Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/vm/vm_phys.c
39476 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2002-2006 Rice University
5
* Copyright (c) 2007 Alan L. Cox <[email protected]>
6
* All rights reserved.
7
*
8
* This software was developed for the FreeBSD Project by Alan L. Cox,
9
* Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10
*
11
* Redistribution and use in source and binary forms, with or without
12
* modification, are permitted provided that the following conditions
13
* are met:
14
* 1. Redistributions of source code must retain the above copyright
15
* notice, this list of conditions and the following disclaimer.
16
* 2. Redistributions in binary form must reproduce the above copyright
17
* notice, this list of conditions and the following disclaimer in the
18
* documentation and/or other materials provided with the distribution.
19
*
20
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31
* POSSIBILITY OF SUCH DAMAGE.
32
*/
33
34
/*
35
* Physical memory system implementation
36
*
37
* Any external functions defined by this module are only to be used by the
38
* virtual memory system.
39
*/
40
41
#include <sys/cdefs.h>
42
#include "opt_ddb.h"
43
#include "opt_vm.h"
44
45
#include <sys/param.h>
46
#include <sys/systm.h>
47
#include <sys/domainset.h>
48
#include <sys/lock.h>
49
#include <sys/kernel.h>
50
#include <sys/kthread.h>
51
#include <sys/malloc.h>
52
#include <sys/mutex.h>
53
#include <sys/proc.h>
54
#include <sys/queue.h>
55
#include <sys/rwlock.h>
56
#include <sys/sbuf.h>
57
#include <sys/sched.h>
58
#include <sys/sysctl.h>
59
#include <sys/tree.h>
60
#include <sys/tslog.h>
61
#include <sys/unistd.h>
62
#include <sys/vmmeter.h>
63
64
#include <ddb/ddb.h>
65
66
#include <vm/vm.h>
67
#include <vm/vm_extern.h>
68
#include <vm/vm_param.h>
69
#include <vm/vm_kern.h>
70
#include <vm/vm_page.h>
71
#include <vm/vm_phys.h>
72
#include <vm/vm_pagequeue.h>
73
74
_Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
75
"Too many physsegs.");
76
_Static_assert(sizeof(long long) >= sizeof(vm_paddr_t),
77
"vm_paddr_t too big for ffsll, flsll.");
78
79
#ifdef NUMA
80
struct mem_affinity __read_mostly *mem_affinity;
81
int __read_mostly *mem_locality;
82
83
static int numa_disabled;
84
static SYSCTL_NODE(_vm, OID_AUTO, numa, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
85
"NUMA options");
86
SYSCTL_INT(_vm_numa, OID_AUTO, disabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
87
&numa_disabled, 0, "NUMA-awareness in the allocators is disabled");
88
#endif
89
90
int __read_mostly vm_ndomains = 1;
91
domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1);
92
93
struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
94
int __read_mostly vm_phys_nsegs;
95
static struct vm_phys_seg vm_phys_early_segs[8];
96
static int vm_phys_early_nsegs;
97
98
struct vm_phys_fictitious_seg;
99
static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
100
struct vm_phys_fictitious_seg *);
101
102
RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
103
RB_INITIALIZER(&vm_phys_fictitious_tree);
104
105
struct vm_phys_fictitious_seg {
106
RB_ENTRY(vm_phys_fictitious_seg) node;
107
/* Memory region data */
108
vm_paddr_t start;
109
vm_paddr_t end;
110
vm_page_t first_page;
111
};
112
113
RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
114
vm_phys_fictitious_cmp);
115
116
static struct rwlock_padalign vm_phys_fictitious_reg_lock;
117
MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
118
119
static struct vm_freelist __aligned(CACHE_LINE_SIZE)
120
vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL]
121
[VM_NFREEORDER_MAX];
122
123
static int __read_mostly vm_nfreelists;
124
125
/*
126
* These "avail lists" are globals used to communicate boot-time physical
127
* memory layout to other parts of the kernel. Each physically contiguous
128
* region of memory is defined by a start address at an even index and an
129
* end address at the following odd index. Each list is terminated by a
130
* pair of zero entries.
131
*
132
* dump_avail tells the dump code what regions to include in a crash dump, and
133
* phys_avail is all of the remaining physical memory that is available for
134
* the vm system.
135
*
136
* Initially dump_avail and phys_avail are identical. Boot time memory
137
* allocations remove extents from phys_avail that may still be included
138
* in dumps.
139
*/
140
vm_paddr_t phys_avail[PHYS_AVAIL_COUNT];
141
vm_paddr_t dump_avail[PHYS_AVAIL_COUNT];
142
143
/*
144
* Provides the mapping from VM_FREELIST_* to free list indices (flind).
145
*/
146
static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
147
static int __read_mostly vm_default_freepool;
148
149
CTASSERT(VM_FREELIST_DEFAULT == 0);
150
151
#ifdef VM_FREELIST_DMA32
152
#define VM_DMA32_BOUNDARY ((vm_paddr_t)1 << 32)
153
#endif
154
155
/*
156
* Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
157
* the ordering of the free list boundaries.
158
*/
159
#if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
160
CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
161
#endif
162
163
static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
164
SYSCTL_OID(_vm, OID_AUTO, phys_free,
165
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
166
sysctl_vm_phys_free, "A",
167
"Phys Free Info");
168
169
static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
170
SYSCTL_OID(_vm, OID_AUTO, phys_segs,
171
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
172
sysctl_vm_phys_segs, "A",
173
"Phys Seg Info");
174
175
#ifdef NUMA
176
static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
177
SYSCTL_OID(_vm, OID_AUTO, phys_locality,
178
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
179
sysctl_vm_phys_locality, "A",
180
"Phys Locality Info");
181
#endif
182
183
SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
184
&vm_ndomains, 0, "Number of physical memory domains available.");
185
186
static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
187
static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
188
static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
189
int order, int pool, int tail);
190
191
static bool __diagused
192
vm_phys_pool_valid(int pool)
193
{
194
#ifdef VM_FREEPOOL_LAZYINIT
195
if (pool == VM_FREEPOOL_LAZYINIT)
196
return (false);
197
#endif
198
return (pool >= 0 && pool < VM_NFREEPOOL);
199
}
200
201
/*
202
* Red-black tree helpers for vm fictitious range management.
203
*/
204
static inline int
205
vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
206
struct vm_phys_fictitious_seg *range)
207
{
208
209
KASSERT(range->start != 0 && range->end != 0,
210
("Invalid range passed on search for vm_fictitious page"));
211
if (p->start >= range->end)
212
return (1);
213
if (p->start < range->start)
214
return (-1);
215
216
return (0);
217
}
218
219
static int
220
vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
221
struct vm_phys_fictitious_seg *p2)
222
{
223
224
/* Check if this is a search for a page */
225
if (p1->end == 0)
226
return (vm_phys_fictitious_in_range(p1, p2));
227
228
KASSERT(p2->end != 0,
229
("Invalid range passed as second parameter to vm fictitious comparison"));
230
231
/* Searching to add a new range */
232
if (p1->end <= p2->start)
233
return (-1);
234
if (p1->start >= p2->end)
235
return (1);
236
237
panic("Trying to add overlapping vm fictitious ranges:\n"
238
"[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
239
(uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
240
}
241
242
int
243
vm_phys_domain_match(int prefer __numa_used, vm_paddr_t low __numa_used,
244
vm_paddr_t high __numa_used)
245
{
246
#ifdef NUMA
247
domainset_t mask;
248
int i;
249
250
if (vm_ndomains == 1 || mem_affinity == NULL)
251
return (0);
252
253
DOMAINSET_ZERO(&mask);
254
/*
255
* Check for any memory that overlaps low, high.
256
*/
257
for (i = 0; mem_affinity[i].end != 0; i++)
258
if (mem_affinity[i].start <= high &&
259
mem_affinity[i].end >= low)
260
DOMAINSET_SET(mem_affinity[i].domain, &mask);
261
if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
262
return (prefer);
263
if (DOMAINSET_EMPTY(&mask))
264
panic("vm_phys_domain_match: Impossible constraint");
265
return (DOMAINSET_FFS(&mask) - 1);
266
#else
267
return (0);
268
#endif
269
}
270
271
/*
272
* Outputs the state of the physical memory allocator, specifically,
273
* the amount of physical memory in each free list.
274
*/
275
static int
276
sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
277
{
278
struct sbuf sbuf;
279
struct vm_freelist *fl;
280
int dom, error, flind, oind, pind;
281
282
error = sysctl_wire_old_buffer(req, 0);
283
if (error != 0)
284
return (error);
285
sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
286
for (dom = 0; dom < vm_ndomains; dom++) {
287
sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
288
for (flind = 0; flind < vm_nfreelists; flind++) {
289
sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
290
"\n ORDER (SIZE) | NUMBER"
291
"\n ", flind);
292
for (pind = 0; pind < VM_NFREEPOOL; pind++)
293
sbuf_printf(&sbuf, " | POOL %d", pind);
294
sbuf_printf(&sbuf, "\n-- ");
295
for (pind = 0; pind < VM_NFREEPOOL; pind++)
296
sbuf_printf(&sbuf, "-- -- ");
297
sbuf_printf(&sbuf, "--\n");
298
for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
299
sbuf_printf(&sbuf, " %2d (%6dK)", oind,
300
1 << (PAGE_SHIFT - 10 + oind));
301
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
302
fl = vm_phys_free_queues[dom][flind][pind];
303
sbuf_printf(&sbuf, " | %6d",
304
fl[oind].lcnt);
305
}
306
sbuf_printf(&sbuf, "\n");
307
}
308
}
309
}
310
error = sbuf_finish(&sbuf);
311
sbuf_delete(&sbuf);
312
return (error);
313
}
314
315
/*
316
* Outputs the set of physical memory segments.
317
*/
318
static int
319
sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
320
{
321
struct sbuf sbuf;
322
struct vm_phys_seg *seg;
323
int error, segind;
324
325
error = sysctl_wire_old_buffer(req, 0);
326
if (error != 0)
327
return (error);
328
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
329
for (segind = 0; segind < vm_phys_nsegs; segind++) {
330
sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
331
seg = &vm_phys_segs[segind];
332
sbuf_printf(&sbuf, "start: %#jx\n",
333
(uintmax_t)seg->start);
334
sbuf_printf(&sbuf, "end: %#jx\n",
335
(uintmax_t)seg->end);
336
sbuf_printf(&sbuf, "domain: %d\n", seg->domain);
337
sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
338
}
339
error = sbuf_finish(&sbuf);
340
sbuf_delete(&sbuf);
341
return (error);
342
}
343
344
/*
345
* Return affinity, or -1 if there's no affinity information.
346
*/
347
int
348
vm_phys_mem_affinity(int f __numa_used, int t __numa_used)
349
{
350
351
#ifdef NUMA
352
if (mem_locality == NULL)
353
return (-1);
354
if (f >= vm_ndomains || t >= vm_ndomains)
355
return (-1);
356
return (mem_locality[f * vm_ndomains + t]);
357
#else
358
return (-1);
359
#endif
360
}
361
362
#ifdef NUMA
363
/*
364
* Outputs the VM locality table.
365
*/
366
static int
367
sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
368
{
369
struct sbuf sbuf;
370
int error, i, j;
371
372
error = sysctl_wire_old_buffer(req, 0);
373
if (error != 0)
374
return (error);
375
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
376
377
sbuf_printf(&sbuf, "\n");
378
379
for (i = 0; i < vm_ndomains; i++) {
380
sbuf_printf(&sbuf, "%d: ", i);
381
for (j = 0; j < vm_ndomains; j++) {
382
sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
383
}
384
sbuf_printf(&sbuf, "\n");
385
}
386
error = sbuf_finish(&sbuf);
387
sbuf_delete(&sbuf);
388
return (error);
389
}
390
#endif
391
392
static void
393
vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int pool,
394
int tail)
395
{
396
/*
397
* The paging queues and the free page lists utilize the same field,
398
* plinks.q, within the vm_page structure. When a physical page is
399
* freed, it is lazily removed from the paging queues to reduce the
400
* cost of removal through batching. Here, we must ensure that any
401
* deferred dequeue on the physical page has completed before using
402
* its plinks.q field.
403
*/
404
if (__predict_false(vm_page_astate_load(m).queue != PQ_NONE))
405
vm_page_dequeue(m);
406
407
m->order = order;
408
m->pool = pool;
409
if (tail)
410
TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
411
else
412
TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
413
fl[order].lcnt++;
414
}
415
416
static void
417
vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
418
{
419
420
TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
421
fl[order].lcnt--;
422
m->order = VM_NFREEORDER;
423
}
424
425
/*
426
* Create a physical memory segment.
427
*/
428
static void
429
_vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
430
{
431
struct vm_phys_seg *seg;
432
433
if (!(0 <= domain && domain < vm_ndomains))
434
panic("%s: Invalid domain %d ('vm_ndomains' is %d)",
435
__func__, domain, vm_ndomains);
436
if (vm_phys_nsegs >= VM_PHYSSEG_MAX)
437
panic("Not enough storage for physical segments, "
438
"increase VM_PHYSSEG_MAX");
439
440
seg = &vm_phys_segs[vm_phys_nsegs++];
441
while (seg > vm_phys_segs && seg[-1].start >= end) {
442
*seg = *(seg - 1);
443
seg--;
444
}
445
seg->start = start;
446
seg->end = end;
447
seg->domain = domain;
448
if (seg != vm_phys_segs && seg[-1].end > start)
449
panic("Overlapping physical segments: Current [%#jx,%#jx) "
450
"at index %zu, previous [%#jx,%#jx)",
451
(uintmax_t)start, (uintmax_t)end, seg - vm_phys_segs,
452
(uintmax_t)seg[-1].start, (uintmax_t)seg[-1].end);
453
}
454
455
static void
456
vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
457
{
458
#ifdef NUMA
459
int i;
460
461
if (mem_affinity == NULL) {
462
_vm_phys_create_seg(start, end, 0);
463
return;
464
}
465
466
for (i = 0;; i++) {
467
if (mem_affinity[i].end == 0)
468
panic("Reached end of affinity info");
469
if (mem_affinity[i].end <= start)
470
continue;
471
if (mem_affinity[i].start > start)
472
panic("No affinity info for start %jx",
473
(uintmax_t)start);
474
if (mem_affinity[i].end >= end) {
475
_vm_phys_create_seg(start, end,
476
mem_affinity[i].domain);
477
break;
478
}
479
_vm_phys_create_seg(start, mem_affinity[i].end,
480
mem_affinity[i].domain);
481
start = mem_affinity[i].end;
482
}
483
#else
484
_vm_phys_create_seg(start, end, 0);
485
#endif
486
}
487
488
/*
489
* Add a physical memory segment.
490
*/
491
void
492
vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
493
{
494
vm_paddr_t paddr;
495
496
if ((start & PAGE_MASK) != 0)
497
panic("%s: start (%jx) is not page aligned", __func__,
498
(uintmax_t)start);
499
if ((end & PAGE_MASK) != 0)
500
panic("%s: end (%jx) is not page aligned", __func__,
501
(uintmax_t)end);
502
if (start > end)
503
panic("%s: start (%jx) > end (%jx)!", __func__,
504
(uintmax_t)start, (uintmax_t)end);
505
506
if (start == end)
507
return;
508
509
/*
510
* Split the physical memory segment if it spans two or more free
511
* list boundaries.
512
*/
513
paddr = start;
514
#ifdef VM_FREELIST_LOWMEM
515
if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
516
vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
517
paddr = VM_LOWMEM_BOUNDARY;
518
}
519
#endif
520
#ifdef VM_FREELIST_DMA32
521
if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
522
vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
523
paddr = VM_DMA32_BOUNDARY;
524
}
525
#endif
526
vm_phys_create_seg(paddr, end);
527
}
528
529
/*
530
* Initialize the physical memory allocator.
531
*
532
* Requires that vm_page_array is initialized!
533
*/
534
void
535
vm_phys_init(void)
536
{
537
struct vm_freelist *fl;
538
struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
539
#if defined(VM_DMA32_NPAGES_THRESHOLD) || defined(VM_PHYSSEG_SPARSE)
540
u_long npages;
541
#endif
542
int dom, flind, freelist, oind, pind, segind;
543
544
/*
545
* Compute the number of free lists, and generate the mapping from the
546
* manifest constants VM_FREELIST_* to the free list indices.
547
*
548
* Initially, the entries of vm_freelist_to_flind[] are set to either
549
* 0 or 1 to indicate which free lists should be created.
550
*/
551
#ifdef VM_DMA32_NPAGES_THRESHOLD
552
npages = 0;
553
#endif
554
for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
555
seg = &vm_phys_segs[segind];
556
#ifdef VM_FREELIST_LOWMEM
557
if (seg->end <= VM_LOWMEM_BOUNDARY)
558
vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
559
else
560
#endif
561
#ifdef VM_FREELIST_DMA32
562
if (
563
#ifdef VM_DMA32_NPAGES_THRESHOLD
564
/*
565
* Create the DMA32 free list only if the amount of
566
* physical memory above physical address 4G exceeds the
567
* given threshold.
568
*/
569
npages > VM_DMA32_NPAGES_THRESHOLD &&
570
#endif
571
seg->end <= VM_DMA32_BOUNDARY)
572
vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
573
else
574
#endif
575
{
576
#ifdef VM_DMA32_NPAGES_THRESHOLD
577
npages += atop(seg->end - seg->start);
578
#endif
579
vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
580
}
581
}
582
/* Change each entry into a running total of the free lists. */
583
for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
584
vm_freelist_to_flind[freelist] +=
585
vm_freelist_to_flind[freelist - 1];
586
}
587
vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
588
KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
589
/* Change each entry into a free list index. */
590
for (freelist = 0; freelist < VM_NFREELIST; freelist++)
591
vm_freelist_to_flind[freelist]--;
592
593
/*
594
* Initialize the first_page and free_queues fields of each physical
595
* memory segment.
596
*/
597
#ifdef VM_PHYSSEG_SPARSE
598
npages = 0;
599
#endif
600
for (segind = 0; segind < vm_phys_nsegs; segind++) {
601
seg = &vm_phys_segs[segind];
602
#ifdef VM_PHYSSEG_SPARSE
603
seg->first_page = &vm_page_array[npages];
604
npages += atop(seg->end - seg->start);
605
#else
606
seg->first_page = PHYS_TO_VM_PAGE(seg->start);
607
#endif
608
#ifdef VM_FREELIST_LOWMEM
609
if (seg->end <= VM_LOWMEM_BOUNDARY) {
610
flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
611
KASSERT(flind >= 0,
612
("vm_phys_init: LOWMEM flind < 0"));
613
} else
614
#endif
615
#ifdef VM_FREELIST_DMA32
616
if (seg->end <= VM_DMA32_BOUNDARY) {
617
flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
618
KASSERT(flind >= 0,
619
("vm_phys_init: DMA32 flind < 0"));
620
} else
621
#endif
622
{
623
flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
624
KASSERT(flind >= 0,
625
("vm_phys_init: DEFAULT flind < 0"));
626
}
627
seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
628
}
629
630
/*
631
* Coalesce physical memory segments that are contiguous and share the
632
* same per-domain free queues.
633
*/
634
prev_seg = vm_phys_segs;
635
seg = &vm_phys_segs[1];
636
end_seg = &vm_phys_segs[vm_phys_nsegs];
637
while (seg < end_seg) {
638
if (prev_seg->end == seg->start &&
639
prev_seg->free_queues == seg->free_queues) {
640
prev_seg->end = seg->end;
641
KASSERT(prev_seg->domain == seg->domain,
642
("vm_phys_init: free queues cannot span domains"));
643
vm_phys_nsegs--;
644
end_seg--;
645
for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
646
*tmp_seg = *(tmp_seg + 1);
647
} else {
648
prev_seg = seg;
649
seg++;
650
}
651
}
652
653
/*
654
* Initialize the free queues.
655
*/
656
for (dom = 0; dom < vm_ndomains; dom++) {
657
for (flind = 0; flind < vm_nfreelists; flind++) {
658
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
659
fl = vm_phys_free_queues[dom][flind][pind];
660
for (oind = 0; oind < VM_NFREEORDER; oind++)
661
TAILQ_INIT(&fl[oind].pl);
662
}
663
}
664
}
665
666
#ifdef VM_FREEPOOL_LAZYINIT
667
vm_default_freepool = VM_FREEPOOL_LAZYINIT;
668
#else
669
vm_default_freepool = VM_FREEPOOL_DEFAULT;
670
#endif
671
672
rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
673
}
674
675
/*
676
* Register info about the NUMA topology of the system.
677
*
678
* Invoked by platform-dependent code prior to vm_phys_init().
679
*/
680
void
681
vm_phys_register_domains(int ndomains __numa_used,
682
struct mem_affinity *affinity __numa_used, int *locality __numa_used)
683
{
684
#ifdef NUMA
685
int i;
686
687
/*
688
* For now the only override value that we support is 1, which
689
* effectively disables NUMA-awareness in the allocators.
690
*/
691
TUNABLE_INT_FETCH("vm.numa.disabled", &numa_disabled);
692
if (numa_disabled)
693
ndomains = 1;
694
695
if (ndomains > 1) {
696
vm_ndomains = ndomains;
697
mem_affinity = affinity;
698
mem_locality = locality;
699
}
700
701
for (i = 0; i < vm_ndomains; i++)
702
DOMAINSET_SET(i, &all_domains);
703
#endif
704
}
705
706
/*
707
* Split a contiguous, power of two-sized set of physical pages.
708
*
709
* When this function is called by a page allocation function, the caller
710
* should request insertion at the head unless the order [order, oind) queues
711
* are known to be empty. The objective being to reduce the likelihood of
712
* long-term fragmentation by promoting contemporaneous allocation and
713
* (hopefully) deallocation.
714
*/
715
static __inline void
716
vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
717
int pool, int tail)
718
{
719
vm_page_t m_buddy;
720
721
while (oind > order) {
722
oind--;
723
m_buddy = &m[1 << oind];
724
KASSERT(m_buddy->order == VM_NFREEORDER,
725
("vm_phys_split_pages: page %p has unexpected order %d",
726
m_buddy, m_buddy->order));
727
vm_freelist_add(fl, m_buddy, oind, pool, tail);
728
}
729
}
730
731
static void
732
vm_phys_enq_chunk(struct vm_freelist *fl, vm_page_t m, int order, int pool,
733
int tail)
734
{
735
KASSERT(order >= 0 && order < VM_NFREEORDER,
736
("%s: invalid order %d", __func__, order));
737
738
vm_freelist_add(fl, m, order, pool, tail);
739
#ifdef VM_FREEPOOL_LAZYINIT
740
if (__predict_false(pool == VM_FREEPOOL_LAZYINIT)) {
741
vm_page_t m_next;
742
vm_paddr_t pa;
743
int npages;
744
745
npages = 1 << order;
746
m_next = m + npages;
747
pa = m->phys_addr + ptoa(npages);
748
if (pa < vm_phys_segs[m->segind].end) {
749
vm_page_init_page(m_next, pa, m->segind,
750
VM_FREEPOOL_LAZYINIT);
751
}
752
}
753
#endif
754
}
755
756
/*
757
* Add the physical pages [m, m + npages) at the beginning of a power-of-two
758
* aligned and sized set to the specified free list.
759
*
760
* When this function is called by a page allocation function, the caller
761
* should request insertion at the head unless the lower-order queues are
762
* known to be empty. The objective being to reduce the likelihood of long-
763
* term fragmentation by promoting contemporaneous allocation and (hopefully)
764
* deallocation.
765
*
766
* The physical page m's buddy must not be free.
767
*/
768
static void
769
vm_phys_enq_beg(vm_page_t m, u_int npages, struct vm_freelist *fl, int pool,
770
int tail)
771
{
772
int order;
773
774
KASSERT(npages == 0 ||
775
(VM_PAGE_TO_PHYS(m) &
776
((PAGE_SIZE << ilog2(npages)) - 1)) == 0,
777
("%s: page %p and npages %u are misaligned",
778
__func__, m, npages));
779
while (npages > 0) {
780
KASSERT(m->order == VM_NFREEORDER,
781
("%s: page %p has unexpected order %d",
782
__func__, m, m->order));
783
order = ilog2(npages);
784
KASSERT(order < VM_NFREEORDER,
785
("%s: order %d is out of range", __func__, order));
786
vm_phys_enq_chunk(fl, m, order, pool, tail);
787
m += 1 << order;
788
npages -= 1 << order;
789
}
790
}
791
792
/*
793
* Add the physical pages [m, m + npages) at the end of a power-of-two aligned
794
* and sized set to the specified free list.
795
*
796
* When this function is called by a page allocation function, the caller
797
* should request insertion at the head unless the lower-order queues are
798
* known to be empty. The objective being to reduce the likelihood of long-
799
* term fragmentation by promoting contemporaneous allocation and (hopefully)
800
* deallocation.
801
*
802
* If npages is zero, this function does nothing and ignores the physical page
803
* parameter m. Otherwise, the physical page m's buddy must not be free.
804
*/
805
static vm_page_t
806
vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int pool,
807
int tail)
808
{
809
int order;
810
811
KASSERT(npages == 0 ||
812
((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
813
((PAGE_SIZE << ilog2(npages)) - 1)) == 0,
814
("vm_phys_enq_range: page %p and npages %u are misaligned",
815
m, npages));
816
while (npages > 0) {
817
KASSERT(m->order == VM_NFREEORDER,
818
("vm_phys_enq_range: page %p has unexpected order %d",
819
m, m->order));
820
order = ffs(npages) - 1;
821
vm_phys_enq_chunk(fl, m, order, pool, tail);
822
m += 1 << order;
823
npages -= 1 << order;
824
}
825
return (m);
826
}
827
828
/*
829
* Complete initialization a contiguous, power of two-sized set of physical
830
* pages.
831
*
832
* If the pages currently belong to the lazy init pool, then the corresponding
833
* page structures must be initialized. In this case it is assumed that the
834
* first page in the run has already been initialized.
835
*/
836
static void
837
vm_phys_finish_init(vm_page_t m, int order)
838
{
839
#ifdef VM_FREEPOOL_LAZYINIT
840
if (__predict_false(m->pool == VM_FREEPOOL_LAZYINIT)) {
841
vm_paddr_t pa;
842
int segind;
843
844
TSENTER();
845
pa = m->phys_addr + PAGE_SIZE;
846
segind = m->segind;
847
for (vm_page_t m_tmp = m + 1; m_tmp < &m[1 << order];
848
m_tmp++, pa += PAGE_SIZE)
849
vm_page_init_page(m_tmp, pa, segind, VM_NFREEPOOL);
850
TSEXIT();
851
}
852
#endif
853
}
854
855
/*
856
* Tries to allocate the specified number of pages from the specified pool
857
* within the specified domain. Returns the actual number of allocated pages
858
* and a pointer to each page through the array ma[].
859
*
860
* The returned pages may not be physically contiguous. However, in contrast
861
* to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
862
* calling this function once to allocate the desired number of pages will
863
* avoid wasted time in vm_phys_split_pages(). The allocated pages have no
864
* valid pool field set.
865
*
866
* The free page queues for the specified domain must be locked.
867
*/
868
int
869
vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
870
{
871
struct vm_freelist *alt, *fl;
872
vm_page_t m;
873
int avail, end, flind, freelist, i, oind, pind;
874
875
KASSERT(domain >= 0 && domain < vm_ndomains,
876
("vm_phys_alloc_npages: domain %d is out of range", domain));
877
KASSERT(vm_phys_pool_valid(pool),
878
("vm_phys_alloc_npages: pool %d is out of range", pool));
879
KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
880
("vm_phys_alloc_npages: npages %d is out of range", npages));
881
vm_domain_free_assert_locked(VM_DOMAIN(domain));
882
i = 0;
883
for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
884
flind = vm_freelist_to_flind[freelist];
885
if (flind < 0)
886
continue;
887
fl = vm_phys_free_queues[domain][flind][pool];
888
for (oind = 0; oind < VM_NFREEORDER; oind++) {
889
while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
890
vm_freelist_rem(fl, m, oind);
891
avail = i + (1 << oind);
892
end = imin(npages, avail);
893
while (i < end)
894
ma[i++] = m++;
895
if (i == npages) {
896
/*
897
* Return excess pages to fl. Its order
898
* [0, oind) queues are empty.
899
*/
900
vm_phys_enq_range(m, avail - i, fl,
901
pool, 1);
902
return (npages);
903
}
904
}
905
}
906
for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
907
for (pind = vm_default_freepool; pind < VM_NFREEPOOL;
908
pind++) {
909
alt = vm_phys_free_queues[domain][flind][pind];
910
while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
911
NULL) {
912
vm_freelist_rem(alt, m, oind);
913
vm_phys_finish_init(m, oind);
914
avail = i + (1 << oind);
915
end = imin(npages, avail);
916
while (i < end)
917
ma[i++] = m++;
918
if (i == npages) {
919
/*
920
* Return excess pages to fl.
921
* Its order [0, oind) queues
922
* are empty.
923
*/
924
vm_phys_enq_range(m, avail - i,
925
fl, pool, 1);
926
return (npages);
927
}
928
}
929
}
930
}
931
}
932
return (i);
933
}
934
935
/*
936
* Allocate a contiguous, power of two-sized set of physical pages from the
937
* specified free list. The free list must be specified using one of the
938
* manifest constants VM_FREELIST_*.
939
*
940
* The free page queues must be locked.
941
*/
942
static vm_page_t
943
vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
944
{
945
struct vm_freelist *alt, *fl;
946
vm_page_t m;
947
int oind, pind, flind;
948
949
KASSERT(domain >= 0 && domain < vm_ndomains,
950
("vm_phys_alloc_freelist_pages: domain %d is out of range",
951
domain));
952
KASSERT(freelist < VM_NFREELIST,
953
("vm_phys_alloc_freelist_pages: freelist %d is out of range",
954
freelist));
955
KASSERT(vm_phys_pool_valid(pool),
956
("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
957
KASSERT(order < VM_NFREEORDER,
958
("vm_phys_alloc_freelist_pages: order %d is out of range", order));
959
960
flind = vm_freelist_to_flind[freelist];
961
/* Check if freelist is present */
962
if (flind < 0)
963
return (NULL);
964
965
vm_domain_free_assert_locked(VM_DOMAIN(domain));
966
fl = &vm_phys_free_queues[domain][flind][pool][0];
967
for (oind = order; oind < VM_NFREEORDER; oind++) {
968
m = TAILQ_FIRST(&fl[oind].pl);
969
if (m != NULL) {
970
vm_freelist_rem(fl, m, oind);
971
/* The order [order, oind) queues are empty. */
972
vm_phys_split_pages(m, oind, fl, order, pool, 1);
973
return (m);
974
}
975
}
976
977
/*
978
* The given pool was empty. Find the largest
979
* contiguous, power-of-two-sized set of pages in any
980
* pool. Transfer these pages to the given pool, and
981
* use them to satisfy the allocation.
982
*/
983
for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
984
for (pind = vm_default_freepool; pind < VM_NFREEPOOL; pind++) {
985
alt = &vm_phys_free_queues[domain][flind][pind][0];
986
m = TAILQ_FIRST(&alt[oind].pl);
987
if (m != NULL) {
988
vm_freelist_rem(alt, m, oind);
989
vm_phys_finish_init(m, oind);
990
/* The order [order, oind) queues are empty. */
991
vm_phys_split_pages(m, oind, fl, order, pool, 1);
992
return (m);
993
}
994
}
995
}
996
return (NULL);
997
}
998
999
/*
1000
* Allocate a contiguous, power of two-sized set of physical pages
1001
* from the free lists.
1002
*
1003
* The free page queues must be locked.
1004
*/
1005
vm_page_t
1006
vm_phys_alloc_pages(int domain, int pool, int order)
1007
{
1008
vm_page_t m;
1009
int freelist;
1010
1011
for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
1012
m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
1013
if (m != NULL)
1014
return (m);
1015
}
1016
return (NULL);
1017
}
1018
1019
/*
1020
* Find the vm_page corresponding to the given physical address, which must lie
1021
* within the given physical memory segment.
1022
*/
1023
vm_page_t
1024
vm_phys_seg_paddr_to_vm_page(struct vm_phys_seg *seg, vm_paddr_t pa)
1025
{
1026
KASSERT(pa >= seg->start && pa < seg->end,
1027
("%s: pa %#jx is out of range", __func__, (uintmax_t)pa));
1028
1029
return (&seg->first_page[atop(pa - seg->start)]);
1030
}
1031
1032
/*
1033
* Find the vm_page corresponding to the given physical address.
1034
*/
1035
vm_page_t
1036
vm_phys_paddr_to_vm_page(vm_paddr_t pa)
1037
{
1038
struct vm_phys_seg *seg;
1039
1040
if ((seg = vm_phys_paddr_to_seg(pa)) != NULL)
1041
return (vm_phys_seg_paddr_to_vm_page(seg, pa));
1042
return (NULL);
1043
}
1044
1045
vm_page_t
1046
vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
1047
{
1048
struct vm_phys_fictitious_seg tmp, *seg;
1049
vm_page_t m;
1050
1051
m = NULL;
1052
tmp.start = pa;
1053
tmp.end = 0;
1054
1055
rw_rlock(&vm_phys_fictitious_reg_lock);
1056
seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1057
rw_runlock(&vm_phys_fictitious_reg_lock);
1058
if (seg == NULL)
1059
return (NULL);
1060
1061
m = &seg->first_page[atop(pa - seg->start)];
1062
KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
1063
1064
return (m);
1065
}
1066
1067
static inline void
1068
vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
1069
long page_count, vm_memattr_t memattr)
1070
{
1071
long i;
1072
1073
bzero(range, page_count * sizeof(*range));
1074
for (i = 0; i < page_count; i++) {
1075
vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
1076
range[i].oflags &= ~VPO_UNMANAGED;
1077
range[i].busy_lock = VPB_UNBUSIED;
1078
}
1079
}
1080
1081
int
1082
vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
1083
vm_memattr_t memattr)
1084
{
1085
struct vm_phys_fictitious_seg *seg;
1086
vm_page_t fp;
1087
long page_count;
1088
#ifdef VM_PHYSSEG_DENSE
1089
long pi, pe;
1090
long dpage_count;
1091
#endif
1092
1093
KASSERT(start < end,
1094
("Start of segment isn't less than end (start: %jx end: %jx)",
1095
(uintmax_t)start, (uintmax_t)end));
1096
1097
page_count = (end - start) / PAGE_SIZE;
1098
1099
#ifdef VM_PHYSSEG_DENSE
1100
pi = atop(start);
1101
pe = atop(end);
1102
if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1103
fp = &vm_page_array[pi - first_page];
1104
if ((pe - first_page) > vm_page_array_size) {
1105
/*
1106
* We have a segment that starts inside
1107
* of vm_page_array, but ends outside of it.
1108
*
1109
* Use vm_page_array pages for those that are
1110
* inside of the vm_page_array range, and
1111
* allocate the remaining ones.
1112
*/
1113
dpage_count = vm_page_array_size - (pi - first_page);
1114
vm_phys_fictitious_init_range(fp, start, dpage_count,
1115
memattr);
1116
page_count -= dpage_count;
1117
start += ptoa(dpage_count);
1118
goto alloc;
1119
}
1120
/*
1121
* We can allocate the full range from vm_page_array,
1122
* so there's no need to register the range in the tree.
1123
*/
1124
vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1125
return (0);
1126
} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1127
/*
1128
* We have a segment that ends inside of vm_page_array,
1129
* but starts outside of it.
1130
*/
1131
fp = &vm_page_array[0];
1132
dpage_count = pe - first_page;
1133
vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
1134
memattr);
1135
end -= ptoa(dpage_count);
1136
page_count -= dpage_count;
1137
goto alloc;
1138
} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1139
/*
1140
* Trying to register a fictitious range that expands before
1141
* and after vm_page_array.
1142
*/
1143
return (EINVAL);
1144
} else {
1145
alloc:
1146
#endif
1147
fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
1148
M_WAITOK);
1149
#ifdef VM_PHYSSEG_DENSE
1150
}
1151
#endif
1152
vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1153
1154
seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
1155
seg->start = start;
1156
seg->end = end;
1157
seg->first_page = fp;
1158
1159
rw_wlock(&vm_phys_fictitious_reg_lock);
1160
RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
1161
rw_wunlock(&vm_phys_fictitious_reg_lock);
1162
1163
return (0);
1164
}
1165
1166
void
1167
vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1168
{
1169
struct vm_phys_fictitious_seg *seg, tmp;
1170
#ifdef VM_PHYSSEG_DENSE
1171
long pi, pe;
1172
#endif
1173
1174
KASSERT(start < end,
1175
("Start of segment isn't less than end (start: %jx end: %jx)",
1176
(uintmax_t)start, (uintmax_t)end));
1177
1178
#ifdef VM_PHYSSEG_DENSE
1179
pi = atop(start);
1180
pe = atop(end);
1181
if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1182
if ((pe - first_page) <= vm_page_array_size) {
1183
/*
1184
* This segment was allocated using vm_page_array
1185
* only, there's nothing to do since those pages
1186
* were never added to the tree.
1187
*/
1188
return;
1189
}
1190
/*
1191
* We have a segment that starts inside
1192
* of vm_page_array, but ends outside of it.
1193
*
1194
* Calculate how many pages were added to the
1195
* tree and free them.
1196
*/
1197
start = ptoa(first_page + vm_page_array_size);
1198
} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1199
/*
1200
* We have a segment that ends inside of vm_page_array,
1201
* but starts outside of it.
1202
*/
1203
end = ptoa(first_page);
1204
} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1205
/* Since it's not possible to register such a range, panic. */
1206
panic(
1207
"Unregistering not registered fictitious range [%#jx:%#jx]",
1208
(uintmax_t)start, (uintmax_t)end);
1209
}
1210
#endif
1211
tmp.start = start;
1212
tmp.end = 0;
1213
1214
rw_wlock(&vm_phys_fictitious_reg_lock);
1215
seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1216
if (seg->start != start || seg->end != end) {
1217
rw_wunlock(&vm_phys_fictitious_reg_lock);
1218
panic(
1219
"Unregistering not registered fictitious range [%#jx:%#jx]",
1220
(uintmax_t)start, (uintmax_t)end);
1221
}
1222
RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1223
rw_wunlock(&vm_phys_fictitious_reg_lock);
1224
free(seg->first_page, M_FICT_PAGES);
1225
free(seg, M_FICT_PAGES);
1226
}
1227
1228
/*
1229
* Free a contiguous, power of two-sized set of physical pages.
1230
* The pool field in the first page determines the destination pool.
1231
*
1232
* The free page queues must be locked.
1233
*/
1234
void
1235
vm_phys_free_pages(vm_page_t m, int pool, int order)
1236
{
1237
struct vm_freelist *fl;
1238
struct vm_phys_seg *seg;
1239
vm_paddr_t pa;
1240
vm_page_t m_buddy;
1241
1242
KASSERT(m->order == VM_NFREEORDER,
1243
("%s: page %p has unexpected order %d",
1244
__func__, m, m->order));
1245
KASSERT(vm_phys_pool_valid(pool),
1246
("%s: unexpected pool param %d", __func__, pool));
1247
KASSERT(order < VM_NFREEORDER,
1248
("%s: order %d is out of range", __func__, order));
1249
seg = &vm_phys_segs[m->segind];
1250
vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1251
if (order < VM_NFREEORDER - 1) {
1252
pa = VM_PAGE_TO_PHYS(m);
1253
do {
1254
pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1255
if (pa < seg->start || pa >= seg->end)
1256
break;
1257
m_buddy = vm_phys_seg_paddr_to_vm_page(seg, pa);
1258
if (m_buddy->order != order)
1259
break;
1260
fl = (*seg->free_queues)[m_buddy->pool];
1261
vm_freelist_rem(fl, m_buddy, order);
1262
vm_phys_finish_init(m_buddy, order);
1263
order++;
1264
pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1265
m = vm_phys_seg_paddr_to_vm_page(seg, pa);
1266
} while (order < VM_NFREEORDER - 1);
1267
}
1268
fl = (*seg->free_queues)[pool];
1269
vm_freelist_add(fl, m, order, pool, 1);
1270
}
1271
1272
#ifdef VM_FREEPOOL_LAZYINIT
1273
/*
1274
* Initialize all pages lingering in the lazy init pool of a NUMA domain, moving
1275
* them to the default pool. This is a prerequisite for some rare operations
1276
* which need to scan the page array and thus depend on all pages being
1277
* initialized.
1278
*/
1279
static void
1280
vm_phys_lazy_init_domain(int domain, bool locked)
1281
{
1282
static bool initdone[MAXMEMDOM];
1283
struct vm_domain *vmd;
1284
struct vm_freelist *fl;
1285
vm_page_t m;
1286
int pind;
1287
bool unlocked;
1288
1289
if (__predict_true(atomic_load_bool(&initdone[domain])))
1290
return;
1291
1292
vmd = VM_DOMAIN(domain);
1293
if (locked)
1294
vm_domain_free_assert_locked(vmd);
1295
else
1296
vm_domain_free_lock(vmd);
1297
if (atomic_load_bool(&initdone[domain]))
1298
goto out;
1299
pind = VM_FREEPOOL_LAZYINIT;
1300
for (int freelist = 0; freelist < VM_NFREELIST; freelist++) {
1301
int flind;
1302
1303
flind = vm_freelist_to_flind[freelist];
1304
if (flind < 0)
1305
continue;
1306
fl = vm_phys_free_queues[domain][flind][pind];
1307
for (int oind = 0; oind < VM_NFREEORDER; oind++) {
1308
if (atomic_load_int(&fl[oind].lcnt) == 0)
1309
continue;
1310
while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
1311
/*
1312
* Avoid holding the lock across the
1313
* initialization unless there's a free page
1314
* shortage.
1315
*/
1316
vm_freelist_rem(fl, m, oind);
1317
unlocked = vm_domain_allocate(vmd,
1318
VM_ALLOC_NORMAL, 1 << oind);
1319
if (unlocked)
1320
vm_domain_free_unlock(vmd);
1321
vm_phys_finish_init(m, oind);
1322
if (unlocked) {
1323
vm_domain_freecnt_inc(vmd, 1 << oind);
1324
vm_domain_free_lock(vmd);
1325
}
1326
vm_phys_free_pages(m, VM_FREEPOOL_DEFAULT,
1327
oind);
1328
}
1329
}
1330
}
1331
atomic_store_bool(&initdone[domain], true);
1332
out:
1333
if (!locked)
1334
vm_domain_free_unlock(vmd);
1335
}
1336
1337
static void
1338
vm_phys_lazy_init(void)
1339
{
1340
for (int domain = 0; domain < vm_ndomains; domain++)
1341
vm_phys_lazy_init_domain(domain, false);
1342
atomic_store_int(&vm_default_freepool, VM_FREEPOOL_DEFAULT);
1343
}
1344
1345
static void
1346
vm_phys_lazy_init_kthr(void *arg __unused)
1347
{
1348
vm_phys_lazy_init();
1349
kthread_exit();
1350
}
1351
1352
static void
1353
vm_phys_lazy_sysinit(void *arg __unused)
1354
{
1355
struct thread *td;
1356
int error;
1357
1358
error = kthread_add(vm_phys_lazy_init_kthr, NULL, curproc, &td,
1359
RFSTOPPED, 0, "vmlazyinit");
1360
if (error == 0) {
1361
thread_lock(td);
1362
sched_prio(td, PRI_MIN_IDLE);
1363
sched_add(td, SRQ_BORING);
1364
} else {
1365
printf("%s: could not create lazy init thread: %d\n",
1366
__func__, error);
1367
vm_phys_lazy_init();
1368
}
1369
}
1370
SYSINIT(vm_phys_lazy_init, SI_SUB_SMP, SI_ORDER_ANY, vm_phys_lazy_sysinit,
1371
NULL);
1372
#endif /* VM_FREEPOOL_LAZYINIT */
1373
1374
/*
1375
* Free a contiguous, arbitrarily sized set of physical pages, without
1376
* merging across set boundaries. Assumes no pages have a valid pool field.
1377
*
1378
* The free page queues must be locked.
1379
*/
1380
void
1381
vm_phys_enqueue_contig(vm_page_t m, int pool, u_long npages)
1382
{
1383
struct vm_freelist *fl;
1384
struct vm_phys_seg *seg;
1385
vm_page_t m_end;
1386
vm_paddr_t diff, lo;
1387
int order;
1388
1389
/*
1390
* Avoid unnecessary coalescing by freeing the pages in the largest
1391
* possible power-of-two-sized subsets.
1392
*/
1393
vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1394
seg = &vm_phys_segs[m->segind];
1395
fl = (*seg->free_queues)[pool];
1396
m_end = m + npages;
1397
/* Free blocks of increasing size. */
1398
lo = atop(VM_PAGE_TO_PHYS(m));
1399
if (m < m_end &&
1400
(diff = lo ^ (lo + npages - 1)) != 0) {
1401
order = min(ilog2(diff), VM_NFREEORDER - 1);
1402
m = vm_phys_enq_range(m, roundup2(lo, 1 << order) - lo, fl,
1403
pool, 1);
1404
}
1405
1406
/* Free blocks of maximum size. */
1407
order = VM_NFREEORDER - 1;
1408
while (m + (1 << order) <= m_end) {
1409
KASSERT(seg == &vm_phys_segs[m->segind],
1410
("%s: page range [%p,%p) spans multiple segments",
1411
__func__, m_end - npages, m));
1412
vm_phys_enq_chunk(fl, m, order, pool, 1);
1413
m += 1 << order;
1414
}
1415
/* Free blocks of diminishing size. */
1416
vm_phys_enq_beg(m, m_end - m, fl, pool, 1);
1417
}
1418
1419
/*
1420
* Free a contiguous, arbitrarily sized set of physical pages.
1421
* Assumes that every page but the first has no valid pool field.
1422
* Uses the pool value in the first page if valid, otherwise default.
1423
*
1424
* The free page queues must be locked.
1425
*/
1426
void
1427
vm_phys_free_contig(vm_page_t m, int pool, u_long npages)
1428
{
1429
vm_paddr_t lo;
1430
vm_page_t m_start, m_end;
1431
unsigned max_order, order_start, order_end;
1432
1433
vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1434
1435
lo = atop(VM_PAGE_TO_PHYS(m));
1436
max_order = min(ilog2(lo ^ (lo + npages)), VM_NFREEORDER - 1);
1437
1438
m_start = m;
1439
order_start = ffsll(lo) - 1;
1440
if (order_start < max_order)
1441
m_start += 1 << order_start;
1442
m_end = m + npages;
1443
order_end = ffsll(lo + npages) - 1;
1444
if (order_end < max_order)
1445
m_end -= 1 << order_end;
1446
/*
1447
* Avoid unnecessary coalescing by freeing the pages at the start and
1448
* end of the range last.
1449
*/
1450
if (m_start < m_end)
1451
vm_phys_enqueue_contig(m_start, pool, m_end - m_start);
1452
if (order_start < max_order)
1453
vm_phys_free_pages(m, pool, order_start);
1454
if (order_end < max_order)
1455
vm_phys_free_pages(m_end, pool, order_end);
1456
}
1457
1458
/*
1459
* Identify the first address range within segment segind or greater
1460
* that matches the domain, lies within the low/high range, and has
1461
* enough pages. Return -1 if there is none.
1462
*/
1463
int
1464
vm_phys_find_range(vm_page_t bounds[], int segind, int domain,
1465
u_long npages, vm_paddr_t low, vm_paddr_t high)
1466
{
1467
vm_paddr_t pa_end, pa_start;
1468
struct vm_phys_seg *end_seg, *seg;
1469
1470
KASSERT(npages > 0, ("npages is zero"));
1471
KASSERT(domain >= 0 && domain < vm_ndomains, ("domain out of range"));
1472
end_seg = &vm_phys_segs[vm_phys_nsegs];
1473
for (seg = &vm_phys_segs[segind]; seg < end_seg; seg++) {
1474
if (seg->domain != domain)
1475
continue;
1476
if (seg->start >= high)
1477
return (-1);
1478
pa_start = MAX(low, seg->start);
1479
pa_end = MIN(high, seg->end);
1480
if (pa_end - pa_start < ptoa(npages))
1481
continue;
1482
#ifdef VM_FREEPOOL_LAZYINIT
1483
/*
1484
* The pages on the free lists must be initialized.
1485
*/
1486
vm_phys_lazy_init_domain(domain, false);
1487
#endif
1488
bounds[0] = vm_phys_seg_paddr_to_vm_page(seg, pa_start);
1489
bounds[1] = &seg->first_page[atop(pa_end - seg->start)];
1490
return (seg - vm_phys_segs);
1491
}
1492
return (-1);
1493
}
1494
1495
/*
1496
* Search for the given physical page "m" in the free lists. If the search
1497
* succeeds, remove "m" from the free lists and return true. Otherwise, return
1498
* false, indicating that "m" is not in the free lists.
1499
*
1500
* The free page queues must be locked.
1501
*/
1502
bool
1503
vm_phys_unfree_page(vm_paddr_t pa)
1504
{
1505
struct vm_freelist *fl;
1506
struct vm_phys_seg *seg;
1507
vm_paddr_t pa_half;
1508
vm_page_t m, m_set, m_tmp;
1509
int order, pool;
1510
1511
seg = vm_phys_paddr_to_seg(pa);
1512
vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1513
1514
#ifdef VM_FREEPOOL_LAZYINIT
1515
/*
1516
* The pages on the free lists must be initialized.
1517
*/
1518
vm_phys_lazy_init_domain(seg->domain, true);
1519
#endif
1520
1521
/*
1522
* First, find the contiguous, power of two-sized set of free
1523
* physical pages containing the given physical page "m" and
1524
* assign it to "m_set".
1525
*/
1526
m = vm_phys_paddr_to_vm_page(pa);
1527
for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1528
order < VM_NFREEORDER - 1; ) {
1529
order++;
1530
pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1531
if (pa >= seg->start)
1532
m_set = vm_phys_seg_paddr_to_vm_page(seg, pa);
1533
else
1534
return (false);
1535
}
1536
if (m_set->order < order)
1537
return (false);
1538
if (m_set->order == VM_NFREEORDER)
1539
return (false);
1540
KASSERT(m_set->order < VM_NFREEORDER,
1541
("vm_phys_unfree_page: page %p has unexpected order %d",
1542
m_set, m_set->order));
1543
1544
/*
1545
* Next, remove "m_set" from the free lists. Finally, extract
1546
* "m" from "m_set" using an iterative algorithm: While "m_set"
1547
* is larger than a page, shrink "m_set" by returning the half
1548
* of "m_set" that does not contain "m" to the free lists.
1549
*/
1550
pool = m_set->pool;
1551
fl = (*seg->free_queues)[pool];
1552
order = m_set->order;
1553
vm_freelist_rem(fl, m_set, order);
1554
while (order > 0) {
1555
order--;
1556
pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1557
if (m->phys_addr < pa_half)
1558
m_tmp = vm_phys_seg_paddr_to_vm_page(seg, pa_half);
1559
else {
1560
m_tmp = m_set;
1561
m_set = vm_phys_seg_paddr_to_vm_page(seg, pa_half);
1562
}
1563
vm_freelist_add(fl, m_tmp, order, pool, 0);
1564
}
1565
KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1566
return (true);
1567
}
1568
1569
/*
1570
* Find a run of contiguous physical pages, meeting alignment requirements, from
1571
* a list of max-sized page blocks, where we need at least two consecutive
1572
* blocks to satisfy the (large) page request.
1573
*/
1574
static vm_page_t
1575
vm_phys_find_freelist_contig(struct vm_freelist *fl, u_long npages,
1576
vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1577
{
1578
struct vm_phys_seg *seg;
1579
vm_page_t m, m_iter, m_ret;
1580
vm_paddr_t max_size, size;
1581
int max_order;
1582
1583
max_order = VM_NFREEORDER - 1;
1584
size = npages << PAGE_SHIFT;
1585
max_size = (vm_paddr_t)1 << (PAGE_SHIFT + max_order);
1586
KASSERT(size > max_size, ("size is too small"));
1587
1588
/*
1589
* In order to avoid examining any free max-sized page block more than
1590
* twice, identify the ones that are first in a physically-contiguous
1591
* sequence of such blocks, and only for those walk the sequence to
1592
* check if there are enough free blocks starting at a properly aligned
1593
* block. Thus, no block is checked for free-ness more than twice.
1594
*/
1595
TAILQ_FOREACH(m, &fl[max_order].pl, plinks.q) {
1596
/*
1597
* Skip m unless it is first in a sequence of free max page
1598
* blocks >= low in its segment.
1599
*/
1600
seg = &vm_phys_segs[m->segind];
1601
if (VM_PAGE_TO_PHYS(m) < MAX(low, seg->start))
1602
continue;
1603
if (VM_PAGE_TO_PHYS(m) >= max_size &&
1604
VM_PAGE_TO_PHYS(m) - max_size >= MAX(low, seg->start) &&
1605
max_order == m[-1 << max_order].order)
1606
continue;
1607
1608
/*
1609
* Advance m_ret from m to the first of the sequence, if any,
1610
* that satisfies alignment conditions and might leave enough
1611
* space.
1612
*/
1613
m_ret = m;
1614
while (!vm_addr_ok(VM_PAGE_TO_PHYS(m_ret),
1615
size, alignment, boundary) &&
1616
VM_PAGE_TO_PHYS(m_ret) + size <= MIN(high, seg->end) &&
1617
max_order == m_ret[1 << max_order].order)
1618
m_ret += 1 << max_order;
1619
1620
/*
1621
* Skip m unless some block m_ret in the sequence is properly
1622
* aligned, and begins a sequence of enough pages less than
1623
* high, and in the same segment.
1624
*/
1625
if (VM_PAGE_TO_PHYS(m_ret) + size > MIN(high, seg->end))
1626
continue;
1627
1628
/*
1629
* Skip m unless the blocks to allocate starting at m_ret are
1630
* all free.
1631
*/
1632
for (m_iter = m_ret;
1633
m_iter < m_ret + npages && max_order == m_iter->order;
1634
m_iter += 1 << max_order) {
1635
}
1636
if (m_iter < m_ret + npages)
1637
continue;
1638
return (m_ret);
1639
}
1640
return (NULL);
1641
}
1642
1643
/*
1644
* Find a run of contiguous physical pages from the specified free list
1645
* table.
1646
*/
1647
static vm_page_t
1648
vm_phys_find_queues_contig(
1649
struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX],
1650
u_long npages, vm_paddr_t low, vm_paddr_t high,
1651
u_long alignment, vm_paddr_t boundary)
1652
{
1653
struct vm_freelist *fl;
1654
vm_page_t m_ret;
1655
vm_paddr_t pa, pa_end, size;
1656
int oind, order, pind;
1657
1658
KASSERT(npages > 0, ("npages is 0"));
1659
KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1660
KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1661
/* Compute the queue that is the best fit for npages. */
1662
order = flsl(npages - 1);
1663
/* Search for a large enough free block. */
1664
size = npages << PAGE_SHIFT;
1665
for (oind = order; oind < VM_NFREEORDER; oind++) {
1666
for (pind = vm_default_freepool; pind < VM_NFREEPOOL; pind++) {
1667
fl = (*queues)[pind];
1668
TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1669
/*
1670
* Determine if the address range starting at pa
1671
* is within the given range, satisfies the
1672
* given alignment, and does not cross the given
1673
* boundary.
1674
*/
1675
pa = VM_PAGE_TO_PHYS(m_ret);
1676
pa_end = pa + size;
1677
if (low <= pa && pa_end <= high &&
1678
vm_addr_ok(pa, size, alignment, boundary))
1679
return (m_ret);
1680
}
1681
}
1682
}
1683
if (order < VM_NFREEORDER)
1684
return (NULL);
1685
/* Search for a long-enough sequence of max-order blocks. */
1686
for (pind = vm_default_freepool; pind < VM_NFREEPOOL; pind++) {
1687
fl = (*queues)[pind];
1688
m_ret = vm_phys_find_freelist_contig(fl, npages,
1689
low, high, alignment, boundary);
1690
if (m_ret != NULL)
1691
return (m_ret);
1692
}
1693
return (NULL);
1694
}
1695
1696
/*
1697
* Allocate a contiguous set of physical pages of the given size
1698
* "npages" from the free lists. All of the physical pages must be at
1699
* or above the given physical address "low" and below the given
1700
* physical address "high". The given value "alignment" determines the
1701
* alignment of the first physical page in the set. If the given value
1702
* "boundary" is non-zero, then the set of physical pages cannot cross
1703
* any physical address boundary that is a multiple of that value. Both
1704
* "alignment" and "boundary" must be a power of two. Sets the pool
1705
* field to DEFAULT in the first allocated page.
1706
*/
1707
vm_page_t
1708
vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1709
u_long alignment, vm_paddr_t boundary)
1710
{
1711
vm_paddr_t pa_end, pa_start;
1712
struct vm_freelist *fl;
1713
vm_page_t m, m_run;
1714
struct vm_phys_seg *seg;
1715
struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX];
1716
int oind, segind;
1717
1718
KASSERT(npages > 0, ("npages is 0"));
1719
KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1720
KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1721
vm_domain_free_assert_locked(VM_DOMAIN(domain));
1722
if (low >= high)
1723
return (NULL);
1724
queues = NULL;
1725
m_run = NULL;
1726
for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1727
seg = &vm_phys_segs[segind];
1728
if (seg->start >= high || seg->domain != domain)
1729
continue;
1730
if (low >= seg->end)
1731
break;
1732
if (low <= seg->start)
1733
pa_start = seg->start;
1734
else
1735
pa_start = low;
1736
if (high < seg->end)
1737
pa_end = high;
1738
else
1739
pa_end = seg->end;
1740
if (pa_end - pa_start < ptoa(npages))
1741
continue;
1742
/*
1743
* If a previous segment led to a search using
1744
* the same free lists as would this segment, then
1745
* we've actually already searched within this
1746
* too. So skip it.
1747
*/
1748
if (seg->free_queues == queues)
1749
continue;
1750
queues = seg->free_queues;
1751
m_run = vm_phys_find_queues_contig(queues, npages,
1752
low, high, alignment, boundary);
1753
if (m_run != NULL)
1754
break;
1755
}
1756
if (m_run == NULL)
1757
return (NULL);
1758
1759
/* Allocate pages from the page-range found. */
1760
for (m = m_run; m < &m_run[npages]; m = &m[1 << oind]) {
1761
fl = (*queues)[m->pool];
1762
oind = m->order;
1763
vm_freelist_rem(fl, m, oind);
1764
vm_phys_finish_init(m, oind);
1765
}
1766
/* Return excess pages to the free lists. */
1767
fl = (*queues)[VM_FREEPOOL_DEFAULT];
1768
vm_phys_enq_range(&m_run[npages], m - &m_run[npages], fl,
1769
VM_FREEPOOL_DEFAULT, 0);
1770
1771
/* Return page verified to satisfy conditions of request. */
1772
pa_start = VM_PAGE_TO_PHYS(m_run);
1773
KASSERT(low <= pa_start,
1774
("memory allocated below minimum requested range"));
1775
KASSERT(pa_start + ptoa(npages) <= high,
1776
("memory allocated above maximum requested range"));
1777
seg = &vm_phys_segs[m_run->segind];
1778
KASSERT(seg->domain == domain,
1779
("memory not allocated from specified domain"));
1780
KASSERT(vm_addr_ok(pa_start, ptoa(npages), alignment, boundary),
1781
("memory alignment/boundary constraints not satisfied"));
1782
return (m_run);
1783
}
1784
1785
/*
1786
* Return the index of the first unused slot which may be the terminating
1787
* entry.
1788
*/
1789
static int
1790
vm_phys_avail_count(void)
1791
{
1792
int i;
1793
1794
for (i = 0; i < PHYS_AVAIL_COUNT; i += 2)
1795
if (phys_avail[i] == 0 && phys_avail[i + 1] == 0)
1796
return (i);
1797
panic("Improperly terminated phys_avail[]");
1798
}
1799
1800
/*
1801
* Assert that a phys_avail entry is valid.
1802
*/
1803
static void
1804
vm_phys_avail_check(int i)
1805
{
1806
if (i % 2 != 0)
1807
panic("Chunk start index %d is not even.", i);
1808
if (phys_avail[i] & PAGE_MASK)
1809
panic("Unaligned phys_avail[%d]: %#jx", i,
1810
(intmax_t)phys_avail[i]);
1811
if (phys_avail[i + 1] & PAGE_MASK)
1812
panic("Unaligned phys_avail[%d + 1]: %#jx", i,
1813
(intmax_t)phys_avail[i + 1]);
1814
if (phys_avail[i + 1] < phys_avail[i])
1815
panic("phys_avail[%d]: start %#jx > end %#jx", i,
1816
(intmax_t)phys_avail[i], (intmax_t)phys_avail[i + 1]);
1817
}
1818
1819
/*
1820
* Return the index of an overlapping phys_avail entry or -1.
1821
*/
1822
#ifdef NUMA
1823
static int
1824
vm_phys_avail_find(vm_paddr_t pa)
1825
{
1826
int i;
1827
1828
for (i = 0; phys_avail[i + 1]; i += 2)
1829
if (phys_avail[i] <= pa && phys_avail[i + 1] > pa)
1830
return (i);
1831
return (-1);
1832
}
1833
#endif
1834
1835
/*
1836
* Return the index of the largest entry.
1837
*/
1838
int
1839
vm_phys_avail_largest(void)
1840
{
1841
vm_paddr_t sz, largesz;
1842
int largest;
1843
int i;
1844
1845
largest = 0;
1846
largesz = 0;
1847
for (i = 0; phys_avail[i + 1]; i += 2) {
1848
sz = vm_phys_avail_size(i);
1849
if (sz > largesz) {
1850
largesz = sz;
1851
largest = i;
1852
}
1853
}
1854
1855
return (largest);
1856
}
1857
1858
vm_paddr_t
1859
vm_phys_avail_size(int i)
1860
{
1861
1862
return (phys_avail[i + 1] - phys_avail[i]);
1863
}
1864
1865
/*
1866
* Split a chunk in phys_avail[] at the address 'pa'.
1867
*
1868
* 'pa' must be within a chunk (slots i and i + 1) or one of its boundaries.
1869
* Returns zero on actual split, in which case the two new chunks occupy slots
1870
* i to i + 3, else EJUSTRETURN if 'pa' was one of the boundaries (and no split
1871
* actually occurred) else ENOSPC if there are not enough slots in phys_avail[]
1872
* to represent the additional chunk caused by the split.
1873
*/
1874
static int
1875
vm_phys_avail_split(vm_paddr_t pa, int i)
1876
{
1877
int cnt;
1878
1879
vm_phys_avail_check(i);
1880
if (pa < phys_avail[i] || pa > phys_avail[i + 1])
1881
panic("%s: Address %#jx not in range at slot %d [%#jx;%#jx].",
1882
__func__, (uintmax_t)pa, i,
1883
(uintmax_t)phys_avail[i], (uintmax_t)phys_avail[i + 1]);
1884
if (pa == phys_avail[i] || pa == phys_avail[i + 1])
1885
return (EJUSTRETURN);
1886
cnt = vm_phys_avail_count();
1887
if (cnt >= PHYS_AVAIL_ENTRIES)
1888
return (ENOSPC);
1889
memmove(&phys_avail[i + 2], &phys_avail[i],
1890
(cnt - i) * sizeof(phys_avail[0]));
1891
phys_avail[i + 1] = pa;
1892
phys_avail[i + 2] = pa;
1893
vm_phys_avail_check(i);
1894
vm_phys_avail_check(i+2);
1895
1896
return (0);
1897
}
1898
1899
/*
1900
* Check if a given physical address can be included as part of a crash dump.
1901
*/
1902
bool
1903
vm_phys_is_dumpable(vm_paddr_t pa)
1904
{
1905
vm_page_t m;
1906
int i;
1907
1908
if ((m = vm_phys_paddr_to_vm_page(pa)) != NULL)
1909
return ((m->flags & PG_NODUMP) == 0);
1910
1911
for (i = 0; dump_avail[i] != 0 || dump_avail[i + 1] != 0; i += 2) {
1912
if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
1913
return (true);
1914
}
1915
return (false);
1916
}
1917
1918
void
1919
vm_phys_early_add_seg(vm_paddr_t start, vm_paddr_t end)
1920
{
1921
struct vm_phys_seg *seg;
1922
1923
if (vm_phys_early_nsegs == -1)
1924
panic("%s: called after initialization", __func__);
1925
if (vm_phys_early_nsegs == nitems(vm_phys_early_segs))
1926
panic("%s: ran out of early segments", __func__);
1927
1928
seg = &vm_phys_early_segs[vm_phys_early_nsegs++];
1929
seg->start = start;
1930
seg->end = end;
1931
}
1932
1933
/*
1934
* This routine allocates NUMA node specific memory before the page
1935
* allocator is bootstrapped.
1936
*/
1937
vm_paddr_t
1938
vm_phys_early_alloc(int domain, size_t alloc_size)
1939
{
1940
#ifdef NUMA
1941
int mem_index;
1942
#endif
1943
int i, biggestone;
1944
vm_paddr_t pa, mem_start, mem_end, size, biggestsize, align;
1945
1946
KASSERT(domain == -1 || (domain >= 0 && domain < vm_ndomains),
1947
("%s: invalid domain index %d", __func__, domain));
1948
1949
/*
1950
* Search the mem_affinity array for the biggest address
1951
* range in the desired domain. This is used to constrain
1952
* the phys_avail selection below.
1953
*/
1954
biggestsize = 0;
1955
mem_start = 0;
1956
mem_end = -1;
1957
#ifdef NUMA
1958
mem_index = 0;
1959
if (mem_affinity != NULL) {
1960
for (i = 0;; i++) {
1961
size = mem_affinity[i].end - mem_affinity[i].start;
1962
if (size == 0)
1963
break;
1964
if (domain != -1 && mem_affinity[i].domain != domain)
1965
continue;
1966
if (size > biggestsize) {
1967
mem_index = i;
1968
biggestsize = size;
1969
}
1970
}
1971
mem_start = mem_affinity[mem_index].start;
1972
mem_end = mem_affinity[mem_index].end;
1973
}
1974
#endif
1975
1976
/*
1977
* Now find biggest physical segment in within the desired
1978
* numa domain.
1979
*/
1980
biggestsize = 0;
1981
biggestone = 0;
1982
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1983
/* skip regions that are out of range */
1984
if (phys_avail[i+1] - alloc_size < mem_start ||
1985
phys_avail[i+1] > mem_end)
1986
continue;
1987
size = vm_phys_avail_size(i);
1988
if (size > biggestsize) {
1989
biggestone = i;
1990
biggestsize = size;
1991
}
1992
}
1993
alloc_size = round_page(alloc_size);
1994
1995
/*
1996
* Grab single pages from the front to reduce fragmentation.
1997
*/
1998
if (alloc_size == PAGE_SIZE) {
1999
pa = phys_avail[biggestone];
2000
phys_avail[biggestone] += PAGE_SIZE;
2001
vm_phys_avail_check(biggestone);
2002
return (pa);
2003
}
2004
2005
/*
2006
* Naturally align large allocations.
2007
*/
2008
align = phys_avail[biggestone + 1] & (alloc_size - 1);
2009
if (alloc_size + align > biggestsize)
2010
panic("cannot find a large enough size\n");
2011
if (align != 0 &&
2012
vm_phys_avail_split(phys_avail[biggestone + 1] - align,
2013
biggestone) != 0)
2014
/* Wasting memory. */
2015
phys_avail[biggestone + 1] -= align;
2016
2017
phys_avail[biggestone + 1] -= alloc_size;
2018
vm_phys_avail_check(biggestone);
2019
pa = phys_avail[biggestone + 1];
2020
return (pa);
2021
}
2022
2023
void
2024
vm_phys_early_startup(void)
2025
{
2026
struct vm_phys_seg *seg;
2027
int i;
2028
2029
if (phys_avail[1] == 0)
2030
panic("phys_avail[] is empty");
2031
2032
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2033
phys_avail[i] = round_page(phys_avail[i]);
2034
phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
2035
}
2036
2037
for (i = 0; i < vm_phys_early_nsegs; i++) {
2038
seg = &vm_phys_early_segs[i];
2039
vm_phys_add_seg(seg->start, seg->end);
2040
}
2041
vm_phys_early_nsegs = -1;
2042
2043
#ifdef NUMA
2044
/* Force phys_avail to be split by domain. */
2045
if (mem_affinity != NULL) {
2046
int idx;
2047
2048
for (i = 0; mem_affinity[i].end != 0; i++) {
2049
idx = vm_phys_avail_find(mem_affinity[i].start);
2050
if (idx != -1)
2051
vm_phys_avail_split(mem_affinity[i].start, idx);
2052
idx = vm_phys_avail_find(mem_affinity[i].end);
2053
if (idx != -1)
2054
vm_phys_avail_split(mem_affinity[i].end, idx);
2055
}
2056
}
2057
#endif
2058
}
2059
2060
#ifdef DDB
2061
/*
2062
* Show the number of physical pages in each of the free lists.
2063
*/
2064
DB_SHOW_COMMAND_FLAGS(freepages, db_show_freepages, DB_CMD_MEMSAFE)
2065
{
2066
struct vm_freelist *fl;
2067
int flind, oind, pind, dom;
2068
2069
for (dom = 0; dom < vm_ndomains; dom++) {
2070
db_printf("DOMAIN: %d\n", dom);
2071
for (flind = 0; flind < vm_nfreelists; flind++) {
2072
db_printf("FREE LIST %d:\n"
2073
"\n ORDER (SIZE) | NUMBER"
2074
"\n ", flind);
2075
for (pind = 0; pind < VM_NFREEPOOL; pind++)
2076
db_printf(" | POOL %d", pind);
2077
db_printf("\n-- ");
2078
for (pind = 0; pind < VM_NFREEPOOL; pind++)
2079
db_printf("-- -- ");
2080
db_printf("--\n");
2081
for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
2082
db_printf(" %2.2d (%6.6dK)", oind,
2083
1 << (PAGE_SHIFT - 10 + oind));
2084
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
2085
fl = vm_phys_free_queues[dom][flind][pind];
2086
db_printf(" | %6.6d", fl[oind].lcnt);
2087
}
2088
db_printf("\n");
2089
}
2090
db_printf("\n");
2091
}
2092
db_printf("\n");
2093
}
2094
}
2095
#endif
2096
2097