Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/vm/vm_page.h
39475 views
1
/*-
2
* SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3
*
4
* Copyright (c) 1991, 1993
5
* The Regents of the University of California. All rights reserved.
6
*
7
* This code is derived from software contributed to Berkeley by
8
* The Mach Operating System project at Carnegie-Mellon University.
9
*
10
* Redistribution and use in source and binary forms, with or without
11
* modification, are permitted provided that the following conditions
12
* are met:
13
* 1. Redistributions of source code must retain the above copyright
14
* notice, this list of conditions and the following disclaimer.
15
* 2. Redistributions in binary form must reproduce the above copyright
16
* notice, this list of conditions and the following disclaimer in the
17
* documentation and/or other materials provided with the distribution.
18
* 3. Neither the name of the University nor the names of its contributors
19
* may be used to endorse or promote products derived from this software
20
* without specific prior written permission.
21
*
22
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32
* SUCH DAMAGE.
33
*
34
*
35
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
36
* All rights reserved.
37
*
38
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
39
*
40
* Permission to use, copy, modify and distribute this software and
41
* its documentation is hereby granted, provided that both the copyright
42
* notice and this permission notice appear in all copies of the
43
* software, derivative works or modified versions, and any portions
44
* thereof, and that both notices appear in supporting documentation.
45
*
46
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49
*
50
* Carnegie Mellon requests users of this software to return to
51
*
52
* Software Distribution Coordinator or [email protected]
53
* School of Computer Science
54
* Carnegie Mellon University
55
* Pittsburgh PA 15213-3890
56
*
57
* any improvements or extensions that they make and grant Carnegie the
58
* rights to redistribute these changes.
59
*/
60
61
/*
62
* Resident memory system definitions.
63
*/
64
65
#ifndef _VM_PAGE_
66
#define _VM_PAGE_
67
68
#include <vm/pmap.h>
69
#include <vm/_vm_phys.h>
70
71
/*
72
* Management of resident (logical) pages.
73
*
74
* A small structure is kept for each resident
75
* page, indexed by page number. Each structure
76
* is an element of several collections:
77
*
78
* A radix tree used to quickly
79
* perform object/offset lookups
80
*
81
* An ordered list of pages due for pageout.
82
*
83
* In addition, the structure contains the object
84
* and offset to which this page belongs (for pageout),
85
* and sundry status bits.
86
*
87
* In general, operations on this structure's mutable fields are
88
* synchronized using either one of or a combination of locks. If a
89
* field is annotated with two of these locks then holding either is
90
* sufficient for read access but both are required for write access.
91
* The queue lock for a page depends on the value of its queue field and is
92
* described in detail below.
93
*
94
* The following annotations are possible:
95
* (A) the field must be accessed using atomic(9) and may require
96
* additional synchronization.
97
* (B) the page busy lock.
98
* (C) the field is immutable.
99
* (F) the per-domain lock for the free queues.
100
* (M) Machine dependent, defined by pmap layer.
101
* (O) the object that the page belongs to.
102
* (Q) the page's queue lock.
103
*
104
* The busy lock is an embedded reader-writer lock that protects the
105
* page's contents and identity (i.e., its <object, pindex> tuple) as
106
* well as certain valid/dirty modifications. To avoid bloating the
107
* the page structure, the busy lock lacks some of the features available
108
* the kernel's general-purpose synchronization primitives. As a result,
109
* busy lock ordering rules are not verified, lock recursion is not
110
* detected, and an attempt to xbusy a busy page or sbusy an xbusy page
111
* results will trigger a panic rather than causing the thread to block.
112
* vm_page_sleep_if_busy() can be used to sleep until the page's busy
113
* state changes, after which the caller must re-lookup the page and
114
* re-evaluate its state. vm_page_busy_acquire() will block until
115
* the lock is acquired.
116
*
117
* The valid field is protected by the page busy lock (B) and object
118
* lock (O). Transitions from invalid to valid are generally done
119
* via I/O or zero filling and do not require the object lock.
120
* These must be protected with the busy lock to prevent page-in or
121
* creation races. Page invalidation generally happens as a result
122
* of truncate or msync. When invalidated, pages must not be present
123
* in pmap and must hold the object lock to prevent concurrent
124
* speculative read-only mappings that do not require busy. I/O
125
* routines may check for validity without a lock if they are prepared
126
* to handle invalidation races with higher level locks (vnode) or are
127
* unconcerned with races so long as they hold a reference to prevent
128
* recycling. When a valid bit is set while holding a shared busy
129
* lock (A) atomic operations are used to protect against concurrent
130
* modification.
131
*
132
* In contrast, the synchronization of accesses to the page's
133
* dirty field is a mix of machine dependent (M) and busy (B). In
134
* the machine-independent layer, the page busy must be held to
135
* operate on the field. However, the pmap layer is permitted to
136
* set all bits within the field without holding that lock. If the
137
* underlying architecture does not support atomic read-modify-write
138
* operations on the field's type, then the machine-independent
139
* layer uses a 32-bit atomic on the aligned 32-bit word that
140
* contains the dirty field. In the machine-independent layer,
141
* the implementation of read-modify-write operations on the
142
* field is encapsulated in vm_page_clear_dirty_mask(). An
143
* exclusive busy lock combined with pmap_remove_{write/all}() is the
144
* only way to ensure a page can not become dirty. I/O generally
145
* removes the page from pmap to ensure exclusive access and atomic
146
* writes.
147
*
148
* The ref_count field tracks references to the page. References that
149
* prevent the page from being reclaimable are called wirings and are
150
* counted in the low bits of ref_count. The containing object's
151
* reference, if one exists, is counted using the VPRC_OBJREF bit in the
152
* ref_count field. Additionally, the VPRC_BLOCKED bit is used to
153
* atomically check for wirings and prevent new wirings via
154
* pmap_extract_and_hold(). When a page belongs to an object, it may be
155
* wired only when the object is locked, or the page is busy, or by
156
* pmap_extract_and_hold(). As a result, if the object is locked and the
157
* page is not busy (or is exclusively busied by the current thread), and
158
* the page is unmapped, its wire count will not increase. The ref_count
159
* field is updated using atomic operations in most cases, except when it
160
* is known that no other references to the page exist, such as in the page
161
* allocator. A page may be present in the page queues, or even actively
162
* scanned by the page daemon, without an explicitly counted referenced.
163
* The page daemon must therefore handle the possibility of a concurrent
164
* free of the page.
165
*
166
* The queue state of a page consists of the queue and act_count fields of
167
* its atomically updated state, and the subset of atomic flags specified
168
* by PGA_QUEUE_STATE_MASK. The queue field contains the page's page queue
169
* index, or PQ_NONE if it does not belong to a page queue. To modify the
170
* queue field, the page queue lock corresponding to the old value must be
171
* held, unless that value is PQ_NONE, in which case the queue index must
172
* be updated using an atomic RMW operation. There is one exception to
173
* this rule: the page daemon may transition the queue field from
174
* PQ_INACTIVE to PQ_NONE immediately prior to freeing the page during an
175
* inactive queue scan. At that point the page is already dequeued and no
176
* other references to that vm_page structure can exist. The PGA_ENQUEUED
177
* flag, when set, indicates that the page structure is physically inserted
178
* into the queue corresponding to the page's queue index, and may only be
179
* set or cleared with the corresponding page queue lock held.
180
*
181
* To avoid contention on page queue locks, page queue operations (enqueue,
182
* dequeue, requeue) are batched using fixed-size per-CPU queues. A
183
* deferred operation is requested by setting one of the flags in
184
* PGA_QUEUE_OP_MASK and inserting an entry into a batch queue. When a
185
* queue is full, an attempt to insert a new entry will lock the page
186
* queues and trigger processing of the pending entries. The
187
* type-stability of vm_page structures is crucial to this scheme since the
188
* processing of entries in a given batch queue may be deferred
189
* indefinitely. In particular, a page may be freed with pending batch
190
* queue entries. The page queue operation flags must be set using atomic
191
* RWM operations.
192
*/
193
194
#if PAGE_SIZE == 4096
195
#define VM_PAGE_BITS_ALL 0xffu
196
typedef uint8_t vm_page_bits_t;
197
#elif PAGE_SIZE == 8192
198
#define VM_PAGE_BITS_ALL 0xffffu
199
typedef uint16_t vm_page_bits_t;
200
#elif PAGE_SIZE == 16384
201
#define VM_PAGE_BITS_ALL 0xffffffffu
202
typedef uint32_t vm_page_bits_t;
203
#elif PAGE_SIZE == 32768
204
#define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
205
typedef uint64_t vm_page_bits_t;
206
#endif
207
208
typedef union vm_page_astate {
209
struct {
210
uint16_t flags;
211
uint8_t queue;
212
uint8_t act_count;
213
};
214
uint32_t _bits;
215
} vm_page_astate_t;
216
217
struct vm_page {
218
union {
219
TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */
220
struct {
221
SLIST_ENTRY(vm_page) ss; /* private slists */
222
} s;
223
struct {
224
u_long p;
225
u_long v;
226
} memguard;
227
struct {
228
void *slab;
229
void *zone;
230
} uma;
231
} plinks;
232
vm_object_t object; /* which object am I in (O) */
233
vm_pindex_t pindex; /* offset into object (O,P) */
234
vm_paddr_t phys_addr; /* physical address of page (C) */
235
struct md_page md; /* machine dependent stuff */
236
u_int ref_count; /* page references (A) */
237
u_int busy_lock; /* busy owners lock (A) */
238
union vm_page_astate a; /* state accessed atomically (A) */
239
uint8_t order; /* index of the buddy queue (F) */
240
uint8_t pool; /* vm_phys freepool index (F) */
241
uint8_t flags; /* page PG_* flags (P) */
242
uint8_t oflags; /* page VPO_* flags (O) */
243
int8_t psind; /* pagesizes[] index (O) */
244
int8_t segind; /* vm_phys segment index (C) */
245
/* NOTE that these must support one bit per DEV_BSIZE in a page */
246
/* so, on normal X86 kernels, they must be at least 8 bits wide */
247
vm_page_bits_t valid; /* valid DEV_BSIZE chunk map (O,B) */
248
vm_page_bits_t dirty; /* dirty DEV_BSIZE chunk map (M,B) */
249
};
250
251
/*
252
* Special bits used in the ref_count field.
253
*
254
* ref_count is normally used to count wirings that prevent the page from being
255
* reclaimed, but also supports several special types of references that do not
256
* prevent reclamation. Accesses to the ref_count field must be atomic unless
257
* the page is unallocated.
258
*
259
* VPRC_OBJREF is the reference held by the containing object. It can set or
260
* cleared only when the corresponding object's write lock is held.
261
*
262
* VPRC_BLOCKED is used to atomically block wirings via pmap lookups while
263
* attempting to tear down all mappings of a given page. The page busy lock and
264
* object write lock must both be held in order to set or clear this bit.
265
*/
266
#define VPRC_BLOCKED 0x40000000u /* mappings are being removed */
267
#define VPRC_OBJREF 0x80000000u /* object reference, cleared with (O) */
268
#define VPRC_WIRE_COUNT(c) ((c) & ~(VPRC_BLOCKED | VPRC_OBJREF))
269
#define VPRC_WIRE_COUNT_MAX (~(VPRC_BLOCKED | VPRC_OBJREF))
270
271
/*
272
* Page flags stored in oflags:
273
*
274
* Access to these page flags is synchronized by the lock on the object
275
* containing the page (O).
276
*
277
* Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
278
* indicates that the page is not under PV management but
279
* otherwise should be treated as a normal page. Pages not
280
* under PV management cannot be paged out via the
281
* object/vm_page_t because there is no knowledge of their pte
282
* mappings, and such pages are also not on any PQ queue.
283
*
284
*/
285
#define VPO_KMEM_EXEC 0x01 /* kmem mapping allows execution */
286
#define VPO_SWAPSLEEP 0x02 /* waiting for swap to finish */
287
#define VPO_UNMANAGED 0x04 /* no PV management for page */
288
#define VPO_SWAPINPROG 0x08 /* swap I/O in progress on page */
289
290
/*
291
* Busy page implementation details.
292
* The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation,
293
* even if the support for owner identity is removed because of size
294
* constraints. Checks on lock recursion are then not possible, while the
295
* lock assertions effectiveness is someway reduced.
296
*/
297
#define VPB_BIT_SHARED 0x01
298
#define VPB_BIT_EXCLUSIVE 0x02
299
#define VPB_BIT_WAITERS 0x04
300
#define VPB_BIT_FLAGMASK \
301
(VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS)
302
303
#define VPB_SHARERS_SHIFT 3
304
#define VPB_SHARERS(x) \
305
(((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT)
306
#define VPB_SHARERS_WORD(x) ((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED)
307
#define VPB_ONE_SHARER (1 << VPB_SHARERS_SHIFT)
308
309
#define VPB_SINGLE_EXCLUSIVE VPB_BIT_EXCLUSIVE
310
#ifdef INVARIANTS
311
#define VPB_CURTHREAD_EXCLUSIVE \
312
(VPB_BIT_EXCLUSIVE | ((u_int)(uintptr_t)curthread & ~VPB_BIT_FLAGMASK))
313
#else
314
#define VPB_CURTHREAD_EXCLUSIVE VPB_SINGLE_EXCLUSIVE
315
#endif
316
317
#define VPB_UNBUSIED VPB_SHARERS_WORD(0)
318
319
/* Freed lock blocks both shared and exclusive. */
320
#define VPB_FREED (0xffffffff - VPB_BIT_SHARED)
321
322
#define PQ_NONE 255
323
#define PQ_INACTIVE 0
324
#define PQ_ACTIVE 1
325
#define PQ_LAUNDRY 2
326
#define PQ_UNSWAPPABLE 3
327
#define PQ_COUNT 4
328
329
#ifndef VM_PAGE_HAVE_PGLIST
330
TAILQ_HEAD(pglist, vm_page);
331
#define VM_PAGE_HAVE_PGLIST
332
#endif
333
SLIST_HEAD(spglist, vm_page);
334
335
#ifdef _KERNEL
336
extern vm_page_t bogus_page;
337
#endif /* _KERNEL */
338
339
/*
340
* The vm_page's aflags are updated using atomic operations. To set or clear
341
* these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear()
342
* must be used. Neither these flags nor these functions are part of the KBI.
343
*
344
* PGA_REFERENCED may be cleared only if the page is locked. It is set by
345
* both the MI and MD VM layers. However, kernel loadable modules should not
346
* directly set this flag. They should call vm_page_reference() instead.
347
*
348
* PGA_WRITEABLE is set exclusively on managed pages by pmap_enter().
349
* When it does so, the object must be locked, or the page must be
350
* exclusive busied. The MI VM layer must never access this flag
351
* directly. Instead, it should call pmap_page_is_write_mapped().
352
*
353
* PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has
354
* at least one executable mapping. It is not consumed by the MI VM layer.
355
*
356
* PGA_NOSYNC must be set and cleared with the page busy lock held.
357
*
358
* PGA_ENQUEUED is set and cleared when a page is inserted into or removed
359
* from a page queue, respectively. It determines whether the plinks.q field
360
* of the page is valid. To set or clear this flag, page's "queue" field must
361
* be a valid queue index, and the corresponding page queue lock must be held.
362
*
363
* PGA_DEQUEUE is set when the page is scheduled to be dequeued from a page
364
* queue, and cleared when the dequeue request is processed. A page may
365
* have PGA_DEQUEUE set and PGA_ENQUEUED cleared, for instance if a dequeue
366
* is requested after the page is scheduled to be enqueued but before it is
367
* actually inserted into the page queue.
368
*
369
* PGA_REQUEUE is set when the page is scheduled to be enqueued or requeued
370
* in its page queue.
371
*
372
* PGA_REQUEUE_HEAD is a special flag for enqueuing pages near the head of
373
* the inactive queue, thus bypassing LRU.
374
*
375
* The PGA_DEQUEUE, PGA_REQUEUE and PGA_REQUEUE_HEAD flags must be set using an
376
* atomic RMW operation to ensure that the "queue" field is a valid queue index,
377
* and the corresponding page queue lock must be held when clearing any of the
378
* flags.
379
*
380
* PGA_SWAP_FREE is used to defer freeing swap space to the pageout daemon
381
* when the context that dirties the page does not have the object write lock
382
* held.
383
*/
384
#define PGA_WRITEABLE 0x0001 /* page may be mapped writeable */
385
#define PGA_REFERENCED 0x0002 /* page has been referenced */
386
#define PGA_EXECUTABLE 0x0004 /* page may be mapped executable */
387
#define PGA_ENQUEUED 0x0008 /* page is enqueued in a page queue */
388
#define PGA_DEQUEUE 0x0010 /* page is due to be dequeued */
389
#define PGA_REQUEUE 0x0020 /* page is due to be requeued */
390
#define PGA_REQUEUE_HEAD 0x0040 /* page requeue should bypass LRU */
391
#define PGA_NOSYNC 0x0080 /* do not collect for syncer */
392
#define PGA_SWAP_FREE 0x0100 /* page with swap space was dirtied */
393
#define PGA_SWAP_SPACE 0x0200 /* page has allocated swap space */
394
395
#define PGA_QUEUE_OP_MASK (PGA_DEQUEUE | PGA_REQUEUE | PGA_REQUEUE_HEAD)
396
#define PGA_QUEUE_STATE_MASK (PGA_ENQUEUED | PGA_QUEUE_OP_MASK)
397
398
/*
399
* Page flags. Updates to these flags are not synchronized, and thus they must
400
* be set during page allocation or free to avoid races.
401
*
402
* The PG_PCPU_CACHE flag is set at allocation time if the page was
403
* allocated from a per-CPU cache. It is cleared the next time that the
404
* page is allocated from the physical memory allocator.
405
*/
406
#define PG_PCPU_CACHE 0x01 /* was allocated from per-CPU caches */
407
#define PG_FICTITIOUS 0x02 /* physical page doesn't exist */
408
#define PG_ZERO 0x04 /* page is zeroed */
409
#define PG_MARKER 0x08 /* special queue marker page */
410
#define PG_NODUMP 0x10 /* don't include this page in a dump */
411
#define PG_NOFREE 0x20 /* page should never be freed. */
412
413
/*
414
* Misc constants.
415
*/
416
#define ACT_DECLINE 1
417
#define ACT_ADVANCE 3
418
#define ACT_INIT 5
419
#define ACT_MAX 64
420
421
#ifdef _KERNEL
422
423
#include <sys/kassert.h>
424
#include <machine/atomic.h>
425
struct pctrie_iter;
426
427
/*
428
* Each pageable resident page falls into one of five lists:
429
*
430
* free
431
* Available for allocation now.
432
*
433
* inactive
434
* Low activity, candidates for reclamation.
435
* This list is approximately LRU ordered.
436
*
437
* laundry
438
* This is the list of pages that should be
439
* paged out next.
440
*
441
* unswappable
442
* Dirty anonymous pages that cannot be paged
443
* out because no swap device is configured.
444
*
445
* active
446
* Pages that are "active", i.e., they have been
447
* recently referenced.
448
*
449
*/
450
451
extern vm_page_t vm_page_array; /* First resident page in table */
452
extern long vm_page_array_size; /* number of vm_page_t's */
453
extern long first_page; /* first physical page number */
454
455
#define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr)
456
457
/*
458
* PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory
459
* page to which the given physical address belongs. The correct vm_page_t
460
* object is returned for addresses that are not page-aligned.
461
*/
462
vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
463
464
/*
465
* vm_page allocation arguments for the functions vm_page_alloc(),
466
* vm_page_alloc_contig(), vm_page_alloc_noobj(), vm_page_grab(), and
467
* vm_page_grab_pages(). Each function supports only a subset of the flags.
468
* See the flags legend.
469
*
470
* The meaning of VM_ALLOC_ZERO varies: vm_page_alloc_noobj(), vm_page_grab(),
471
* and vm_page_grab_pages() guarantee that the returned pages are zeroed; in
472
* contrast vm_page_alloc() and vm_page_alloc_contig() do not, leaving it to
473
* the caller to test the page's flags for PG_ZERO.
474
*
475
* Bits 0 - 1 define class.
476
* Bits 2 - 15 dedicated for flags.
477
* Legend:
478
* (a) - vm_page_alloc() supports the flag.
479
* (c) - vm_page_alloc_contig() supports the flag.
480
* (g) - vm_page_grab() supports the flag.
481
* (n) - vm_page_alloc_noobj() supports the flag.
482
* (p) - vm_page_grab_pages() supports the flag.
483
* Bits above 15 define the count of additional pages that the caller
484
* intends to allocate.
485
*/
486
#define VM_ALLOC_NORMAL 0
487
#define VM_ALLOC_INTERRUPT 1
488
#define VM_ALLOC_SYSTEM 2
489
#define VM_ALLOC_CLASS_MASK 3
490
#define VM_ALLOC_WAITOK 0x0008 /* (gnp) Sleep and retry */
491
#define VM_ALLOC_WAITFAIL 0x0010 /* (acgnp) Sleep and return error */
492
#define VM_ALLOC_WIRED 0x0020 /* (acgnp) Allocate a wired page */
493
#define VM_ALLOC_ZERO 0x0040 /* (acgnp) Allocate a zeroed page */
494
#define VM_ALLOC_NORECLAIM 0x0080 /* (c) Do not reclaim after failure */
495
#define VM_ALLOC_NOFREE 0x0100 /* (agnp) Page will never be freed */
496
#define VM_ALLOC_NOBUSY 0x0200 /* (acgp) Do not excl busy the page */
497
#define VM_ALLOC_NOCREAT 0x0400 /* (gp) Do not allocate a page */
498
#define VM_ALLOC_AVAIL1 0x0800
499
#define VM_ALLOC_IGN_SBUSY 0x1000 /* (gp) Ignore shared busy state */
500
#define VM_ALLOC_NODUMP 0x2000 /* (acgnp) Do not include in dump */
501
#define VM_ALLOC_SBUSY 0x4000 /* (acgp) Shared busy the page */
502
#define VM_ALLOC_NOWAIT 0x8000 /* (acgnp) Do not sleep */
503
#define VM_ALLOC_COUNT_MAX 0xffff
504
#define VM_ALLOC_COUNT_SHIFT 16
505
#define VM_ALLOC_COUNT_MASK (VM_ALLOC_COUNT(VM_ALLOC_COUNT_MAX))
506
#define VM_ALLOC_COUNT(count) ({ /* (acgn) Additional pages */ \
507
KASSERT((count) <= VM_ALLOC_COUNT_MAX, \
508
("%s: invalid VM_ALLOC_COUNT value", __func__)); \
509
(count) << VM_ALLOC_COUNT_SHIFT; \
510
})
511
512
#ifdef M_NOWAIT
513
static inline int
514
malloc2vm_flags(int malloc_flags)
515
{
516
int pflags;
517
518
KASSERT((malloc_flags & M_USE_RESERVE) == 0 ||
519
(malloc_flags & M_NOWAIT) != 0,
520
("M_USE_RESERVE requires M_NOWAIT"));
521
pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT :
522
VM_ALLOC_SYSTEM;
523
if ((malloc_flags & M_ZERO) != 0)
524
pflags |= VM_ALLOC_ZERO;
525
if ((malloc_flags & M_NODUMP) != 0)
526
pflags |= VM_ALLOC_NODUMP;
527
if ((malloc_flags & M_NOWAIT))
528
pflags |= VM_ALLOC_NOWAIT;
529
if ((malloc_flags & M_WAITOK))
530
pflags |= VM_ALLOC_WAITOK;
531
if ((malloc_flags & M_NORECLAIM))
532
pflags |= VM_ALLOC_NORECLAIM;
533
if ((malloc_flags & M_NEVERFREED))
534
pflags |= VM_ALLOC_NOFREE;
535
return (pflags);
536
}
537
#endif
538
539
/*
540
* Predicates supported by vm_page_ps_test():
541
*
542
* PS_ALL_DIRTY is true only if the entire (super)page is dirty.
543
* However, it can be spuriously false when the (super)page has become
544
* dirty in the pmap but that information has not been propagated to the
545
* machine-independent layer.
546
*/
547
#define PS_ALL_DIRTY 0x1
548
#define PS_ALL_VALID 0x2
549
#define PS_NONE_BUSY 0x4
550
551
void vm_page_activate (vm_page_t);
552
void vm_page_advise(vm_page_t m, int advice);
553
vm_page_t vm_page_alloc(vm_object_t, vm_pindex_t, int);
554
vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
555
u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
556
vm_paddr_t boundary, vm_memattr_t memattr);
557
vm_page_t vm_page_alloc_contig_domain(vm_object_t object,
558
vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low,
559
vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
560
vm_memattr_t memattr);
561
vm_page_t vm_page_alloc_domain_iter(vm_object_t object, vm_pindex_t pindex,
562
int domain, int req, struct pctrie_iter *pages);
563
vm_page_t vm_page_alloc_iter(vm_object_t object, vm_pindex_t pindex, int req,
564
struct pctrie_iter *pages);
565
vm_page_t vm_page_alloc_noobj(int);
566
vm_page_t vm_page_alloc_noobj_domain(int, int);
567
vm_page_t vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
568
vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
569
vm_memattr_t memattr);
570
vm_page_t vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
571
vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
572
vm_memattr_t memattr);
573
void vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set);
574
bool vm_page_blacklist_add(vm_paddr_t pa, bool verbose);
575
bool vm_page_busy_acquire(vm_page_t m, int allocflags);
576
void vm_page_busy_downgrade(vm_page_t m);
577
int vm_page_busy_tryupgrade(vm_page_t m);
578
bool vm_page_busy_sleep(vm_page_t m, const char *msg, int allocflags);
579
void vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m,
580
vm_pindex_t pindex, const char *wmesg, int allocflags);
581
void vm_page_deactivate(vm_page_t m);
582
void vm_page_deactivate_noreuse(vm_page_t m);
583
void vm_page_dequeue(vm_page_t m);
584
void vm_page_dequeue_deferred(vm_page_t m);
585
void vm_page_free(vm_page_t m);
586
void vm_page_free_invalid(vm_page_t m);
587
int vm_page_free_pages_toq(struct spglist *free, bool update_wire_count);
588
void vm_page_free_zero(vm_page_t m);
589
vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
590
int vm_page_grab_zero_partial(vm_object_t object, vm_pindex_t pindex, int base,
591
int end);
592
vm_page_t vm_page_grab(vm_object_t, vm_pindex_t, int);
593
vm_page_t vm_page_grab_iter(vm_object_t object, vm_pindex_t pindex,
594
int allocflags, struct pctrie_iter *pages);
595
vm_page_t vm_page_grab_unlocked(vm_object_t, vm_pindex_t, int);
596
int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
597
vm_page_t *ma, int count);
598
int vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
599
int allocflags, vm_page_t *ma, int count);
600
int vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
601
int allocflags);
602
int vm_page_grab_valid_iter(vm_page_t *mp, vm_object_t object,
603
vm_pindex_t pindex, int allocflags, struct pctrie_iter *pages);
604
int vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
605
vm_pindex_t pindex, int allocflags);
606
void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
607
void vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags);
608
void vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool);
609
int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
610
void vm_page_invalid(vm_page_t m);
611
void vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m);
612
void vm_page_iter_init(struct pctrie_iter *, vm_object_t);
613
int vm_page_iter_insert(vm_page_t m, vm_object_t, vm_pindex_t,
614
struct pctrie_iter *);
615
void vm_page_iter_limit_init(struct pctrie_iter *, vm_object_t, vm_pindex_t);
616
bool vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m);
617
bool vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m,
618
vm_object_t new_object, vm_pindex_t new_pindex);
619
void vm_page_launder(vm_page_t m);
620
vm_page_t vm_page_lookup(vm_object_t, vm_pindex_t);
621
vm_page_t vm_page_lookup_unlocked(vm_object_t, vm_pindex_t);
622
void vm_page_pqbatch_drain(void);
623
void vm_page_pqbatch_submit(vm_page_t m, uint8_t queue);
624
bool vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old,
625
vm_page_astate_t new);
626
bool vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m);
627
void vm_page_putfake(vm_page_t m);
628
void vm_page_readahead_finish(vm_page_t m);
629
int vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low,
630
vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
631
int vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
632
vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
633
int vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
634
vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
635
int desired_runs);
636
void vm_page_reference(vm_page_t m);
637
#define VPR_TRYFREE 0x01
638
#define VPR_NOREUSE 0x02
639
void vm_page_release(vm_page_t m, int flags);
640
void vm_page_release_locked(vm_page_t m, int flags);
641
vm_page_t vm_page_relookup(vm_object_t, vm_pindex_t);
642
bool vm_page_remove(vm_page_t);
643
bool vm_page_remove_xbusy(vm_page_t);
644
void vm_page_replace(vm_page_t mnew, vm_object_t object,
645
vm_pindex_t pindex, vm_page_t mold);
646
int vm_page_sbusied(vm_page_t m);
647
vm_page_bits_t vm_page_set_dirty(vm_page_t m);
648
void vm_page_set_valid_range(vm_page_t m, int base, int size);
649
vm_offset_t vm_page_startup(vm_offset_t vaddr);
650
void vm_page_sunbusy(vm_page_t m);
651
bool vm_page_try_remove_all(vm_page_t m);
652
bool vm_page_try_remove_write(vm_page_t m);
653
int vm_page_trysbusy(vm_page_t m);
654
int vm_page_tryxbusy(vm_page_t m);
655
void vm_page_unhold_pages(vm_page_t *ma, int count);
656
void vm_page_unswappable(vm_page_t m);
657
void vm_page_unwire(vm_page_t m, uint8_t queue);
658
bool vm_page_unwire_noq(vm_page_t m);
659
void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
660
void vm_page_wire(vm_page_t);
661
bool vm_page_wire_mapped(vm_page_t m);
662
void vm_page_xunbusy_hard(vm_page_t m);
663
void vm_page_xunbusy_hard_unchecked(vm_page_t m);
664
void vm_page_set_validclean (vm_page_t, int, int);
665
void vm_page_clear_dirty(vm_page_t, int, int);
666
void vm_page_set_invalid(vm_page_t, int, int);
667
void vm_page_valid(vm_page_t m);
668
int vm_page_is_valid(vm_page_t, int, int);
669
void vm_page_test_dirty(vm_page_t);
670
vm_page_bits_t vm_page_bits(int base, int size);
671
void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
672
673
void vm_page_dirty_KBI(vm_page_t m);
674
675
#define vm_page_busy_fetch(m) atomic_load_int(&(m)->busy_lock)
676
677
#define vm_page_assert_busied(m) \
678
KASSERT(vm_page_busied(m), \
679
("vm_page_assert_busied: page %p not busy @ %s:%d", \
680
(m), __FILE__, __LINE__))
681
682
#define vm_page_assert_sbusied(m) \
683
KASSERT(vm_page_sbusied(m), \
684
("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \
685
(m), __FILE__, __LINE__))
686
687
#define vm_page_assert_unbusied(m) \
688
KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) != \
689
VPB_CURTHREAD_EXCLUSIVE, \
690
("vm_page_assert_unbusied: page %p busy_lock %#x owned" \
691
" by me (%p) @ %s:%d", \
692
(m), (m)->busy_lock, curthread, __FILE__, __LINE__)); \
693
694
#define vm_page_assert_xbusied_unchecked(m) do { \
695
KASSERT(vm_page_xbusied(m), \
696
("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \
697
(m), __FILE__, __LINE__)); \
698
} while (0)
699
#define vm_page_assert_xbusied(m) do { \
700
vm_page_assert_xbusied_unchecked(m); \
701
KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) == \
702
VPB_CURTHREAD_EXCLUSIVE, \
703
("vm_page_assert_xbusied: page %p busy_lock %#x not owned" \
704
" by me (%p) @ %s:%d", \
705
(m), (m)->busy_lock, curthread, __FILE__, __LINE__)); \
706
} while (0)
707
708
#define vm_page_busied(m) \
709
(vm_page_busy_fetch(m) != VPB_UNBUSIED)
710
711
#define vm_page_xbusied(m) \
712
((vm_page_busy_fetch(m) & VPB_SINGLE_EXCLUSIVE) != 0)
713
714
#define vm_page_busy_freed(m) \
715
(vm_page_busy_fetch(m) == VPB_FREED)
716
717
/* Note: page m's lock must not be owned by the caller. */
718
#define vm_page_xunbusy(m) do { \
719
if (!atomic_cmpset_rel_int(&(m)->busy_lock, \
720
VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED)) \
721
vm_page_xunbusy_hard(m); \
722
} while (0)
723
#define vm_page_xunbusy_unchecked(m) do { \
724
if (!atomic_cmpset_rel_int(&(m)->busy_lock, \
725
VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED)) \
726
vm_page_xunbusy_hard_unchecked(m); \
727
} while (0)
728
729
#ifdef INVARIANTS
730
void vm_page_object_busy_assert(vm_page_t m);
731
#define VM_PAGE_OBJECT_BUSY_ASSERT(m) vm_page_object_busy_assert(m)
732
void vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits);
733
#define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) \
734
vm_page_assert_pga_writeable(m, bits)
735
/*
736
* Claim ownership of a page's xbusy state. In non-INVARIANTS kernels this
737
* operation is a no-op since ownership is not tracked. In particular
738
* this macro does not provide any synchronization with the previous owner.
739
*/
740
#define vm_page_xbusy_claim(m) do { \
741
u_int _busy_lock; \
742
\
743
vm_page_assert_xbusied_unchecked((m)); \
744
do { \
745
_busy_lock = vm_page_busy_fetch(m); \
746
} while (!atomic_cmpset_int(&(m)->busy_lock, _busy_lock, \
747
(_busy_lock & VPB_BIT_FLAGMASK) | VPB_CURTHREAD_EXCLUSIVE)); \
748
} while (0)
749
#else
750
#define VM_PAGE_OBJECT_BUSY_ASSERT(m) (void)0
751
#define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) (void)0
752
#define vm_page_xbusy_claim(m)
753
#endif
754
755
#if BYTE_ORDER == BIG_ENDIAN
756
#define VM_PAGE_AFLAG_SHIFT 16
757
#else
758
#define VM_PAGE_AFLAG_SHIFT 0
759
#endif
760
761
/*
762
* Load a snapshot of a page's 32-bit atomic state.
763
*/
764
static inline vm_page_astate_t
765
vm_page_astate_load(vm_page_t m)
766
{
767
vm_page_astate_t a;
768
769
a._bits = atomic_load_32(&m->a._bits);
770
return (a);
771
}
772
773
/*
774
* Atomically compare and set a page's atomic state.
775
*/
776
static inline bool
777
vm_page_astate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
778
{
779
780
KASSERT(new.queue == PQ_INACTIVE || (new.flags & PGA_REQUEUE_HEAD) == 0,
781
("%s: invalid head requeue request for page %p", __func__, m));
782
KASSERT((new.flags & PGA_ENQUEUED) == 0 || new.queue != PQ_NONE,
783
("%s: setting PGA_ENQUEUED with PQ_NONE in page %p", __func__, m));
784
KASSERT(new._bits != old->_bits,
785
("%s: bits are unchanged", __func__));
786
787
return (atomic_fcmpset_32(&m->a._bits, &old->_bits, new._bits) != 0);
788
}
789
790
/*
791
* Clear the given bits in the specified page.
792
*/
793
static inline void
794
vm_page_aflag_clear(vm_page_t m, uint16_t bits)
795
{
796
uint32_t *addr, val;
797
798
/*
799
* Access the whole 32-bit word containing the aflags field with an
800
* atomic update. Parallel non-atomic updates to the other fields
801
* within this word are handled properly by the atomic update.
802
*/
803
addr = (void *)&m->a;
804
val = bits << VM_PAGE_AFLAG_SHIFT;
805
atomic_clear_32(addr, val);
806
}
807
808
/*
809
* Set the given bits in the specified page.
810
*/
811
static inline void
812
vm_page_aflag_set(vm_page_t m, uint16_t bits)
813
{
814
uint32_t *addr, val;
815
816
VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits);
817
818
/*
819
* Access the whole 32-bit word containing the aflags field with an
820
* atomic update. Parallel non-atomic updates to the other fields
821
* within this word are handled properly by the atomic update.
822
*/
823
addr = (void *)&m->a;
824
val = bits << VM_PAGE_AFLAG_SHIFT;
825
atomic_set_32(addr, val);
826
}
827
828
/*
829
* vm_page_dirty:
830
*
831
* Set all bits in the page's dirty field.
832
*
833
* The object containing the specified page must be locked if the
834
* call is made from the machine-independent layer.
835
*
836
* See vm_page_clear_dirty_mask().
837
*/
838
static __inline void
839
vm_page_dirty(vm_page_t m)
840
{
841
842
/* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */
843
#if (defined(KLD_MODULE) && !defined(KLD_TIED)) || defined(INVARIANTS)
844
vm_page_dirty_KBI(m);
845
#else
846
m->dirty = VM_PAGE_BITS_ALL;
847
#endif
848
}
849
850
/*
851
* vm_page_undirty:
852
*
853
* Set page to not be dirty. Note: does not clear pmap modify bits
854
*/
855
static __inline void
856
vm_page_undirty(vm_page_t m)
857
{
858
859
VM_PAGE_OBJECT_BUSY_ASSERT(m);
860
m->dirty = 0;
861
}
862
863
static inline uint8_t
864
_vm_page_queue(vm_page_astate_t as)
865
{
866
867
if ((as.flags & PGA_DEQUEUE) != 0)
868
return (PQ_NONE);
869
return (as.queue);
870
}
871
872
/*
873
* vm_page_queue:
874
*
875
* Return the index of the queue containing m.
876
*/
877
static inline uint8_t
878
vm_page_queue(vm_page_t m)
879
{
880
881
return (_vm_page_queue(vm_page_astate_load(m)));
882
}
883
884
static inline bool
885
vm_page_active(vm_page_t m)
886
{
887
888
return (vm_page_queue(m) == PQ_ACTIVE);
889
}
890
891
static inline bool
892
vm_page_inactive(vm_page_t m)
893
{
894
895
return (vm_page_queue(m) == PQ_INACTIVE);
896
}
897
898
static inline bool
899
vm_page_in_laundry(vm_page_t m)
900
{
901
uint8_t queue;
902
903
queue = vm_page_queue(m);
904
return (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE);
905
}
906
907
static inline void
908
vm_page_clearref(vm_page_t m)
909
{
910
u_int r;
911
912
r = m->ref_count;
913
while (atomic_fcmpset_int(&m->ref_count, &r, r & (VPRC_BLOCKED |
914
VPRC_OBJREF)) == 0)
915
;
916
}
917
918
/*
919
* vm_page_drop:
920
*
921
* Release a reference to a page and return the old reference count.
922
*/
923
static inline u_int
924
vm_page_drop(vm_page_t m, u_int val)
925
{
926
u_int old;
927
928
/*
929
* Synchronize with vm_page_free_prep(): ensure that all updates to the
930
* page structure are visible before it is freed.
931
*/
932
atomic_thread_fence_rel();
933
old = atomic_fetchadd_int(&m->ref_count, -val);
934
KASSERT(old != VPRC_BLOCKED,
935
("vm_page_drop: page %p has an invalid refcount value", m));
936
return (old);
937
}
938
939
/*
940
* vm_page_wired:
941
*
942
* Perform a racy check to determine whether a reference prevents the page
943
* from being reclaimable. If the page's object is locked, and the page is
944
* unmapped and exclusively busied by the current thread, no new wirings
945
* may be created.
946
*/
947
static inline bool
948
vm_page_wired(vm_page_t m)
949
{
950
951
return (VPRC_WIRE_COUNT(m->ref_count) > 0);
952
}
953
954
static inline bool
955
vm_page_all_valid(vm_page_t m)
956
{
957
958
return (m->valid == VM_PAGE_BITS_ALL);
959
}
960
961
static inline bool
962
vm_page_any_valid(vm_page_t m)
963
{
964
965
return (m->valid != 0);
966
}
967
968
static inline bool
969
vm_page_none_valid(vm_page_t m)
970
{
971
972
return (m->valid == 0);
973
}
974
975
static inline int
976
vm_page_domain(vm_page_t m __numa_used)
977
{
978
#ifdef NUMA
979
int domn, segind;
980
981
segind = m->segind;
982
KASSERT(segind < vm_phys_nsegs, ("segind %d m %p", segind, m));
983
domn = vm_phys_segs[segind].domain;
984
KASSERT(domn >= 0 && domn < vm_ndomains, ("domain %d m %p", domn, m));
985
return (domn);
986
#else
987
return (0);
988
#endif
989
}
990
991
#endif /* _KERNEL */
992
#endif /* !_VM_PAGE_ */
993
994