extern "C" {
#include <sys/param.h>
#include <sys/mman.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <sys/wait.h>
#include <dirent.h>
#include <fcntl.h>
#include <grp.h>
#include <pwd.h>
#include <semaphore.h>
#include <unistd.h>
}
#include <gtest/gtest.h>
#include "mockfs.hh"
#include "utils.hh"
using namespace testing;
const uint32_t libfuse_max_write = 32 * getpagesize() + 0x1000 - 4096;
void check_environment()
{
const char *devnode = "/dev/fuse";
const char *bsdextended_node = "security.mac.bsdextended.enabled";
int bsdextended_val = 0;
size_t bsdextended_size = sizeof(bsdextended_val);
int bsdextended_found;
const char *usermount_node = "vfs.usermount";
int usermount_val = 0;
size_t usermount_size = sizeof(usermount_val);
if (eaccess(devnode, R_OK | W_OK)) {
if (errno == ENOENT) {
GTEST_SKIP() << devnode << " does not exist";
} else if (errno == EACCES) {
GTEST_SKIP() << devnode <<
" is not accessible by the current user";
} else {
GTEST_SKIP() << strerror(errno);
}
}
bsdextended_found = sysctlbyname(bsdextended_node, &bsdextended_val,
&bsdextended_size, NULL, 0);
if (bsdextended_found == 0 && bsdextended_val != 0)
GTEST_SKIP() <<
"The fusefs tests are incompatible with mac_bsdextended.";
ASSERT_EQ(sysctlbyname(usermount_node, &usermount_val, &usermount_size,
NULL, 0),
0);
if (geteuid() != 0 && !usermount_val)
GTEST_SKIP() << "current user is not allowed to mount";
}
const char *cache_mode_to_s(enum cache_mode cm) {
switch (cm) {
case Uncached:
return "Uncached";
case Writethrough:
return "Writethrough";
case Writeback:
return "Writeback";
case WritebackAsync:
return "WritebackAsync";
default:
return "Unknown";
}
}
bool is_unsafe_aio_enabled(void) {
const char *node = "vfs.aio.enable_unsafe";
int val = 0;
size_t size = sizeof(val);
if (sysctlbyname(node, &val, &size, NULL, 0)) {
perror("sysctlbyname");
return (false);
}
return (val != 0);
}
class FuseEnv: public Environment {
virtual void SetUp() {
check_environment();
}
};
void FuseTest::SetUp() {
const char *maxbcachebuf_node = "vfs.maxbcachebuf";
const char *maxphys_node = "kern.maxphys";
size_t size;
size = sizeof(m_maxbcachebuf);
ASSERT_EQ(0, sysctlbyname(maxbcachebuf_node, &m_maxbcachebuf, &size,
NULL, 0)) << strerror(errno);
size = sizeof(m_maxphys);
ASSERT_EQ(0, sysctlbyname(maxphys_node, &m_maxphys, &size, NULL, 0))
<< strerror(errno);
if (m_maxwrite == 0)
m_maxwrite = MIN(libfuse_max_write, (uint32_t)m_maxphys / 2);
try {
m_mock = new MockFS(m_maxread, m_maxreadahead, m_allow_other,
m_default_permissions, m_push_symlinks_in, m_ro,
m_pm, m_init_flags, m_kernel_minor_version,
m_maxwrite, m_async, m_noclusterr, m_time_gran,
m_nointr, m_noatime, m_fsname, m_subtype,
m_no_auto_init);
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_ACCESS);
}, Eq(true)),
_)
).Times(AnyNumber())
.WillRepeatedly(Invoke(ReturnErrno(ENOSYS)));
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_BMAP);
}, Eq(true)),
_)
).Times(AnyNumber())
.WillRepeatedly(Invoke(ReturnErrno(ENOSYS)));
} catch (std::system_error err) {
FAIL() << err.what();
}
}
void
FuseTest::expect_access(uint64_t ino, mode_t access_mode, int error)
{
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_ACCESS &&
in.header.nodeid == ino &&
in.body.access.mask == access_mode);
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnErrno(error)));
}
void
FuseTest::expect_destroy(int error)
{
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_DESTROY);
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnImmediate([=](auto in, auto& out) {
m_mock->m_quit = true;
out.header.len = sizeof(out.header);
out.header.unique = in.header.unique;
out.header.error = -error;
})));
}
void
FuseTest::expect_fallocate(uint64_t ino, uint64_t offset, uint64_t length,
uint32_t mode, int error, int times)
{
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_FALLOCATE &&
in.header.nodeid == ino &&
in.body.fallocate.offset == offset &&
in.body.fallocate.length == length &&
in.body.fallocate.mode == mode);
}, Eq(true)),
_)
).Times(times)
.WillRepeatedly(Invoke(ReturnErrno(error)));
}
void
FuseTest::expect_flush(uint64_t ino, int times, ProcessMockerT r)
{
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_FLUSH &&
in.header.nodeid == ino);
}, Eq(true)),
_)
).Times(times)
.WillRepeatedly(Invoke(r));
}
void
FuseTest::expect_forget(uint64_t ino, uint64_t nlookup, sem_t *sem)
{
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_FORGET &&
in.header.nodeid == ino &&
in.body.forget.nlookup == nlookup);
}, Eq(true)),
_)
).WillOnce(Invoke([=](auto in __unused, auto &out __unused) {
if (sem != NULL)
sem_post(sem);
}));
}
void FuseTest::expect_getattr(uint64_t ino, uint64_t size)
{
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_GETATTR &&
in.header.nodeid == ino);
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnImmediate([=](auto i __unused, auto& out) {
SET_OUT_HEADER_LEN(out, attr);
out.body.attr.attr.ino = ino;
out.body.attr.attr.mode = S_IFREG | 0644;
out.body.attr.attr.size = size;
out.body.attr.attr_valid = UINT64_MAX;
})));
}
void FuseTest::expect_getxattr(uint64_t ino, const char *attr, ProcessMockerT r)
{
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
const char *a = (const char*)in.body.bytes +
sizeof(fuse_getxattr_in);
return (in.header.opcode == FUSE_GETXATTR &&
in.header.nodeid == ino &&
0 == strcmp(attr, a));
}, Eq(true)),
_)
).WillOnce(Invoke(r));
}
void FuseTest::expect_lookup(const char *relpath, uint64_t ino, mode_t mode,
uint64_t size, int times, uint64_t attr_valid, uid_t uid, gid_t gid)
{
EXPECT_LOOKUP(FUSE_ROOT_ID, relpath)
.Times(times)
.WillRepeatedly(Invoke(
ReturnImmediate([=](auto in __unused, auto& out) {
SET_OUT_HEADER_LEN(out, entry);
out.body.entry.attr.mode = mode;
out.body.entry.nodeid = ino;
out.body.entry.attr.nlink = 1;
out.body.entry.attr_valid = attr_valid;
out.body.entry.attr.size = size;
out.body.entry.attr.uid = uid;
out.body.entry.attr.gid = gid;
})));
}
void FuseTest::expect_lookup_7_8(const char *relpath, uint64_t ino, mode_t mode,
uint64_t size, int times, uint64_t attr_valid, uid_t uid, gid_t gid)
{
EXPECT_LOOKUP(FUSE_ROOT_ID, relpath)
.Times(times)
.WillRepeatedly(Invoke(
ReturnImmediate([=](auto in __unused, auto& out) {
SET_OUT_HEADER_LEN(out, entry_7_8);
out.body.entry.attr.mode = mode;
out.body.entry.nodeid = ino;
out.body.entry.attr.nlink = 1;
out.body.entry.attr_valid = attr_valid;
out.body.entry.attr.size = size;
out.body.entry.attr.uid = uid;
out.body.entry.attr.gid = gid;
})));
}
void FuseTest::expect_open(uint64_t ino, uint32_t flags, int times)
{
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_OPEN &&
in.header.nodeid == ino);
}, Eq(true)),
_)
).Times(times)
.WillRepeatedly(Invoke(
ReturnImmediate([=](auto in __unused, auto& out) {
out.header.len = sizeof(out.header);
SET_OUT_HEADER_LEN(out, open);
out.body.open.fh = FH;
out.body.open.open_flags = flags;
})));
}
void FuseTest::expect_opendir(uint64_t ino)
{
EXPECT_CALL(*m_mock, process(
ResultOf([](auto in) {
return (in.header.opcode == FUSE_STATFS);
}, Eq(true)),
_)
).WillRepeatedly(Invoke(
ReturnImmediate([=](auto i __unused, auto& out) {
SET_OUT_HEADER_LEN(out, statfs);
})));
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_OPENDIR &&
in.header.nodeid == ino);
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) {
out.header.len = sizeof(out.header);
SET_OUT_HEADER_LEN(out, open);
out.body.open.fh = FH;
})));
}
void FuseTest::expect_read(uint64_t ino, uint64_t offset, uint64_t isize,
uint64_t osize, const void *contents, int flags, uint64_t fh)
{
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_READ &&
in.header.nodeid == ino &&
in.body.read.fh == fh &&
in.body.read.offset == offset &&
in.body.read.size == isize &&
(flags == -1 ?
(in.body.read.flags == O_RDONLY ||
in.body.read.flags == O_RDWR)
: in.body.read.flags == (uint32_t)flags));
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) {
assert(osize <= sizeof(out.body.bytes));
out.header.len = sizeof(struct fuse_out_header) + osize;
memmove(out.body.bytes, contents, osize);
}))).RetiresOnSaturation();
}
void FuseTest::expect_readdir(uint64_t ino, uint64_t off,
std::vector<struct dirent> &ents)
{
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_READDIR &&
in.header.nodeid == ino &&
in.body.readdir.fh == FH &&
in.body.readdir.offset == off);
}, Eq(true)),
_)
).WillRepeatedly(Invoke(ReturnImmediate([=](auto in, auto& out) {
struct fuse_dirent *fde = (struct fuse_dirent*)&(out.body);
int i = 0;
out.header.error = 0;
out.header.len = 0;
for (const auto& it: ents) {
size_t entlen, entsize;
fde->ino = it.d_fileno;
fde->off = it.d_off;
fde->type = it.d_type;
fde->namelen = it.d_namlen;
strncpy(fde->name, it.d_name, it.d_namlen);
entlen = FUSE_NAME_OFFSET + fde->namelen;
entsize = FUSE_DIRENT_SIZE(fde);
memset(fde->name + fde->namelen, 0, entsize - entlen);
if (out.header.len + entsize > in.body.read.size) {
printf("Overflow in readdir expectation: i=%d\n"
, i);
break;
}
out.header.len += entsize;
fde = (struct fuse_dirent*)
((intmax_t*)fde + entsize / sizeof(intmax_t));
i++;
}
out.header.len += sizeof(out.header);
})));
}
void FuseTest::expect_release(uint64_t ino, uint64_t fh)
{
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_RELEASE &&
in.header.nodeid == ino &&
in.body.release.fh == fh);
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnErrno(0)));
}
void FuseTest::expect_releasedir(uint64_t ino, ProcessMockerT r)
{
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_RELEASEDIR &&
in.header.nodeid == ino &&
in.body.release.fh == FH);
}, Eq(true)),
_)
).WillOnce(Invoke(r));
}
void FuseTest::expect_unlink(uint64_t parent, const char *path, int error)
{
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_UNLINK &&
0 == strcmp(path, in.body.unlink) &&
in.header.nodeid == parent);
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnErrno(error)));
}
void FuseTest::expect_write(uint64_t ino, uint64_t offset, uint64_t isize,
uint64_t osize, uint32_t flags_set, uint32_t flags_unset,
const void *contents)
{
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
const char *buf = (const char*)in.body.bytes +
sizeof(struct fuse_write_in);
bool pid_ok;
uint32_t wf = in.body.write.write_flags;
assert(isize <= sizeof(in.body.bytes) -
sizeof(struct fuse_write_in));
if (wf & FUSE_WRITE_CACHE)
pid_ok = true;
else
pid_ok = (pid_t)in.header.pid == getpid();
return (in.header.opcode == FUSE_WRITE &&
in.header.nodeid == ino &&
in.body.write.fh == FH &&
in.body.write.offset == offset &&
in.body.write.size == isize &&
pid_ok &&
(wf & flags_set) == flags_set &&
(wf & flags_unset) == 0 &&
(in.body.write.flags == O_WRONLY ||
in.body.write.flags == O_RDWR) &&
0 == bcmp(buf, contents, isize));
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) {
SET_OUT_HEADER_LEN(out, write);
out.body.write.size = osize;
})));
}
void FuseTest::expect_write_7_8(uint64_t ino, uint64_t offset, uint64_t isize,
uint64_t osize, const void *contents)
{
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
const char *buf = (const char*)in.body.bytes +
FUSE_COMPAT_WRITE_IN_SIZE;
bool pid_ok = (pid_t)in.header.pid == getpid();
assert(isize <= sizeof(in.body.bytes) -
FUSE_COMPAT_WRITE_IN_SIZE);
return (in.header.opcode == FUSE_WRITE &&
in.header.nodeid == ino &&
in.body.write.fh == FH &&
in.body.write.offset == offset &&
in.body.write.size == isize &&
pid_ok &&
0 == bcmp(buf, contents, isize));
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) {
SET_OUT_HEADER_LEN(out, write);
out.body.write.size = osize;
})));
}
void
get_unprivileged_id(uid_t *uid, gid_t *gid)
{
struct passwd *pw;
struct group *gr;
pw = getpwnam("tests");
if (pw == NULL) {
pw = getpwnam("nobody");
}
if (pw == NULL)
GTEST_SKIP() << "Test requires an unprivileged user";
gr = getgrnam("nobody");
if (gr == NULL)
GTEST_SKIP() << "Test requires an unprivileged group";
*uid = pw->pw_uid;
*gid = gr->gr_gid;
}
void
FuseTest::fork(bool drop_privs, int *child_status,
std::function<void()> parent_func,
std::function<int()> child_func)
{
sem_t *sem;
int mprot = PROT_READ | PROT_WRITE;
int mflags = MAP_ANON | MAP_SHARED;
pid_t child;
uid_t uid;
gid_t gid;
if (drop_privs) {
get_unprivileged_id(&uid, &gid);
if (IsSkipped())
return;
}
sem = (sem_t*)mmap(NULL, sizeof(*sem), mprot, mflags, -1, 0);
ASSERT_NE(MAP_FAILED, sem) << strerror(errno);
ASSERT_EQ(0, sem_init(sem, 1, 0)) << strerror(errno);
if ((child = ::fork()) == 0) {
int err = 0;
if (sem_wait(sem)) {
perror("sem_wait");
err = 1;
goto out;
}
if (drop_privs && 0 != setegid(gid)) {
perror("setegid");
err = 1;
goto out;
}
if (drop_privs && 0 != setreuid(-1, uid)) {
perror("setreuid");
err = 1;
goto out;
}
err = child_func();
out:
sem_destroy(sem);
_exit(err);
} else if (child > 0) {
m_mock->m_child_pid = child;
ASSERT_NO_FATAL_FAILURE(parent_func());
ASSERT_EQ(0, sem_post(sem)) << strerror(errno);
ASSERT_LE(0, wait(child_status)) << strerror(errno);
} else {
FAIL() << strerror(errno);
}
munmap(sem, sizeof(*sem));
return;
}
void
FuseTest::reclaim_vnode(const char *path)
{
int err;
err = sysctlbyname(reclaim_mib, NULL, 0, path, strlen(path) + 1);
ASSERT_EQ(0, err) << strerror(errno);
}
static void usage(char* progname) {
fprintf(stderr, "Usage: %s [-v]\n\t-v increase verbosity\n", progname);
exit(2);
}
int main(int argc, char **argv) {
int ch;
FuseEnv *fuse_env = new FuseEnv;
InitGoogleTest(&argc, argv);
AddGlobalTestEnvironment(fuse_env);
while ((ch = getopt(argc, argv, "v")) != -1) {
switch (ch) {
case 'v':
verbosity++;
break;
default:
usage(argv[0]);
break;
}
}
return (RUN_ALL_TESTS());
}