Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/vm/vm_kern.c
39477 views
1
/*-
2
* SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3
*
4
* Copyright (c) 1991, 1993
5
* The Regents of the University of California. All rights reserved.
6
*
7
* This code is derived from software contributed to Berkeley by
8
* The Mach Operating System project at Carnegie-Mellon University.
9
*
10
* Redistribution and use in source and binary forms, with or without
11
* modification, are permitted provided that the following conditions
12
* are met:
13
* 1. Redistributions of source code must retain the above copyright
14
* notice, this list of conditions and the following disclaimer.
15
* 2. Redistributions in binary form must reproduce the above copyright
16
* notice, this list of conditions and the following disclaimer in the
17
* documentation and/or other materials provided with the distribution.
18
* 3. Neither the name of the University nor the names of its contributors
19
* may be used to endorse or promote products derived from this software
20
* without specific prior written permission.
21
*
22
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32
* SUCH DAMAGE.
33
*
34
*
35
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
36
* All rights reserved.
37
*
38
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
39
*
40
* Permission to use, copy, modify and distribute this software and
41
* its documentation is hereby granted, provided that both the copyright
42
* notice and this permission notice appear in all copies of the
43
* software, derivative works or modified versions, and any portions
44
* thereof, and that both notices appear in supporting documentation.
45
*
46
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49
*
50
* Carnegie Mellon requests users of this software to return to
51
*
52
* Software Distribution Coordinator or [email protected]
53
* School of Computer Science
54
* Carnegie Mellon University
55
* Pittsburgh PA 15213-3890
56
*
57
* any improvements or extensions that they make and grant Carnegie the
58
* rights to redistribute these changes.
59
*/
60
61
/*
62
* Kernel memory management.
63
*/
64
65
#include <sys/cdefs.h>
66
#include "opt_vm.h"
67
68
#include <sys/param.h>
69
#include <sys/systm.h>
70
#include <sys/asan.h>
71
#include <sys/domainset.h>
72
#include <sys/eventhandler.h>
73
#include <sys/kernel.h>
74
#include <sys/lock.h>
75
#include <sys/malloc.h>
76
#include <sys/msan.h>
77
#include <sys/proc.h>
78
#include <sys/rwlock.h>
79
#include <sys/smp.h>
80
#include <sys/sysctl.h>
81
#include <sys/vmem.h>
82
#include <sys/vmmeter.h>
83
84
#include <vm/vm.h>
85
#include <vm/vm_param.h>
86
#include <vm/vm_domainset.h>
87
#include <vm/vm_kern.h>
88
#include <vm/pmap.h>
89
#include <vm/vm_map.h>
90
#include <vm/vm_object.h>
91
#include <vm/vm_page.h>
92
#include <vm/vm_pageout.h>
93
#include <vm/vm_pagequeue.h>
94
#include <vm/vm_phys.h>
95
#include <vm/vm_radix.h>
96
#include <vm/vm_extern.h>
97
#include <vm/uma.h>
98
99
struct vm_map kernel_map_store;
100
struct vm_map exec_map_store;
101
struct vm_map pipe_map_store;
102
103
const void *zero_region;
104
CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
105
106
/* NB: Used by kernel debuggers. */
107
const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
108
109
u_int exec_map_entry_size;
110
u_int exec_map_entries;
111
112
SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
113
#if defined(__amd64__)
114
&kva_layout.km_low, 0,
115
#else
116
SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS,
117
#endif
118
"Min kernel address");
119
120
SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
121
#if defined(__arm__)
122
&vm_max_kernel_address, 0,
123
#elif defined(__amd64__)
124
&kva_layout.km_high, 0,
125
#else
126
SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
127
#endif
128
"Max kernel address");
129
130
#if VM_NRESERVLEVEL > 1
131
#define KVA_QUANTUM_SHIFT (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER + \
132
PAGE_SHIFT)
133
#elif VM_NRESERVLEVEL > 0
134
#define KVA_QUANTUM_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT)
135
#else
136
/* On non-superpage architectures we want large import sizes. */
137
#define KVA_QUANTUM_SHIFT (8 + PAGE_SHIFT)
138
#endif
139
#define KVA_QUANTUM (1ul << KVA_QUANTUM_SHIFT)
140
#define KVA_NUMA_IMPORT_QUANTUM (KVA_QUANTUM * 128)
141
142
extern void uma_startup2(void);
143
144
/*
145
* kva_alloc:
146
*
147
* Allocate a virtual address range with no underlying object and
148
* no initial mapping to physical memory. Any mapping from this
149
* range to physical memory must be explicitly created prior to
150
* its use, typically with pmap_qenter(). Any attempt to create
151
* a mapping on demand through vm_fault() will result in a panic.
152
*/
153
vm_offset_t
154
kva_alloc(vm_size_t size)
155
{
156
vm_offset_t addr;
157
158
TSENTER();
159
size = round_page(size);
160
if (vmem_xalloc(kernel_arena, size, 0, 0, 0, VMEM_ADDR_MIN,
161
VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr))
162
return (0);
163
TSEXIT();
164
165
return (addr);
166
}
167
168
/*
169
* kva_alloc_aligned:
170
*
171
* Allocate a virtual address range as in kva_alloc where the base
172
* address is aligned to align.
173
*/
174
vm_offset_t
175
kva_alloc_aligned(vm_size_t size, vm_size_t align)
176
{
177
vm_offset_t addr;
178
179
TSENTER();
180
size = round_page(size);
181
if (vmem_xalloc(kernel_arena, size, align, 0, 0, VMEM_ADDR_MIN,
182
VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr))
183
return (0);
184
TSEXIT();
185
186
return (addr);
187
}
188
189
/*
190
* kva_free:
191
*
192
* Release a region of kernel virtual memory allocated
193
* with kva_alloc, and return the physical pages
194
* associated with that region.
195
*
196
* This routine may not block on kernel maps.
197
*/
198
void
199
kva_free(vm_offset_t addr, vm_size_t size)
200
{
201
202
size = round_page(size);
203
vmem_xfree(kernel_arena, addr, size);
204
}
205
206
/*
207
* Update sanitizer shadow state to reflect a new allocation. Force inlining to
208
* help make KMSAN origin tracking more precise.
209
*/
210
static __always_inline void
211
kmem_alloc_san(vm_offset_t addr, vm_size_t size, vm_size_t asize, int flags)
212
{
213
if ((flags & M_ZERO) == 0) {
214
kmsan_mark((void *)addr, asize, KMSAN_STATE_UNINIT);
215
kmsan_orig((void *)addr, asize, KMSAN_TYPE_KMEM,
216
KMSAN_RET_ADDR);
217
} else {
218
kmsan_mark((void *)addr, asize, KMSAN_STATE_INITED);
219
}
220
kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
221
}
222
223
static vm_page_t
224
kmem_alloc_contig_pages(vm_object_t object, vm_pindex_t pindex, int domain,
225
int pflags, u_long npages, vm_paddr_t low, vm_paddr_t high,
226
u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
227
{
228
vm_page_t m;
229
int tries;
230
bool wait, reclaim;
231
232
VM_OBJECT_ASSERT_WLOCKED(object);
233
234
wait = (pflags & VM_ALLOC_WAITOK) != 0;
235
reclaim = (pflags & VM_ALLOC_NORECLAIM) == 0;
236
pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
237
pflags |= VM_ALLOC_NOWAIT;
238
for (tries = wait ? 3 : 1;; tries--) {
239
m = vm_page_alloc_contig_domain(object, pindex, domain, pflags,
240
npages, low, high, alignment, boundary, memattr);
241
if (m != NULL || tries == 0 || !reclaim)
242
break;
243
244
VM_OBJECT_WUNLOCK(object);
245
if (vm_page_reclaim_contig_domain(domain, pflags, npages,
246
low, high, alignment, boundary) == ENOMEM && wait)
247
vm_wait_domain(domain);
248
VM_OBJECT_WLOCK(object);
249
}
250
return (m);
251
}
252
253
/*
254
* Allocates a region from the kernel address map and physical pages
255
* within the specified address range to the kernel object. Creates a
256
* wired mapping from this region to these pages, and returns the
257
* region's starting virtual address. The allocated pages are not
258
* necessarily physically contiguous. If M_ZERO is specified through the
259
* given flags, then the pages are zeroed before they are mapped.
260
*/
261
static void *
262
kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
263
vm_paddr_t high, vm_memattr_t memattr)
264
{
265
vmem_t *vmem;
266
vm_object_t object;
267
vm_offset_t addr, i, offset;
268
vm_page_t m;
269
vm_size_t asize;
270
int pflags;
271
vm_prot_t prot;
272
273
object = kernel_object;
274
asize = round_page(size);
275
vmem = vm_dom[domain].vmd_kernel_arena;
276
if (vmem_alloc(vmem, asize, M_BESTFIT | flags, &addr))
277
return (0);
278
offset = addr - VM_MIN_KERNEL_ADDRESS;
279
pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
280
prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
281
VM_OBJECT_WLOCK(object);
282
for (i = 0; i < asize; i += PAGE_SIZE) {
283
m = kmem_alloc_contig_pages(object, atop(offset + i),
284
domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
285
if (m == NULL) {
286
VM_OBJECT_WUNLOCK(object);
287
kmem_unback(object, addr, i);
288
vmem_free(vmem, addr, asize);
289
return (0);
290
}
291
KASSERT(vm_page_domain(m) == domain,
292
("kmem_alloc_attr_domain: Domain mismatch %d != %d",
293
vm_page_domain(m), domain));
294
if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
295
pmap_zero_page(m);
296
vm_page_valid(m);
297
pmap_enter(kernel_pmap, addr + i, m, prot,
298
prot | PMAP_ENTER_WIRED, 0);
299
}
300
VM_OBJECT_WUNLOCK(object);
301
kmem_alloc_san(addr, size, asize, flags);
302
return ((void *)addr);
303
}
304
305
void *
306
kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
307
vm_memattr_t memattr)
308
{
309
310
return (kmem_alloc_attr_domainset(DOMAINSET_RR(), size, flags, low,
311
high, memattr));
312
}
313
314
void *
315
kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags,
316
vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
317
{
318
struct vm_domainset_iter di;
319
vm_page_t bounds[2];
320
void *addr;
321
int domain;
322
int start_segind;
323
324
start_segind = -1;
325
326
if (vm_domainset_iter_policy_init(&di, ds, &domain, &flags) != 0)
327
return (NULL);
328
329
do {
330
addr = kmem_alloc_attr_domain(domain, size, flags, low, high,
331
memattr);
332
if (addr != NULL)
333
break;
334
if (start_segind == -1)
335
start_segind = vm_phys_lookup_segind(low);
336
if (vm_phys_find_range(bounds, start_segind, domain,
337
atop(round_page(size)), low, high) == -1) {
338
vm_domainset_iter_ignore(&di, domain);
339
}
340
} while (vm_domainset_iter_policy(&di, &domain) == 0);
341
342
return (addr);
343
}
344
345
/*
346
* Allocates a region from the kernel address map and physically
347
* contiguous pages within the specified address range to the kernel
348
* object. Creates a wired mapping from this region to these pages, and
349
* returns the region's starting virtual address. If M_ZERO is specified
350
* through the given flags, then the pages are zeroed before they are
351
* mapped.
352
*/
353
static void *
354
kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
355
vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
356
vm_memattr_t memattr)
357
{
358
vmem_t *vmem;
359
vm_object_t object;
360
vm_offset_t addr, offset, tmp;
361
vm_page_t end_m, m;
362
vm_size_t asize;
363
u_long npages;
364
int pflags;
365
366
object = kernel_object;
367
asize = round_page(size);
368
vmem = vm_dom[domain].vmd_kernel_arena;
369
if (vmem_alloc(vmem, asize, flags | M_BESTFIT, &addr))
370
return (NULL);
371
offset = addr - VM_MIN_KERNEL_ADDRESS;
372
pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
373
npages = atop(asize);
374
VM_OBJECT_WLOCK(object);
375
m = kmem_alloc_contig_pages(object, atop(offset), domain,
376
pflags, npages, low, high, alignment, boundary, memattr);
377
if (m == NULL) {
378
VM_OBJECT_WUNLOCK(object);
379
vmem_free(vmem, addr, asize);
380
return (NULL);
381
}
382
KASSERT(vm_page_domain(m) == domain,
383
("kmem_alloc_contig_domain: Domain mismatch %d != %d",
384
vm_page_domain(m), domain));
385
end_m = m + npages;
386
tmp = addr;
387
for (; m < end_m; m++) {
388
if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
389
pmap_zero_page(m);
390
vm_page_valid(m);
391
pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW,
392
VM_PROT_RW | PMAP_ENTER_WIRED, 0);
393
tmp += PAGE_SIZE;
394
}
395
VM_OBJECT_WUNLOCK(object);
396
kmem_alloc_san(addr, size, asize, flags);
397
return ((void *)addr);
398
}
399
400
void *
401
kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
402
u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
403
{
404
405
return (kmem_alloc_contig_domainset(DOMAINSET_RR(), size, flags, low,
406
high, alignment, boundary, memattr));
407
}
408
409
void *
410
kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags,
411
vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
412
vm_memattr_t memattr)
413
{
414
struct vm_domainset_iter di;
415
vm_page_t bounds[2];
416
void *addr;
417
int domain;
418
int start_segind;
419
420
start_segind = -1;
421
422
if (vm_domainset_iter_policy_init(&di, ds, &domain, &flags))
423
return (NULL);
424
425
do {
426
addr = kmem_alloc_contig_domain(domain, size, flags, low, high,
427
alignment, boundary, memattr);
428
if (addr != NULL)
429
break;
430
if (start_segind == -1)
431
start_segind = vm_phys_lookup_segind(low);
432
if (vm_phys_find_range(bounds, start_segind, domain,
433
atop(round_page(size)), low, high) == -1) {
434
vm_domainset_iter_ignore(&di, domain);
435
}
436
} while (vm_domainset_iter_policy(&di, &domain) == 0);
437
438
return (addr);
439
}
440
441
/*
442
* kmem_subinit:
443
*
444
* Initializes a map to manage a subrange
445
* of the kernel virtual address space.
446
*
447
* Arguments are as follows:
448
*
449
* parent Map to take range from
450
* min, max Returned endpoints of map
451
* size Size of range to find
452
* superpage_align Request that min is superpage aligned
453
*/
454
void
455
kmem_subinit(vm_map_t map, vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
456
vm_size_t size, bool superpage_align)
457
{
458
int ret;
459
460
size = round_page(size);
461
462
*min = vm_map_min(parent);
463
ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
464
VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
465
MAP_ACC_NO_CHARGE);
466
if (ret != KERN_SUCCESS)
467
panic("kmem_subinit: bad status return of %d", ret);
468
*max = *min + size;
469
vm_map_init(map, vm_map_pmap(parent), *min, *max);
470
if (vm_map_submap(parent, *min, *max, map) != KERN_SUCCESS)
471
panic("kmem_subinit: unable to change range to submap");
472
}
473
474
/*
475
* kmem_malloc_domain:
476
*
477
* Allocate wired-down pages in the kernel's address space.
478
*/
479
static void *
480
kmem_malloc_domain(int domain, vm_size_t size, int flags)
481
{
482
vmem_t *arena;
483
vm_offset_t addr;
484
vm_size_t asize;
485
int rv;
486
487
if (__predict_true((flags & (M_EXEC | M_NEVERFREED)) == 0))
488
arena = vm_dom[domain].vmd_kernel_arena;
489
else if ((flags & M_EXEC) != 0)
490
arena = vm_dom[domain].vmd_kernel_rwx_arena;
491
else
492
arena = vm_dom[domain].vmd_kernel_nofree_arena;
493
asize = round_page(size);
494
if (vmem_alloc(arena, asize, flags | M_BESTFIT, &addr))
495
return (0);
496
497
rv = kmem_back_domain(domain, kernel_object, addr, asize, flags);
498
if (rv != KERN_SUCCESS) {
499
vmem_free(arena, addr, asize);
500
return (0);
501
}
502
kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
503
return ((void *)addr);
504
}
505
506
void *
507
kmem_malloc(vm_size_t size, int flags)
508
{
509
void * p;
510
511
TSENTER();
512
p = kmem_malloc_domainset(DOMAINSET_RR(), size, flags);
513
TSEXIT();
514
return (p);
515
}
516
517
void *
518
kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags)
519
{
520
struct vm_domainset_iter di;
521
void *addr;
522
int domain;
523
524
if (vm_domainset_iter_policy_init(&di, ds, &domain, &flags) != 0)
525
return (NULL);
526
527
do {
528
addr = kmem_malloc_domain(domain, size, flags);
529
if (addr != NULL)
530
break;
531
} while (vm_domainset_iter_policy(&di, &domain) == 0);
532
533
return (addr);
534
}
535
536
/*
537
* kmem_back_domain:
538
*
539
* Allocate physical pages from the specified domain for the specified
540
* virtual address range.
541
*/
542
int
543
kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
544
vm_size_t size, int flags)
545
{
546
struct pctrie_iter pages;
547
vm_offset_t offset, i;
548
vm_page_t m;
549
vm_prot_t prot;
550
int pflags;
551
552
KASSERT(object == kernel_object,
553
("kmem_back_domain: only supports kernel object."));
554
555
offset = addr - VM_MIN_KERNEL_ADDRESS;
556
pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
557
pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
558
if (flags & M_WAITOK)
559
pflags |= VM_ALLOC_WAITFAIL;
560
prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
561
562
i = 0;
563
vm_page_iter_init(&pages, object);
564
VM_OBJECT_WLOCK(object);
565
retry:
566
for (; i < size; i += PAGE_SIZE) {
567
m = vm_page_alloc_domain_iter(object, atop(offset + i),
568
domain, pflags, &pages);
569
570
/*
571
* Ran out of space, free everything up and return. Don't need
572
* to lock page queues here as we know that the pages we got
573
* aren't on any queues.
574
*/
575
if (m == NULL) {
576
if ((flags & M_NOWAIT) == 0)
577
goto retry;
578
VM_OBJECT_WUNLOCK(object);
579
kmem_unback(object, addr, i);
580
return (KERN_NO_SPACE);
581
}
582
KASSERT(vm_page_domain(m) == domain,
583
("kmem_back_domain: Domain mismatch %d != %d",
584
vm_page_domain(m), domain));
585
if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
586
pmap_zero_page(m);
587
KASSERT((m->oflags & VPO_UNMANAGED) != 0,
588
("kmem_malloc: page %p is managed", m));
589
vm_page_valid(m);
590
pmap_enter(kernel_pmap, addr + i, m, prot,
591
prot | PMAP_ENTER_WIRED, 0);
592
if (__predict_false((prot & VM_PROT_EXECUTE) != 0))
593
m->oflags |= VPO_KMEM_EXEC;
594
}
595
VM_OBJECT_WUNLOCK(object);
596
kmem_alloc_san(addr, size, size, flags);
597
return (KERN_SUCCESS);
598
}
599
600
/*
601
* kmem_back:
602
*
603
* Allocate physical pages for the specified virtual address range.
604
*/
605
int
606
kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
607
{
608
vm_offset_t end, next, start;
609
int domain, rv;
610
611
KASSERT(object == kernel_object,
612
("kmem_back: only supports kernel object."));
613
614
for (start = addr, end = addr + size; addr < end; addr = next) {
615
/*
616
* We must ensure that pages backing a given large virtual page
617
* all come from the same physical domain.
618
*/
619
if (vm_ndomains > 1) {
620
domain = (addr >> KVA_QUANTUM_SHIFT) % vm_ndomains;
621
while (VM_DOMAIN_EMPTY(domain))
622
domain++;
623
next = roundup2(addr + 1, KVA_QUANTUM);
624
if (next > end || next < start)
625
next = end;
626
} else {
627
domain = 0;
628
next = end;
629
}
630
rv = kmem_back_domain(domain, object, addr, next - addr, flags);
631
if (rv != KERN_SUCCESS) {
632
kmem_unback(object, start, addr - start);
633
break;
634
}
635
}
636
return (rv);
637
}
638
639
/*
640
* kmem_unback:
641
*
642
* Unmap and free the physical pages underlying the specified virtual
643
* address range.
644
*
645
* A physical page must exist within the specified object at each index
646
* that is being unmapped.
647
*/
648
static struct vmem *
649
_kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
650
{
651
struct pctrie_iter pages;
652
struct vmem *arena;
653
vm_page_t m;
654
vm_offset_t end, offset;
655
int domain;
656
657
KASSERT(object == kernel_object,
658
("kmem_unback: only supports kernel object."));
659
660
if (size == 0)
661
return (NULL);
662
pmap_remove(kernel_pmap, addr, addr + size);
663
offset = addr - VM_MIN_KERNEL_ADDRESS;
664
end = offset + size;
665
vm_page_iter_init(&pages, object);
666
VM_OBJECT_WLOCK(object);
667
m = vm_radix_iter_lookup(&pages, atop(offset));
668
domain = vm_page_domain(m);
669
if (__predict_true((m->oflags & VPO_KMEM_EXEC) == 0))
670
arena = vm_dom[domain].vmd_kernel_arena;
671
else
672
arena = vm_dom[domain].vmd_kernel_rwx_arena;
673
for (; offset < end; offset += PAGE_SIZE,
674
m = vm_radix_iter_lookup(&pages, atop(offset))) {
675
vm_page_xbusy_claim(m);
676
vm_page_unwire_noq(m);
677
vm_page_iter_free(&pages, m);
678
}
679
VM_OBJECT_WUNLOCK(object);
680
681
return (arena);
682
}
683
684
void
685
kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
686
{
687
688
(void)_kmem_unback(object, addr, size);
689
}
690
691
/*
692
* kmem_free:
693
*
694
* Free memory allocated with kmem_malloc. The size must match the
695
* original allocation.
696
*/
697
void
698
kmem_free(void *addr, vm_size_t size)
699
{
700
struct vmem *arena;
701
702
size = round_page(size);
703
kasan_mark(addr, size, size, 0);
704
arena = _kmem_unback(kernel_object, (uintptr_t)addr, size);
705
if (arena != NULL)
706
vmem_free(arena, (uintptr_t)addr, size);
707
}
708
709
/*
710
* kmap_alloc_wait:
711
*
712
* Allocates pageable memory from a sub-map of the kernel. If the submap
713
* has no room, the caller sleeps waiting for more memory in the submap.
714
*
715
* This routine may block.
716
*/
717
vm_offset_t
718
kmap_alloc_wait(vm_map_t map, vm_size_t size)
719
{
720
vm_offset_t addr;
721
722
size = round_page(size);
723
if (!swap_reserve(size))
724
return (0);
725
726
for (;;) {
727
/*
728
* To make this work for more than one map, use the map's lock
729
* to lock out sleepers/wakers.
730
*/
731
vm_map_lock(map);
732
addr = vm_map_findspace(map, vm_map_min(map), size);
733
if (addr + size <= vm_map_max(map))
734
break;
735
/* no space now; see if we can ever get space */
736
if (vm_map_max(map) - vm_map_min(map) < size) {
737
vm_map_unlock(map);
738
swap_release(size);
739
return (0);
740
}
741
vm_map_modflags(map, MAP_NEEDS_WAKEUP, 0);
742
vm_map_unlock_and_wait(map, 0);
743
}
744
vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_RW, VM_PROT_RW,
745
MAP_ACC_CHARGED);
746
vm_map_unlock(map);
747
return (addr);
748
}
749
750
/*
751
* kmap_free_wakeup:
752
*
753
* Returns memory to a submap of the kernel, and wakes up any processes
754
* waiting for memory in that map.
755
*/
756
void
757
kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
758
{
759
760
vm_map_lock(map);
761
(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
762
if ((map->flags & MAP_NEEDS_WAKEUP) != 0) {
763
vm_map_modflags(map, 0, MAP_NEEDS_WAKEUP);
764
vm_map_wakeup(map);
765
}
766
vm_map_unlock(map);
767
}
768
769
void
770
kmem_init_zero_region(void)
771
{
772
vm_offset_t addr, i;
773
vm_page_t m;
774
775
/*
776
* Map a single physical page of zeros to a larger virtual range.
777
* This requires less looping in places that want large amounts of
778
* zeros, while not using much more physical resources.
779
*/
780
addr = kva_alloc(ZERO_REGION_SIZE);
781
m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO |
782
VM_ALLOC_NOFREE);
783
for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
784
pmap_qenter(addr + i, &m, 1);
785
pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
786
787
zero_region = (const void *)addr;
788
}
789
790
/*
791
* Import KVA from the kernel map into the kernel arena.
792
*/
793
static int
794
kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
795
{
796
vm_offset_t addr;
797
int result;
798
799
TSENTER();
800
KASSERT((size % KVA_QUANTUM) == 0,
801
("kva_import: Size %jd is not a multiple of %d",
802
(intmax_t)size, (int)KVA_QUANTUM));
803
addr = vm_map_min(kernel_map);
804
result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
805
VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
806
if (result != KERN_SUCCESS) {
807
TSEXIT();
808
return (ENOMEM);
809
}
810
811
*addrp = addr;
812
813
TSEXIT();
814
return (0);
815
}
816
817
/*
818
* Import KVA from a parent arena into a per-domain arena. Imports must be
819
* KVA_QUANTUM-aligned and a multiple of KVA_QUANTUM in size.
820
*/
821
static int
822
kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp)
823
{
824
825
KASSERT((size % KVA_QUANTUM) == 0,
826
("kva_import_domain: Size %jd is not a multiple of %d",
827
(intmax_t)size, (int)KVA_QUANTUM));
828
return (vmem_xalloc(arena, size, KVA_QUANTUM, 0, 0, VMEM_ADDR_MIN,
829
VMEM_ADDR_MAX, flags, addrp));
830
}
831
832
/*
833
* kmem_init:
834
*
835
* Create the kernel map; insert a mapping covering kernel text,
836
* data, bss, and all space allocated thus far (`boostrap' data). The
837
* new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
838
* `start' as allocated, and the range between `start' and `end' as free.
839
* Create the kernel vmem arena and its per-domain children.
840
*/
841
void
842
kmem_init(vm_offset_t start, vm_offset_t end)
843
{
844
vm_size_t quantum;
845
int domain;
846
847
vm_map_init_system(kernel_map, kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
848
vm_map_lock(kernel_map);
849
/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
850
(void)vm_map_insert(kernel_map, NULL, 0,
851
#ifdef __amd64__
852
KERNBASE,
853
#else
854
VM_MIN_KERNEL_ADDRESS,
855
#endif
856
start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
857
/* ... and ending with the completion of the above `insert' */
858
859
#ifdef __amd64__
860
/*
861
* Mark KVA used for the page array as allocated. Other platforms
862
* that handle vm_page_array allocation can simply adjust virtual_avail
863
* instead.
864
*/
865
(void)vm_map_insert(kernel_map, NULL, 0, (vm_offset_t)vm_page_array,
866
(vm_offset_t)vm_page_array + round_2mpage(vm_page_array_size *
867
sizeof(struct vm_page)),
868
VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
869
#endif
870
vm_map_unlock(kernel_map);
871
872
/*
873
* Use a large import quantum on NUMA systems. This helps minimize
874
* interleaving of superpages, reducing internal fragmentation within
875
* the per-domain arenas.
876
*/
877
if (vm_ndomains > 1 && PMAP_HAS_DMAP)
878
quantum = KVA_NUMA_IMPORT_QUANTUM;
879
else
880
quantum = KVA_QUANTUM;
881
882
/*
883
* Initialize the kernel_arena. This can grow on demand.
884
*/
885
vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
886
vmem_set_import(kernel_arena, kva_import, NULL, NULL, quantum);
887
888
for (domain = 0; domain < vm_ndomains; domain++) {
889
/*
890
* Initialize the per-domain arenas. These are used to color
891
* the KVA space in a way that ensures that virtual large pages
892
* are backed by memory from the same physical domain,
893
* maximizing the potential for superpage promotion.
894
*/
895
vm_dom[domain].vmd_kernel_arena = vmem_create(
896
"kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
897
vmem_set_import(vm_dom[domain].vmd_kernel_arena,
898
kva_import_domain, NULL, kernel_arena, quantum);
899
900
/*
901
* In architectures with superpages, maintain separate arenas
902
* for allocations with permissions that differ from the
903
* "standard" read/write permissions used for kernel memory
904
* and pages that are never released, so as not to inhibit
905
* superpage promotion.
906
*
907
* Use the base import quantum since these arenas are rarely
908
* used.
909
*/
910
#if VM_NRESERVLEVEL > 0
911
vm_dom[domain].vmd_kernel_rwx_arena = vmem_create(
912
"kernel rwx arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
913
vm_dom[domain].vmd_kernel_nofree_arena = vmem_create(
914
"kernel NOFREE arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
915
vmem_set_import(vm_dom[domain].vmd_kernel_rwx_arena,
916
kva_import_domain, (vmem_release_t *)vmem_xfree,
917
kernel_arena, KVA_QUANTUM);
918
vmem_set_import(vm_dom[domain].vmd_kernel_nofree_arena,
919
kva_import_domain, (vmem_release_t *)vmem_xfree,
920
kernel_arena, KVA_QUANTUM);
921
#else
922
vm_dom[domain].vmd_kernel_rwx_arena =
923
vm_dom[domain].vmd_kernel_arena;
924
vm_dom[domain].vmd_kernel_nofree_arena =
925
vm_dom[domain].vmd_kernel_arena;
926
#endif
927
}
928
929
/*
930
* This must be the very first call so that the virtual address
931
* space used for early allocations is properly marked used in
932
* the map.
933
*/
934
uma_startup2();
935
}
936
937
/*
938
* kmem_bootstrap_free:
939
*
940
* Free pages backing preloaded data (e.g., kernel modules) to the
941
* system. Currently only supported on platforms that create a
942
* vm_phys segment for preloaded data.
943
*/
944
void
945
kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
946
{
947
#if defined(__i386__) || defined(__amd64__)
948
struct vm_domain *vmd;
949
vm_offset_t end, va;
950
vm_paddr_t pa;
951
vm_page_t m;
952
953
end = trunc_page(start + size);
954
start = round_page(start);
955
956
#ifdef __amd64__
957
/*
958
* Preloaded files do not have execute permissions by default on amd64.
959
* Restore the default permissions to ensure that the direct map alias
960
* is updated.
961
*/
962
pmap_change_prot(start, end - start, VM_PROT_RW);
963
#endif
964
for (va = start; va < end; va += PAGE_SIZE) {
965
pa = pmap_kextract(va);
966
m = PHYS_TO_VM_PAGE(pa);
967
968
vmd = vm_pagequeue_domain(m);
969
vm_domain_free_lock(vmd);
970
vm_phys_free_pages(m, m->pool, 0);
971
vm_domain_free_unlock(vmd);
972
973
vm_domain_freecnt_inc(vmd, 1);
974
vm_cnt.v_page_count++;
975
}
976
pmap_remove(kernel_pmap, start, end);
977
(void)vmem_add(kernel_arena, start, end - start, M_WAITOK);
978
#endif
979
}
980
981
#ifdef PMAP_WANT_ACTIVE_CPUS_NAIVE
982
void
983
pmap_active_cpus(pmap_t pmap, cpuset_t *res)
984
{
985
struct thread *td;
986
struct proc *p;
987
struct vmspace *vm;
988
int c;
989
990
CPU_ZERO(res);
991
CPU_FOREACH(c) {
992
td = cpuid_to_pcpu[c]->pc_curthread;
993
p = td->td_proc;
994
if (p == NULL)
995
continue;
996
vm = vmspace_acquire_ref(p);
997
if (vm == NULL)
998
continue;
999
if (pmap == vmspace_pmap(vm))
1000
CPU_SET(c, res);
1001
vmspace_free(vm);
1002
}
1003
}
1004
#endif
1005
1006
/*
1007
* Allow userspace to directly trigger the VM drain routine for testing
1008
* purposes.
1009
*/
1010
static int
1011
debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
1012
{
1013
int error, i;
1014
1015
i = 0;
1016
error = sysctl_handle_int(oidp, &i, 0, req);
1017
if (error != 0)
1018
return (error);
1019
if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
1020
return (EINVAL);
1021
if (i != 0)
1022
EVENTHANDLER_INVOKE(vm_lowmem, i);
1023
return (0);
1024
}
1025
SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem,
1026
CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_vm_lowmem, "I",
1027
"set to trigger vm_lowmem event with given flags");
1028
1029
static int
1030
debug_uma_reclaim(SYSCTL_HANDLER_ARGS)
1031
{
1032
int error, i;
1033
1034
i = 0;
1035
error = sysctl_handle_int(oidp, &i, 0, req);
1036
if (error != 0 || req->newptr == NULL)
1037
return (error);
1038
if (i != UMA_RECLAIM_TRIM && i != UMA_RECLAIM_DRAIN &&
1039
i != UMA_RECLAIM_DRAIN_CPU)
1040
return (EINVAL);
1041
uma_reclaim(i);
1042
return (0);
1043
}
1044
SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim,
1045
CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_uma_reclaim, "I",
1046
"set to generate request to reclaim uma caches");
1047
1048
static int
1049
debug_uma_reclaim_domain(SYSCTL_HANDLER_ARGS)
1050
{
1051
int domain, error, request;
1052
1053
request = 0;
1054
error = sysctl_handle_int(oidp, &request, 0, req);
1055
if (error != 0 || req->newptr == NULL)
1056
return (error);
1057
1058
domain = request >> 4;
1059
request &= 0xf;
1060
if (request != UMA_RECLAIM_TRIM && request != UMA_RECLAIM_DRAIN &&
1061
request != UMA_RECLAIM_DRAIN_CPU)
1062
return (EINVAL);
1063
if (domain < 0 || domain >= vm_ndomains)
1064
return (EINVAL);
1065
uma_reclaim_domain(request, domain);
1066
return (0);
1067
}
1068
SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim_domain,
1069
CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0,
1070
debug_uma_reclaim_domain, "I",
1071
"");
1072
1073