Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/vm/vm_pageout.c
39475 views
1
/*-
2
* SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3
*
4
* Copyright (c) 1991 Regents of the University of California.
5
* All rights reserved.
6
* Copyright (c) 1994 John S. Dyson
7
* All rights reserved.
8
* Copyright (c) 1994 David Greenman
9
* All rights reserved.
10
* Copyright (c) 2005 Yahoo! Technologies Norway AS
11
* All rights reserved.
12
*
13
* This code is derived from software contributed to Berkeley by
14
* The Mach Operating System project at Carnegie-Mellon University.
15
*
16
* Redistribution and use in source and binary forms, with or without
17
* modification, are permitted provided that the following conditions
18
* are met:
19
* 1. Redistributions of source code must retain the above copyright
20
* notice, this list of conditions and the following disclaimer.
21
* 2. Redistributions in binary form must reproduce the above copyright
22
* notice, this list of conditions and the following disclaimer in the
23
* documentation and/or other materials provided with the distribution.
24
* 3. All advertising materials mentioning features or use of this software
25
* must display the following acknowledgement:
26
* This product includes software developed by the University of
27
* California, Berkeley and its contributors.
28
* 4. Neither the name of the University nor the names of its contributors
29
* may be used to endorse or promote products derived from this software
30
* without specific prior written permission.
31
*
32
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42
* SUCH DAMAGE.
43
*
44
*
45
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
46
* All rights reserved.
47
*
48
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
49
*
50
* Permission to use, copy, modify and distribute this software and
51
* its documentation is hereby granted, provided that both the copyright
52
* notice and this permission notice appear in all copies of the
53
* software, derivative works or modified versions, and any portions
54
* thereof, and that both notices appear in supporting documentation.
55
*
56
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59
*
60
* Carnegie Mellon requests users of this software to return to
61
*
62
* Software Distribution Coordinator or [email protected]
63
* School of Computer Science
64
* Carnegie Mellon University
65
* Pittsburgh PA 15213-3890
66
*
67
* any improvements or extensions that they make and grant Carnegie the
68
* rights to redistribute these changes.
69
*/
70
71
/*
72
* The proverbial page-out daemon.
73
*/
74
75
#include <sys/cdefs.h>
76
#include "opt_vm.h"
77
78
#include <sys/param.h>
79
#include <sys/systm.h>
80
#include <sys/kernel.h>
81
#include <sys/blockcount.h>
82
#include <sys/eventhandler.h>
83
#include <sys/limits.h>
84
#include <sys/lock.h>
85
#include <sys/mutex.h>
86
#include <sys/proc.h>
87
#include <sys/kthread.h>
88
#include <sys/ktr.h>
89
#include <sys/mount.h>
90
#include <sys/racct.h>
91
#include <sys/resourcevar.h>
92
#include <sys/sched.h>
93
#include <sys/sdt.h>
94
#include <sys/signalvar.h>
95
#include <sys/smp.h>
96
#include <sys/time.h>
97
#include <sys/vnode.h>
98
#include <sys/vmmeter.h>
99
#include <sys/rwlock.h>
100
#include <sys/sx.h>
101
#include <sys/sysctl.h>
102
103
#include <vm/vm.h>
104
#include <vm/vm_param.h>
105
#include <vm/vm_object.h>
106
#include <vm/vm_page.h>
107
#include <vm/vm_map.h>
108
#include <vm/vm_pageout.h>
109
#include <vm/vm_pager.h>
110
#include <vm/vm_phys.h>
111
#include <vm/vm_pagequeue.h>
112
#include <vm/vm_radix.h>
113
#include <vm/swap_pager.h>
114
#include <vm/vm_extern.h>
115
#include <vm/uma.h>
116
117
/*
118
* System initialization
119
*/
120
121
/* the kernel process "vm_pageout"*/
122
static void vm_pageout(void);
123
static void vm_pageout_init(void);
124
static int vm_pageout_clean(vm_page_t m, int *numpagedout);
125
static int vm_pageout_cluster(vm_page_t m);
126
static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
127
int starting_page_shortage);
128
129
SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
130
NULL);
131
132
struct proc *pageproc;
133
134
static struct kproc_desc page_kp = {
135
"pagedaemon",
136
vm_pageout,
137
&pageproc
138
};
139
SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
140
&page_kp);
141
142
SDT_PROVIDER_DEFINE(vm);
143
SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
144
145
/* Pagedaemon activity rates, in subdivisions of one second. */
146
#define VM_LAUNDER_RATE 10
147
#define VM_INACT_SCAN_RATE 10
148
149
static int swapdev_enabled;
150
int vm_pageout_page_count = 32;
151
152
static int vm_panic_on_oom = 0;
153
SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
154
CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
155
"Panic on the given number of out-of-memory errors instead of "
156
"killing the largest process");
157
158
static int vm_pageout_update_period;
159
SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
160
CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
161
"Maximum active LRU update period");
162
163
static int pageout_cpus_per_thread = 16;
164
SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN,
165
&pageout_cpus_per_thread, 0,
166
"Number of CPUs per pagedaemon worker thread");
167
168
static int lowmem_period = 10;
169
SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
170
"Low memory callback period");
171
172
static int disable_swap_pageouts;
173
SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
174
CTLFLAG_RWTUN, &disable_swap_pageouts, 0,
175
"Disallow swapout of dirty pages");
176
177
static int pageout_lock_miss;
178
SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
179
CTLFLAG_RD, &pageout_lock_miss, 0,
180
"vget() lock misses during pageout");
181
182
static int vm_pageout_oom_seq = 12;
183
SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
184
CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
185
"back-to-back calls to oom detector to start OOM");
186
187
static int
188
sysctl_laundry_weight(SYSCTL_HANDLER_ARGS)
189
{
190
int error, val;
191
192
val = *(int *)arg1;
193
error = sysctl_handle_int(oidp, &val, 0, req);
194
if (error != 0 || req->newptr == NULL)
195
return (error);
196
if (val < arg2 || val > 100)
197
return (EINVAL);
198
*(int *)arg1 = val;
199
return (0);
200
}
201
202
static int act_scan_laundry_weight = 3;
203
SYSCTL_PROC(_vm, OID_AUTO, act_scan_laundry_weight,
204
CTLTYPE_INT | CTLFLAG_RWTUN, &act_scan_laundry_weight, 1,
205
sysctl_laundry_weight, "I",
206
"weight given to clean vs. dirty pages in active queue scans");
207
208
static int inact_scan_laundry_weight = 1;
209
SYSCTL_PROC(_vm, OID_AUTO, inact_scan_laundry_weight,
210
CTLTYPE_INT | CTLFLAG_RWTUN, &inact_scan_laundry_weight, 0,
211
sysctl_laundry_weight, "I",
212
"weight given to clean vs. dirty pages in inactive queue scans");
213
214
static u_int vm_background_launder_rate = 4096;
215
SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
216
&vm_background_launder_rate, 0,
217
"background laundering rate, in kilobytes per second");
218
219
static u_int vm_background_launder_max = 20 * 1024;
220
SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
221
&vm_background_launder_max, 0,
222
"background laundering cap, in kilobytes");
223
224
u_long vm_page_max_user_wired;
225
SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
226
&vm_page_max_user_wired, 0,
227
"system-wide limit to user-wired page count");
228
229
static u_int isqrt(u_int num);
230
static int vm_pageout_launder(struct vm_domain *vmd, int launder,
231
bool in_shortfall);
232
static void vm_pageout_laundry_worker(void *arg);
233
234
struct scan_state {
235
struct vm_batchqueue bq;
236
struct vm_pagequeue *pq;
237
vm_page_t marker;
238
int maxscan;
239
int scanned;
240
};
241
242
static void
243
vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
244
vm_page_t marker, vm_page_t after, int maxscan)
245
{
246
247
vm_pagequeue_assert_locked(pq);
248
KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
249
("marker %p already enqueued", marker));
250
251
if (after == NULL)
252
TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
253
else
254
TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
255
vm_page_aflag_set(marker, PGA_ENQUEUED);
256
257
vm_batchqueue_init(&ss->bq);
258
ss->pq = pq;
259
ss->marker = marker;
260
ss->maxscan = maxscan;
261
ss->scanned = 0;
262
vm_pagequeue_unlock(pq);
263
}
264
265
static void
266
vm_pageout_end_scan(struct scan_state *ss)
267
{
268
struct vm_pagequeue *pq;
269
270
pq = ss->pq;
271
vm_pagequeue_assert_locked(pq);
272
KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
273
("marker %p not enqueued", ss->marker));
274
275
TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
276
vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
277
pq->pq_pdpages += ss->scanned;
278
}
279
280
/*
281
* Add a small number of queued pages to a batch queue for later processing
282
* without the corresponding queue lock held. The caller must have enqueued a
283
* marker page at the desired start point for the scan. Pages will be
284
* physically dequeued if the caller so requests. Otherwise, the returned
285
* batch may contain marker pages, and it is up to the caller to handle them.
286
*
287
* When processing the batch queue, vm_pageout_defer() must be used to
288
* determine whether the page has been logically dequeued since the batch was
289
* collected.
290
*/
291
static __always_inline void
292
vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
293
{
294
struct vm_pagequeue *pq;
295
vm_page_t m, marker, n;
296
297
marker = ss->marker;
298
pq = ss->pq;
299
300
KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
301
("marker %p not enqueued", ss->marker));
302
303
vm_pagequeue_lock(pq);
304
for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
305
ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
306
m = n, ss->scanned++) {
307
n = TAILQ_NEXT(m, plinks.q);
308
if ((m->flags & PG_MARKER) == 0) {
309
KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
310
("page %p not enqueued", m));
311
KASSERT((m->flags & PG_FICTITIOUS) == 0,
312
("Fictitious page %p cannot be in page queue", m));
313
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
314
("Unmanaged page %p cannot be in page queue", m));
315
} else if (dequeue)
316
continue;
317
318
(void)vm_batchqueue_insert(&ss->bq, m);
319
if (dequeue) {
320
TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
321
vm_page_aflag_clear(m, PGA_ENQUEUED);
322
}
323
}
324
TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
325
if (__predict_true(m != NULL))
326
TAILQ_INSERT_BEFORE(m, marker, plinks.q);
327
else
328
TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
329
if (dequeue)
330
vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
331
vm_pagequeue_unlock(pq);
332
}
333
334
/*
335
* Return the next page to be scanned, or NULL if the scan is complete.
336
*/
337
static __always_inline vm_page_t
338
vm_pageout_next(struct scan_state *ss, const bool dequeue)
339
{
340
341
if (ss->bq.bq_cnt == 0)
342
vm_pageout_collect_batch(ss, dequeue);
343
return (vm_batchqueue_pop(&ss->bq));
344
}
345
346
/*
347
* Determine whether processing of a page should be deferred and ensure that any
348
* outstanding queue operations are processed.
349
*/
350
static __always_inline bool
351
vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
352
{
353
vm_page_astate_t as;
354
355
as = vm_page_astate_load(m);
356
if (__predict_false(as.queue != queue ||
357
((as.flags & PGA_ENQUEUED) != 0) != enqueued))
358
return (true);
359
if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
360
vm_page_pqbatch_submit(m, queue);
361
return (true);
362
}
363
return (false);
364
}
365
366
/*
367
* We can cluster only if the page is not clean, busy, or held, and the page is
368
* in the laundry queue.
369
*/
370
static bool
371
vm_pageout_flushable(vm_page_t m)
372
{
373
if (vm_page_tryxbusy(m) == 0)
374
return (false);
375
if (!vm_page_wired(m)) {
376
vm_page_test_dirty(m);
377
if (m->dirty != 0 && vm_page_in_laundry(m) &&
378
vm_page_try_remove_write(m))
379
return (true);
380
}
381
vm_page_xunbusy(m);
382
return (false);
383
}
384
385
/*
386
* Scan for pages at adjacent offsets within the given page's object that are
387
* eligible for laundering, form a cluster of these pages and the given page,
388
* and launder that cluster.
389
*/
390
static int
391
vm_pageout_cluster(vm_page_t m)
392
{
393
struct pctrie_iter pages;
394
vm_page_t mc[2 * vm_pageout_page_count - 1];
395
int alignment, page_base, pageout_count;
396
397
VM_OBJECT_ASSERT_WLOCKED(m->object);
398
399
vm_page_assert_xbusied(m);
400
401
vm_page_iter_init(&pages, m->object);
402
alignment = m->pindex % vm_pageout_page_count;
403
page_base = nitems(mc) / 2;
404
pageout_count = 1;
405
mc[page_base] = m;
406
407
/*
408
* During heavy mmap/modification loads the pageout
409
* daemon can really fragment the underlying file
410
* due to flushing pages out of order and not trying to
411
* align the clusters (which leaves sporadic out-of-order
412
* holes). To solve this problem we do the reverse scan
413
* first and attempt to align our cluster, then do a
414
* forward scan if room remains.
415
*
416
* If we are at an alignment boundary, stop here, and switch directions.
417
*/
418
if (alignment > 0) {
419
pages.index = mc[page_base]->pindex;
420
do {
421
m = vm_radix_iter_prev(&pages);
422
if (m == NULL || !vm_pageout_flushable(m))
423
break;
424
mc[--page_base] = m;
425
} while (pageout_count++ < alignment);
426
}
427
if (pageout_count < vm_pageout_page_count) {
428
pages.index = mc[page_base + pageout_count - 1]->pindex;
429
do {
430
m = vm_radix_iter_next(&pages);
431
if (m == NULL || !vm_pageout_flushable(m))
432
break;
433
mc[page_base + pageout_count] = m;
434
} while (++pageout_count < vm_pageout_page_count);
435
}
436
if (pageout_count < vm_pageout_page_count &&
437
alignment == nitems(mc) / 2 - page_base) {
438
/* Resume the reverse scan. */
439
pages.index = mc[page_base]->pindex;
440
do {
441
m = vm_radix_iter_prev(&pages);
442
if (m == NULL || !vm_pageout_flushable(m))
443
break;
444
mc[--page_base] = m;
445
} while (++pageout_count < vm_pageout_page_count);
446
}
447
448
return (vm_pageout_flush(&mc[page_base], pageout_count,
449
VM_PAGER_PUT_NOREUSE, NULL));
450
}
451
452
/*
453
* vm_pageout_flush() - launder the given pages
454
*
455
* The given pages are laundered. Note that we setup for the start of
456
* I/O ( i.e. busy the page ), mark it read-only, and bump the object
457
* reference count all in here rather then in the parent. If we want
458
* the parent to do more sophisticated things we may have to change
459
* the ordering.
460
*
461
* If eio is not NULL, returns the count of pages between 0 and first page
462
* with status VM_PAGER_AGAIN. *eio is set to true if pager returned
463
* VM_PAGER_ERROR or VM_PAGER_FAIL for any page in that set.
464
*
465
* Otherwise, returns the number of paged-out pages.
466
*/
467
int
468
vm_pageout_flush(vm_page_t *mc, int count, int flags, bool *eio)
469
{
470
vm_object_t object = mc[0]->object;
471
int pageout_status[count];
472
int numpagedout = 0;
473
int i, runlen;
474
475
VM_OBJECT_ASSERT_WLOCKED(object);
476
477
/*
478
* Initiate I/O. Mark the pages shared busy and verify that they're
479
* valid and read-only.
480
*
481
* We do not have to fixup the clean/dirty bits here... we can
482
* allow the pager to do it after the I/O completes.
483
*
484
* NOTE! mc[i]->dirty may be partial or fragmented due to an
485
* edge case with file fragments.
486
*/
487
for (i = 0; i < count; i++) {
488
KASSERT(vm_page_all_valid(mc[i]),
489
("vm_pageout_flush: partially invalid page %p index %d/%d",
490
mc[i], i, count));
491
KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
492
("vm_pageout_flush: writeable page %p", mc[i]));
493
vm_page_busy_downgrade(mc[i]);
494
}
495
vm_object_pip_add(object, count);
496
497
vm_pager_put_pages(object, mc, count, flags, pageout_status);
498
499
runlen = count;
500
if (eio != NULL)
501
*eio = false;
502
for (i = 0; i < count; i++) {
503
vm_page_t mt = mc[i];
504
505
KASSERT(pageout_status[i] == VM_PAGER_PEND ||
506
!pmap_page_is_write_mapped(mt),
507
("vm_pageout_flush: page %p is not write protected", mt));
508
switch (pageout_status[i]) {
509
case VM_PAGER_OK:
510
/*
511
* The page may have moved since laundering started, in
512
* which case it should be left alone.
513
*/
514
if (vm_page_in_laundry(mt))
515
vm_page_deactivate_noreuse(mt);
516
/* FALLTHROUGH */
517
case VM_PAGER_PEND:
518
numpagedout++;
519
break;
520
case VM_PAGER_BAD:
521
/*
522
* The page is outside the object's range. We pretend
523
* that the page out worked and clean the page, so the
524
* changes will be lost if the page is reclaimed by
525
* the page daemon.
526
*/
527
vm_page_undirty(mt);
528
if (vm_page_in_laundry(mt))
529
vm_page_deactivate_noreuse(mt);
530
break;
531
case VM_PAGER_ERROR:
532
case VM_PAGER_FAIL:
533
/*
534
* If the page couldn't be paged out to swap because the
535
* pager wasn't able to find space, place the page in
536
* the PQ_UNSWAPPABLE holding queue. This is an
537
* optimization that prevents the page daemon from
538
* wasting CPU cycles on pages that cannot be reclaimed
539
* because no swap device is configured.
540
*
541
* Otherwise, reactivate the page so that it doesn't
542
* clog the laundry and inactive queues. (We will try
543
* paging it out again later.)
544
*/
545
if ((object->flags & OBJ_SWAP) != 0 &&
546
pageout_status[i] == VM_PAGER_FAIL) {
547
vm_page_unswappable(mt);
548
numpagedout++;
549
} else
550
vm_page_activate(mt);
551
if (eio != NULL)
552
*eio = true;
553
break;
554
case VM_PAGER_AGAIN:
555
if (runlen == count)
556
runlen = i;
557
break;
558
}
559
560
/*
561
* If the operation is still going, leave the page busy to
562
* block all other accesses. Also, leave the paging in
563
* progress indicator set so that we don't attempt an object
564
* collapse.
565
*/
566
if (pageout_status[i] != VM_PAGER_PEND) {
567
vm_object_pip_wakeup(object);
568
vm_page_sunbusy(mt);
569
}
570
}
571
if (eio != NULL)
572
return (runlen);
573
return (numpagedout);
574
}
575
576
static void
577
vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
578
{
579
580
atomic_store_rel_int(&swapdev_enabled, 1);
581
}
582
583
static void
584
vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
585
{
586
587
if (swap_pager_nswapdev() == 1)
588
atomic_store_rel_int(&swapdev_enabled, 0);
589
}
590
591
/*
592
* Attempt to acquire all of the necessary locks to launder a page and
593
* then call through the clustering layer to PUTPAGES. Wait a short
594
* time for a vnode lock.
595
*
596
* Requires the page and object lock on entry, releases both before return.
597
* Returns 0 on success and an errno otherwise.
598
*/
599
static int
600
vm_pageout_clean(vm_page_t m, int *numpagedout)
601
{
602
struct vnode *vp;
603
struct mount *mp;
604
vm_object_t object;
605
vm_pindex_t pindex;
606
int error;
607
608
object = m->object;
609
VM_OBJECT_ASSERT_WLOCKED(object);
610
error = 0;
611
vp = NULL;
612
mp = NULL;
613
614
/*
615
* The object is already known NOT to be dead. It
616
* is possible for the vget() to block the whole
617
* pageout daemon, but the new low-memory handling
618
* code should prevent it.
619
*
620
* We can't wait forever for the vnode lock, we might
621
* deadlock due to a vn_read() getting stuck in
622
* vm_wait while holding this vnode. We skip the
623
* vnode if we can't get it in a reasonable amount
624
* of time.
625
*/
626
if (object->type == OBJT_VNODE) {
627
vm_page_xunbusy(m);
628
vp = object->handle;
629
if (vp->v_type == VREG &&
630
vn_start_write(vp, &mp, V_NOWAIT) != 0) {
631
mp = NULL;
632
error = EDEADLK;
633
goto unlock_all;
634
}
635
KASSERT(mp != NULL,
636
("vp %p with NULL v_mount", vp));
637
vm_object_reference_locked(object);
638
pindex = m->pindex;
639
VM_OBJECT_WUNLOCK(object);
640
if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) {
641
vp = NULL;
642
error = EDEADLK;
643
goto unlock_mp;
644
}
645
VM_OBJECT_WLOCK(object);
646
647
/*
648
* Ensure that the object and vnode were not disassociated
649
* while locks were dropped.
650
*/
651
if (vp->v_object != object) {
652
error = ENOENT;
653
goto unlock_all;
654
}
655
656
/*
657
* While the object was unlocked, the page may have been:
658
* (1) moved to a different queue,
659
* (2) reallocated to a different object,
660
* (3) reallocated to a different offset, or
661
* (4) cleaned.
662
*/
663
if (!vm_page_in_laundry(m) || m->object != object ||
664
m->pindex != pindex || m->dirty == 0) {
665
error = ENXIO;
666
goto unlock_all;
667
}
668
669
/*
670
* The page may have been busied while the object lock was
671
* released.
672
*/
673
if (vm_page_tryxbusy(m) == 0) {
674
error = EBUSY;
675
goto unlock_all;
676
}
677
}
678
679
/*
680
* Remove all writeable mappings, failing if the page is wired.
681
*/
682
if (!vm_page_try_remove_write(m)) {
683
vm_page_xunbusy(m);
684
error = EBUSY;
685
goto unlock_all;
686
}
687
688
/*
689
* If a page is dirty, then it is either being washed
690
* (but not yet cleaned) or it is still in the
691
* laundry. If it is still in the laundry, then we
692
* start the cleaning operation.
693
*/
694
if ((*numpagedout = vm_pageout_cluster(m)) == 0)
695
error = EIO;
696
697
unlock_all:
698
VM_OBJECT_WUNLOCK(object);
699
700
unlock_mp:
701
if (mp != NULL) {
702
if (vp != NULL)
703
vput(vp);
704
vm_object_deallocate(object);
705
vn_finished_write(mp);
706
}
707
708
return (error);
709
}
710
711
/*
712
* Attempt to launder the specified number of pages.
713
*
714
* Returns the number of pages successfully laundered.
715
*/
716
static int
717
vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
718
{
719
struct scan_state ss;
720
struct vm_pagequeue *pq;
721
vm_object_t object;
722
vm_page_t m, marker;
723
vm_page_astate_t new, old;
724
int act_delta, error, numpagedout, queue, refs, starting_target;
725
int vnodes_skipped;
726
bool pageout_ok;
727
728
object = NULL;
729
starting_target = launder;
730
vnodes_skipped = 0;
731
732
/*
733
* Scan the laundry queues for pages eligible to be laundered. We stop
734
* once the target number of dirty pages have been laundered, or once
735
* we've reached the end of the queue. A single iteration of this loop
736
* may cause more than one page to be laundered because of clustering.
737
*
738
* As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
739
* swap devices are configured.
740
*/
741
if (atomic_load_acq_int(&swapdev_enabled))
742
queue = PQ_UNSWAPPABLE;
743
else
744
queue = PQ_LAUNDRY;
745
746
scan:
747
marker = &vmd->vmd_markers[queue];
748
pq = &vmd->vmd_pagequeues[queue];
749
vm_pagequeue_lock(pq);
750
vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
751
while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
752
if (__predict_false((m->flags & PG_MARKER) != 0))
753
continue;
754
755
/*
756
* Don't touch a page that was removed from the queue after the
757
* page queue lock was released. Otherwise, ensure that any
758
* pending queue operations, such as dequeues for wired pages,
759
* are handled.
760
*/
761
if (vm_pageout_defer(m, queue, true))
762
continue;
763
764
/*
765
* Lock the page's object.
766
*/
767
if (object == NULL || object != m->object) {
768
if (object != NULL)
769
VM_OBJECT_WUNLOCK(object);
770
object = atomic_load_ptr(&m->object);
771
if (__predict_false(object == NULL))
772
/* The page is being freed by another thread. */
773
continue;
774
775
/* Depends on type-stability. */
776
VM_OBJECT_WLOCK(object);
777
if (__predict_false(m->object != object)) {
778
VM_OBJECT_WUNLOCK(object);
779
object = NULL;
780
continue;
781
}
782
}
783
784
if (vm_page_tryxbusy(m) == 0)
785
continue;
786
787
/*
788
* Check for wirings now that we hold the object lock and have
789
* exclusively busied the page. If the page is mapped, it may
790
* still be wired by pmap lookups. The call to
791
* vm_page_try_remove_all() below atomically checks for such
792
* wirings and removes mappings. If the page is unmapped, the
793
* wire count is guaranteed not to increase after this check.
794
*/
795
if (__predict_false(vm_page_wired(m)))
796
goto skip_page;
797
798
/*
799
* Invalid pages can be easily freed. They cannot be
800
* mapped; vm_page_free() asserts this.
801
*/
802
if (vm_page_none_valid(m))
803
goto free_page;
804
805
refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
806
807
for (old = vm_page_astate_load(m);;) {
808
/*
809
* Check to see if the page has been removed from the
810
* queue since the first such check. Leave it alone if
811
* so, discarding any references collected by
812
* pmap_ts_referenced().
813
*/
814
if (__predict_false(_vm_page_queue(old) == PQ_NONE))
815
goto skip_page;
816
817
new = old;
818
act_delta = refs;
819
if ((old.flags & PGA_REFERENCED) != 0) {
820
new.flags &= ~PGA_REFERENCED;
821
act_delta++;
822
}
823
if (act_delta == 0) {
824
;
825
} else if (object->ref_count != 0) {
826
/*
827
* Increase the activation count if the page was
828
* referenced while in the laundry queue. This
829
* makes it less likely that the page will be
830
* returned prematurely to the laundry queue.
831
*/
832
new.act_count += ACT_ADVANCE +
833
act_delta;
834
if (new.act_count > ACT_MAX)
835
new.act_count = ACT_MAX;
836
837
new.flags &= ~PGA_QUEUE_OP_MASK;
838
new.flags |= PGA_REQUEUE;
839
new.queue = PQ_ACTIVE;
840
if (!vm_page_pqstate_commit(m, &old, new))
841
continue;
842
843
/*
844
* If this was a background laundering, count
845
* activated pages towards our target. The
846
* purpose of background laundering is to ensure
847
* that pages are eventually cycled through the
848
* laundry queue, and an activation is a valid
849
* way out.
850
*/
851
if (!in_shortfall)
852
launder--;
853
VM_CNT_INC(v_reactivated);
854
goto skip_page;
855
} else if ((object->flags & OBJ_DEAD) == 0) {
856
new.flags |= PGA_REQUEUE;
857
if (!vm_page_pqstate_commit(m, &old, new))
858
continue;
859
goto skip_page;
860
}
861
break;
862
}
863
864
/*
865
* If the page appears to be clean at the machine-independent
866
* layer, then remove all of its mappings from the pmap in
867
* anticipation of freeing it. If, however, any of the page's
868
* mappings allow write access, then the page may still be
869
* modified until the last of those mappings are removed.
870
*/
871
if (object->ref_count != 0) {
872
vm_page_test_dirty(m);
873
if (m->dirty == 0 && !vm_page_try_remove_all(m))
874
goto skip_page;
875
}
876
877
/*
878
* Clean pages are freed, and dirty pages are paged out unless
879
* they belong to a dead object. Requeueing dirty pages from
880
* dead objects is pointless, as they are being paged out and
881
* freed by the thread that destroyed the object.
882
*/
883
if (m->dirty == 0) {
884
free_page:
885
/*
886
* Now we are guaranteed that no other threads are
887
* manipulating the page, check for a last-second
888
* reference.
889
*/
890
if (vm_pageout_defer(m, queue, true))
891
goto skip_page;
892
vm_page_free(m);
893
VM_CNT_INC(v_dfree);
894
} else if ((object->flags & OBJ_DEAD) == 0) {
895
if ((object->flags & OBJ_SWAP) != 0)
896
pageout_ok = disable_swap_pageouts == 0;
897
else
898
pageout_ok = true;
899
if (!pageout_ok) {
900
vm_page_launder(m);
901
goto skip_page;
902
}
903
904
/*
905
* Form a cluster with adjacent, dirty pages from the
906
* same object, and page out that entire cluster.
907
*
908
* The adjacent, dirty pages must also be in the
909
* laundry. However, their mappings are not checked
910
* for new references. Consequently, a recently
911
* referenced page may be paged out. However, that
912
* page will not be prematurely reclaimed. After page
913
* out, the page will be placed in the inactive queue,
914
* where any new references will be detected and the
915
* page reactivated.
916
*/
917
error = vm_pageout_clean(m, &numpagedout);
918
if (error == 0) {
919
launder -= numpagedout;
920
ss.scanned += numpagedout;
921
} else if (error == EDEADLK) {
922
pageout_lock_miss++;
923
vnodes_skipped++;
924
}
925
object = NULL;
926
} else {
927
skip_page:
928
vm_page_xunbusy(m);
929
}
930
}
931
if (object != NULL) {
932
VM_OBJECT_WUNLOCK(object);
933
object = NULL;
934
}
935
vm_pagequeue_lock(pq);
936
vm_pageout_end_scan(&ss);
937
vm_pagequeue_unlock(pq);
938
939
if (launder > 0 && queue == PQ_UNSWAPPABLE) {
940
queue = PQ_LAUNDRY;
941
goto scan;
942
}
943
944
/*
945
* Wakeup the sync daemon if we skipped a vnode in a writeable object
946
* and we didn't launder enough pages.
947
*/
948
if (vnodes_skipped > 0 && launder > 0)
949
(void)speedup_syncer();
950
951
return (starting_target - launder);
952
}
953
954
/*
955
* Compute the integer square root.
956
*/
957
static u_int
958
isqrt(u_int num)
959
{
960
u_int bit, root, tmp;
961
962
bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
963
root = 0;
964
while (bit != 0) {
965
tmp = root + bit;
966
root >>= 1;
967
if (num >= tmp) {
968
num -= tmp;
969
root += bit;
970
}
971
bit >>= 2;
972
}
973
return (root);
974
}
975
976
/*
977
* Perform the work of the laundry thread: periodically wake up and determine
978
* whether any pages need to be laundered. If so, determine the number of pages
979
* that need to be laundered, and launder them.
980
*/
981
static void
982
vm_pageout_laundry_worker(void *arg)
983
{
984
struct vm_domain *vmd;
985
struct vm_pagequeue *pq;
986
uint64_t nclean, ndirty, nfreed;
987
int domain, last_target, launder, shortfall, shortfall_cycle, target;
988
bool in_shortfall;
989
990
domain = (uintptr_t)arg;
991
vmd = VM_DOMAIN(domain);
992
pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
993
KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
994
995
shortfall = 0;
996
in_shortfall = false;
997
shortfall_cycle = 0;
998
last_target = target = 0;
999
nfreed = 0;
1000
1001
/*
1002
* Calls to these handlers are serialized by the swap syscall lock.
1003
*/
1004
(void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1005
EVENTHANDLER_PRI_ANY);
1006
(void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1007
EVENTHANDLER_PRI_ANY);
1008
1009
/*
1010
* The pageout laundry worker is never done, so loop forever.
1011
*/
1012
for (;;) {
1013
KASSERT(target >= 0, ("negative target %d", target));
1014
KASSERT(shortfall_cycle >= 0,
1015
("negative cycle %d", shortfall_cycle));
1016
launder = 0;
1017
1018
/*
1019
* First determine whether we need to launder pages to meet a
1020
* shortage of free pages.
1021
*/
1022
if (shortfall > 0) {
1023
in_shortfall = true;
1024
shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1025
target = shortfall;
1026
} else if (!in_shortfall)
1027
goto trybackground;
1028
else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1029
/*
1030
* We recently entered shortfall and began laundering
1031
* pages. If we have completed that laundering run
1032
* (and we are no longer in shortfall) or we have met
1033
* our laundry target through other activity, then we
1034
* can stop laundering pages.
1035
*/
1036
in_shortfall = false;
1037
target = 0;
1038
goto trybackground;
1039
}
1040
launder = target / shortfall_cycle--;
1041
goto dolaundry;
1042
1043
/*
1044
* There's no immediate need to launder any pages; see if we
1045
* meet the conditions to perform background laundering:
1046
*
1047
* 1. The ratio of dirty to clean inactive pages exceeds the
1048
* background laundering threshold, or
1049
* 2. we haven't yet reached the target of the current
1050
* background laundering run.
1051
*
1052
* The background laundering threshold is not a constant.
1053
* Instead, it is a slowly growing function of the number of
1054
* clean pages freed by the page daemon since the last
1055
* background laundering. Thus, as the ratio of dirty to
1056
* clean inactive pages grows, the amount of memory pressure
1057
* required to trigger laundering decreases. We ensure
1058
* that the threshold is non-zero after an inactive queue
1059
* scan, even if that scan failed to free a single clean page.
1060
*/
1061
trybackground:
1062
nclean = vmd->vmd_free_count +
1063
vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1064
ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1065
if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1066
vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1067
target = vmd->vmd_background_launder_target;
1068
}
1069
1070
/*
1071
* We have a non-zero background laundering target. If we've
1072
* laundered up to our maximum without observing a page daemon
1073
* request, just stop. This is a safety belt that ensures we
1074
* don't launder an excessive amount if memory pressure is low
1075
* and the ratio of dirty to clean pages is large. Otherwise,
1076
* proceed at the background laundering rate.
1077
*/
1078
if (target > 0) {
1079
if (nfreed > 0) {
1080
nfreed = 0;
1081
last_target = target;
1082
} else if (last_target - target >=
1083
vm_background_launder_max * PAGE_SIZE / 1024) {
1084
target = 0;
1085
}
1086
launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1087
launder /= VM_LAUNDER_RATE;
1088
if (launder > target)
1089
launder = target;
1090
}
1091
1092
dolaundry:
1093
if (launder > 0) {
1094
/*
1095
* Because of I/O clustering, the number of laundered
1096
* pages could exceed "target" by the maximum size of
1097
* a cluster minus one.
1098
*/
1099
target -= min(vm_pageout_launder(vmd, launder,
1100
in_shortfall), target);
1101
pause("laundp", hz / VM_LAUNDER_RATE);
1102
}
1103
1104
/*
1105
* If we're not currently laundering pages and the page daemon
1106
* hasn't posted a new request, sleep until the page daemon
1107
* kicks us.
1108
*/
1109
vm_pagequeue_lock(pq);
1110
if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1111
(void)mtx_sleep(&vmd->vmd_laundry_request,
1112
vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1113
1114
/*
1115
* If the pagedaemon has indicated that it's in shortfall, start
1116
* a shortfall laundering unless we're already in the middle of
1117
* one. This may preempt a background laundering.
1118
*/
1119
if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1120
(!in_shortfall || shortfall_cycle == 0)) {
1121
shortfall = vm_laundry_target(vmd) +
1122
vmd->vmd_pageout_deficit;
1123
target = 0;
1124
} else
1125
shortfall = 0;
1126
1127
if (target == 0)
1128
vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1129
nfreed += vmd->vmd_clean_pages_freed;
1130
vmd->vmd_clean_pages_freed = 0;
1131
vm_pagequeue_unlock(pq);
1132
}
1133
}
1134
1135
/*
1136
* Compute the number of pages we want to try to move from the
1137
* active queue to either the inactive or laundry queue.
1138
*
1139
* When scanning active pages during a shortage, we make clean pages
1140
* count more heavily towards the page shortage than dirty pages.
1141
* This is because dirty pages must be laundered before they can be
1142
* reused and thus have less utility when attempting to quickly
1143
* alleviate a free page shortage. However, this weighting also
1144
* causes the scan to deactivate dirty pages more aggressively,
1145
* improving the effectiveness of clustering.
1146
*/
1147
static int
1148
vm_pageout_active_target(struct vm_domain *vmd)
1149
{
1150
int shortage;
1151
1152
shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1153
(vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1154
vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1155
shortage *= act_scan_laundry_weight;
1156
return (shortage);
1157
}
1158
1159
/*
1160
* Scan the active queue. If there is no shortage of inactive pages, scan a
1161
* small portion of the queue in order to maintain quasi-LRU.
1162
*/
1163
static void
1164
vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1165
{
1166
struct scan_state ss;
1167
vm_object_t object;
1168
vm_page_t m, marker;
1169
struct vm_pagequeue *pq;
1170
vm_page_astate_t old, new;
1171
long min_scan;
1172
int act_delta, max_scan, ps_delta, refs, scan_tick;
1173
uint8_t nqueue;
1174
1175
marker = &vmd->vmd_markers[PQ_ACTIVE];
1176
pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1177
vm_pagequeue_lock(pq);
1178
1179
/*
1180
* If we're just idle polling attempt to visit every
1181
* active page within 'update_period' seconds.
1182
*/
1183
scan_tick = ticks;
1184
if (vm_pageout_update_period != 0) {
1185
min_scan = pq->pq_cnt;
1186
min_scan *= scan_tick - vmd->vmd_last_active_scan;
1187
min_scan /= hz * vm_pageout_update_period;
1188
} else
1189
min_scan = 0;
1190
if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1191
vmd->vmd_last_active_scan = scan_tick;
1192
1193
/*
1194
* Scan the active queue for pages that can be deactivated. Update
1195
* the per-page activity counter and use it to identify deactivation
1196
* candidates. Held pages may be deactivated.
1197
*
1198
* To avoid requeuing each page that remains in the active queue, we
1199
* implement the CLOCK algorithm. To keep the implementation of the
1200
* enqueue operation consistent for all page queues, we use two hands,
1201
* represented by marker pages. Scans begin at the first hand, which
1202
* precedes the second hand in the queue. When the two hands meet,
1203
* they are moved back to the head and tail of the queue, respectively,
1204
* and scanning resumes.
1205
*/
1206
max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1207
act_scan:
1208
vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1209
while ((m = vm_pageout_next(&ss, false)) != NULL) {
1210
if (__predict_false(m == &vmd->vmd_clock[1])) {
1211
vm_pagequeue_lock(pq);
1212
TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1213
TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1214
TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1215
plinks.q);
1216
TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1217
plinks.q);
1218
max_scan -= ss.scanned;
1219
vm_pageout_end_scan(&ss);
1220
goto act_scan;
1221
}
1222
if (__predict_false((m->flags & PG_MARKER) != 0))
1223
continue;
1224
1225
/*
1226
* Don't touch a page that was removed from the queue after the
1227
* page queue lock was released. Otherwise, ensure that any
1228
* pending queue operations, such as dequeues for wired pages,
1229
* are handled.
1230
*/
1231
if (vm_pageout_defer(m, PQ_ACTIVE, true))
1232
continue;
1233
1234
/*
1235
* A page's object pointer may be set to NULL before
1236
* the object lock is acquired.
1237
*/
1238
object = atomic_load_ptr(&m->object);
1239
if (__predict_false(object == NULL))
1240
/*
1241
* The page has been removed from its object.
1242
*/
1243
continue;
1244
1245
/* Deferred free of swap space. */
1246
if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1247
VM_OBJECT_TRYWLOCK(object)) {
1248
if (m->object == object)
1249
vm_pager_page_unswapped(m);
1250
VM_OBJECT_WUNLOCK(object);
1251
}
1252
1253
/*
1254
* Check to see "how much" the page has been used.
1255
*
1256
* Test PGA_REFERENCED after calling pmap_ts_referenced() so
1257
* that a reference from a concurrently destroyed mapping is
1258
* observed here and now.
1259
*
1260
* Perform an unsynchronized object ref count check. While
1261
* the page lock ensures that the page is not reallocated to
1262
* another object, in particular, one with unmanaged mappings
1263
* that cannot support pmap_ts_referenced(), two races are,
1264
* nonetheless, possible:
1265
* 1) The count was transitioning to zero, but we saw a non-
1266
* zero value. pmap_ts_referenced() will return zero
1267
* because the page is not mapped.
1268
* 2) The count was transitioning to one, but we saw zero.
1269
* This race delays the detection of a new reference. At
1270
* worst, we will deactivate and reactivate the page.
1271
*/
1272
refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1273
1274
old = vm_page_astate_load(m);
1275
do {
1276
/*
1277
* Check to see if the page has been removed from the
1278
* queue since the first such check. Leave it alone if
1279
* so, discarding any references collected by
1280
* pmap_ts_referenced().
1281
*/
1282
if (__predict_false(_vm_page_queue(old) == PQ_NONE)) {
1283
ps_delta = 0;
1284
break;
1285
}
1286
1287
/*
1288
* Advance or decay the act_count based on recent usage.
1289
*/
1290
new = old;
1291
act_delta = refs;
1292
if ((old.flags & PGA_REFERENCED) != 0) {
1293
new.flags &= ~PGA_REFERENCED;
1294
act_delta++;
1295
}
1296
if (act_delta != 0) {
1297
new.act_count += ACT_ADVANCE + act_delta;
1298
if (new.act_count > ACT_MAX)
1299
new.act_count = ACT_MAX;
1300
} else {
1301
new.act_count -= min(new.act_count,
1302
ACT_DECLINE);
1303
}
1304
1305
if (new.act_count > 0) {
1306
/*
1307
* Adjust the activation count and keep the page
1308
* in the active queue. The count might be left
1309
* unchanged if it is saturated. The page may
1310
* have been moved to a different queue since we
1311
* started the scan, in which case we move it
1312
* back.
1313
*/
1314
ps_delta = 0;
1315
if (old.queue != PQ_ACTIVE) {
1316
new.flags &= ~PGA_QUEUE_OP_MASK;
1317
new.flags |= PGA_REQUEUE;
1318
new.queue = PQ_ACTIVE;
1319
}
1320
} else {
1321
/*
1322
* When not short for inactive pages, let dirty
1323
* pages go through the inactive queue before
1324
* moving to the laundry queue. This gives them
1325
* some extra time to be reactivated,
1326
* potentially avoiding an expensive pageout.
1327
* However, during a page shortage, the inactive
1328
* queue is necessarily small, and so dirty
1329
* pages would only spend a trivial amount of
1330
* time in the inactive queue. Therefore, we
1331
* might as well place them directly in the
1332
* laundry queue to reduce queuing overhead.
1333
*
1334
* Calling vm_page_test_dirty() here would
1335
* require acquisition of the object's write
1336
* lock. However, during a page shortage,
1337
* directing dirty pages into the laundry queue
1338
* is only an optimization and not a
1339
* requirement. Therefore, we simply rely on
1340
* the opportunistic updates to the page's dirty
1341
* field by the pmap.
1342
*/
1343
if (page_shortage <= 0) {
1344
nqueue = PQ_INACTIVE;
1345
ps_delta = 0;
1346
} else if (m->dirty == 0) {
1347
nqueue = PQ_INACTIVE;
1348
ps_delta = act_scan_laundry_weight;
1349
} else {
1350
nqueue = PQ_LAUNDRY;
1351
ps_delta = 1;
1352
}
1353
1354
new.flags &= ~PGA_QUEUE_OP_MASK;
1355
new.flags |= PGA_REQUEUE;
1356
new.queue = nqueue;
1357
}
1358
} while (!vm_page_pqstate_commit(m, &old, new));
1359
1360
page_shortage -= ps_delta;
1361
}
1362
vm_pagequeue_lock(pq);
1363
TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1364
TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1365
vm_pageout_end_scan(&ss);
1366
vm_pagequeue_unlock(pq);
1367
}
1368
1369
static int
1370
vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1371
vm_page_t m)
1372
{
1373
vm_page_astate_t as;
1374
1375
vm_pagequeue_assert_locked(pq);
1376
1377
as = vm_page_astate_load(m);
1378
if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1379
return (0);
1380
vm_page_aflag_set(m, PGA_ENQUEUED);
1381
TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1382
return (1);
1383
}
1384
1385
/*
1386
* Re-add stuck pages to the inactive queue. We will examine them again
1387
* during the next scan. If the queue state of a page has changed since
1388
* it was physically removed from the page queue in
1389
* vm_pageout_collect_batch(), don't do anything with that page.
1390
*/
1391
static void
1392
vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1393
vm_page_t m)
1394
{
1395
struct vm_pagequeue *pq;
1396
vm_page_t marker;
1397
int delta;
1398
1399
delta = 0;
1400
marker = ss->marker;
1401
pq = ss->pq;
1402
1403
if (m != NULL) {
1404
if (vm_batchqueue_insert(bq, m) != 0)
1405
return;
1406
vm_pagequeue_lock(pq);
1407
delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1408
} else
1409
vm_pagequeue_lock(pq);
1410
while ((m = vm_batchqueue_pop(bq)) != NULL)
1411
delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1412
vm_pagequeue_cnt_add(pq, delta);
1413
vm_pagequeue_unlock(pq);
1414
vm_batchqueue_init(bq);
1415
}
1416
1417
static void
1418
vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
1419
{
1420
struct timeval start, end;
1421
struct scan_state ss;
1422
struct vm_batchqueue rq;
1423
struct vm_page marker_page;
1424
vm_page_t m, marker;
1425
struct vm_pagequeue *pq;
1426
vm_object_t object;
1427
vm_page_astate_t old, new;
1428
int act_delta, addl_page_shortage, dirty_count, dirty_thresh;
1429
int starting_page_shortage, refs;
1430
1431
object = NULL;
1432
vm_batchqueue_init(&rq);
1433
getmicrouptime(&start);
1434
1435
/*
1436
* The addl_page_shortage is an estimate of the number of temporarily
1437
* stuck pages in the inactive queue. In other words, the
1438
* number of pages from the inactive count that should be
1439
* discounted in setting the target for the active queue scan.
1440
*/
1441
addl_page_shortage = 0;
1442
1443
/*
1444
* dirty_count is the number of pages encountered that require
1445
* laundering before reclamation is possible. If we encounter a large
1446
* number of dirty pages, we may abort the scan without meeting the page
1447
* shortage in the hope that laundering will allow a future scan to meet
1448
* the target.
1449
*/
1450
dirty_count = 0;
1451
dirty_thresh = inact_scan_laundry_weight * page_shortage;
1452
if (dirty_thresh == 0)
1453
dirty_thresh = INT_MAX;
1454
1455
/*
1456
* Start scanning the inactive queue for pages that we can free. The
1457
* scan will stop when we reach the target or we have scanned the
1458
* entire queue. (Note that m->a.act_count is not used to make
1459
* decisions for the inactive queue, only for the active queue.)
1460
*/
1461
starting_page_shortage = page_shortage;
1462
marker = &marker_page;
1463
vm_page_init_marker(marker, PQ_INACTIVE, 0);
1464
pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1465
vm_pagequeue_lock(pq);
1466
vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1467
while (page_shortage > 0 && dirty_count < dirty_thresh) {
1468
/*
1469
* If we need to refill the scan batch queue, release any
1470
* optimistically held object lock. This gives someone else a
1471
* chance to grab the lock, and also avoids holding it while we
1472
* do unrelated work.
1473
*/
1474
if (object != NULL && vm_batchqueue_empty(&ss.bq)) {
1475
VM_OBJECT_WUNLOCK(object);
1476
object = NULL;
1477
}
1478
1479
m = vm_pageout_next(&ss, true);
1480
if (m == NULL)
1481
break;
1482
KASSERT((m->flags & PG_MARKER) == 0,
1483
("marker page %p was dequeued", m));
1484
1485
/*
1486
* Don't touch a page that was removed from the queue after the
1487
* page queue lock was released. Otherwise, ensure that any
1488
* pending queue operations, such as dequeues for wired pages,
1489
* are handled.
1490
*/
1491
if (vm_pageout_defer(m, PQ_INACTIVE, false))
1492
continue;
1493
1494
/*
1495
* Lock the page's object.
1496
*/
1497
if (object == NULL || object != m->object) {
1498
if (object != NULL)
1499
VM_OBJECT_WUNLOCK(object);
1500
object = atomic_load_ptr(&m->object);
1501
if (__predict_false(object == NULL))
1502
/* The page is being freed by another thread. */
1503
continue;
1504
1505
/* Depends on type-stability. */
1506
VM_OBJECT_WLOCK(object);
1507
if (__predict_false(m->object != object)) {
1508
VM_OBJECT_WUNLOCK(object);
1509
object = NULL;
1510
goto reinsert;
1511
}
1512
}
1513
1514
if (vm_page_tryxbusy(m) == 0) {
1515
/*
1516
* Don't mess with busy pages. Leave them at
1517
* the front of the queue. Most likely, they
1518
* are being paged out and will leave the
1519
* queue shortly after the scan finishes. So,
1520
* they ought to be discounted from the
1521
* inactive count.
1522
*/
1523
addl_page_shortage++;
1524
goto reinsert;
1525
}
1526
1527
/* Deferred free of swap space. */
1528
if ((m->a.flags & PGA_SWAP_FREE) != 0)
1529
vm_pager_page_unswapped(m);
1530
1531
/*
1532
* Check for wirings now that we hold the object lock and have
1533
* exclusively busied the page. If the page is mapped, it may
1534
* still be wired by pmap lookups. The call to
1535
* vm_page_try_remove_all() below atomically checks for such
1536
* wirings and removes mappings. If the page is unmapped, the
1537
* wire count is guaranteed not to increase after this check.
1538
*/
1539
if (__predict_false(vm_page_wired(m)))
1540
goto skip_page;
1541
1542
/*
1543
* Invalid pages can be easily freed. They cannot be
1544
* mapped, vm_page_free() asserts this.
1545
*/
1546
if (vm_page_none_valid(m))
1547
goto free_page;
1548
1549
refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1550
1551
for (old = vm_page_astate_load(m);;) {
1552
/*
1553
* Check to see if the page has been removed from the
1554
* queue since the first such check. Leave it alone if
1555
* so, discarding any references collected by
1556
* pmap_ts_referenced().
1557
*/
1558
if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1559
goto skip_page;
1560
1561
new = old;
1562
act_delta = refs;
1563
if ((old.flags & PGA_REFERENCED) != 0) {
1564
new.flags &= ~PGA_REFERENCED;
1565
act_delta++;
1566
}
1567
if (act_delta == 0) {
1568
;
1569
} else if (object->ref_count != 0) {
1570
/*
1571
* Increase the activation count if the
1572
* page was referenced while in the
1573
* inactive queue. This makes it less
1574
* likely that the page will be returned
1575
* prematurely to the inactive queue.
1576
*/
1577
new.act_count += ACT_ADVANCE +
1578
act_delta;
1579
if (new.act_count > ACT_MAX)
1580
new.act_count = ACT_MAX;
1581
1582
new.flags &= ~PGA_QUEUE_OP_MASK;
1583
new.flags |= PGA_REQUEUE;
1584
new.queue = PQ_ACTIVE;
1585
if (!vm_page_pqstate_commit(m, &old, new))
1586
continue;
1587
1588
VM_CNT_INC(v_reactivated);
1589
goto skip_page;
1590
} else if ((object->flags & OBJ_DEAD) == 0) {
1591
new.queue = PQ_INACTIVE;
1592
new.flags |= PGA_REQUEUE;
1593
if (!vm_page_pqstate_commit(m, &old, new))
1594
continue;
1595
goto skip_page;
1596
}
1597
break;
1598
}
1599
1600
/*
1601
* If the page appears to be clean at the machine-independent
1602
* layer, then remove all of its mappings from the pmap in
1603
* anticipation of freeing it. If, however, any of the page's
1604
* mappings allow write access, then the page may still be
1605
* modified until the last of those mappings are removed.
1606
*/
1607
if (object->ref_count != 0) {
1608
vm_page_test_dirty(m);
1609
if (m->dirty == 0 && !vm_page_try_remove_all(m))
1610
goto skip_page;
1611
}
1612
1613
/*
1614
* Clean pages can be freed, but dirty pages must be sent back
1615
* to the laundry, unless they belong to a dead object.
1616
* Requeueing dirty pages from dead objects is pointless, as
1617
* they are being paged out and freed by the thread that
1618
* destroyed the object.
1619
*/
1620
if (m->dirty == 0) {
1621
free_page:
1622
/*
1623
* Now we are guaranteed that no other threads are
1624
* manipulating the page, check for a last-second
1625
* reference that would save it from doom.
1626
*/
1627
if (vm_pageout_defer(m, PQ_INACTIVE, false))
1628
goto skip_page;
1629
1630
/*
1631
* Because we dequeued the page and have already checked
1632
* for pending dequeue and enqueue requests, we can
1633
* safely disassociate the page from the inactive queue
1634
* without holding the queue lock.
1635
*/
1636
m->a.queue = PQ_NONE;
1637
vm_page_free(m);
1638
page_shortage--;
1639
continue;
1640
}
1641
if ((object->flags & OBJ_DEAD) == 0) {
1642
vm_page_launder(m);
1643
1644
/*
1645
* If the page would be paged out to a swap device, and
1646
* no devices are configured or they are all nearly
1647
* full, then don't count it against our threshold,
1648
* since it most likely can't be used to meet our
1649
* target.
1650
*/
1651
if ((object->flags & OBJ_SWAP) == 0 ||
1652
!atomic_load_bool(&swap_pager_almost_full))
1653
dirty_count++;
1654
}
1655
skip_page:
1656
vm_page_xunbusy(m);
1657
continue;
1658
reinsert:
1659
vm_pageout_reinsert_inactive(&ss, &rq, m);
1660
}
1661
if (object != NULL)
1662
VM_OBJECT_WUNLOCK(object);
1663
vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1664
vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1665
vm_pagequeue_lock(pq);
1666
vm_pageout_end_scan(&ss);
1667
vm_pagequeue_unlock(pq);
1668
1669
/*
1670
* Record the remaining shortage and the progress and rate it was made.
1671
*/
1672
atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
1673
getmicrouptime(&end);
1674
timevalsub(&end, &start);
1675
atomic_add_int(&vmd->vmd_inactive_us,
1676
end.tv_sec * 1000000 + end.tv_usec);
1677
atomic_add_int(&vmd->vmd_inactive_freed,
1678
starting_page_shortage - page_shortage);
1679
}
1680
1681
/*
1682
* Dispatch a number of inactive threads according to load and collect the
1683
* results to present a coherent view of paging activity on this domain.
1684
*/
1685
static int
1686
vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
1687
{
1688
u_int freed, pps, slop, threads, us;
1689
1690
vmd->vmd_inactive_shortage = shortage;
1691
slop = 0;
1692
1693
/*
1694
* If we have more work than we can do in a quarter of our interval, we
1695
* fire off multiple threads to process it.
1696
*/
1697
if ((threads = vmd->vmd_inactive_threads) > 1 &&
1698
vmd->vmd_helper_threads_enabled &&
1699
vmd->vmd_inactive_pps != 0 &&
1700
shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
1701
vmd->vmd_inactive_shortage /= threads;
1702
slop = shortage % threads;
1703
vm_domain_pageout_lock(vmd);
1704
blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
1705
blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
1706
wakeup(&vmd->vmd_inactive_shortage);
1707
vm_domain_pageout_unlock(vmd);
1708
}
1709
1710
/* Run the local thread scan. */
1711
vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop);
1712
1713
/*
1714
* Block until helper threads report results and then accumulate
1715
* totals.
1716
*/
1717
blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
1718
freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
1719
VM_CNT_ADD(v_dfree, freed);
1720
1721
/*
1722
* Calculate the per-thread paging rate with an exponential decay of
1723
* prior results. Careful to avoid integer rounding errors with large
1724
* us values.
1725
*/
1726
us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
1727
if (us > 1000000)
1728
/* Keep rounding to tenths */
1729
pps = (freed * 10) / ((us * 10) / 1000000);
1730
else
1731
pps = (1000000 / us) * freed;
1732
vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
1733
1734
return (shortage - freed);
1735
}
1736
1737
/*
1738
* Attempt to reclaim the requested number of pages from the inactive queue.
1739
* Returns true if the shortage was addressed.
1740
*/
1741
static int
1742
vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
1743
{
1744
struct vm_pagequeue *pq;
1745
u_int addl_page_shortage, deficit, page_shortage;
1746
u_int starting_page_shortage;
1747
1748
/*
1749
* vmd_pageout_deficit counts the number of pages requested in
1750
* allocations that failed because of a free page shortage. We assume
1751
* that the allocations will be reattempted and thus include the deficit
1752
* in our scan target.
1753
*/
1754
deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1755
starting_page_shortage = shortage + deficit;
1756
1757
/*
1758
* Run the inactive scan on as many threads as is necessary.
1759
*/
1760
page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
1761
addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
1762
1763
/*
1764
* Wake up the laundry thread so that it can perform any needed
1765
* laundering. If we didn't meet our target, we're in shortfall and
1766
* need to launder more aggressively. If PQ_LAUNDRY is empty and no
1767
* swap devices are configured, the laundry thread has no work to do, so
1768
* don't bother waking it up.
1769
*
1770
* The laundry thread uses the number of inactive queue scans elapsed
1771
* since the last laundering to determine whether to launder again, so
1772
* keep count.
1773
*/
1774
if (starting_page_shortage > 0) {
1775
pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1776
vm_pagequeue_lock(pq);
1777
if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1778
(pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1779
if (page_shortage > 0) {
1780
vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1781
VM_CNT_INC(v_pdshortfalls);
1782
} else if (vmd->vmd_laundry_request !=
1783
VM_LAUNDRY_SHORTFALL)
1784
vmd->vmd_laundry_request =
1785
VM_LAUNDRY_BACKGROUND;
1786
wakeup(&vmd->vmd_laundry_request);
1787
}
1788
vmd->vmd_clean_pages_freed +=
1789
starting_page_shortage - page_shortage;
1790
vm_pagequeue_unlock(pq);
1791
}
1792
1793
/*
1794
* If the inactive queue scan fails repeatedly to meet its
1795
* target, kill the largest process.
1796
*/
1797
vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1798
1799
/*
1800
* See the description of addl_page_shortage above.
1801
*/
1802
*addl_shortage = addl_page_shortage + deficit;
1803
1804
return (page_shortage <= 0);
1805
}
1806
1807
static int vm_pageout_oom_vote;
1808
1809
/*
1810
* The pagedaemon threads randlomly select one to perform the
1811
* OOM. Trying to kill processes before all pagedaemons
1812
* failed to reach free target is premature.
1813
*/
1814
static void
1815
vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1816
int starting_page_shortage)
1817
{
1818
int old_vote;
1819
1820
/*
1821
* Do not trigger an OOM kill if the page daemon is able to make
1822
* progress, or if there is no instantaneous shortage. The latter case
1823
* can happen if the PID controller is still reacting to an acute
1824
* shortage, and the inactive queue is full of dirty pages.
1825
*/
1826
if (starting_page_shortage <= 0 || starting_page_shortage !=
1827
page_shortage || !vm_paging_needed(vmd, vmd->vmd_free_count))
1828
vmd->vmd_oom_seq = 0;
1829
else
1830
vmd->vmd_oom_seq++;
1831
if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1832
if (vmd->vmd_oom) {
1833
vmd->vmd_oom = false;
1834
atomic_subtract_int(&vm_pageout_oom_vote, 1);
1835
}
1836
return;
1837
}
1838
1839
/*
1840
* Do not follow the call sequence until OOM condition is
1841
* cleared.
1842
*/
1843
vmd->vmd_oom_seq = 0;
1844
1845
if (vmd->vmd_oom)
1846
return;
1847
1848
vmd->vmd_oom = true;
1849
old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1850
if (old_vote != vm_ndomains - 1)
1851
return;
1852
1853
/*
1854
* The current pagedaemon thread is the last in the quorum to
1855
* start OOM. Initiate the selection and signaling of the
1856
* victim.
1857
*/
1858
vm_pageout_oom(VM_OOM_MEM);
1859
1860
/*
1861
* After one round of OOM terror, recall our vote. On the
1862
* next pass, current pagedaemon would vote again if the low
1863
* memory condition is still there, due to vmd_oom being
1864
* false.
1865
*/
1866
vmd->vmd_oom = false;
1867
atomic_subtract_int(&vm_pageout_oom_vote, 1);
1868
}
1869
1870
/*
1871
* The OOM killer is the page daemon's action of last resort when
1872
* memory allocation requests have been stalled for a prolonged period
1873
* of time because it cannot reclaim memory. This function computes
1874
* the approximate number of physical pages that could be reclaimed if
1875
* the specified address space is destroyed.
1876
*
1877
* Private, anonymous memory owned by the address space is the
1878
* principal resource that we expect to recover after an OOM kill.
1879
* Since the physical pages mapped by the address space's COW entries
1880
* are typically shared pages, they are unlikely to be released and so
1881
* they are not counted.
1882
*
1883
* To get to the point where the page daemon runs the OOM killer, its
1884
* efforts to write-back vnode-backed pages may have stalled. This
1885
* could be caused by a memory allocation deadlock in the write path
1886
* that might be resolved by an OOM kill. Therefore, physical pages
1887
* belonging to vnode-backed objects are counted, because they might
1888
* be freed without being written out first if the address space holds
1889
* the last reference to an unlinked vnode.
1890
*
1891
* Similarly, physical pages belonging to OBJT_PHYS objects are
1892
* counted because the address space might hold the last reference to
1893
* the object.
1894
*/
1895
static long
1896
vm_pageout_oom_pagecount(struct vmspace *vmspace)
1897
{
1898
vm_map_t map;
1899
vm_map_entry_t entry;
1900
vm_object_t obj;
1901
long res;
1902
1903
map = &vmspace->vm_map;
1904
KASSERT(!vm_map_is_system(map), ("system map"));
1905
sx_assert(&map->lock, SA_LOCKED);
1906
res = 0;
1907
VM_MAP_ENTRY_FOREACH(entry, map) {
1908
if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1909
continue;
1910
obj = entry->object.vm_object;
1911
if (obj == NULL)
1912
continue;
1913
if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1914
obj->ref_count != 1)
1915
continue;
1916
if (obj->type == OBJT_PHYS || obj->type == OBJT_VNODE ||
1917
(obj->flags & OBJ_SWAP) != 0)
1918
res += obj->resident_page_count;
1919
}
1920
return (res);
1921
}
1922
1923
static int vm_oom_ratelim_last;
1924
static int vm_oom_pf_secs = 10;
1925
SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1926
"");
1927
static struct mtx vm_oom_ratelim_mtx;
1928
1929
void
1930
vm_pageout_oom(int shortage)
1931
{
1932
const char *reason;
1933
struct proc *p, *bigproc;
1934
vm_offset_t size, bigsize;
1935
struct thread *td;
1936
struct vmspace *vm;
1937
int now;
1938
bool breakout;
1939
1940
/*
1941
* For OOM requests originating from vm_fault(), there is a high
1942
* chance that a single large process faults simultaneously in
1943
* several threads. Also, on an active system running many
1944
* processes of middle-size, like buildworld, all of them
1945
* could fault almost simultaneously as well.
1946
*
1947
* To avoid killing too many processes, rate-limit OOMs
1948
* initiated by vm_fault() time-outs on the waits for free
1949
* pages.
1950
*/
1951
mtx_lock(&vm_oom_ratelim_mtx);
1952
now = ticks;
1953
if (shortage == VM_OOM_MEM_PF &&
1954
(u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1955
mtx_unlock(&vm_oom_ratelim_mtx);
1956
return;
1957
}
1958
vm_oom_ratelim_last = now;
1959
mtx_unlock(&vm_oom_ratelim_mtx);
1960
1961
/*
1962
* We keep the process bigproc locked once we find it to keep anyone
1963
* from messing with it; however, there is a possibility of
1964
* deadlock if process B is bigproc and one of its child processes
1965
* attempts to propagate a signal to B while we are waiting for A's
1966
* lock while walking this list. To avoid this, we don't block on
1967
* the process lock but just skip a process if it is already locked.
1968
*/
1969
bigproc = NULL;
1970
bigsize = 0;
1971
sx_slock(&allproc_lock);
1972
FOREACH_PROC_IN_SYSTEM(p) {
1973
PROC_LOCK(p);
1974
1975
/*
1976
* If this is a system, protected or killed process, skip it.
1977
*/
1978
if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1979
P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1980
p->p_pid == 1 || P_KILLED(p) ||
1981
(p->p_pid < 48 && swap_pager_avail != 0)) {
1982
PROC_UNLOCK(p);
1983
continue;
1984
}
1985
/*
1986
* If the process is in a non-running type state,
1987
* don't touch it. Check all the threads individually.
1988
*/
1989
breakout = false;
1990
FOREACH_THREAD_IN_PROC(p, td) {
1991
thread_lock(td);
1992
if (!TD_ON_RUNQ(td) &&
1993
!TD_IS_RUNNING(td) &&
1994
!TD_IS_SLEEPING(td) &&
1995
!TD_IS_SUSPENDED(td)) {
1996
thread_unlock(td);
1997
breakout = true;
1998
break;
1999
}
2000
thread_unlock(td);
2001
}
2002
if (breakout) {
2003
PROC_UNLOCK(p);
2004
continue;
2005
}
2006
/*
2007
* get the process size
2008
*/
2009
vm = vmspace_acquire_ref(p);
2010
if (vm == NULL) {
2011
PROC_UNLOCK(p);
2012
continue;
2013
}
2014
_PHOLD(p);
2015
PROC_UNLOCK(p);
2016
sx_sunlock(&allproc_lock);
2017
if (!vm_map_trylock_read(&vm->vm_map)) {
2018
vmspace_free(vm);
2019
sx_slock(&allproc_lock);
2020
PRELE(p);
2021
continue;
2022
}
2023
size = vmspace_swap_count(vm);
2024
if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
2025
size += vm_pageout_oom_pagecount(vm);
2026
vm_map_unlock_read(&vm->vm_map);
2027
vmspace_free(vm);
2028
sx_slock(&allproc_lock);
2029
2030
/*
2031
* If this process is bigger than the biggest one,
2032
* remember it.
2033
*/
2034
if (size > bigsize) {
2035
if (bigproc != NULL)
2036
PRELE(bigproc);
2037
bigproc = p;
2038
bigsize = size;
2039
} else {
2040
PRELE(p);
2041
}
2042
}
2043
sx_sunlock(&allproc_lock);
2044
2045
if (bigproc != NULL) {
2046
switch (shortage) {
2047
case VM_OOM_MEM:
2048
reason = "failed to reclaim memory";
2049
break;
2050
case VM_OOM_MEM_PF:
2051
reason = "a thread waited too long to allocate a page";
2052
break;
2053
case VM_OOM_SWAPZ:
2054
reason = "out of swap space";
2055
break;
2056
default:
2057
panic("unknown OOM reason %d", shortage);
2058
}
2059
if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
2060
panic("%s", reason);
2061
PROC_LOCK(bigproc);
2062
killproc(bigproc, reason);
2063
sched_nice(bigproc, PRIO_MIN);
2064
_PRELE(bigproc);
2065
PROC_UNLOCK(bigproc);
2066
}
2067
}
2068
2069
/*
2070
* Signal a free page shortage to subsystems that have registered an event
2071
* handler. Reclaim memory from UMA in the event of a severe shortage.
2072
* Return true if the free page count should be re-evaluated.
2073
*/
2074
static bool
2075
vm_pageout_lowmem(void)
2076
{
2077
static int lowmem_ticks = 0;
2078
int last;
2079
bool ret;
2080
2081
ret = false;
2082
2083
last = atomic_load_int(&lowmem_ticks);
2084
while ((u_int)(ticks - last) / hz >= lowmem_period) {
2085
if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
2086
continue;
2087
2088
/*
2089
* Decrease registered cache sizes.
2090
*/
2091
SDT_PROBE0(vm, , , vm__lowmem_scan);
2092
EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2093
2094
/*
2095
* We do this explicitly after the caches have been
2096
* drained above.
2097
*/
2098
uma_reclaim(UMA_RECLAIM_TRIM);
2099
ret = true;
2100
break;
2101
}
2102
2103
/*
2104
* Kick off an asynchronous reclaim of cached memory if one of the
2105
* page daemons is failing to keep up with demand. Use the "severe"
2106
* threshold instead of "min" to ensure that we do not blow away the
2107
* caches if a subset of the NUMA domains are depleted by kernel memory
2108
* allocations; the domainset iterators automatically skip domains
2109
* below the "min" threshold on the first pass.
2110
*
2111
* UMA reclaim worker has its own rate-limiting mechanism, so don't
2112
* worry about kicking it too often.
2113
*/
2114
if (vm_page_count_severe())
2115
uma_reclaim_wakeup();
2116
2117
return (ret);
2118
}
2119
2120
static void
2121
vm_pageout_worker(void *arg)
2122
{
2123
struct vm_domain *vmd;
2124
u_int ofree;
2125
int addl_shortage, domain, shortage;
2126
bool target_met;
2127
2128
domain = (uintptr_t)arg;
2129
vmd = VM_DOMAIN(domain);
2130
shortage = 0;
2131
target_met = true;
2132
2133
/*
2134
* XXXKIB It could be useful to bind pageout daemon threads to
2135
* the cores belonging to the domain, from which vm_page_array
2136
* is allocated.
2137
*/
2138
2139
KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2140
vmd->vmd_last_active_scan = ticks;
2141
2142
/*
2143
* The pageout daemon worker is never done, so loop forever.
2144
*/
2145
while (TRUE) {
2146
vm_domain_pageout_lock(vmd);
2147
2148
/*
2149
* We need to clear wanted before we check the limits. This
2150
* prevents races with wakers who will check wanted after they
2151
* reach the limit.
2152
*/
2153
atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2154
2155
/*
2156
* Might the page daemon need to run again?
2157
*/
2158
if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2159
/*
2160
* Yes. If the scan failed to produce enough free
2161
* pages, sleep uninterruptibly for some time in the
2162
* hope that the laundry thread will clean some pages.
2163
*/
2164
vm_domain_pageout_unlock(vmd);
2165
if (!target_met)
2166
pause("pwait", hz / VM_INACT_SCAN_RATE);
2167
} else {
2168
/*
2169
* No, sleep until the next wakeup or until pages
2170
* need to have their reference stats updated.
2171
*/
2172
if (mtx_sleep(&vmd->vmd_pageout_wanted,
2173
vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2174
"psleep", hz / VM_INACT_SCAN_RATE) == 0)
2175
VM_CNT_INC(v_pdwakeups);
2176
}
2177
2178
/* Prevent spurious wakeups by ensuring that wanted is set. */
2179
atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2180
2181
/*
2182
* Use the controller to calculate how many pages to free in
2183
* this interval, and scan the inactive queue. If the lowmem
2184
* handlers appear to have freed up some pages, subtract the
2185
* difference from the inactive queue scan target.
2186
*/
2187
shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2188
if (shortage > 0) {
2189
ofree = vmd->vmd_free_count;
2190
if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2191
shortage -= min(vmd->vmd_free_count - ofree,
2192
(u_int)shortage);
2193
target_met = vm_pageout_inactive(vmd, shortage,
2194
&addl_shortage);
2195
} else
2196
addl_shortage = 0;
2197
2198
/*
2199
* Scan the active queue. A positive value for shortage
2200
* indicates that we must aggressively deactivate pages to avoid
2201
* a shortfall.
2202
*/
2203
shortage = vm_pageout_active_target(vmd) + addl_shortage;
2204
vm_pageout_scan_active(vmd, shortage);
2205
}
2206
}
2207
2208
/*
2209
* vm_pageout_helper runs additional pageout daemons in times of high paging
2210
* activity.
2211
*/
2212
static void
2213
vm_pageout_helper(void *arg)
2214
{
2215
struct vm_domain *vmd;
2216
int domain;
2217
2218
domain = (uintptr_t)arg;
2219
vmd = VM_DOMAIN(domain);
2220
2221
vm_domain_pageout_lock(vmd);
2222
for (;;) {
2223
msleep(&vmd->vmd_inactive_shortage,
2224
vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
2225
blockcount_release(&vmd->vmd_inactive_starting, 1);
2226
2227
vm_domain_pageout_unlock(vmd);
2228
vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
2229
vm_domain_pageout_lock(vmd);
2230
2231
/*
2232
* Release the running count while the pageout lock is held to
2233
* prevent wakeup races.
2234
*/
2235
blockcount_release(&vmd->vmd_inactive_running, 1);
2236
}
2237
}
2238
2239
static int
2240
get_pageout_threads_per_domain(const struct vm_domain *vmd)
2241
{
2242
unsigned total_pageout_threads, eligible_cpus, domain_cpus;
2243
2244
if (VM_DOMAIN_EMPTY(vmd->vmd_domain))
2245
return (0);
2246
2247
/*
2248
* Semi-arbitrarily constrain pagedaemon threads to less than half the
2249
* total number of CPUs in the system as an upper limit.
2250
*/
2251
if (pageout_cpus_per_thread < 2)
2252
pageout_cpus_per_thread = 2;
2253
else if (pageout_cpus_per_thread > mp_ncpus)
2254
pageout_cpus_per_thread = mp_ncpus;
2255
2256
total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread);
2257
domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]);
2258
2259
/* Pagedaemons are not run in empty domains. */
2260
eligible_cpus = mp_ncpus;
2261
for (unsigned i = 0; i < vm_ndomains; i++)
2262
if (VM_DOMAIN_EMPTY(i))
2263
eligible_cpus -= CPU_COUNT(&cpuset_domain[i]);
2264
2265
/*
2266
* Assign a portion of the total pageout threads to this domain
2267
* corresponding to the fraction of pagedaemon-eligible CPUs in the
2268
* domain. In asymmetric NUMA systems, domains with more CPUs may be
2269
* allocated more threads than domains with fewer CPUs.
2270
*/
2271
return (howmany(total_pageout_threads * domain_cpus, eligible_cpus));
2272
}
2273
2274
/*
2275
* Initialize basic pageout daemon settings. See the comment above the
2276
* definition of vm_domain for some explanation of how these thresholds are
2277
* used.
2278
*/
2279
static void
2280
vm_pageout_init_domain(int domain)
2281
{
2282
struct vm_domain *vmd;
2283
struct sysctl_oid *oid;
2284
2285
vmd = VM_DOMAIN(domain);
2286
vmd->vmd_interrupt_free_min = 2;
2287
2288
/*
2289
* v_free_reserved needs to include enough for the largest
2290
* swap pager structures plus enough for any pv_entry structs
2291
* when paging.
2292
*/
2293
vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2294
vmd->vmd_interrupt_free_min;
2295
vmd->vmd_free_reserved = vm_pageout_page_count +
2296
vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2297
vmd->vmd_free_min = vmd->vmd_page_count / 200;
2298
vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2299
vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2300
vmd->vmd_free_min += vmd->vmd_free_reserved;
2301
vmd->vmd_free_severe += vmd->vmd_free_reserved;
2302
vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2303
if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2304
vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2305
2306
/*
2307
* Set the default wakeup threshold to be 10% below the paging
2308
* target. This keeps the steady state out of shortfall.
2309
*/
2310
vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2311
2312
/*
2313
* Target amount of memory to move out of the laundry queue during a
2314
* background laundering. This is proportional to the amount of system
2315
* memory.
2316
*/
2317
vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2318
vmd->vmd_free_min) / 10;
2319
2320
/* Initialize the pageout daemon pid controller. */
2321
pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2322
vmd->vmd_free_target, PIDCTRL_BOUND,
2323
PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2324
oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2325
"pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2326
pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2327
2328
vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd);
2329
SYSCTL_ADD_BOOL(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2330
"pageout_helper_threads_enabled", CTLFLAG_RWTUN,
2331
&vmd->vmd_helper_threads_enabled, 0,
2332
"Enable multi-threaded inactive queue scanning");
2333
}
2334
2335
static void
2336
vm_pageout_init(void)
2337
{
2338
u_long freecount;
2339
int i;
2340
2341
/*
2342
* Initialize some paging parameters.
2343
*/
2344
freecount = 0;
2345
for (i = 0; i < vm_ndomains; i++) {
2346
struct vm_domain *vmd;
2347
2348
vm_pageout_init_domain(i);
2349
vmd = VM_DOMAIN(i);
2350
vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2351
vm_cnt.v_free_target += vmd->vmd_free_target;
2352
vm_cnt.v_free_min += vmd->vmd_free_min;
2353
vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2354
vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2355
vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2356
vm_cnt.v_free_severe += vmd->vmd_free_severe;
2357
freecount += vmd->vmd_free_count;
2358
}
2359
2360
/*
2361
* Set interval in seconds for active scan. We want to visit each
2362
* page at least once every ten minutes. This is to prevent worst
2363
* case paging behaviors with stale active LRU.
2364
*/
2365
if (vm_pageout_update_period == 0)
2366
vm_pageout_update_period = 600;
2367
2368
/*
2369
* Set the maximum number of user-wired virtual pages. Historically the
2370
* main source of such pages was mlock(2) and mlockall(2). Hypervisors
2371
* may also request user-wired memory.
2372
*/
2373
if (vm_page_max_user_wired == 0)
2374
vm_page_max_user_wired = 4 * freecount / 5;
2375
}
2376
2377
/*
2378
* vm_pageout is the high level pageout daemon.
2379
*/
2380
static void
2381
vm_pageout(void)
2382
{
2383
struct proc *p;
2384
struct thread *td;
2385
int error, first, i, j, pageout_threads;
2386
2387
p = curproc;
2388
td = curthread;
2389
2390
mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2391
swap_pager_swap_init();
2392
for (first = -1, i = 0; i < vm_ndomains; i++) {
2393
if (VM_DOMAIN_EMPTY(i)) {
2394
if (bootverbose)
2395
printf("domain %d empty; skipping pageout\n",
2396
i);
2397
continue;
2398
}
2399
if (first == -1)
2400
first = i;
2401
else {
2402
error = kthread_add(vm_pageout_worker,
2403
(void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2404
if (error != 0)
2405
panic("starting pageout for domain %d: %d\n",
2406
i, error);
2407
}
2408
pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads;
2409
for (j = 0; j < pageout_threads - 1; j++) {
2410
error = kthread_add(vm_pageout_helper,
2411
(void *)(uintptr_t)i, p, NULL, 0, 0,
2412
"dom%d helper%d", i, j);
2413
if (error != 0)
2414
panic("starting pageout helper %d for domain "
2415
"%d: %d\n", j, i, error);
2416
}
2417
error = kthread_add(vm_pageout_laundry_worker,
2418
(void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2419
if (error != 0)
2420
panic("starting laundry for domain %d: %d", i, error);
2421
}
2422
error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2423
if (error != 0)
2424
panic("starting uma_reclaim helper, error %d\n", error);
2425
2426
snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2427
vm_pageout_worker((void *)(uintptr_t)first);
2428
}
2429
2430
/*
2431
* Perform an advisory wakeup of the page daemon.
2432
*/
2433
void
2434
pagedaemon_wakeup(int domain)
2435
{
2436
struct vm_domain *vmd;
2437
2438
vmd = VM_DOMAIN(domain);
2439
vm_domain_pageout_assert_unlocked(vmd);
2440
if (curproc == pageproc)
2441
return;
2442
2443
if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2444
vm_domain_pageout_lock(vmd);
2445
atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2446
wakeup(&vmd->vmd_pageout_wanted);
2447
vm_domain_pageout_unlock(vmd);
2448
}
2449
}
2450
2451