206
*/
207
return (EFAULT);
208
}
209
210
void
211
vsunlock(void *addr, size_t len)
212
{
213
214
/* Rely on the parameter sanity checks performed by vslock(). */
215
MPASS(curthread->td_vslock_sz >= len);
216
curthread->td_vslock_sz -= len;
217
(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
218
trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
219
VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
220
}
221
222
/*
223
* Pin the page contained within the given object at the given offset. If the
224
* page is not resident, allocate and load it using the given object's pager.
225
* Return the pinned page if successful; otherwise, return NULL.
226
*/
227
static vm_page_t
228
vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
229
{
230
vm_page_t m;
231
vm_pindex_t pindex;
232
233
pindex = OFF_TO_IDX(offset);
234
(void)vm_page_grab_valid_unlocked(&m, object, pindex,
235
VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
236
return (m);
237
}
238
239
/*
240
* Return a CPU private mapping to the page at the given offset within the
241
* given object. The page is pinned before it is mapped.
242
*/
243
struct sf_buf *
244
vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
245
{
246
vm_page_t m;
247
248
m = vm_imgact_hold_page(object, offset);
249
if (m == NULL)
250
return (NULL);
251
sched_pin();
252
return (sf_buf_alloc(m, SFB_CPUPRIVATE));
253
}
254
255
/*
256
* Destroy the given CPU private mapping and unpin the page that it mapped.
257
*/
258
void
259
vm_imgact_unmap_page(struct sf_buf *sf)
260
{
261
vm_page_t m;
262
263
m = sf_buf_page(sf);
264
sf_buf_free(sf);
265
sched_unpin();
266
vm_page_unwire(m, PQ_ACTIVE);
267
}
268
269
void
270
vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
271
{
272
273
pmap_sync_icache(map->pmap, va, sz);
274
}
275
276
static vm_object_t kstack_object;
277
static vm_object_t kstack_alt_object;
278
static uma_zone_t kstack_cache;
279
static int kstack_cache_size;
280
static vmem_t *vmd_kstack_arena[MAXMEMDOM];
281
282
static vm_pindex_t vm_kstack_pindex(vm_offset_t ks, int npages);
283
static vm_object_t vm_thread_kstack_size_to_obj(int npages);
284
static int vm_thread_stack_back(vm_offset_t kaddr, vm_page_t ma[], int npages,
285
int req_class, int domain);
286
287
static int
288
sysctl_kstack_cache_size(SYSCTL_HANDLER_ARGS)
289
{
290
int error, oldsize;
291
292
oldsize = kstack_cache_size;
293
error = sysctl_handle_int(oidp, arg1, arg2, req);
294
if (error == 0 && req->newptr && oldsize != kstack_cache_size)
295
uma_zone_set_maxcache(kstack_cache, kstack_cache_size);
296
return (error);
297
}
298
SYSCTL_PROC(_vm, OID_AUTO, kstack_cache_size,
299
CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &kstack_cache_size, 0,
300
sysctl_kstack_cache_size, "IU", "Maximum number of cached kernel stacks");
301
302
/*
303
* Allocate a virtual address range from a domain kstack arena, following
304
* the specified NUMA policy.
305
*/
306
static vm_offset_t
307
vm_thread_alloc_kstack_kva(vm_size_t size, int domain)
308
{
309
#ifndef __ILP32__
310
int rv;
311
vmem_t *arena;
312
vm_offset_t addr = 0;
313
314
size = round_page(size);
315
/* Allocate from the kernel arena for non-standard kstack sizes. */
316
if (size != ptoa(kstack_pages + KSTACK_GUARD_PAGES)) {
317
arena = vm_dom[domain].vmd_kernel_arena;
318
} else {
319
arena = vmd_kstack_arena[domain];
320
}
321
rv = vmem_alloc(arena, size, M_BESTFIT | M_NOWAIT, &addr);
322
if (rv == ENOMEM)
323
return (0);
324
if (size == ptoa(kstack_pages + KSTACK_GUARD_PAGES)) {
325
/* This expectation only applies to kstack arenas */
326
KASSERT((addr - VM_MIN_KERNEL_ADDRESS) % size == 0,
327
("%s: allocated kstack KVA not aligned to multiple of kstack size",
328
__func__));
329
}
330
331
return (addr);
332
#else
333
return (kva_alloc(size));
334
#endif
335
}
336
337
/*
338
* Release a region of kernel virtual memory
339
* allocated from the kstack arena.
340
*/
341
static __noinline void
342
vm_thread_free_kstack_kva(vm_offset_t addr, vm_size_t size, int domain)
343
{
344
vmem_t *arena;
345
346
size = round_page(size);
347
#ifdef __ILP32__
348
arena = kernel_arena;
349
#else
350
arena = vmd_kstack_arena[domain];
351
if (size != ptoa(kstack_pages + KSTACK_GUARD_PAGES)) {
352
arena = vm_dom[domain].vmd_kernel_arena;
353
}
354
#endif
355
vmem_free(arena, addr, size);
356
}
357
358
static vmem_size_t
359
vm_thread_kstack_import_quantum(void)
360
{
361
#ifndef __ILP32__
362
/*
363
* The kstack_quantum is larger than KVA_QUANTUM to account
364
* for holes induced by guard pages.
365
*/
366
return (KVA_KSTACK_QUANTUM * (kstack_pages + KSTACK_GUARD_PAGES));
367
#else
368
return (KVA_KSTACK_QUANTUM);
369
#endif
370
}
371
372
/*
373
* Import KVA from a parent arena into the kstack arena. Imports must be
374
* a multiple of kernel stack pages + guard pages in size.
375
*
376
* Kstack VA allocations need to be aligned so that the linear KVA pindex
377
* is divisible by the total number of kstack VA pages. This is necessary to
378
* make vm_kstack_pindex work properly.
379
*
380
* We import a multiple of KVA_KSTACK_QUANTUM-sized region from the parent
381
* arena. The actual size used by the kstack arena is one kstack smaller to
382
* allow for the necessary alignment adjustments to be made.
383
*/
384
static int
385
vm_thread_kstack_arena_import(void *arena, vmem_size_t size, int flags,
386
vmem_addr_t *addrp)
387
{
388
int error, rem;
389
size_t kpages = kstack_pages + KSTACK_GUARD_PAGES;
390
391
KASSERT(atop(size) % kpages == 0,
392
("%s: Size %jd is not a multiple of kstack pages (%d)", __func__,
393
(intmax_t)size, (int)kpages));
394
395
error = vmem_xalloc(arena, vm_thread_kstack_import_quantum(),
396
KVA_KSTACK_QUANTUM, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags,
397
addrp);
398
if (error) {
399
return (error);
400
}
401
402
rem = atop(*addrp - VM_MIN_KERNEL_ADDRESS) % kpages;
403
if (rem != 0) {
404
/* Bump addr to next aligned address */
405
*addrp = *addrp + (kpages - rem) * PAGE_SIZE;
406
}
407
408
return (0);
409
}
410
411
/*
412
* Release KVA from a parent arena into the kstack arena. Released imports must
413
* be a multiple of kernel stack pages + guard pages in size.
414
*/
415
static void
416
vm_thread_kstack_arena_release(void *arena, vmem_addr_t addr, vmem_size_t size)
417
{
418
int rem;
419
size_t kpages __diagused = kstack_pages + KSTACK_GUARD_PAGES;
420
421
KASSERT(size % kpages == 0,
422
("%s: Size %jd is not a multiple of kstack pages (%d)", __func__,
423
(intmax_t)size, (int)kpages));
424
425
KASSERT((addr - VM_MIN_KERNEL_ADDRESS) % kpages == 0,
426
("%s: Address %p is not properly aligned (%p)", __func__,
427
(void *)addr, (void *)VM_MIN_KERNEL_ADDRESS));
428
/*
429
* If the address is not KVA_KSTACK_QUANTUM-aligned we have to decrement
430
* it to account for the shift in kva_import_kstack.
431
*/
432
rem = addr % KVA_KSTACK_QUANTUM;
433
if (rem) {
434
KASSERT(rem <= ptoa(kpages),
435
("%s: rem > kpages (%d), (%d)", __func__, rem,
436
(int)kpages));
437
addr -= rem;
438
}
439
vmem_xfree(arena, addr, vm_thread_kstack_import_quantum());
440
}
441
442
/*
443
* Create the kernel stack for a new thread.
444
*/
445
static vm_offset_t
446
vm_thread_stack_create(struct domainset *ds, int pages, int flags)
447
{
448
vm_page_t ma[KSTACK_MAX_PAGES];
449
struct vm_domainset_iter di;
450
int req;
451
vm_offset_t ks;
452
int domain, i;
453
454
vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
455
req = malloc2vm_flags(flags);
456
do {
457
/*
458
* Get a kernel virtual address for this thread's kstack.
459
*/
460
ks = vm_thread_alloc_kstack_kva(ptoa(pages + KSTACK_GUARD_PAGES),
461
domain);
462
if (ks == 0)
463
continue;
464
ks += ptoa(KSTACK_GUARD_PAGES);
465
466
/*
467
* Allocate physical pages to back the stack.
468
*/
469
if (vm_thread_stack_back(ks, ma, pages, req, domain) != 0) {
470
vm_thread_free_kstack_kva(ks - ptoa(KSTACK_GUARD_PAGES),
471
ptoa(pages + KSTACK_GUARD_PAGES), domain);
472
continue;
473
}
474
if (KSTACK_GUARD_PAGES != 0) {
475
pmap_qremove(ks - ptoa(KSTACK_GUARD_PAGES),
476
KSTACK_GUARD_PAGES);
477
}
478
for (i = 0; i < pages; i++)
479
vm_page_valid(ma[i]);
480
pmap_qenter(ks, ma, pages);
481
return (ks);
482
} while (vm_domainset_iter_policy(&di, &domain) == 0);
483
484
return (0);
485
}
486
487
static __noinline void
488
vm_thread_stack_dispose(vm_offset_t ks, int pages)
489
{
490
vm_page_t m;
491
vm_pindex_t pindex;
492
int i, domain;
493
vm_object_t obj = vm_thread_kstack_size_to_obj(pages);
494
495
pindex = vm_kstack_pindex(ks, pages);
496
domain = vm_phys_domain(vtophys(ks));
497
pmap_qremove(ks, pages);
498
VM_OBJECT_WLOCK(obj);
499
for (i = 0; i < pages; i++) {
500
m = vm_page_lookup(obj, pindex + i);
501
if (m == NULL)
502
panic("%s: kstack already missing?", __func__);
503
KASSERT(vm_page_domain(m) == domain,
504
("%s: page %p domain mismatch, expected %d got %d",
505
__func__, m, domain, vm_page_domain(m)));
506
vm_page_xbusy_claim(m);
507
vm_page_unwire_noq(m);
508
vm_page_free(m);
509
}
510
VM_OBJECT_WUNLOCK(obj);
511
kasan_mark((void *)ks, ptoa(pages), ptoa(pages), 0);
512
vm_thread_free_kstack_kva(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
513
ptoa(pages + KSTACK_GUARD_PAGES), domain);
514
}
515
516
/*
517
* Allocate the kernel stack for a new thread.
518
*/
519
int
520
vm_thread_new(struct thread *td, int pages)
521
{
522
vm_offset_t ks;
523
u_short ks_domain;
524
525
/* Bounds check */
526
if (pages <= 1)
527
pages = kstack_pages;
528
else if (pages > KSTACK_MAX_PAGES)
529
pages = KSTACK_MAX_PAGES;
530
531
ks = 0;
532
if (pages == kstack_pages && kstack_cache != NULL)
533
ks = (vm_offset_t)uma_zalloc(kstack_cache, M_NOWAIT);
534
if (ks == 0)
535
ks = vm_thread_stack_create(DOMAINSET_PREF(PCPU_GET(domain)),
536
pages, M_NOWAIT);
537
if (ks == 0)
538
return (0);
539
540
ks_domain = vm_phys_domain(vtophys(ks));
541
KASSERT(ks_domain >= 0 && ks_domain < vm_ndomains,
542
("%s: invalid domain for kstack %p", __func__, (void *)ks));
543
td->td_kstack = ks;
544
td->td_kstack_pages = pages;
545
td->td_kstack_domain = ks_domain;
546
return (1);
547
}
548
549
/*
550
* Dispose of a thread's kernel stack.
551
*/
552
void
553
vm_thread_dispose(struct thread *td)
554
{
555
vm_offset_t ks;
556
int pages;
557
558
pages = td->td_kstack_pages;
559
ks = td->td_kstack;
560
td->td_kstack = 0;
561
td->td_kstack_pages = 0;
562
td->td_kstack_domain = MAXMEMDOM;
563
if (pages == kstack_pages) {
564
kasan_mark((void *)ks, 0, ptoa(pages), KASAN_KSTACK_FREED);
565
uma_zfree(kstack_cache, (void *)ks);
566
} else {
567
vm_thread_stack_dispose(ks, pages);
568
}
569
}
570
571
/*
572
* Calculate kstack pindex.
573
*
574
* Uses a non-identity mapping if guard pages are
575
* active to avoid pindex holes in the kstack object.
576
*/
577
static vm_pindex_t
578
vm_kstack_pindex(vm_offset_t ks, int kpages)
579
{
580
vm_pindex_t pindex = atop(ks - VM_MIN_KERNEL_ADDRESS);
581
582
#ifdef __ILP32__
583
return (pindex);
584
#else
585
/*
586
* Return the linear pindex if guard pages aren't active or if we are
587
* allocating a non-standard kstack size.
588
*/
589
if (KSTACK_GUARD_PAGES == 0 || kpages != kstack_pages) {
590
return (pindex);
591
}
592
KASSERT(pindex % (kpages + KSTACK_GUARD_PAGES) >= KSTACK_GUARD_PAGES,
593
("%s: Attempting to calculate kstack guard page pindex", __func__));
594
595
return (pindex -
596
(pindex / (kpages + KSTACK_GUARD_PAGES) + 1) * KSTACK_GUARD_PAGES);
597
#endif
598
}
599
600
/*
601
* Allocate physical pages, following the specified NUMA policy, to back a
602
* kernel stack.
603
*/
604
static int
605
vm_thread_stack_back(vm_offset_t ks, vm_page_t ma[], int npages, int req_class,
606
int domain)
607
{
608
struct pctrie_iter pages;
609
vm_object_t obj = vm_thread_kstack_size_to_obj(npages);
610
vm_pindex_t pindex;
611
vm_page_t m;
612
int n;
613
614
pindex = vm_kstack_pindex(ks, npages);
615
616
vm_page_iter_init(&pages, obj);
617
VM_OBJECT_WLOCK(obj);
618
for (n = 0; n < npages; ma[n++] = m) {
619
m = vm_page_grab_iter(obj, pindex + n,
620
VM_ALLOC_NOCREAT | VM_ALLOC_WIRED, &pages);
621
if (m != NULL)
622
continue;
623
m = vm_page_alloc_domain_iter(obj, pindex + n,
624
domain, req_class | VM_ALLOC_WIRED, &pages);
625
if (m != NULL)
626
continue;
627
for (int i = 0; i < n; i++) {
628
m = ma[i];
629
(void)vm_page_unwire_noq(m);
630
vm_page_free(m);
631
}
632
break;
633
}
634
VM_OBJECT_WUNLOCK(obj);
635
return (n < npages ? ENOMEM : 0);
636
}
637
638
static vm_object_t
639
vm_thread_kstack_size_to_obj(int npages)
640
{
641
return (npages == kstack_pages ? kstack_object : kstack_alt_object);
642
}
643
644
static int
645
kstack_import(void *arg, void **store, int cnt, int domain, int flags)
646
{
647
struct domainset *ds;
648
int i;
649
650
if (domain == UMA_ANYDOMAIN)
651
ds = DOMAINSET_RR();
652
else
653
ds = DOMAINSET_PREF(domain);
654
655
for (i = 0; i < cnt; i++) {
656
store[i] = (void *)vm_thread_stack_create(ds, kstack_pages,
657
flags);
658
if (store[i] == NULL)
659
break;
660
}
661
return (i);
662
}
663
664
static void
665
kstack_release(void *arg, void **store, int cnt)
666
{
667
vm_offset_t ks;
668
int i;
669
670
for (i = 0; i < cnt; i++) {
671
ks = (vm_offset_t)store[i];
672
vm_thread_stack_dispose(ks, kstack_pages);
673
}
674
}
675
676
static void
677
kstack_cache_init(void *null)
678
{
679
vm_size_t kstack_quantum;
680
int domain;
681
682
kstack_object = vm_object_allocate(OBJT_PHYS,
683
atop(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS));
684
kstack_cache = uma_zcache_create("kstack_cache",
685
kstack_pages * PAGE_SIZE, NULL, NULL, NULL, NULL,
686
kstack_import, kstack_release, NULL,
687
UMA_ZONE_FIRSTTOUCH);
688
kstack_cache_size = imax(128, mp_ncpus * 4);
689
uma_zone_set_maxcache(kstack_cache, kstack_cache_size);
690
691
kstack_alt_object = vm_object_allocate(OBJT_PHYS,
692
atop(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS));
693
694
kstack_quantum = vm_thread_kstack_import_quantum();
695
/*
696
* Reduce size used by the kstack arena to allow for
697
* alignment adjustments in vm_thread_kstack_arena_import.
698
*/
699
kstack_quantum -= (kstack_pages + KSTACK_GUARD_PAGES) * PAGE_SIZE;
700
/*
701
* Create the kstack_arena for each domain and set kernel_arena as
702
* parent.
703
*/
704
for (domain = 0; domain < vm_ndomains; domain++) {
705
vmd_kstack_arena[domain] = vmem_create("kstack arena", 0, 0,
706
PAGE_SIZE, 0, M_WAITOK);
707
KASSERT(vmd_kstack_arena[domain] != NULL,
708
("%s: failed to create domain %d kstack_arena", __func__,
709
domain));
710
vmem_set_import(vmd_kstack_arena[domain],
711
vm_thread_kstack_arena_import,
712
vm_thread_kstack_arena_release,
713
vm_dom[domain].vmd_kernel_arena, kstack_quantum);
714
}
715
}
716
SYSINIT(vm_kstacks, SI_SUB_KMEM, SI_ORDER_ANY, kstack_cache_init, NULL);
717
718
#ifdef KSTACK_USAGE_PROF
719
/*
720
* Track maximum stack used by a thread in kernel.
721
*/
722
static int max_kstack_used;
723
724
SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
725
&max_kstack_used, 0,
726
"Maximum stack depth used by a thread in kernel");
727
728
void
729
intr_prof_stack_use(struct thread *td, struct trapframe *frame)
730
{
731
vm_offset_t stack_top;
732
vm_offset_t current;
733
int used, prev_used;
734
735
/*
736
* Testing for interrupted kernel mode isn't strictly
737
* needed. It optimizes the execution, since interrupts from
738
* usermode will have only the trap frame on the stack.
739
*/
740
if (TRAPF_USERMODE(frame))
741
return;
742
743
stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
744
current = (vm_offset_t)(uintptr_t)&stack_top;
745
746
/*
747
* Try to detect if interrupt is using kernel thread stack.
748
* Hardware could use a dedicated stack for interrupt handling.
749
*/
750
if (stack_top <= current || current < td->td_kstack)
751
return;
752
753
used = stack_top - current;
754
for (;;) {
755
prev_used = max_kstack_used;
756
if (prev_used >= used)
757
break;
758
if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
759
break;
760
}
761
}
762
#endif /* KSTACK_USAGE_PROF */
763
764
/*
765
* Implement fork's actions on an address space.
766
* Here we arrange for the address space to be copied or referenced,
767
* allocate a user struct (pcb and kernel stack), then call the
768
* machine-dependent layer to fill those in and make the new process
769
* ready to run. The new process is set up so that it returns directly
770
* to user mode to avoid stack copying and relocation problems.
771
*/
772
int
773
vm_forkproc(struct thread *td, struct proc *p2, struct thread *td2,
774
struct vmspace *vm2, int flags)
775
{
776
struct proc *p1 = td->td_proc;
777
struct domainset *dset;
778
int error;
779
780
if ((flags & RFPROC) == 0) {
781
/*
782
* Divorce the memory, if it is shared, essentially
783
* this changes shared memory amongst threads, into
784
* COW locally.
785
*/
786
if ((flags & RFMEM) == 0) {
787
error = vmspace_unshare(p1);
788
if (error)
789
return (error);
790
}
791
cpu_fork(td, p2, td2, flags);
792
return (0);
793
}
794
795
if (flags & RFMEM) {
796
p2->p_vmspace = p1->p_vmspace;
797
refcount_acquire(&p1->p_vmspace->vm_refcnt);
798
}
799
dset = td2->td_domain.dr_policy;
800
while (vm_page_count_severe_set(&dset->ds_mask)) {
801
vm_wait_doms(&dset->ds_mask, 0);
802
}
803
804
if ((flags & RFMEM) == 0) {
805
p2->p_vmspace = vm2;
806
if (p1->p_vmspace->vm_shm)
807
shmfork(p1, p2);
808
}
809
810
/*
811
* cpu_fork will copy and update the pcb, set up the kernel stack,
812
* and make the child ready to run.
813
*/
814
cpu_fork(td, p2, td2, flags);
815
return (0);
816
}
817
818
/*
819
* Called after process has been wait(2)'ed upon and is being reaped.
820
* The idea is to reclaim resources that we could not reclaim while
821
* the process was still executing.
822
*/
823
void
824
vm_waitproc(struct proc *p)
825
{
826
827
vmspace_exitfree(p); /* and clean-out the vmspace */
828
}
829
830