Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/vm/vm_object.c
39475 views
1
/*-
2
* SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3
*
4
* Copyright (c) 1991, 1993
5
* The Regents of the University of California. All rights reserved.
6
*
7
* This code is derived from software contributed to Berkeley by
8
* The Mach Operating System project at Carnegie-Mellon University.
9
*
10
* Redistribution and use in source and binary forms, with or without
11
* modification, are permitted provided that the following conditions
12
* are met:
13
* 1. Redistributions of source code must retain the above copyright
14
* notice, this list of conditions and the following disclaimer.
15
* 2. Redistributions in binary form must reproduce the above copyright
16
* notice, this list of conditions and the following disclaimer in the
17
* documentation and/or other materials provided with the distribution.
18
* 3. Neither the name of the University nor the names of its contributors
19
* may be used to endorse or promote products derived from this software
20
* without specific prior written permission.
21
*
22
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32
* SUCH DAMAGE.
33
*
34
*
35
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
36
* All rights reserved.
37
*
38
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
39
*
40
* Permission to use, copy, modify and distribute this software and
41
* its documentation is hereby granted, provided that both the copyright
42
* notice and this permission notice appear in all copies of the
43
* software, derivative works or modified versions, and any portions
44
* thereof, and that both notices appear in supporting documentation.
45
*
46
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49
*
50
* Carnegie Mellon requests users of this software to return to
51
*
52
* Software Distribution Coordinator or [email protected]
53
* School of Computer Science
54
* Carnegie Mellon University
55
* Pittsburgh PA 15213-3890
56
*
57
* any improvements or extensions that they make and grant Carnegie the
58
* rights to redistribute these changes.
59
*/
60
61
/*
62
* Virtual memory object module.
63
*/
64
65
#include "opt_vm.h"
66
67
#include <sys/systm.h>
68
#include <sys/blockcount.h>
69
#include <sys/conf.h>
70
#include <sys/cpuset.h>
71
#include <sys/ipc.h>
72
#include <sys/jail.h>
73
#include <sys/limits.h>
74
#include <sys/lock.h>
75
#include <sys/mman.h>
76
#include <sys/mount.h>
77
#include <sys/kernel.h>
78
#include <sys/mutex.h>
79
#include <sys/pctrie.h>
80
#include <sys/proc.h>
81
#include <sys/refcount.h>
82
#include <sys/shm.h>
83
#include <sys/sx.h>
84
#include <sys/sysctl.h>
85
#include <sys/resourcevar.h>
86
#include <sys/refcount.h>
87
#include <sys/rwlock.h>
88
#include <sys/user.h>
89
#include <sys/vnode.h>
90
#include <sys/vmmeter.h>
91
92
#include <vm/vm.h>
93
#include <vm/vm_param.h>
94
#include <vm/pmap.h>
95
#include <vm/vm_map.h>
96
#include <vm/vm_object.h>
97
#include <vm/vm_page.h>
98
#include <vm/vm_pageout.h>
99
#include <vm/vm_pager.h>
100
#include <vm/vm_phys.h>
101
#include <vm/vm_pagequeue.h>
102
#include <vm/swap_pager.h>
103
#include <vm/vm_kern.h>
104
#include <vm/vm_extern.h>
105
#include <vm/vm_radix.h>
106
#include <vm/vm_reserv.h>
107
#include <vm/uma.h>
108
109
static int old_msync;
110
SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
111
"Use old (insecure) msync behavior");
112
113
static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
114
boolean_t *allclean);
115
static void vm_object_backing_remove(vm_object_t object);
116
117
/*
118
* Virtual memory objects maintain the actual data
119
* associated with allocated virtual memory. A given
120
* page of memory exists within exactly one object.
121
*
122
* An object is only deallocated when all "references"
123
* are given up. Only one "reference" to a given
124
* region of an object should be writeable.
125
*
126
* Associated with each object is a list of all resident
127
* memory pages belonging to that object; this list is
128
* maintained by the "vm_page" module, and locked by the object's
129
* lock.
130
*
131
* Each object also records a "pager" routine which is
132
* used to retrieve (and store) pages to the proper backing
133
* storage. In addition, objects may be backed by other
134
* objects from which they were virtual-copied.
135
*
136
* The only items within the object structure which are
137
* modified after time of creation are:
138
* reference count locked by object's lock
139
* pager routine locked by object's lock
140
*
141
*/
142
143
struct object_q vm_object_list;
144
struct mtx vm_object_list_mtx; /* lock for object list and count */
145
146
struct vm_object kernel_object_store;
147
148
static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
149
"VM object stats");
150
151
static COUNTER_U64_DEFINE_EARLY(object_collapses);
152
SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
153
&object_collapses,
154
"VM object collapses");
155
156
static COUNTER_U64_DEFINE_EARLY(object_bypasses);
157
SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
158
&object_bypasses,
159
"VM object bypasses");
160
161
static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
162
SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
163
&object_collapse_waits,
164
"Number of sleeps for collapse");
165
166
static uma_zone_t obj_zone;
167
168
static int vm_object_zinit(void *mem, int size, int flags);
169
170
#ifdef INVARIANTS
171
static void vm_object_zdtor(void *mem, int size, void *arg);
172
173
static void
174
vm_object_zdtor(void *mem, int size, void *arg)
175
{
176
vm_object_t object;
177
178
object = (vm_object_t)mem;
179
KASSERT(object->ref_count == 0,
180
("object %p ref_count = %d", object, object->ref_count));
181
KASSERT(vm_radix_is_empty(&object->rtree),
182
("object %p has resident pages in its trie", object));
183
#if VM_NRESERVLEVEL > 0
184
KASSERT(LIST_EMPTY(&object->rvq),
185
("object %p has reservations",
186
object));
187
#endif
188
KASSERT(!vm_object_busied(object),
189
("object %p busy = %d", object, blockcount_read(&object->busy)));
190
KASSERT(object->resident_page_count == 0,
191
("object %p resident_page_count = %d",
192
object, object->resident_page_count));
193
KASSERT(atomic_load_int(&object->shadow_count) == 0,
194
("object %p shadow_count = %d",
195
object, atomic_load_int(&object->shadow_count)));
196
KASSERT(object->type == OBJT_DEAD,
197
("object %p has non-dead type %d",
198
object, object->type));
199
KASSERT(object->charge == 0 && object->cred == NULL,
200
("object %p has non-zero charge %ju (%p)",
201
object, (uintmax_t)object->charge, object->cred));
202
}
203
#endif
204
205
static int
206
vm_object_zinit(void *mem, int size, int flags)
207
{
208
vm_object_t object;
209
210
object = (vm_object_t)mem;
211
rw_init_flags(&object->lock, "vmobject", RW_DUPOK | RW_NEW);
212
213
/* These are true for any object that has been freed */
214
object->type = OBJT_DEAD;
215
vm_radix_init(&object->rtree);
216
refcount_init(&object->ref_count, 0);
217
blockcount_init(&object->paging_in_progress);
218
blockcount_init(&object->busy);
219
object->resident_page_count = 0;
220
atomic_store_int(&object->shadow_count, 0);
221
object->flags = OBJ_DEAD;
222
223
mtx_lock(&vm_object_list_mtx);
224
TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
225
mtx_unlock(&vm_object_list_mtx);
226
return (0);
227
}
228
229
static void
230
_vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
231
vm_object_t object, void *handle)
232
{
233
LIST_INIT(&object->shadow_head);
234
235
object->type = type;
236
object->flags = flags;
237
if ((flags & OBJ_SWAP) != 0) {
238
pctrie_init(&object->un_pager.swp.swp_blks);
239
object->un_pager.swp.writemappings = 0;
240
}
241
242
/*
243
* Ensure that swap_pager_swapoff() iteration over object_list
244
* sees up to date type and pctrie head if it observed
245
* non-dead object.
246
*/
247
atomic_thread_fence_rel();
248
249
object->pg_color = 0;
250
object->size = size;
251
object->domain.dr_policy = NULL;
252
object->generation = 1;
253
object->cleangeneration = 1;
254
refcount_init(&object->ref_count, 1);
255
object->memattr = VM_MEMATTR_DEFAULT;
256
object->cred = NULL;
257
object->charge = 0;
258
object->handle = handle;
259
object->backing_object = NULL;
260
object->backing_object_offset = (vm_ooffset_t) 0;
261
#if VM_NRESERVLEVEL > 0
262
LIST_INIT(&object->rvq);
263
#endif
264
umtx_shm_object_init(object);
265
}
266
267
/*
268
* vm_object_init:
269
*
270
* Initialize the VM objects module.
271
*/
272
void
273
vm_object_init(void)
274
{
275
TAILQ_INIT(&vm_object_list);
276
mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
277
278
rw_init(&kernel_object->lock, "kernel vm object");
279
vm_radix_init(&kernel_object->rtree);
280
_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
281
VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
282
#if VM_NRESERVLEVEL > 0
283
kernel_object->flags |= OBJ_COLORED;
284
kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
285
#endif
286
kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
287
288
/*
289
* The lock portion of struct vm_object must be type stable due
290
* to vm_pageout_fallback_object_lock locking a vm object
291
* without holding any references to it.
292
*
293
* paging_in_progress is valid always. Lockless references to
294
* the objects may acquire pip and then check OBJ_DEAD.
295
*/
296
obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
297
#ifdef INVARIANTS
298
vm_object_zdtor,
299
#else
300
NULL,
301
#endif
302
vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
303
304
vm_radix_zinit();
305
}
306
307
void
308
vm_object_clear_flag(vm_object_t object, u_short bits)
309
{
310
311
VM_OBJECT_ASSERT_WLOCKED(object);
312
object->flags &= ~bits;
313
}
314
315
/*
316
* Sets the default memory attribute for the specified object. Pages
317
* that are allocated to this object are by default assigned this memory
318
* attribute.
319
*
320
* Presently, this function must be called before any pages are allocated
321
* to the object. In the future, this requirement may be relaxed for
322
* "default" and "swap" objects.
323
*/
324
int
325
vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
326
{
327
328
VM_OBJECT_ASSERT_WLOCKED(object);
329
330
if (object->type == OBJT_DEAD)
331
return (KERN_INVALID_ARGUMENT);
332
if (!vm_radix_is_empty(&object->rtree))
333
return (KERN_FAILURE);
334
335
object->memattr = memattr;
336
return (KERN_SUCCESS);
337
}
338
339
void
340
vm_object_pip_add(vm_object_t object, short i)
341
{
342
343
if (i > 0)
344
blockcount_acquire(&object->paging_in_progress, i);
345
}
346
347
void
348
vm_object_pip_wakeup(vm_object_t object)
349
{
350
351
vm_object_pip_wakeupn(object, 1);
352
}
353
354
void
355
vm_object_pip_wakeupn(vm_object_t object, short i)
356
{
357
358
if (i > 0)
359
blockcount_release(&object->paging_in_progress, i);
360
}
361
362
/*
363
* Atomically drop the object lock and wait for pip to drain. This protects
364
* from sleep/wakeup races due to identity changes. The lock is not re-acquired
365
* on return.
366
*/
367
static void
368
vm_object_pip_sleep(vm_object_t object, const char *waitid)
369
{
370
371
(void)blockcount_sleep(&object->paging_in_progress, &object->lock,
372
waitid, PVM | PDROP);
373
}
374
375
void
376
vm_object_pip_wait(vm_object_t object, const char *waitid)
377
{
378
379
VM_OBJECT_ASSERT_WLOCKED(object);
380
381
blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
382
PVM);
383
}
384
385
void
386
vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
387
{
388
389
VM_OBJECT_ASSERT_UNLOCKED(object);
390
391
blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
392
}
393
394
/*
395
* vm_object_allocate:
396
*
397
* Returns a new object with the given size.
398
*/
399
vm_object_t
400
vm_object_allocate(objtype_t type, vm_pindex_t size)
401
{
402
vm_object_t object;
403
u_short flags;
404
405
switch (type) {
406
case OBJT_DEAD:
407
panic("vm_object_allocate: can't create OBJT_DEAD");
408
case OBJT_SWAP:
409
flags = OBJ_COLORED | OBJ_SWAP;
410
break;
411
case OBJT_DEVICE:
412
case OBJT_SG:
413
flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
414
break;
415
case OBJT_MGTDEVICE:
416
flags = OBJ_FICTITIOUS;
417
break;
418
case OBJT_PHYS:
419
flags = OBJ_UNMANAGED;
420
break;
421
case OBJT_VNODE:
422
flags = 0;
423
break;
424
default:
425
panic("vm_object_allocate: type %d is undefined or dynamic",
426
type);
427
}
428
object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
429
_vm_object_allocate(type, size, flags, object, NULL);
430
431
return (object);
432
}
433
434
vm_object_t
435
vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
436
{
437
vm_object_t object;
438
439
MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
440
object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
441
_vm_object_allocate(dyntype, size, flags, object, NULL);
442
443
return (object);
444
}
445
446
/*
447
* vm_object_allocate_anon:
448
*
449
* Returns a new default object of the given size and marked as
450
* anonymous memory for special split/collapse handling. Color
451
* to be initialized by the caller.
452
*/
453
vm_object_t
454
vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
455
struct ucred *cred, vm_size_t charge)
456
{
457
vm_object_t handle, object;
458
459
if (backing_object == NULL)
460
handle = NULL;
461
else if ((backing_object->flags & OBJ_ANON) != 0)
462
handle = backing_object->handle;
463
else
464
handle = backing_object;
465
object = uma_zalloc(obj_zone, M_WAITOK);
466
_vm_object_allocate(OBJT_SWAP, size,
467
OBJ_ANON | OBJ_ONEMAPPING | OBJ_SWAP, object, handle);
468
object->cred = cred;
469
object->charge = cred != NULL ? charge : 0;
470
return (object);
471
}
472
473
static void
474
vm_object_reference_vnode(vm_object_t object)
475
{
476
u_int old;
477
478
/*
479
* vnode objects need the lock for the first reference
480
* to serialize with vnode_object_deallocate().
481
*/
482
if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
483
VM_OBJECT_RLOCK(object);
484
old = refcount_acquire(&object->ref_count);
485
if (object->type == OBJT_VNODE && old == 0)
486
vref(object->handle);
487
VM_OBJECT_RUNLOCK(object);
488
}
489
}
490
491
/*
492
* vm_object_reference:
493
*
494
* Acquires a reference to the given object.
495
*/
496
void
497
vm_object_reference(vm_object_t object)
498
{
499
500
if (object == NULL)
501
return;
502
503
if (object->type == OBJT_VNODE)
504
vm_object_reference_vnode(object);
505
else
506
refcount_acquire(&object->ref_count);
507
KASSERT((object->flags & OBJ_DEAD) == 0,
508
("vm_object_reference: Referenced dead object."));
509
}
510
511
/*
512
* vm_object_reference_locked:
513
*
514
* Gets another reference to the given object.
515
*
516
* The object must be locked.
517
*/
518
void
519
vm_object_reference_locked(vm_object_t object)
520
{
521
u_int old;
522
523
VM_OBJECT_ASSERT_LOCKED(object);
524
old = refcount_acquire(&object->ref_count);
525
if (object->type == OBJT_VNODE && old == 0)
526
vref(object->handle);
527
KASSERT((object->flags & OBJ_DEAD) == 0,
528
("vm_object_reference: Referenced dead object."));
529
}
530
531
/*
532
* Handle deallocating an object of type OBJT_VNODE.
533
*/
534
static void
535
vm_object_deallocate_vnode(vm_object_t object)
536
{
537
struct vnode *vp = (struct vnode *) object->handle;
538
bool last;
539
540
KASSERT(object->type == OBJT_VNODE,
541
("vm_object_deallocate_vnode: not a vnode object"));
542
KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
543
544
/* Object lock to protect handle lookup. */
545
last = refcount_release(&object->ref_count);
546
VM_OBJECT_RUNLOCK(object);
547
548
if (!last)
549
return;
550
551
if (!umtx_shm_vnobj_persistent)
552
umtx_shm_object_terminated(object);
553
554
/* vrele may need the vnode lock. */
555
vrele(vp);
556
}
557
558
/*
559
* We dropped a reference on an object and discovered that it had a
560
* single remaining shadow. This is a sibling of the reference we
561
* dropped. Attempt to collapse the sibling and backing object.
562
*/
563
static vm_object_t
564
vm_object_deallocate_anon(vm_object_t backing_object)
565
{
566
vm_object_t object;
567
568
/* Fetch the final shadow. */
569
object = LIST_FIRST(&backing_object->shadow_head);
570
KASSERT(object != NULL &&
571
atomic_load_int(&backing_object->shadow_count) == 1,
572
("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
573
backing_object->ref_count,
574
atomic_load_int(&backing_object->shadow_count)));
575
KASSERT((object->flags & OBJ_ANON) != 0,
576
("invalid shadow object %p", object));
577
578
if (!VM_OBJECT_TRYWLOCK(object)) {
579
/*
580
* Prevent object from disappearing since we do not have a
581
* reference.
582
*/
583
vm_object_pip_add(object, 1);
584
VM_OBJECT_WUNLOCK(backing_object);
585
VM_OBJECT_WLOCK(object);
586
vm_object_pip_wakeup(object);
587
} else
588
VM_OBJECT_WUNLOCK(backing_object);
589
590
/*
591
* Check for a collapse/terminate race with the last reference holder.
592
*/
593
if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
594
!refcount_acquire_if_not_zero(&object->ref_count)) {
595
VM_OBJECT_WUNLOCK(object);
596
return (NULL);
597
}
598
backing_object = object->backing_object;
599
if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
600
vm_object_collapse(object);
601
VM_OBJECT_WUNLOCK(object);
602
603
return (object);
604
}
605
606
/*
607
* vm_object_deallocate:
608
*
609
* Release a reference to the specified object,
610
* gained either through a vm_object_allocate
611
* or a vm_object_reference call. When all references
612
* are gone, storage associated with this object
613
* may be relinquished.
614
*
615
* No object may be locked.
616
*/
617
void
618
vm_object_deallocate(vm_object_t object)
619
{
620
vm_object_t temp;
621
bool released;
622
623
while (object != NULL) {
624
/*
625
* If the reference count goes to 0 we start calling
626
* vm_object_terminate() on the object chain. A ref count
627
* of 1 may be a special case depending on the shadow count
628
* being 0 or 1. These cases require a write lock on the
629
* object.
630
*/
631
if ((object->flags & OBJ_ANON) == 0)
632
released = refcount_release_if_gt(&object->ref_count, 1);
633
else
634
released = refcount_release_if_gt(&object->ref_count, 2);
635
if (released)
636
return;
637
638
if (object->type == OBJT_VNODE) {
639
VM_OBJECT_RLOCK(object);
640
if (object->type == OBJT_VNODE) {
641
vm_object_deallocate_vnode(object);
642
return;
643
}
644
VM_OBJECT_RUNLOCK(object);
645
}
646
647
VM_OBJECT_WLOCK(object);
648
KASSERT(object->ref_count > 0,
649
("vm_object_deallocate: object deallocated too many times: %d",
650
object->type));
651
652
/*
653
* If this is not the final reference to an anonymous
654
* object we may need to collapse the shadow chain.
655
*/
656
if (!refcount_release(&object->ref_count)) {
657
if (object->ref_count > 1 ||
658
atomic_load_int(&object->shadow_count) == 0) {
659
if ((object->flags & OBJ_ANON) != 0 &&
660
object->ref_count == 1)
661
vm_object_set_flag(object,
662
OBJ_ONEMAPPING);
663
VM_OBJECT_WUNLOCK(object);
664
return;
665
}
666
667
/* Handle collapsing last ref on anonymous objects. */
668
object = vm_object_deallocate_anon(object);
669
continue;
670
}
671
672
/*
673
* Handle the final reference to an object. We restart
674
* the loop with the backing object to avoid recursion.
675
*/
676
umtx_shm_object_terminated(object);
677
temp = object->backing_object;
678
if (temp != NULL) {
679
KASSERT(object->type == OBJT_SWAP,
680
("shadowed tmpfs v_object 2 %p", object));
681
vm_object_backing_remove(object);
682
}
683
684
KASSERT((object->flags & OBJ_DEAD) == 0,
685
("vm_object_deallocate: Terminating dead object."));
686
vm_object_set_flag(object, OBJ_DEAD);
687
vm_object_terminate(object);
688
object = temp;
689
}
690
}
691
692
void
693
vm_object_destroy(vm_object_t object)
694
{
695
uma_zfree(obj_zone, object);
696
}
697
698
static void
699
vm_object_sub_shadow(vm_object_t object)
700
{
701
KASSERT(object->shadow_count >= 1,
702
("object %p sub_shadow count zero", object));
703
atomic_subtract_int(&object->shadow_count, 1);
704
}
705
706
static void
707
vm_object_backing_remove_locked(vm_object_t object)
708
{
709
vm_object_t backing_object;
710
711
backing_object = object->backing_object;
712
VM_OBJECT_ASSERT_WLOCKED(object);
713
VM_OBJECT_ASSERT_WLOCKED(backing_object);
714
715
KASSERT((object->flags & OBJ_COLLAPSING) == 0,
716
("vm_object_backing_remove: Removing collapsing object."));
717
718
vm_object_sub_shadow(backing_object);
719
if ((object->flags & OBJ_SHADOWLIST) != 0) {
720
LIST_REMOVE(object, shadow_list);
721
vm_object_clear_flag(object, OBJ_SHADOWLIST);
722
}
723
object->backing_object = NULL;
724
}
725
726
static void
727
vm_object_backing_remove(vm_object_t object)
728
{
729
vm_object_t backing_object;
730
731
VM_OBJECT_ASSERT_WLOCKED(object);
732
733
backing_object = object->backing_object;
734
if ((object->flags & OBJ_SHADOWLIST) != 0) {
735
VM_OBJECT_WLOCK(backing_object);
736
vm_object_backing_remove_locked(object);
737
VM_OBJECT_WUNLOCK(backing_object);
738
} else {
739
object->backing_object = NULL;
740
vm_object_sub_shadow(backing_object);
741
}
742
}
743
744
static void
745
vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
746
{
747
748
VM_OBJECT_ASSERT_WLOCKED(object);
749
750
atomic_add_int(&backing_object->shadow_count, 1);
751
if ((backing_object->flags & OBJ_ANON) != 0) {
752
VM_OBJECT_ASSERT_WLOCKED(backing_object);
753
LIST_INSERT_HEAD(&backing_object->shadow_head, object,
754
shadow_list);
755
vm_object_set_flag(object, OBJ_SHADOWLIST);
756
}
757
object->backing_object = backing_object;
758
}
759
760
static void
761
vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
762
{
763
764
VM_OBJECT_ASSERT_WLOCKED(object);
765
766
if ((backing_object->flags & OBJ_ANON) != 0) {
767
VM_OBJECT_WLOCK(backing_object);
768
vm_object_backing_insert_locked(object, backing_object);
769
VM_OBJECT_WUNLOCK(backing_object);
770
} else {
771
object->backing_object = backing_object;
772
atomic_add_int(&backing_object->shadow_count, 1);
773
}
774
}
775
776
/*
777
* Insert an object into a backing_object's shadow list with an additional
778
* reference to the backing_object added.
779
*/
780
static void
781
vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
782
{
783
784
VM_OBJECT_ASSERT_WLOCKED(object);
785
786
if ((backing_object->flags & OBJ_ANON) != 0) {
787
VM_OBJECT_WLOCK(backing_object);
788
KASSERT((backing_object->flags & OBJ_DEAD) == 0,
789
("shadowing dead anonymous object"));
790
vm_object_reference_locked(backing_object);
791
vm_object_backing_insert_locked(object, backing_object);
792
vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
793
VM_OBJECT_WUNLOCK(backing_object);
794
} else {
795
vm_object_reference(backing_object);
796
atomic_add_int(&backing_object->shadow_count, 1);
797
object->backing_object = backing_object;
798
}
799
}
800
801
/*
802
* Transfer a backing reference from backing_object to object.
803
*/
804
static void
805
vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
806
{
807
vm_object_t new_backing_object;
808
809
/*
810
* Note that the reference to backing_object->backing_object
811
* moves from within backing_object to within object.
812
*/
813
vm_object_backing_remove_locked(object);
814
new_backing_object = backing_object->backing_object;
815
if (new_backing_object == NULL)
816
return;
817
if ((new_backing_object->flags & OBJ_ANON) != 0) {
818
VM_OBJECT_WLOCK(new_backing_object);
819
vm_object_backing_remove_locked(backing_object);
820
vm_object_backing_insert_locked(object, new_backing_object);
821
VM_OBJECT_WUNLOCK(new_backing_object);
822
} else {
823
/*
824
* shadow_count for new_backing_object is left
825
* unchanged, its reference provided by backing_object
826
* is replaced by object.
827
*/
828
object->backing_object = new_backing_object;
829
backing_object->backing_object = NULL;
830
}
831
}
832
833
/*
834
* Wait for a concurrent collapse to settle.
835
*/
836
static void
837
vm_object_collapse_wait(vm_object_t object)
838
{
839
840
VM_OBJECT_ASSERT_WLOCKED(object);
841
842
while ((object->flags & OBJ_COLLAPSING) != 0) {
843
vm_object_pip_wait(object, "vmcolwait");
844
counter_u64_add(object_collapse_waits, 1);
845
}
846
}
847
848
/*
849
* Waits for a backing object to clear a pending collapse and returns
850
* it locked if it is an ANON object.
851
*/
852
static vm_object_t
853
vm_object_backing_collapse_wait(vm_object_t object)
854
{
855
vm_object_t backing_object;
856
857
VM_OBJECT_ASSERT_WLOCKED(object);
858
859
for (;;) {
860
backing_object = object->backing_object;
861
if (backing_object == NULL ||
862
(backing_object->flags & OBJ_ANON) == 0)
863
return (NULL);
864
VM_OBJECT_WLOCK(backing_object);
865
if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
866
break;
867
VM_OBJECT_WUNLOCK(object);
868
vm_object_pip_sleep(backing_object, "vmbckwait");
869
counter_u64_add(object_collapse_waits, 1);
870
VM_OBJECT_WLOCK(object);
871
}
872
return (backing_object);
873
}
874
875
/*
876
* vm_object_terminate_single_page removes a pageable page from the object,
877
* and removes it from the paging queues and frees it, if it is not wired.
878
* It is invoked via callback from vm_object_terminate_pages.
879
*/
880
static void
881
vm_object_terminate_single_page(vm_page_t p, void *objectv)
882
{
883
vm_object_t object __diagused = objectv;
884
885
vm_page_assert_unbusied(p);
886
KASSERT(p->object == object &&
887
(p->ref_count & VPRC_OBJREF) != 0,
888
("%s: page %p is inconsistent", __func__, p));
889
p->object = NULL;
890
if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
891
KASSERT((object->flags & OBJ_UNMANAGED) != 0 ||
892
vm_page_astate_load(p).queue != PQ_NONE,
893
("%s: page %p does not belong to a queue", __func__, p));
894
VM_CNT_INC(v_pfree);
895
vm_page_free(p);
896
}
897
}
898
899
/*
900
* vm_object_terminate_pages removes any remaining pageable pages
901
* from the object and resets the object to an empty state.
902
*/
903
static void
904
vm_object_terminate_pages(vm_object_t object)
905
{
906
VM_OBJECT_ASSERT_WLOCKED(object);
907
908
/*
909
* If the object contained any pages, then reset it to an empty state.
910
* Rather than incrementally removing each page from the object, the
911
* page and object are reset to any empty state.
912
*/
913
if (object->resident_page_count == 0)
914
return;
915
916
vm_radix_reclaim_callback(&object->rtree,
917
vm_object_terminate_single_page, object);
918
object->resident_page_count = 0;
919
if (object->type == OBJT_VNODE)
920
vdrop(object->handle);
921
}
922
923
/*
924
* vm_object_terminate actually destroys the specified object, freeing
925
* up all previously used resources.
926
*
927
* The object must be locked.
928
* This routine may block.
929
*/
930
void
931
vm_object_terminate(vm_object_t object)
932
{
933
934
VM_OBJECT_ASSERT_WLOCKED(object);
935
KASSERT((object->flags & OBJ_DEAD) != 0,
936
("terminating non-dead obj %p", object));
937
KASSERT((object->flags & OBJ_COLLAPSING) == 0,
938
("terminating collapsing obj %p", object));
939
KASSERT(object->backing_object == NULL,
940
("terminating shadow obj %p", object));
941
942
/*
943
* Wait for the pageout daemon and other current users to be
944
* done with the object. Note that new paging_in_progress
945
* users can come after this wait, but they must check
946
* OBJ_DEAD flag set (without unlocking the object), and avoid
947
* the object being terminated.
948
*/
949
vm_object_pip_wait(object, "objtrm");
950
951
KASSERT(object->ref_count == 0,
952
("vm_object_terminate: object with references, ref_count=%d",
953
object->ref_count));
954
955
if ((object->flags & OBJ_PG_DTOR) == 0)
956
vm_object_terminate_pages(object);
957
958
#if VM_NRESERVLEVEL > 0
959
if (__predict_false(!LIST_EMPTY(&object->rvq)))
960
vm_reserv_break_all(object);
961
#endif
962
963
KASSERT(object->cred == NULL || (object->flags & OBJ_SWAP) != 0,
964
("%s: non-swap obj %p has cred", __func__, object));
965
966
/*
967
* Let the pager know object is dead.
968
*/
969
vm_pager_deallocate(object);
970
VM_OBJECT_WUNLOCK(object);
971
972
vm_object_destroy(object);
973
}
974
975
/*
976
* Make the page read-only so that we can clear the object flags. However, if
977
* this is a nosync mmap then the object is likely to stay dirty so do not
978
* mess with the page and do not clear the object flags. Returns TRUE if the
979
* page should be flushed, and FALSE otherwise.
980
*/
981
static boolean_t
982
vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
983
{
984
985
vm_page_assert_busied(p);
986
987
/*
988
* If we have been asked to skip nosync pages and this is a
989
* nosync page, skip it. Note that the object flags were not
990
* cleared in this case so we do not have to set them.
991
*/
992
if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
993
*allclean = FALSE;
994
return (FALSE);
995
} else {
996
pmap_remove_write(p);
997
return (p->dirty != 0);
998
}
999
}
1000
1001
static int
1002
vm_object_page_clean_flush(struct pctrie_iter *pages, vm_page_t p,
1003
int pagerflags, int flags, boolean_t *allclean, bool *eio)
1004
{
1005
vm_page_t ma[vm_pageout_page_count];
1006
int count, runlen;
1007
1008
vm_page_assert_xbusied(p);
1009
ma[0] = p;
1010
runlen = vm_radix_iter_lookup_range(pages, p->pindex + 1,
1011
&ma[1], vm_pageout_page_count - 1);
1012
for (count = 1; count <= runlen; count++) {
1013
p = ma[count];
1014
if (vm_page_tryxbusy(p) == 0)
1015
break;
1016
if (!vm_object_page_remove_write(p, flags, allclean)) {
1017
vm_page_xunbusy(p);
1018
break;
1019
}
1020
}
1021
1022
return (vm_pageout_flush(ma, count, pagerflags, eio));
1023
}
1024
1025
/*
1026
* vm_object_page_clean
1027
*
1028
* Clean all dirty pages in the specified range of object. Leaves page
1029
* on whatever queue it is currently on. If NOSYNC is set then do not
1030
* write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1031
* leaving the object dirty.
1032
*
1033
* For swap objects backing tmpfs regular files, do not flush anything,
1034
* but remove write protection on the mapped pages to update mtime through
1035
* mmaped writes.
1036
*
1037
* When stuffing pages asynchronously, allow clustering. XXX we need a
1038
* synchronous clustering mode implementation.
1039
*
1040
* Odd semantics: if start == end, we clean everything.
1041
*
1042
* The object must be locked.
1043
*
1044
* Returns FALSE if some page from the range was not written, as
1045
* reported by the pager, and TRUE otherwise.
1046
*/
1047
boolean_t
1048
vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1049
int flags)
1050
{
1051
struct pctrie_iter pages;
1052
vm_page_t np, p;
1053
vm_pindex_t pi, tend, tstart;
1054
int curgeneration, n, pagerflags;
1055
boolean_t res, allclean;
1056
bool eio;
1057
1058
VM_OBJECT_ASSERT_WLOCKED(object);
1059
1060
if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1061
return (TRUE);
1062
1063
pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1064
VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1065
pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1066
1067
tstart = OFF_TO_IDX(start);
1068
tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1069
allclean = tstart == 0 && tend >= object->size;
1070
res = TRUE;
1071
vm_page_iter_init(&pages, object);
1072
1073
rescan:
1074
curgeneration = object->generation;
1075
1076
for (p = vm_radix_iter_lookup_ge(&pages, tstart); p != NULL; p = np) {
1077
pi = p->pindex;
1078
if (pi >= tend)
1079
break;
1080
if (vm_page_none_valid(p)) {
1081
np = vm_radix_iter_step(&pages);
1082
continue;
1083
}
1084
if (!vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL)) {
1085
pctrie_iter_reset(&pages);
1086
if (object->generation != curgeneration &&
1087
(flags & OBJPC_SYNC) != 0)
1088
goto rescan;
1089
np = vm_radix_iter_lookup_ge(&pages, pi);
1090
continue;
1091
}
1092
if (!vm_object_page_remove_write(p, flags, &allclean)) {
1093
np = vm_radix_iter_step(&pages);
1094
vm_page_xunbusy(p);
1095
continue;
1096
}
1097
if (object->type == OBJT_VNODE) {
1098
n = vm_object_page_clean_flush(&pages, p, pagerflags,
1099
flags, &allclean, &eio);
1100
pctrie_iter_reset(&pages);
1101
if (eio) {
1102
res = FALSE;
1103
allclean = FALSE;
1104
}
1105
if (object->generation != curgeneration &&
1106
(flags & OBJPC_SYNC) != 0)
1107
goto rescan;
1108
1109
/*
1110
* If the VOP_PUTPAGES() did a truncated write, so
1111
* that even the first page of the run is not fully
1112
* written, vm_pageout_flush() returns 0 as the run
1113
* length. Since the condition that caused truncated
1114
* write may be permanent, e.g. exhausted free space,
1115
* accepting n == 0 would cause an infinite loop.
1116
*
1117
* Forwarding the iterator leaves the unwritten page
1118
* behind, but there is not much we can do there if
1119
* filesystem refuses to write it.
1120
*/
1121
if (n == 0) {
1122
n = 1;
1123
allclean = FALSE;
1124
}
1125
} else {
1126
n = 1;
1127
vm_page_xunbusy(p);
1128
}
1129
np = vm_radix_iter_lookup_ge(&pages, pi + n);
1130
}
1131
#if 0
1132
VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1133
#endif
1134
1135
/*
1136
* Leave updating cleangeneration for tmpfs objects to tmpfs
1137
* scan. It needs to update mtime, which happens for other
1138
* filesystems during page writeouts.
1139
*/
1140
if (allclean && object->type == OBJT_VNODE)
1141
object->cleangeneration = curgeneration;
1142
return (res);
1143
}
1144
1145
/*
1146
* Note that there is absolutely no sense in writing out
1147
* anonymous objects, so we track down the vnode object
1148
* to write out.
1149
* We invalidate (remove) all pages from the address space
1150
* for semantic correctness.
1151
*
1152
* If the backing object is a device object with unmanaged pages, then any
1153
* mappings to the specified range of pages must be removed before this
1154
* function is called.
1155
*
1156
* Note: certain anonymous maps, such as MAP_NOSYNC maps,
1157
* may start out with a NULL object.
1158
*/
1159
boolean_t
1160
vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1161
boolean_t syncio, boolean_t invalidate)
1162
{
1163
vm_object_t backing_object;
1164
struct vnode *vp;
1165
struct mount *mp;
1166
int error, flags, fsync_after;
1167
boolean_t res;
1168
1169
if (object == NULL)
1170
return (TRUE);
1171
res = TRUE;
1172
error = 0;
1173
VM_OBJECT_WLOCK(object);
1174
while ((backing_object = object->backing_object) != NULL) {
1175
VM_OBJECT_WLOCK(backing_object);
1176
offset += object->backing_object_offset;
1177
VM_OBJECT_WUNLOCK(object);
1178
object = backing_object;
1179
if (object->size < OFF_TO_IDX(offset + size))
1180
size = IDX_TO_OFF(object->size) - offset;
1181
}
1182
/*
1183
* Flush pages if writing is allowed, invalidate them
1184
* if invalidation requested. Pages undergoing I/O
1185
* will be ignored by vm_object_page_remove().
1186
*
1187
* We cannot lock the vnode and then wait for paging
1188
* to complete without deadlocking against vm_fault.
1189
* Instead we simply call vm_object_page_remove() and
1190
* allow it to block internally on a page-by-page
1191
* basis when it encounters pages undergoing async
1192
* I/O.
1193
*/
1194
if (object->type == OBJT_VNODE &&
1195
vm_object_mightbedirty(object) != 0 &&
1196
((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1197
VM_OBJECT_WUNLOCK(object);
1198
(void)vn_start_write(vp, &mp, V_WAIT);
1199
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1200
if (syncio && !invalidate && offset == 0 &&
1201
atop(size) == object->size) {
1202
/*
1203
* If syncing the whole mapping of the file,
1204
* it is faster to schedule all the writes in
1205
* async mode, also allowing the clustering,
1206
* and then wait for i/o to complete.
1207
*/
1208
flags = 0;
1209
fsync_after = TRUE;
1210
} else {
1211
flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1212
flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1213
fsync_after = FALSE;
1214
}
1215
VM_OBJECT_WLOCK(object);
1216
res = vm_object_page_clean(object, offset, offset + size,
1217
flags);
1218
VM_OBJECT_WUNLOCK(object);
1219
if (fsync_after) {
1220
for (;;) {
1221
error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1222
if (error != ERELOOKUP)
1223
break;
1224
1225
/*
1226
* Allow SU/bufdaemon to handle more
1227
* dependencies in the meantime.
1228
*/
1229
VOP_UNLOCK(vp);
1230
vn_finished_write(mp);
1231
1232
(void)vn_start_write(vp, &mp, V_WAIT);
1233
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1234
}
1235
}
1236
VOP_UNLOCK(vp);
1237
vn_finished_write(mp);
1238
if (error != 0)
1239
res = FALSE;
1240
VM_OBJECT_WLOCK(object);
1241
}
1242
if ((object->type == OBJT_VNODE ||
1243
object->type == OBJT_DEVICE) && invalidate) {
1244
if (object->type == OBJT_DEVICE)
1245
/*
1246
* The option OBJPR_NOTMAPPED must be passed here
1247
* because vm_object_page_remove() cannot remove
1248
* unmanaged mappings.
1249
*/
1250
flags = OBJPR_NOTMAPPED;
1251
else if (old_msync)
1252
flags = 0;
1253
else
1254
flags = OBJPR_CLEANONLY;
1255
vm_object_page_remove(object, OFF_TO_IDX(offset),
1256
OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1257
}
1258
VM_OBJECT_WUNLOCK(object);
1259
return (res);
1260
}
1261
1262
/*
1263
* Determine whether the given advice can be applied to the object. Advice is
1264
* not applied to unmanaged pages since they never belong to page queues, and
1265
* since MADV_FREE is destructive, it can apply only to anonymous pages that
1266
* have been mapped at most once.
1267
*/
1268
static bool
1269
vm_object_advice_applies(vm_object_t object, int advice)
1270
{
1271
1272
if ((object->flags & OBJ_UNMANAGED) != 0)
1273
return (false);
1274
if (advice != MADV_FREE)
1275
return (true);
1276
return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1277
(OBJ_ONEMAPPING | OBJ_ANON));
1278
}
1279
1280
static void
1281
vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1282
vm_size_t size)
1283
{
1284
1285
if (advice == MADV_FREE)
1286
vm_pager_freespace(object, pindex, size);
1287
}
1288
1289
/*
1290
* vm_object_madvise:
1291
*
1292
* Implements the madvise function at the object/page level.
1293
*
1294
* MADV_WILLNEED (any object)
1295
*
1296
* Activate the specified pages if they are resident.
1297
*
1298
* MADV_DONTNEED (any object)
1299
*
1300
* Deactivate the specified pages if they are resident.
1301
*
1302
* MADV_FREE (OBJT_SWAP objects, OBJ_ONEMAPPING only)
1303
*
1304
* Deactivate and clean the specified pages if they are
1305
* resident. This permits the process to reuse the pages
1306
* without faulting or the kernel to reclaim the pages
1307
* without I/O.
1308
*/
1309
void
1310
vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1311
int advice)
1312
{
1313
struct pctrie_iter pages;
1314
vm_pindex_t tpindex;
1315
vm_object_t backing_object, tobject;
1316
vm_page_t m, tm;
1317
1318
if (object == NULL)
1319
return;
1320
1321
vm_page_iter_init(&pages, object);
1322
relookup:
1323
VM_OBJECT_WLOCK(object);
1324
if (!vm_object_advice_applies(object, advice)) {
1325
VM_OBJECT_WUNLOCK(object);
1326
return;
1327
}
1328
for (m = vm_radix_iter_lookup_ge(&pages, pindex); pindex < end;
1329
pindex++) {
1330
tobject = object;
1331
1332
/*
1333
* If the next page isn't resident in the top-level object, we
1334
* need to search the shadow chain. When applying MADV_FREE, we
1335
* take care to release any swap space used to store
1336
* non-resident pages.
1337
*/
1338
if (m == NULL || pindex < m->pindex) {
1339
/*
1340
* Optimize a common case: if the top-level object has
1341
* no backing object, we can skip over the non-resident
1342
* range in constant time.
1343
*/
1344
if (object->backing_object == NULL) {
1345
tpindex = (m != NULL && m->pindex < end) ?
1346
m->pindex : end;
1347
vm_object_madvise_freespace(object, advice,
1348
pindex, tpindex - pindex);
1349
if ((pindex = tpindex) == end)
1350
break;
1351
goto next_page;
1352
}
1353
1354
tpindex = pindex;
1355
do {
1356
vm_object_madvise_freespace(tobject, advice,
1357
tpindex, 1);
1358
/*
1359
* Prepare to search the next object in the
1360
* chain.
1361
*/
1362
backing_object = tobject->backing_object;
1363
if (backing_object == NULL)
1364
goto next_pindex;
1365
VM_OBJECT_WLOCK(backing_object);
1366
tpindex +=
1367
OFF_TO_IDX(tobject->backing_object_offset);
1368
if (tobject != object)
1369
VM_OBJECT_WUNLOCK(tobject);
1370
tobject = backing_object;
1371
if (!vm_object_advice_applies(tobject, advice))
1372
goto next_pindex;
1373
} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1374
NULL);
1375
} else {
1376
next_page:
1377
tm = m;
1378
m = vm_radix_iter_step(&pages);
1379
}
1380
1381
/*
1382
* If the page is not in a normal state, skip it. The page
1383
* can not be invalidated while the object lock is held.
1384
*/
1385
if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1386
goto next_pindex;
1387
KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1388
("vm_object_madvise: page %p is fictitious", tm));
1389
KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1390
("vm_object_madvise: page %p is not managed", tm));
1391
if (vm_page_tryxbusy(tm) == 0) {
1392
if (object != tobject)
1393
VM_OBJECT_WUNLOCK(object);
1394
if (advice == MADV_WILLNEED) {
1395
/*
1396
* Reference the page before unlocking and
1397
* sleeping so that the page daemon is less
1398
* likely to reclaim it.
1399
*/
1400
vm_page_aflag_set(tm, PGA_REFERENCED);
1401
}
1402
if (!vm_page_busy_sleep(tm, "madvpo", 0))
1403
VM_OBJECT_WUNLOCK(tobject);
1404
pctrie_iter_reset(&pages);
1405
goto relookup;
1406
}
1407
vm_page_advise(tm, advice);
1408
vm_page_xunbusy(tm);
1409
vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1410
next_pindex:
1411
if (tobject != object)
1412
VM_OBJECT_WUNLOCK(tobject);
1413
}
1414
VM_OBJECT_WUNLOCK(object);
1415
}
1416
1417
/*
1418
* vm_object_shadow:
1419
*
1420
* Create a new object which is backed by the
1421
* specified existing object range. The source
1422
* object reference is deallocated.
1423
*
1424
* The new object and offset into that object
1425
* are returned in the source parameters.
1426
*/
1427
void
1428
vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1429
struct ucred *cred, bool shared)
1430
{
1431
vm_object_t source;
1432
vm_object_t result;
1433
1434
source = *object;
1435
1436
/*
1437
* Don't create the new object if the old object isn't shared.
1438
*
1439
* If we hold the only reference we can guarantee that it won't
1440
* increase while we have the map locked. Otherwise the race is
1441
* harmless and we will end up with an extra shadow object that
1442
* will be collapsed later.
1443
*/
1444
if (source != NULL && source->ref_count == 1 &&
1445
(source->flags & OBJ_ANON) != 0)
1446
return;
1447
1448
/*
1449
* Allocate a new object with the given length.
1450
*/
1451
result = vm_object_allocate_anon(atop(length), source, cred, length);
1452
1453
/*
1454
* Store the offset into the source object, and fix up the offset into
1455
* the new object.
1456
*/
1457
result->backing_object_offset = *offset;
1458
1459
if (shared || source != NULL) {
1460
VM_OBJECT_WLOCK(result);
1461
1462
/*
1463
* The new object shadows the source object, adding a
1464
* reference to it. Our caller changes his reference
1465
* to point to the new object, removing a reference to
1466
* the source object. Net result: no change of
1467
* reference count, unless the caller needs to add one
1468
* more reference due to forking a shared map entry.
1469
*/
1470
if (shared) {
1471
vm_object_reference_locked(result);
1472
vm_object_clear_flag(result, OBJ_ONEMAPPING);
1473
}
1474
1475
/*
1476
* Try to optimize the result object's page color when
1477
* shadowing in order to maintain page coloring
1478
* consistency in the combined shadowed object.
1479
*/
1480
if (source != NULL) {
1481
vm_object_backing_insert(result, source);
1482
result->domain = source->domain;
1483
#if VM_NRESERVLEVEL > 0
1484
vm_object_set_flag(result,
1485
(source->flags & OBJ_COLORED));
1486
result->pg_color = (source->pg_color +
1487
OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1488
1)) - 1);
1489
#endif
1490
}
1491
VM_OBJECT_WUNLOCK(result);
1492
}
1493
1494
/*
1495
* Return the new things
1496
*/
1497
*offset = 0;
1498
*object = result;
1499
}
1500
1501
/*
1502
* vm_object_split:
1503
*
1504
* Split the pages in a map entry into a new object. This affords
1505
* easier removal of unused pages, and keeps object inheritance from
1506
* being a negative impact on memory usage.
1507
*/
1508
void
1509
vm_object_split(vm_map_entry_t entry)
1510
{
1511
struct pctrie_iter pages;
1512
vm_page_t m;
1513
vm_object_t orig_object, new_object, backing_object;
1514
vm_pindex_t offidxstart;
1515
vm_size_t size;
1516
1517
orig_object = entry->object.vm_object;
1518
KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1519
("vm_object_split: Splitting object with multiple mappings."));
1520
if ((orig_object->flags & OBJ_ANON) == 0)
1521
return;
1522
if (orig_object->ref_count <= 1)
1523
return;
1524
VM_OBJECT_WUNLOCK(orig_object);
1525
1526
offidxstart = OFF_TO_IDX(entry->offset);
1527
size = atop(entry->end - entry->start);
1528
1529
new_object = vm_object_allocate_anon(size, orig_object,
1530
orig_object->cred, ptoa(size));
1531
1532
/*
1533
* We must wait for the orig_object to complete any in-progress
1534
* collapse so that the swap blocks are stable below. The
1535
* additional reference on backing_object by new object will
1536
* prevent further collapse operations until split completes.
1537
*/
1538
VM_OBJECT_WLOCK(orig_object);
1539
vm_object_collapse_wait(orig_object);
1540
1541
/*
1542
* At this point, the new object is still private, so the order in
1543
* which the original and new objects are locked does not matter.
1544
*/
1545
VM_OBJECT_WLOCK(new_object);
1546
new_object->domain = orig_object->domain;
1547
backing_object = orig_object->backing_object;
1548
if (backing_object != NULL) {
1549
vm_object_backing_insert_ref(new_object, backing_object);
1550
new_object->backing_object_offset =
1551
orig_object->backing_object_offset + entry->offset;
1552
}
1553
if (orig_object->cred != NULL) {
1554
crhold(orig_object->cred);
1555
KASSERT(orig_object->charge >= ptoa(size),
1556
("orig_object->charge < 0"));
1557
orig_object->charge -= ptoa(size);
1558
}
1559
1560
/*
1561
* Mark the split operation so that swap_pager_getpages() knows
1562
* that the object is in transition.
1563
*/
1564
vm_object_set_flag(orig_object, OBJ_SPLIT);
1565
vm_page_iter_limit_init(&pages, orig_object, offidxstart + size);
1566
retry:
1567
KASSERT(pctrie_iter_is_reset(&pages),
1568
("%s: pctrie_iter not reset for retry", __func__));
1569
for (m = vm_radix_iter_lookup_ge(&pages, offidxstart); m != NULL;
1570
m = vm_radix_iter_step(&pages)) {
1571
/*
1572
* We must wait for pending I/O to complete before we can
1573
* rename the page.
1574
*
1575
* We do not have to VM_PROT_NONE the page as mappings should
1576
* not be changed by this operation.
1577
*/
1578
if (vm_page_tryxbusy(m) == 0) {
1579
VM_OBJECT_WUNLOCK(new_object);
1580
if (vm_page_busy_sleep(m, "spltwt", 0))
1581
VM_OBJECT_WLOCK(orig_object);
1582
pctrie_iter_reset(&pages);
1583
VM_OBJECT_WLOCK(new_object);
1584
goto retry;
1585
}
1586
1587
/*
1588
* If the page was left invalid, it was likely placed there by
1589
* an incomplete fault. Just remove and ignore.
1590
*
1591
* One other possibility is that the map entry is wired, in
1592
* which case we must hang on to the page to avoid leaking it,
1593
* as the map entry owns the wiring. This case can arise if the
1594
* backing object is truncated by the pager.
1595
*/
1596
if (vm_page_none_valid(m) && entry->wired_count == 0) {
1597
if (vm_page_iter_remove(&pages, m))
1598
vm_page_free(m);
1599
continue;
1600
}
1601
1602
/* vm_page_iter_rename() will dirty the page if it is valid. */
1603
if (!vm_page_iter_rename(&pages, m, new_object, m->pindex -
1604
offidxstart)) {
1605
vm_page_xunbusy(m);
1606
VM_OBJECT_WUNLOCK(new_object);
1607
VM_OBJECT_WUNLOCK(orig_object);
1608
vm_radix_wait();
1609
pctrie_iter_reset(&pages);
1610
VM_OBJECT_WLOCK(orig_object);
1611
VM_OBJECT_WLOCK(new_object);
1612
goto retry;
1613
}
1614
1615
#if VM_NRESERVLEVEL > 0
1616
/*
1617
* If some of the reservation's allocated pages remain with
1618
* the original object, then transferring the reservation to
1619
* the new object is neither particularly beneficial nor
1620
* particularly harmful as compared to leaving the reservation
1621
* with the original object. If, however, all of the
1622
* reservation's allocated pages are transferred to the new
1623
* object, then transferring the reservation is typically
1624
* beneficial. Determining which of these two cases applies
1625
* would be more costly than unconditionally renaming the
1626
* reservation.
1627
*/
1628
vm_reserv_rename(m, new_object, orig_object, offidxstart);
1629
#endif
1630
}
1631
1632
/*
1633
* swap_pager_copy() can sleep, in which case the orig_object's
1634
* and new_object's locks are released and reacquired.
1635
*/
1636
swap_pager_copy(orig_object, new_object, offidxstart, 0);
1637
vm_page_iter_init(&pages, new_object);
1638
VM_RADIX_FOREACH(m, &pages)
1639
vm_page_xunbusy(m);
1640
1641
vm_object_clear_flag(orig_object, OBJ_SPLIT);
1642
VM_OBJECT_WUNLOCK(orig_object);
1643
VM_OBJECT_WUNLOCK(new_object);
1644
entry->object.vm_object = new_object;
1645
entry->offset = 0LL;
1646
vm_object_deallocate(orig_object);
1647
VM_OBJECT_WLOCK(new_object);
1648
}
1649
1650
static vm_page_t
1651
vm_object_collapse_scan_wait(struct pctrie_iter *pages, vm_object_t object,
1652
vm_page_t p)
1653
{
1654
vm_object_t backing_object;
1655
1656
VM_OBJECT_ASSERT_WLOCKED(object);
1657
backing_object = object->backing_object;
1658
VM_OBJECT_ASSERT_WLOCKED(backing_object);
1659
1660
KASSERT(p == NULL || p->object == object || p->object == backing_object,
1661
("invalid ownership %p %p %p", p, object, backing_object));
1662
/* The page is only NULL when rename fails. */
1663
if (p == NULL) {
1664
VM_OBJECT_WUNLOCK(object);
1665
VM_OBJECT_WUNLOCK(backing_object);
1666
vm_radix_wait();
1667
VM_OBJECT_WLOCK(object);
1668
} else if (p->object == object) {
1669
VM_OBJECT_WUNLOCK(backing_object);
1670
if (vm_page_busy_sleep(p, "vmocol", 0))
1671
VM_OBJECT_WLOCK(object);
1672
} else {
1673
VM_OBJECT_WUNLOCK(object);
1674
if (!vm_page_busy_sleep(p, "vmocol", 0))
1675
VM_OBJECT_WUNLOCK(backing_object);
1676
VM_OBJECT_WLOCK(object);
1677
}
1678
VM_OBJECT_WLOCK(backing_object);
1679
vm_page_iter_init(pages, backing_object);
1680
return (vm_radix_iter_lookup_ge(pages, 0));
1681
}
1682
1683
static void
1684
vm_object_collapse_scan(vm_object_t object)
1685
{
1686
struct pctrie_iter pages;
1687
vm_object_t backing_object;
1688
vm_page_t next, p, pp;
1689
vm_pindex_t backing_offset_index, new_pindex;
1690
1691
VM_OBJECT_ASSERT_WLOCKED(object);
1692
VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1693
1694
backing_object = object->backing_object;
1695
backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1696
1697
/*
1698
* Our scan
1699
*/
1700
vm_page_iter_init(&pages, backing_object);
1701
for (p = vm_radix_iter_lookup_ge(&pages, 0); p != NULL; p = next) {
1702
/*
1703
* Check for busy page
1704
*/
1705
if (vm_page_tryxbusy(p) == 0) {
1706
next = vm_object_collapse_scan_wait(&pages, object, p);
1707
continue;
1708
}
1709
1710
KASSERT(object->backing_object == backing_object,
1711
("vm_object_collapse_scan: backing object mismatch %p != %p",
1712
object->backing_object, backing_object));
1713
KASSERT(p->object == backing_object,
1714
("vm_object_collapse_scan: object mismatch %p != %p",
1715
p->object, backing_object));
1716
1717
if (p->pindex < backing_offset_index || object->size <=
1718
(new_pindex = p->pindex - backing_offset_index)) {
1719
vm_pager_freespace(backing_object, p->pindex, 1);
1720
1721
KASSERT(!pmap_page_is_mapped(p),
1722
("freeing mapped page %p", p));
1723
if (vm_page_iter_remove(&pages, p))
1724
vm_page_free(p);
1725
next = vm_radix_iter_step(&pages);
1726
continue;
1727
}
1728
1729
if (!vm_page_all_valid(p)) {
1730
KASSERT(!pmap_page_is_mapped(p),
1731
("freeing mapped page %p", p));
1732
if (vm_page_iter_remove(&pages, p))
1733
vm_page_free(p);
1734
next = vm_radix_iter_step(&pages);
1735
continue;
1736
}
1737
1738
pp = vm_page_lookup(object, new_pindex);
1739
if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1740
vm_page_xunbusy(p);
1741
/*
1742
* The page in the parent is busy and possibly not
1743
* (yet) valid. Until its state is finalized by the
1744
* busy bit owner, we can't tell whether it shadows the
1745
* original page.
1746
*/
1747
next = vm_object_collapse_scan_wait(&pages, object, pp);
1748
continue;
1749
}
1750
1751
if (pp != NULL && vm_page_none_valid(pp)) {
1752
/*
1753
* The page was invalid in the parent. Likely placed
1754
* there by an incomplete fault. Just remove and
1755
* ignore. p can replace it.
1756
*/
1757
if (vm_page_remove(pp))
1758
vm_page_free(pp);
1759
pp = NULL;
1760
}
1761
1762
if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1763
NULL)) {
1764
/*
1765
* The page already exists in the parent OR swap exists
1766
* for this location in the parent. Leave the parent's
1767
* page alone. Destroy the original page from the
1768
* backing object.
1769
*/
1770
vm_pager_freespace(backing_object, p->pindex, 1);
1771
KASSERT(!pmap_page_is_mapped(p),
1772
("freeing mapped page %p", p));
1773
if (pp != NULL)
1774
vm_page_xunbusy(pp);
1775
if (vm_page_iter_remove(&pages, p))
1776
vm_page_free(p);
1777
next = vm_radix_iter_step(&pages);
1778
continue;
1779
}
1780
1781
/*
1782
* Page does not exist in parent, rename the page from the
1783
* backing object to the main object.
1784
*
1785
* If the page was mapped to a process, it can remain mapped
1786
* through the rename. vm_page_iter_rename() will dirty the
1787
* page.
1788
*/
1789
if (!vm_page_iter_rename(&pages, p, object, new_pindex)) {
1790
vm_page_xunbusy(p);
1791
next = vm_object_collapse_scan_wait(&pages, object,
1792
NULL);
1793
continue;
1794
}
1795
1796
/* Use the old pindex to free the right page. */
1797
vm_pager_freespace(backing_object, new_pindex +
1798
backing_offset_index, 1);
1799
1800
#if VM_NRESERVLEVEL > 0
1801
/*
1802
* Rename the reservation.
1803
*/
1804
vm_reserv_rename(p, object, backing_object,
1805
backing_offset_index);
1806
#endif
1807
vm_page_xunbusy(p);
1808
next = vm_radix_iter_step(&pages);
1809
}
1810
return;
1811
}
1812
1813
/*
1814
* vm_object_collapse:
1815
*
1816
* Collapse an object with the object backing it.
1817
* Pages in the backing object are moved into the
1818
* parent, and the backing object is deallocated.
1819
*/
1820
void
1821
vm_object_collapse(vm_object_t object)
1822
{
1823
vm_object_t backing_object, new_backing_object;
1824
1825
VM_OBJECT_ASSERT_WLOCKED(object);
1826
1827
while (TRUE) {
1828
KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1829
("collapsing invalid object"));
1830
1831
/*
1832
* Wait for the backing_object to finish any pending
1833
* collapse so that the caller sees the shortest possible
1834
* shadow chain.
1835
*/
1836
backing_object = vm_object_backing_collapse_wait(object);
1837
if (backing_object == NULL)
1838
return;
1839
1840
KASSERT(object->ref_count > 0 &&
1841
object->ref_count > atomic_load_int(&object->shadow_count),
1842
("collapse with invalid ref %d or shadow %d count.",
1843
object->ref_count, atomic_load_int(&object->shadow_count)));
1844
KASSERT((backing_object->flags &
1845
(OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1846
("vm_object_collapse: Backing object already collapsing."));
1847
KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1848
("vm_object_collapse: object is already collapsing."));
1849
1850
/*
1851
* We know that we can either collapse the backing object if
1852
* the parent is the only reference to it, or (perhaps) have
1853
* the parent bypass the object if the parent happens to shadow
1854
* all the resident pages in the entire backing object.
1855
*/
1856
if (backing_object->ref_count == 1) {
1857
KASSERT(atomic_load_int(&backing_object->shadow_count)
1858
== 1,
1859
("vm_object_collapse: shadow_count: %d",
1860
atomic_load_int(&backing_object->shadow_count)));
1861
vm_object_pip_add(object, 1);
1862
vm_object_set_flag(object, OBJ_COLLAPSING);
1863
vm_object_pip_add(backing_object, 1);
1864
vm_object_set_flag(backing_object, OBJ_DEAD);
1865
1866
/*
1867
* If there is exactly one reference to the backing
1868
* object, we can collapse it into the parent.
1869
*/
1870
vm_object_collapse_scan(object);
1871
1872
/*
1873
* Move the pager from backing_object to object.
1874
*
1875
* swap_pager_copy() can sleep, in which case the
1876
* backing_object's and object's locks are released and
1877
* reacquired.
1878
*/
1879
swap_pager_copy(backing_object, object,
1880
OFF_TO_IDX(object->backing_object_offset), TRUE);
1881
1882
/*
1883
* Object now shadows whatever backing_object did.
1884
*/
1885
vm_object_clear_flag(object, OBJ_COLLAPSING);
1886
vm_object_backing_transfer(object, backing_object);
1887
object->backing_object_offset +=
1888
backing_object->backing_object_offset;
1889
VM_OBJECT_WUNLOCK(object);
1890
vm_object_pip_wakeup(object);
1891
1892
/*
1893
* Discard backing_object.
1894
*
1895
* Since the backing object has no pages, no pager left,
1896
* and no object references within it, all that is
1897
* necessary is to dispose of it.
1898
*/
1899
KASSERT(backing_object->ref_count == 1, (
1900
"backing_object %p was somehow re-referenced during collapse!",
1901
backing_object));
1902
vm_object_pip_wakeup(backing_object);
1903
(void)refcount_release(&backing_object->ref_count);
1904
umtx_shm_object_terminated(backing_object);
1905
vm_object_terminate(backing_object);
1906
counter_u64_add(object_collapses, 1);
1907
VM_OBJECT_WLOCK(object);
1908
} else {
1909
/*
1910
* If we do not entirely shadow the backing object,
1911
* there is nothing we can do so we give up.
1912
*
1913
* The object lock and backing_object lock must not
1914
* be dropped during this sequence.
1915
*/
1916
if (!swap_pager_scan_all_shadowed(object)) {
1917
VM_OBJECT_WUNLOCK(backing_object);
1918
break;
1919
}
1920
1921
/*
1922
* Make the parent shadow the next object in the
1923
* chain. Deallocating backing_object will not remove
1924
* it, since its reference count is at least 2.
1925
*/
1926
vm_object_backing_remove_locked(object);
1927
new_backing_object = backing_object->backing_object;
1928
if (new_backing_object != NULL) {
1929
vm_object_backing_insert_ref(object,
1930
new_backing_object);
1931
object->backing_object_offset +=
1932
backing_object->backing_object_offset;
1933
}
1934
1935
/*
1936
* Drop the reference count on backing_object. Since
1937
* its ref_count was at least 2, it will not vanish.
1938
*/
1939
(void)refcount_release(&backing_object->ref_count);
1940
KASSERT(backing_object->ref_count >= 1, (
1941
"backing_object %p was somehow dereferenced during collapse!",
1942
backing_object));
1943
VM_OBJECT_WUNLOCK(backing_object);
1944
counter_u64_add(object_bypasses, 1);
1945
}
1946
1947
/*
1948
* Try again with this object's new backing object.
1949
*/
1950
}
1951
}
1952
1953
/*
1954
* vm_object_page_remove:
1955
*
1956
* For the given object, either frees or invalidates each of the
1957
* specified pages. In general, a page is freed. However, if a page is
1958
* wired for any reason other than the existence of a managed, wired
1959
* mapping, then it may be invalidated but not removed from the object.
1960
* Pages are specified by the given range ["start", "end") and the option
1961
* OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range
1962
* extends from "start" to the end of the object. If the option
1963
* OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1964
* specified range are affected. If the option OBJPR_NOTMAPPED is
1965
* specified, then the pages within the specified range must have no
1966
* mappings. Otherwise, if this option is not specified, any mappings to
1967
* the specified pages are removed before the pages are freed or
1968
* invalidated.
1969
*
1970
* In general, this operation should only be performed on objects that
1971
* contain managed pages. There are, however, two exceptions. First, it
1972
* is performed on the kernel and kmem objects by vm_map_entry_delete().
1973
* Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1974
* backed pages. In both of these cases, the option OBJPR_CLEANONLY must
1975
* not be specified and the option OBJPR_NOTMAPPED must be specified.
1976
*
1977
* The object must be locked.
1978
*/
1979
void
1980
vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1981
int options)
1982
{
1983
struct pctrie_iter pages;
1984
vm_page_t p;
1985
1986
VM_OBJECT_ASSERT_WLOCKED(object);
1987
KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1988
(options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1989
("vm_object_page_remove: illegal options for object %p", object));
1990
if (object->resident_page_count == 0)
1991
return;
1992
vm_object_pip_add(object, 1);
1993
vm_page_iter_limit_init(&pages, object, end);
1994
again:
1995
KASSERT(pctrie_iter_is_reset(&pages),
1996
("%s: pctrie_iter not reset for retry", __func__));
1997
for (p = vm_radix_iter_lookup_ge(&pages, start); p != NULL;
1998
p = vm_radix_iter_step(&pages)) {
1999
/*
2000
* Skip invalid pages if asked to do so. Try to avoid acquiring
2001
* the busy lock, as some consumers rely on this to avoid
2002
* deadlocks.
2003
*
2004
* A thread may concurrently transition the page from invalid to
2005
* valid using only the busy lock, so the result of this check
2006
* is immediately stale. It is up to consumers to handle this,
2007
* for instance by ensuring that all invalid->valid transitions
2008
* happen with a mutex held, as may be possible for a
2009
* filesystem.
2010
*/
2011
if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p))
2012
continue;
2013
2014
/*
2015
* If the page is wired for any reason besides the existence
2016
* of managed, wired mappings, then it cannot be freed. For
2017
* example, fictitious pages, which represent device memory,
2018
* are inherently wired and cannot be freed. They can,
2019
* however, be invalidated if the option OBJPR_CLEANONLY is
2020
* not specified.
2021
*/
2022
if (vm_page_tryxbusy(p) == 0) {
2023
if (vm_page_busy_sleep(p, "vmopar", 0))
2024
VM_OBJECT_WLOCK(object);
2025
pctrie_iter_reset(&pages);
2026
goto again;
2027
}
2028
if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) {
2029
vm_page_xunbusy(p);
2030
continue;
2031
}
2032
if (vm_page_wired(p)) {
2033
wired:
2034
if ((options & OBJPR_NOTMAPPED) == 0 &&
2035
object->ref_count != 0)
2036
pmap_remove_all(p);
2037
if ((options & OBJPR_CLEANONLY) == 0) {
2038
vm_page_invalid(p);
2039
vm_page_undirty(p);
2040
}
2041
vm_page_xunbusy(p);
2042
continue;
2043
}
2044
KASSERT((p->flags & PG_FICTITIOUS) == 0,
2045
("vm_object_page_remove: page %p is fictitious", p));
2046
if ((options & OBJPR_CLEANONLY) != 0 &&
2047
!vm_page_none_valid(p)) {
2048
if ((options & OBJPR_NOTMAPPED) == 0 &&
2049
object->ref_count != 0 &&
2050
!vm_page_try_remove_write(p))
2051
goto wired;
2052
if (p->dirty != 0) {
2053
vm_page_xunbusy(p);
2054
continue;
2055
}
2056
}
2057
if ((options & OBJPR_NOTMAPPED) == 0 &&
2058
object->ref_count != 0 && !vm_page_try_remove_all(p))
2059
goto wired;
2060
vm_page_iter_free(&pages, p);
2061
}
2062
vm_object_pip_wakeup(object);
2063
2064
vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2065
start);
2066
}
2067
2068
/*
2069
* vm_object_page_noreuse:
2070
*
2071
* For the given object, attempt to move the specified pages to
2072
* the head of the inactive queue. This bypasses regular LRU
2073
* operation and allows the pages to be reused quickly under memory
2074
* pressure. If a page is wired for any reason, then it will not
2075
* be queued. Pages are specified by the range ["start", "end").
2076
* As a special case, if "end" is zero, then the range extends from
2077
* "start" to the end of the object.
2078
*
2079
* This operation should only be performed on objects that
2080
* contain non-fictitious, managed pages.
2081
*
2082
* The object must be locked.
2083
*/
2084
void
2085
vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2086
{
2087
struct pctrie_iter pages;
2088
vm_page_t p;
2089
2090
VM_OBJECT_ASSERT_LOCKED(object);
2091
KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2092
("vm_object_page_noreuse: illegal object %p", object));
2093
if (object->resident_page_count == 0)
2094
return;
2095
2096
vm_page_iter_limit_init(&pages, object, end);
2097
VM_RADIX_FOREACH_FROM(p, &pages, start)
2098
vm_page_deactivate_noreuse(p);
2099
}
2100
2101
/*
2102
* Populate the specified range of the object with valid pages. Returns
2103
* TRUE if the range is successfully populated and FALSE otherwise.
2104
*
2105
* Note: This function should be optimized to pass a larger array of
2106
* pages to vm_pager_get_pages() before it is applied to a non-
2107
* OBJT_DEVICE object.
2108
*
2109
* The object must be locked.
2110
*/
2111
boolean_t
2112
vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2113
{
2114
struct pctrie_iter pages;
2115
vm_page_t m;
2116
vm_pindex_t pindex;
2117
int rv;
2118
2119
vm_page_iter_init(&pages, object);
2120
VM_OBJECT_ASSERT_WLOCKED(object);
2121
for (pindex = start; pindex < end; pindex++) {
2122
rv = vm_page_grab_valid_iter(&m, object, pindex,
2123
VM_ALLOC_NORMAL, &pages);
2124
if (rv != VM_PAGER_OK)
2125
break;
2126
2127
/*
2128
* Keep "m" busy because a subsequent iteration may unlock
2129
* the object.
2130
*/
2131
}
2132
if (pindex > start) {
2133
pages.limit = pindex;
2134
VM_RADIX_FORALL_FROM(m, &pages, start)
2135
vm_page_xunbusy(m);
2136
}
2137
return (pindex == end);
2138
}
2139
2140
/*
2141
* Routine: vm_object_coalesce
2142
* Function: Coalesces two objects backing up adjoining
2143
* regions of memory into a single object.
2144
*
2145
* returns TRUE if objects were combined.
2146
*
2147
* NOTE: Only works at the moment if the second object is NULL -
2148
* if it's not, which object do we lock first?
2149
*
2150
* Parameters:
2151
* prev_object First object to coalesce
2152
* prev_offset Offset into prev_object
2153
* prev_size Size of reference to prev_object
2154
* next_size Size of reference to the second object
2155
* reserved Indicator that extension region has
2156
* swap accounted for
2157
*
2158
* Conditions:
2159
* The object must *not* be locked.
2160
*/
2161
boolean_t
2162
vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2163
vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2164
{
2165
vm_pindex_t next_pindex;
2166
2167
if (prev_object == NULL)
2168
return (TRUE);
2169
if ((prev_object->flags & OBJ_ANON) == 0)
2170
return (FALSE);
2171
2172
VM_OBJECT_WLOCK(prev_object);
2173
/*
2174
* Try to collapse the object first.
2175
*/
2176
vm_object_collapse(prev_object);
2177
2178
/*
2179
* Can't coalesce if: . more than one reference . paged out . shadows
2180
* another object . has a copy elsewhere (any of which mean that the
2181
* pages not mapped to prev_entry may be in use anyway)
2182
*/
2183
if (prev_object->backing_object != NULL) {
2184
VM_OBJECT_WUNLOCK(prev_object);
2185
return (FALSE);
2186
}
2187
2188
prev_size >>= PAGE_SHIFT;
2189
next_size >>= PAGE_SHIFT;
2190
next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2191
2192
if (prev_object->ref_count > 1 &&
2193
prev_object->size != next_pindex &&
2194
(prev_object->flags & OBJ_ONEMAPPING) == 0) {
2195
VM_OBJECT_WUNLOCK(prev_object);
2196
return (FALSE);
2197
}
2198
2199
/*
2200
* Account for the charge.
2201
*/
2202
if (prev_object->cred != NULL) {
2203
/*
2204
* If prev_object was charged, then this mapping,
2205
* although not charged now, may become writable
2206
* later. Non-NULL cred in the object would prevent
2207
* swap reservation during enabling of the write
2208
* access, so reserve swap now. Failed reservation
2209
* cause allocation of the separate object for the map
2210
* entry, and swap reservation for this entry is
2211
* managed in appropriate time.
2212
*/
2213
if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2214
prev_object->cred)) {
2215
VM_OBJECT_WUNLOCK(prev_object);
2216
return (FALSE);
2217
}
2218
prev_object->charge += ptoa(next_size);
2219
}
2220
2221
/*
2222
* Remove any pages that may still be in the object from a previous
2223
* deallocation.
2224
*/
2225
if (next_pindex < prev_object->size) {
2226
vm_object_page_remove(prev_object, next_pindex, next_pindex +
2227
next_size, 0);
2228
#if 0
2229
if (prev_object->cred != NULL) {
2230
KASSERT(prev_object->charge >=
2231
ptoa(prev_object->size - next_pindex),
2232
("object %p overcharged 1 %jx %jx", prev_object,
2233
(uintmax_t)next_pindex, (uintmax_t)next_size));
2234
prev_object->charge -= ptoa(prev_object->size -
2235
next_pindex);
2236
}
2237
#endif
2238
}
2239
2240
/*
2241
* Extend the object if necessary.
2242
*/
2243
if (next_pindex + next_size > prev_object->size)
2244
prev_object->size = next_pindex + next_size;
2245
2246
VM_OBJECT_WUNLOCK(prev_object);
2247
return (TRUE);
2248
}
2249
2250
/*
2251
* Fill in the m_dst array with up to *rbehind optional pages before m_src[0]
2252
* and up to *rahead optional pages after m_src[count - 1]. In both cases, stop
2253
* the filling-in short on encountering a cached page, an object boundary limit,
2254
* or an allocation error. Update *rbehind and *rahead to indicate the number
2255
* of pages allocated. Copy elements of m_src into array elements from
2256
* m_dst[*rbehind] to m_dst[*rbehind + count -1].
2257
*/
2258
void
2259
vm_object_prepare_buf_pages(vm_object_t object, vm_page_t *ma_dst, int count,
2260
int *rbehind, int *rahead, vm_page_t *ma_src)
2261
{
2262
struct pctrie_iter pages;
2263
vm_pindex_t pindex;
2264
vm_page_t m, mpred, msucc;
2265
2266
vm_page_iter_init(&pages, object);
2267
VM_OBJECT_ASSERT_LOCKED(object);
2268
if (*rbehind != 0) {
2269
m = ma_src[0];
2270
pindex = m->pindex;
2271
mpred = vm_radix_iter_lookup_lt(&pages, pindex);
2272
*rbehind = MIN(*rbehind,
2273
pindex - (mpred != NULL ? mpred->pindex + 1 : 0));
2274
for (int i = 0; i < *rbehind; i++) {
2275
m = vm_page_alloc_iter(object, pindex - i - 1,
2276
VM_ALLOC_NORMAL, &pages);
2277
if (m == NULL) {
2278
/* Shift the array. */
2279
for (int j = 0; j < i; j++)
2280
ma_dst[j] = ma_dst[j + *rbehind - i];
2281
*rbehind = i;
2282
*rahead = 0;
2283
break;
2284
}
2285
ma_dst[*rbehind - i - 1] = m;
2286
}
2287
}
2288
for (int i = 0; i < count; i++)
2289
ma_dst[*rbehind + i] = ma_src[i];
2290
if (*rahead != 0) {
2291
m = ma_src[count - 1];
2292
pindex = m->pindex + 1;
2293
msucc = vm_radix_iter_lookup_ge(&pages, pindex);
2294
*rahead = MIN(*rahead,
2295
(msucc != NULL ? msucc->pindex : object->size) - pindex);
2296
for (int i = 0; i < *rahead; i++) {
2297
m = vm_page_alloc_iter(object, pindex + i,
2298
VM_ALLOC_NORMAL, &pages);
2299
if (m == NULL) {
2300
*rahead = i;
2301
break;
2302
}
2303
ma_dst[*rbehind + count + i] = m;
2304
}
2305
}
2306
}
2307
2308
void
2309
vm_object_set_writeable_dirty_(vm_object_t object)
2310
{
2311
atomic_add_int(&object->generation, 1);
2312
}
2313
2314
bool
2315
vm_object_mightbedirty_(vm_object_t object)
2316
{
2317
return (object->generation != object->cleangeneration);
2318
}
2319
2320
/*
2321
* vm_object_unwire:
2322
*
2323
* For each page offset within the specified range of the given object,
2324
* find the highest-level page in the shadow chain and unwire it. A page
2325
* must exist at every page offset, and the highest-level page must be
2326
* wired.
2327
*/
2328
void
2329
vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2330
uint8_t queue)
2331
{
2332
struct pctrie_iter pages;
2333
vm_object_t tobject, t1object;
2334
vm_page_t m, tm;
2335
vm_pindex_t end_pindex, pindex, tpindex;
2336
int depth, locked_depth;
2337
2338
KASSERT((offset & PAGE_MASK) == 0,
2339
("vm_object_unwire: offset is not page aligned"));
2340
KASSERT((length & PAGE_MASK) == 0,
2341
("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2342
/* The wired count of a fictitious page never changes. */
2343
if ((object->flags & OBJ_FICTITIOUS) != 0)
2344
return;
2345
pindex = OFF_TO_IDX(offset);
2346
end_pindex = pindex + atop(length);
2347
vm_page_iter_init(&pages, object);
2348
again:
2349
locked_depth = 1;
2350
VM_OBJECT_RLOCK(object);
2351
m = vm_radix_iter_lookup_ge(&pages, pindex);
2352
while (pindex < end_pindex) {
2353
if (m == NULL || pindex < m->pindex) {
2354
/*
2355
* The first object in the shadow chain doesn't
2356
* contain a page at the current index. Therefore,
2357
* the page must exist in a backing object.
2358
*/
2359
tobject = object;
2360
tpindex = pindex;
2361
depth = 0;
2362
do {
2363
tpindex +=
2364
OFF_TO_IDX(tobject->backing_object_offset);
2365
tobject = tobject->backing_object;
2366
KASSERT(tobject != NULL,
2367
("vm_object_unwire: missing page"));
2368
if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2369
goto next_page;
2370
depth++;
2371
if (depth == locked_depth) {
2372
locked_depth++;
2373
VM_OBJECT_RLOCK(tobject);
2374
}
2375
} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2376
NULL);
2377
} else {
2378
tm = m;
2379
m = vm_radix_iter_step(&pages);
2380
}
2381
if (vm_page_trysbusy(tm) == 0) {
2382
for (tobject = object; locked_depth >= 1;
2383
locked_depth--) {
2384
t1object = tobject->backing_object;
2385
if (tm->object != tobject)
2386
VM_OBJECT_RUNLOCK(tobject);
2387
tobject = t1object;
2388
}
2389
tobject = tm->object;
2390
if (!vm_page_busy_sleep(tm, "unwbo",
2391
VM_ALLOC_IGN_SBUSY))
2392
VM_OBJECT_RUNLOCK(tobject);
2393
pctrie_iter_reset(&pages);
2394
goto again;
2395
}
2396
vm_page_unwire(tm, queue);
2397
vm_page_sunbusy(tm);
2398
next_page:
2399
pindex++;
2400
}
2401
/* Release the accumulated object locks. */
2402
for (tobject = object; locked_depth >= 1; locked_depth--) {
2403
t1object = tobject->backing_object;
2404
VM_OBJECT_RUNLOCK(tobject);
2405
tobject = t1object;
2406
}
2407
}
2408
2409
/*
2410
* Return the vnode for the given object, or NULL if none exists.
2411
* For tmpfs objects, the function may return NULL if there is
2412
* no vnode allocated at the time of the call.
2413
*/
2414
struct vnode *
2415
vm_object_vnode(vm_object_t object)
2416
{
2417
struct vnode *vp;
2418
2419
VM_OBJECT_ASSERT_LOCKED(object);
2420
vm_pager_getvp(object, &vp, NULL);
2421
return (vp);
2422
}
2423
2424
/*
2425
* Busy the vm object. This prevents new pages belonging to the object from
2426
* becoming busy. Existing pages persist as busy. Callers are responsible
2427
* for checking page state before proceeding.
2428
*/
2429
void
2430
vm_object_busy(vm_object_t obj)
2431
{
2432
2433
VM_OBJECT_ASSERT_LOCKED(obj);
2434
2435
blockcount_acquire(&obj->busy, 1);
2436
/* The fence is required to order loads of page busy. */
2437
atomic_thread_fence_acq_rel();
2438
}
2439
2440
void
2441
vm_object_unbusy(vm_object_t obj)
2442
{
2443
2444
blockcount_release(&obj->busy, 1);
2445
}
2446
2447
void
2448
vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2449
{
2450
2451
VM_OBJECT_ASSERT_UNLOCKED(obj);
2452
2453
(void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2454
}
2455
2456
/*
2457
* This function aims to determine if the object is mapped,
2458
* specifically, if it is referenced by a vm_map_entry. Because
2459
* objects occasionally acquire transient references that do not
2460
* represent a mapping, the method used here is inexact. However, it
2461
* has very low overhead and is good enough for the advisory
2462
* vm.vmtotal sysctl.
2463
*/
2464
bool
2465
vm_object_is_active(vm_object_t obj)
2466
{
2467
2468
return (obj->ref_count > atomic_load_int(&obj->shadow_count));
2469
}
2470
2471
static int
2472
vm_object_list_handler(struct sysctl_req *req, bool swap_only)
2473
{
2474
struct pctrie_iter pages;
2475
struct kinfo_vmobject *kvo;
2476
char *fullpath, *freepath;
2477
struct vnode *vp;
2478
struct vattr va;
2479
vm_object_t obj;
2480
vm_page_t m;
2481
u_long sp;
2482
int count, error;
2483
key_t key;
2484
unsigned short seq;
2485
bool want_path;
2486
2487
if (req->oldptr == NULL) {
2488
/*
2489
* If an old buffer has not been provided, generate an
2490
* estimate of the space needed for a subsequent call.
2491
*/
2492
mtx_lock(&vm_object_list_mtx);
2493
count = 0;
2494
TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2495
if (obj->type == OBJT_DEAD)
2496
continue;
2497
count++;
2498
}
2499
mtx_unlock(&vm_object_list_mtx);
2500
return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2501
count * 11 / 10));
2502
}
2503
2504
want_path = !(swap_only || jailed(curthread->td_ucred));
2505
kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO);
2506
error = 0;
2507
2508
/*
2509
* VM objects are type stable and are never removed from the
2510
* list once added. This allows us to safely read obj->object_list
2511
* after reacquiring the VM object lock.
2512
*/
2513
mtx_lock(&vm_object_list_mtx);
2514
TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2515
if (obj->type == OBJT_DEAD ||
2516
(swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0))
2517
continue;
2518
VM_OBJECT_RLOCK(obj);
2519
if (obj->type == OBJT_DEAD ||
2520
(swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) {
2521
VM_OBJECT_RUNLOCK(obj);
2522
continue;
2523
}
2524
mtx_unlock(&vm_object_list_mtx);
2525
kvo->kvo_size = ptoa(obj->size);
2526
kvo->kvo_resident = obj->resident_page_count;
2527
kvo->kvo_ref_count = obj->ref_count;
2528
kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count);
2529
kvo->kvo_memattr = obj->memattr;
2530
kvo->kvo_active = 0;
2531
kvo->kvo_inactive = 0;
2532
kvo->kvo_laundry = 0;
2533
kvo->kvo_flags = 0;
2534
if (!swap_only) {
2535
vm_page_iter_init(&pages, obj);
2536
VM_RADIX_FOREACH(m, &pages) {
2537
/*
2538
* A page may belong to the object but be
2539
* dequeued and set to PQ_NONE while the
2540
* object lock is not held. This makes the
2541
* reads of m->queue below racy, and we do not
2542
* count pages set to PQ_NONE. However, this
2543
* sysctl is only meant to give an
2544
* approximation of the system anyway.
2545
*/
2546
if (vm_page_active(m))
2547
kvo->kvo_active++;
2548
else if (vm_page_inactive(m))
2549
kvo->kvo_inactive++;
2550
else if (vm_page_in_laundry(m))
2551
kvo->kvo_laundry++;
2552
}
2553
}
2554
2555
kvo->kvo_vn_fileid = 0;
2556
kvo->kvo_vn_fsid = 0;
2557
kvo->kvo_vn_fsid_freebsd11 = 0;
2558
freepath = NULL;
2559
fullpath = "";
2560
vp = NULL;
2561
kvo->kvo_type = vm_object_kvme_type(obj, want_path ? &vp :
2562
NULL);
2563
if (vp != NULL) {
2564
vref(vp);
2565
} else if ((obj->flags & OBJ_ANON) != 0) {
2566
MPASS(kvo->kvo_type == KVME_TYPE_SWAP);
2567
kvo->kvo_me = (uintptr_t)obj;
2568
/* tmpfs objs are reported as vnodes */
2569
kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2570
sp = swap_pager_swapped_pages(obj);
2571
kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2572
}
2573
if (obj->type == OBJT_DEVICE || obj->type == OBJT_MGTDEVICE) {
2574
cdev_pager_get_path(obj, kvo->kvo_path,
2575
sizeof(kvo->kvo_path));
2576
}
2577
VM_OBJECT_RUNLOCK(obj);
2578
if ((obj->flags & OBJ_SYSVSHM) != 0) {
2579
kvo->kvo_flags |= KVMO_FLAG_SYSVSHM;
2580
shmobjinfo(obj, &key, &seq);
2581
kvo->kvo_vn_fileid = key;
2582
kvo->kvo_vn_fsid_freebsd11 = seq;
2583
}
2584
if ((obj->flags & OBJ_POSIXSHM) != 0) {
2585
kvo->kvo_flags |= KVMO_FLAG_POSIXSHM;
2586
shm_get_path(obj, kvo->kvo_path,
2587
sizeof(kvo->kvo_path));
2588
}
2589
if (vp != NULL) {
2590
vn_fullpath(vp, &fullpath, &freepath);
2591
vn_lock(vp, LK_SHARED | LK_RETRY);
2592
if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2593
kvo->kvo_vn_fileid = va.va_fileid;
2594
kvo->kvo_vn_fsid = va.va_fsid;
2595
kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2596
/* truncate */
2597
}
2598
vput(vp);
2599
strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2600
free(freepath, M_TEMP);
2601
}
2602
2603
/* Pack record size down */
2604
kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2605
+ strlen(kvo->kvo_path) + 1;
2606
kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2607
sizeof(uint64_t));
2608
error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2609
maybe_yield();
2610
mtx_lock(&vm_object_list_mtx);
2611
if (error)
2612
break;
2613
}
2614
mtx_unlock(&vm_object_list_mtx);
2615
free(kvo, M_TEMP);
2616
return (error);
2617
}
2618
2619
static int
2620
sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2621
{
2622
return (vm_object_list_handler(req, false));
2623
}
2624
2625
SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2626
CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2627
"List of VM objects");
2628
2629
static int
2630
sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)
2631
{
2632
return (vm_object_list_handler(req, true));
2633
}
2634
2635
/*
2636
* This sysctl returns list of the anonymous or swap objects. Intent
2637
* is to provide stripped optimized list useful to analyze swap use.
2638
* Since technically non-swap (default) objects participate in the
2639
* shadow chains, and are converted to swap type as needed by swap
2640
* pager, we must report them.
2641
*/
2642
SYSCTL_PROC(_vm, OID_AUTO, swap_objects,
2643
CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0,
2644
sysctl_vm_object_list_swap, "S,kinfo_vmobject",
2645
"List of swap VM objects");
2646
2647
#include "opt_ddb.h"
2648
#ifdef DDB
2649
#include <sys/kernel.h>
2650
2651
#include <sys/cons.h>
2652
2653
#include <ddb/ddb.h>
2654
2655
static int
2656
_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2657
{
2658
vm_map_t tmpm;
2659
vm_map_entry_t tmpe;
2660
vm_object_t obj;
2661
2662
if (map == 0)
2663
return 0;
2664
2665
if (entry == 0) {
2666
VM_MAP_ENTRY_FOREACH(tmpe, map) {
2667
if (_vm_object_in_map(map, object, tmpe)) {
2668
return 1;
2669
}
2670
}
2671
} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2672
tmpm = entry->object.sub_map;
2673
VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2674
if (_vm_object_in_map(tmpm, object, tmpe)) {
2675
return 1;
2676
}
2677
}
2678
} else if ((obj = entry->object.vm_object) != NULL) {
2679
for (; obj; obj = obj->backing_object)
2680
if (obj == object) {
2681
return 1;
2682
}
2683
}
2684
return 0;
2685
}
2686
2687
static int
2688
vm_object_in_map(vm_object_t object)
2689
{
2690
struct proc *p;
2691
2692
/* sx_slock(&allproc_lock); */
2693
FOREACH_PROC_IN_SYSTEM(p) {
2694
if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2695
continue;
2696
if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2697
/* sx_sunlock(&allproc_lock); */
2698
return 1;
2699
}
2700
}
2701
/* sx_sunlock(&allproc_lock); */
2702
if (_vm_object_in_map(kernel_map, object, 0))
2703
return 1;
2704
return 0;
2705
}
2706
2707
DB_SHOW_COMMAND_FLAGS(vmochk, vm_object_check, DB_CMD_MEMSAFE)
2708
{
2709
vm_object_t object;
2710
2711
/*
2712
* make sure that internal objs are in a map somewhere
2713
* and none have zero ref counts.
2714
*/
2715
TAILQ_FOREACH(object, &vm_object_list, object_list) {
2716
if ((object->flags & OBJ_ANON) != 0) {
2717
if (object->ref_count == 0) {
2718
db_printf(
2719
"vmochk: internal obj has zero ref count: %lu\n",
2720
(u_long)object->size);
2721
}
2722
if (!vm_object_in_map(object)) {
2723
db_printf(
2724
"vmochk: internal obj is not in a map: "
2725
"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2726
object->ref_count, (u_long)object->size,
2727
(u_long)object->size,
2728
(void *)object->backing_object);
2729
}
2730
}
2731
if (db_pager_quit)
2732
return;
2733
}
2734
}
2735
2736
/*
2737
* vm_object_print: [ debug ]
2738
*/
2739
DB_SHOW_COMMAND(object, vm_object_print_static)
2740
{
2741
struct pctrie_iter pages;
2742
/* XXX convert args. */
2743
vm_object_t object = (vm_object_t)addr;
2744
boolean_t full = have_addr;
2745
2746
vm_page_t p;
2747
2748
/* XXX count is an (unused) arg. Avoid shadowing it. */
2749
#define count was_count
2750
2751
int count;
2752
2753
if (object == NULL)
2754
return;
2755
2756
db_iprintf("Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x",
2757
object, (int)object->type, (uintmax_t)object->size,
2758
object->resident_page_count, object->ref_count, object->flags);
2759
db_iprintf(" ruid %d charge %jx\n",
2760
object->cred ? object->cred->cr_ruid : -1,
2761
(uintmax_t)object->charge);
2762
db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2763
atomic_load_int(&object->shadow_count),
2764
object->backing_object ? object->backing_object->ref_count : 0,
2765
object->backing_object, (uintmax_t)object->backing_object_offset);
2766
2767
if (!full)
2768
return;
2769
2770
db_indent += 2;
2771
count = 0;
2772
vm_page_iter_init(&pages, object);
2773
VM_RADIX_FOREACH(p, &pages) {
2774
if (count == 0)
2775
db_iprintf("memory:=");
2776
else if (count == 6) {
2777
db_printf("\n");
2778
db_iprintf(" ...");
2779
count = 0;
2780
} else
2781
db_printf(",");
2782
count++;
2783
2784
db_printf("(off=0x%jx,page=0x%jx)",
2785
(uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2786
2787
if (db_pager_quit)
2788
break;
2789
}
2790
if (count != 0)
2791
db_printf("\n");
2792
db_indent -= 2;
2793
}
2794
2795
/* XXX. */
2796
#undef count
2797
2798
/* XXX need this non-static entry for calling from vm_map_print. */
2799
void
2800
vm_object_print(
2801
/* db_expr_t */ long addr,
2802
boolean_t have_addr,
2803
/* db_expr_t */ long count,
2804
char *modif)
2805
{
2806
vm_object_print_static(addr, have_addr, count, modif);
2807
}
2808
2809
DB_SHOW_COMMAND_FLAGS(vmopag, vm_object_print_pages, DB_CMD_MEMSAFE)
2810
{
2811
struct pctrie_iter pages;
2812
vm_object_t object;
2813
vm_page_t m, start_m;
2814
int rcount;
2815
2816
TAILQ_FOREACH(object, &vm_object_list, object_list) {
2817
db_printf("new object: %p\n", (void *)object);
2818
if (db_pager_quit)
2819
return;
2820
start_m = NULL;
2821
vm_page_iter_init(&pages, object);
2822
VM_RADIX_FOREACH(m, &pages) {
2823
if (start_m == NULL) {
2824
start_m = m;
2825
rcount = 0;
2826
} else if (start_m->pindex + rcount != m->pindex ||
2827
VM_PAGE_TO_PHYS(start_m) + ptoa(rcount) !=
2828
VM_PAGE_TO_PHYS(m)) {
2829
db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2830
(long)start_m->pindex, rcount,
2831
(long)VM_PAGE_TO_PHYS(start_m));
2832
if (db_pager_quit)
2833
return;
2834
start_m = m;
2835
rcount = 0;
2836
}
2837
rcount++;
2838
}
2839
if (start_m != NULL) {
2840
db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2841
(long)start_m->pindex, rcount,
2842
(long)VM_PAGE_TO_PHYS(start_m));
2843
if (db_pager_quit)
2844
return;
2845
}
2846
}
2847
}
2848
#endif /* DDB */
2849
2850