Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/usr.bin/calendar/pom.c
34677 views
1
/*-
2
* SPDX-License-Identifier: BSD-3-Clause
3
*
4
* Copyright (c) 1989, 1993
5
* The Regents of the University of California. All rights reserved.
6
*
7
* This code is derived from software posted to USENET.
8
*
9
* Redistribution and use in source and binary forms, with or without
10
* modification, are permitted provided that the following conditions
11
* are met:
12
* 1. Redistributions of source code must retain the above copyright
13
* notice, this list of conditions and the following disclaimer.
14
* 2. Redistributions in binary form must reproduce the above copyright
15
* notice, this list of conditions and the following disclaimer in the
16
* documentation and/or other materials provided with the distribution.
17
* 3. Neither the name of the University nor the names of its contributors
18
* may be used to endorse or promote products derived from this software
19
* without specific prior written permission.
20
*
21
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31
* SUCH DAMAGE.
32
*/
33
34
/*
35
* Phase of the Moon. Calculates the current phase of the moon.
36
* Based on routines from `Practical Astronomy with Your Calculator',
37
* by Duffett-Smith. Comments give the section from the book that
38
* particular piece of code was adapted from.
39
*
40
* -- Keith E. Brandt VIII 1984
41
*
42
*/
43
44
#include <stdio.h>
45
#include <stdlib.h>
46
#include <math.h>
47
#include <string.h>
48
#include <sysexits.h>
49
#include <time.h>
50
#include <unistd.h>
51
52
#include "calendar.h"
53
54
#ifndef PI
55
#define PI 3.14159265358979323846
56
#endif
57
#define EPOCH 85
58
#define EPSILONg 279.611371 /* solar ecliptic long at EPOCH */
59
#define RHOg 282.680403 /* solar ecliptic long of perigee at EPOCH */
60
#define ECCEN 0.01671542 /* solar orbit eccentricity */
61
#define lzero 18.251907 /* lunar mean long at EPOCH */
62
#define Pzero 192.917585 /* lunar mean long of perigee at EPOCH */
63
#define Nzero 55.204723 /* lunar mean long of node at EPOCH */
64
#define isleap(y) ((((y) % 4) == 0 && ((y) % 100) != 0) || ((y) % 400) == 0)
65
66
static void adj360(double *);
67
static double dtor(double);
68
static double potm(double onday);
69
static double potm_minute(double onday, int olddir);
70
71
void
72
pom(int year, double utcoffset, int *fms, int *nms)
73
{
74
double ffms[MAXMOONS];
75
double fnms[MAXMOONS];
76
int i, j;
77
78
fpom(year, utcoffset, ffms, fnms);
79
80
j = 0;
81
for (i = 0; ffms[i] != 0; i++)
82
fms[j++] = round(ffms[i]);
83
fms[i] = -1;
84
for (i = 0; fnms[i] != 0; i++)
85
nms[i] = round(fnms[i]);
86
nms[i] = -1;
87
}
88
89
void
90
fpom(int year, double utcoffset, double *ffms, double *fnms)
91
{
92
time_t tt;
93
struct tm GMT, tmd_today, tmd_tomorrow;
94
double days_today, days_tomorrow, today, tomorrow;
95
int cnt, d;
96
int yeardays;
97
int olddir, newdir;
98
double *pfnms, *pffms, t;
99
100
pfnms = fnms;
101
pffms = ffms;
102
103
/*
104
* We take the phase of the moon one second before and one second
105
* after midnight.
106
*/
107
memset(&tmd_today, 0, sizeof(tmd_today));
108
tmd_today.tm_year = year - 1900;
109
tmd_today.tm_mon = 0;
110
tmd_today.tm_mday = -1; /* 31 December */
111
tmd_today.tm_hour = 23;
112
tmd_today.tm_min = 59;
113
tmd_today.tm_sec = 59;
114
memset(&tmd_tomorrow, 0, sizeof(tmd_tomorrow));
115
tmd_tomorrow.tm_year = year - 1900;
116
tmd_tomorrow.tm_mon = 0;
117
tmd_tomorrow.tm_mday = 0; /* 01 January */
118
tmd_tomorrow.tm_hour = 0;
119
tmd_tomorrow.tm_min = 0;
120
tmd_tomorrow.tm_sec = 1;
121
122
tt = mktime(&tmd_today);
123
gmtime_r(&tt, &GMT);
124
yeardays = 0;
125
for (cnt = EPOCH; cnt < GMT.tm_year; ++cnt)
126
yeardays += isleap(1900 + cnt) ? DAYSPERLEAPYEAR : DAYSPERYEAR;
127
days_today = (GMT.tm_yday + 1) + ((GMT.tm_hour +
128
(GMT.tm_min / FSECSPERMINUTE) + (GMT.tm_sec / FSECSPERHOUR)) /
129
FHOURSPERDAY);
130
days_today += yeardays;
131
132
tt = mktime(&tmd_tomorrow);
133
gmtime_r(&tt, &GMT);
134
yeardays = 0;
135
for (cnt = EPOCH; cnt < GMT.tm_year; ++cnt)
136
yeardays += isleap(1900 + cnt) ? DAYSPERLEAPYEAR : DAYSPERYEAR;
137
days_tomorrow = (GMT.tm_yday + 1) + ((GMT.tm_hour +
138
(GMT.tm_min / FSECSPERMINUTE) + (GMT.tm_sec / FSECSPERHOUR)) /
139
FHOURSPERDAY);
140
days_tomorrow += yeardays;
141
142
today = potm(days_today); /* 30 December 23:59:59 */
143
tomorrow = potm(days_tomorrow); /* 31 December 00:00:01 */
144
olddir = today > tomorrow ? -1 : +1;
145
146
yeardays = 1 + (isleap(year) ? DAYSPERLEAPYEAR : DAYSPERYEAR); /* reuse */
147
for (d = 0; d <= yeardays; d++) {
148
today = potm(days_today);
149
tomorrow = potm(days_tomorrow);
150
newdir = today > tomorrow ? -1 : +1;
151
if (olddir != newdir) {
152
t = potm_minute(days_today - 1, olddir) +
153
utcoffset / FHOURSPERDAY;
154
if (olddir == -1 && newdir == +1) {
155
*pfnms = d - 1 + t;
156
pfnms++;
157
} else if (olddir == +1 && newdir == -1) {
158
*pffms = d - 1 + t;
159
pffms++;
160
}
161
}
162
olddir = newdir;
163
days_today++;
164
days_tomorrow++;
165
}
166
*pffms = -1;
167
*pfnms = -1;
168
}
169
170
static double
171
potm_minute(double onday, int olddir) {
172
double period = FSECSPERDAY / 2.0;
173
double p1, p2;
174
double before, after;
175
int newdir;
176
177
// printf("---> days:%g olddir:%d\n", days, olddir);
178
179
p1 = onday + (period / SECSPERDAY);
180
period /= 2;
181
182
while (period > 30) { /* half a minute */
183
// printf("period:%g - p1:%g - ", period, p1);
184
p2 = p1 + (2.0 / SECSPERDAY);
185
before = potm(p1);
186
after = potm(p2);
187
// printf("before:%10.10g - after:%10.10g\n", before, after);
188
newdir = before < after ? -1 : +1;
189
if (olddir != newdir)
190
p1 += (period / SECSPERDAY);
191
else
192
p1 -= (period / SECSPERDAY);
193
period /= 2;
194
// printf("newdir:%d - p1:%10.10f - period:%g\n",
195
// newdir, p1, period);
196
}
197
p1 -= floor(p1);
198
//exit(0);
199
return (p1);
200
}
201
202
/*
203
* potm --
204
* return phase of the moon, as a percentage [0 ... 100]
205
*/
206
static double
207
potm(double onday)
208
{
209
double N, Msol, Ec, LambdaSol, l, Mm, Ev, Ac, A3, Mmprime;
210
double A4, lprime, V, ldprime, D, Nm;
211
212
N = 360 * onday / 365.2422; /* sec 42 #3 */
213
adj360(&N);
214
Msol = N + EPSILONg - RHOg; /* sec 42 #4 */
215
adj360(&Msol);
216
Ec = 360 / PI * ECCEN * sin(dtor(Msol)); /* sec 42 #5 */
217
LambdaSol = N + Ec + EPSILONg; /* sec 42 #6 */
218
adj360(&LambdaSol);
219
l = 13.1763966 * onday + lzero; /* sec 61 #4 */
220
adj360(&l);
221
Mm = l - (0.1114041 * onday) - Pzero; /* sec 61 #5 */
222
adj360(&Mm);
223
Nm = Nzero - (0.0529539 * onday); /* sec 61 #6 */
224
adj360(&Nm);
225
Ev = 1.2739 * sin(dtor(2*(l - LambdaSol) - Mm)); /* sec 61 #7 */
226
Ac = 0.1858 * sin(dtor(Msol)); /* sec 61 #8 */
227
A3 = 0.37 * sin(dtor(Msol));
228
Mmprime = Mm + Ev - Ac - A3; /* sec 61 #9 */
229
Ec = 6.2886 * sin(dtor(Mmprime)); /* sec 61 #10 */
230
A4 = 0.214 * sin(dtor(2 * Mmprime)); /* sec 61 #11 */
231
lprime = l + Ev + Ec - Ac + A4; /* sec 61 #12 */
232
V = 0.6583 * sin(dtor(2 * (lprime - LambdaSol))); /* sec 61 #13 */
233
ldprime = lprime + V; /* sec 61 #14 */
234
D = ldprime - LambdaSol; /* sec 63 #2 */
235
return(50 * (1 - cos(dtor(D)))); /* sec 63 #3 */
236
}
237
238
/*
239
* dtor --
240
* convert degrees to radians
241
*/
242
static double
243
dtor(double deg)
244
{
245
246
return(deg * PI / 180);
247
}
248
249
/*
250
* adj360 --
251
* adjust value so 0 <= deg <= 360
252
*/
253
static void
254
adj360(double *deg)
255
{
256
257
for (;;)
258
if (*deg < 0)
259
*deg += 360;
260
else if (*deg > 360)
261
*deg -= 360;
262
else
263
break;
264
}
265
266