Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/usr.bin/compress/zopen.c
34677 views
1
/*-
2
* SPDX-License-Identifier: BSD-3-Clause
3
*
4
* Copyright (c) 1985, 1986, 1992, 1993
5
* The Regents of the University of California. All rights reserved.
6
*
7
* This code is derived from software contributed to Berkeley by
8
* Diomidis Spinellis and James A. Woods, derived from original
9
* work by Spencer Thomas and Joseph Orost.
10
*
11
* Redistribution and use in source and binary forms, with or without
12
* modification, are permitted provided that the following conditions
13
* are met:
14
* 1. Redistributions of source code must retain the above copyright
15
* notice, this list of conditions and the following disclaimer.
16
* 2. Redistributions in binary form must reproduce the above copyright
17
* notice, this list of conditions and the following disclaimer in the
18
* documentation and/or other materials provided with the distribution.
19
* 3. Neither the name of the University nor the names of its contributors
20
* may be used to endorse or promote products derived from this software
21
* without specific prior written permission.
22
*
23
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33
* SUCH DAMAGE.
34
*/
35
36
37
#include <sys/cdefs.h>
38
/*-
39
* fcompress.c - File compression ala IEEE Computer, June 1984.
40
*
41
* Compress authors:
42
* Spencer W. Thomas (decvax!utah-cs!thomas)
43
* Jim McKie (decvax!mcvax!jim)
44
* Steve Davies (decvax!vax135!petsd!peora!srd)
45
* Ken Turkowski (decvax!decwrl!turtlevax!ken)
46
* James A. Woods (decvax!ihnp4!ames!jaw)
47
* Joe Orost (decvax!vax135!petsd!joe)
48
*
49
* Cleaned up and converted to library returning I/O streams by
50
* Diomidis Spinellis <[email protected]>.
51
*
52
* zopen(filename, mode, bits)
53
* Returns a FILE * that can be used for read or write. The modes
54
* supported are only "r" and "w". Seeking is not allowed. On
55
* reading the file is decompressed, on writing it is compressed.
56
* The output is compatible with compress(1) with 16 bit tables.
57
* Any file produced by compress(1) can be read.
58
*/
59
60
#include <sys/param.h>
61
#include <sys/stat.h>
62
63
#include <ctype.h>
64
#include <errno.h>
65
#include <signal.h>
66
#include <stdio.h>
67
#include <stdlib.h>
68
#include <string.h>
69
#include <unistd.h>
70
#include "zopen.h"
71
72
#define BITS 16 /* Default bits. */
73
#define HSIZE 69001 /* 95% occupancy */
74
75
/* A code_int must be able to hold 2**BITS values of type int, and also -1. */
76
typedef long code_int;
77
typedef long count_int;
78
79
typedef u_char char_type;
80
static char_type magic_header[] =
81
{'\037', '\235'}; /* 1F 9D */
82
83
#define BIT_MASK 0x1f /* Defines for third byte of header. */
84
#define BLOCK_MASK 0x80
85
86
/*
87
* Masks 0x40 and 0x20 are free. I think 0x20 should mean that there is
88
* a fourth header byte (for expansion).
89
*/
90
#define INIT_BITS 9 /* Initial number of bits/code. */
91
92
#define MAXCODE(n_bits) ((1 << (n_bits)) - 1)
93
94
struct s_zstate {
95
FILE *zs_fp; /* File stream for I/O */
96
char zs_mode; /* r or w */
97
enum {
98
S_START, S_MIDDLE, S_EOF
99
} zs_state; /* State of computation */
100
u_int zs_n_bits; /* Number of bits/code. */
101
u_int zs_maxbits; /* User settable max # bits/code. */
102
code_int zs_maxcode; /* Maximum code, given n_bits. */
103
code_int zs_maxmaxcode; /* Should NEVER generate this code. */
104
count_int zs_htab [HSIZE];
105
u_short zs_codetab [HSIZE];
106
code_int zs_hsize; /* For dynamic table sizing. */
107
code_int zs_free_ent; /* First unused entry. */
108
/*
109
* Block compression parameters -- after all codes are used up,
110
* and compression rate changes, start over.
111
*/
112
int zs_block_compress;
113
int zs_clear_flg;
114
long zs_ratio;
115
count_int zs_checkpoint;
116
u_int zs_offset;
117
long zs_in_count; /* Length of input. */
118
long zs_bytes_out; /* Length of compressed output. */
119
long zs_out_count; /* # of codes output (for debugging). */
120
char_type zs_buf[BITS];
121
union {
122
struct {
123
long zs_fcode;
124
code_int zs_ent;
125
code_int zs_hsize_reg;
126
int zs_hshift;
127
} w; /* Write parameters */
128
struct {
129
char_type *zs_stackp;
130
int zs_finchar;
131
code_int zs_code, zs_oldcode, zs_incode;
132
int zs_roffset, zs_size;
133
char_type zs_gbuf[BITS];
134
} r; /* Read parameters */
135
} u;
136
};
137
138
/* Definitions to retain old variable names */
139
#define fp zs->zs_fp
140
#define zmode zs->zs_mode
141
#define state zs->zs_state
142
#define n_bits zs->zs_n_bits
143
#define maxbits zs->zs_maxbits
144
#define maxcode zs->zs_maxcode
145
#define maxmaxcode zs->zs_maxmaxcode
146
#define htab zs->zs_htab
147
#define codetab zs->zs_codetab
148
#define hsize zs->zs_hsize
149
#define free_ent zs->zs_free_ent
150
#define block_compress zs->zs_block_compress
151
#define clear_flg zs->zs_clear_flg
152
#define ratio zs->zs_ratio
153
#define checkpoint zs->zs_checkpoint
154
#define offset zs->zs_offset
155
#define in_count zs->zs_in_count
156
#define bytes_out zs->zs_bytes_out
157
#define out_count zs->zs_out_count
158
#define buf zs->zs_buf
159
#define fcode zs->u.w.zs_fcode
160
#define hsize_reg zs->u.w.zs_hsize_reg
161
#define ent zs->u.w.zs_ent
162
#define hshift zs->u.w.zs_hshift
163
#define stackp zs->u.r.zs_stackp
164
#define finchar zs->u.r.zs_finchar
165
#define code zs->u.r.zs_code
166
#define oldcode zs->u.r.zs_oldcode
167
#define incode zs->u.r.zs_incode
168
#define roffset zs->u.r.zs_roffset
169
#define size zs->u.r.zs_size
170
#define gbuf zs->u.r.zs_gbuf
171
172
/*
173
* To save much memory, we overlay the table used by compress() with those
174
* used by decompress(). The tab_prefix table is the same size and type as
175
* the codetab. The tab_suffix table needs 2**BITS characters. We get this
176
* from the beginning of htab. The output stack uses the rest of htab, and
177
* contains characters. There is plenty of room for any possible stack
178
* (stack used to be 8000 characters).
179
*/
180
181
#define htabof(i) htab[i]
182
#define codetabof(i) codetab[i]
183
184
#define tab_prefixof(i) codetabof(i)
185
#define tab_suffixof(i) ((char_type *)(htab))[i]
186
#define de_stack ((char_type *)&tab_suffixof(1 << BITS))
187
188
#define CHECK_GAP 10000 /* Ratio check interval. */
189
190
/*
191
* the next two codes should not be changed lightly, as they must not
192
* lie within the contiguous general code space.
193
*/
194
#define FIRST 257 /* First free entry. */
195
#define CLEAR 256 /* Table clear output code. */
196
197
static int cl_block(struct s_zstate *);
198
static void cl_hash(struct s_zstate *, count_int);
199
static code_int getcode(struct s_zstate *);
200
static int output(struct s_zstate *, code_int);
201
static int zclose(void *);
202
static int zread(void *, char *, int);
203
static int zwrite(void *, const char *, int);
204
205
/*-
206
* Algorithm from "A Technique for High Performance Data Compression",
207
* Terry A. Welch, IEEE Computer Vol 17, No 6 (June 1984), pp 8-19.
208
*
209
* Algorithm:
210
* Modified Lempel-Ziv method (LZW). Basically finds common
211
* substrings and replaces them with a variable size code. This is
212
* deterministic, and can be done on the fly. Thus, the decompression
213
* procedure needs no input table, but tracks the way the table was built.
214
*/
215
216
/*-
217
* compress write
218
*
219
* Algorithm: use open addressing double hashing (no chaining) on the
220
* prefix code / next character combination. We do a variant of Knuth's
221
* algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
222
* secondary probe. Here, the modular division first probe is gives way
223
* to a faster exclusive-or manipulation. Also do block compression with
224
* an adaptive reset, whereby the code table is cleared when the compression
225
* ratio decreases, but after the table fills. The variable-length output
226
* codes are re-sized at this point, and a special CLEAR code is generated
227
* for the decompressor. Late addition: construct the table according to
228
* file size for noticeable speed improvement on small files. Please direct
229
* questions about this implementation to ames!jaw.
230
*/
231
static int
232
zwrite(void *cookie, const char *wbp, int num)
233
{
234
code_int i;
235
int c, disp;
236
struct s_zstate *zs;
237
const u_char *bp;
238
u_char tmp;
239
int count;
240
241
if (num == 0)
242
return (0);
243
244
zs = cookie;
245
count = num;
246
bp = (const u_char *)wbp;
247
if (state == S_MIDDLE)
248
goto middle;
249
state = S_MIDDLE;
250
251
maxmaxcode = 1L << maxbits;
252
if (fwrite(magic_header,
253
sizeof(char), sizeof(magic_header), fp) != sizeof(magic_header))
254
return (-1);
255
tmp = (u_char)((maxbits) | block_compress);
256
if (fwrite(&tmp, sizeof(char), sizeof(tmp), fp) != sizeof(tmp))
257
return (-1);
258
259
offset = 0;
260
bytes_out = 3; /* Includes 3-byte header mojo. */
261
out_count = 0;
262
clear_flg = 0;
263
ratio = 0;
264
in_count = 1;
265
checkpoint = CHECK_GAP;
266
maxcode = MAXCODE(n_bits = INIT_BITS);
267
free_ent = ((block_compress) ? FIRST : 256);
268
269
ent = *bp++;
270
--count;
271
272
hshift = 0;
273
for (fcode = (long)hsize; fcode < 65536L; fcode *= 2L)
274
hshift++;
275
hshift = 8 - hshift; /* Set hash code range bound. */
276
277
hsize_reg = hsize;
278
cl_hash(zs, (count_int)hsize_reg); /* Clear hash table. */
279
280
middle: for (i = 0; count--;) {
281
c = *bp++;
282
in_count++;
283
fcode = (long)(((long)c << maxbits) + ent);
284
i = ((c << hshift) ^ ent); /* Xor hashing. */
285
286
if (htabof(i) == fcode) {
287
ent = codetabof(i);
288
continue;
289
} else if ((long)htabof(i) < 0) /* Empty slot. */
290
goto nomatch;
291
disp = hsize_reg - i; /* Secondary hash (after G. Knott). */
292
if (i == 0)
293
disp = 1;
294
probe: if ((i -= disp) < 0)
295
i += hsize_reg;
296
297
if (htabof(i) == fcode) {
298
ent = codetabof(i);
299
continue;
300
}
301
if ((long)htabof(i) >= 0)
302
goto probe;
303
nomatch: if (output(zs, (code_int) ent) == -1)
304
return (-1);
305
out_count++;
306
ent = c;
307
if (free_ent < maxmaxcode) {
308
codetabof(i) = free_ent++; /* code -> hashtable */
309
htabof(i) = fcode;
310
} else if ((count_int)in_count >=
311
checkpoint && block_compress) {
312
if (cl_block(zs) == -1)
313
return (-1);
314
}
315
}
316
return (num);
317
}
318
319
static int
320
zclose(void *cookie)
321
{
322
struct s_zstate *zs;
323
int rval;
324
325
zs = cookie;
326
if (zmode == 'w') { /* Put out the final code. */
327
if (output(zs, (code_int) ent) == -1) {
328
(void)fclose(fp);
329
free(zs);
330
return (-1);
331
}
332
out_count++;
333
if (output(zs, (code_int) - 1) == -1) {
334
(void)fclose(fp);
335
free(zs);
336
return (-1);
337
}
338
}
339
rval = fclose(fp) == EOF ? -1 : 0;
340
free(zs);
341
return (rval);
342
}
343
344
/*-
345
* Output the given code.
346
* Inputs:
347
* code: A n_bits-bit integer. If == -1, then EOF. This assumes
348
* that n_bits =< (long)wordsize - 1.
349
* Outputs:
350
* Outputs code to the file.
351
* Assumptions:
352
* Chars are 8 bits long.
353
* Algorithm:
354
* Maintain a BITS character long buffer (so that 8 codes will
355
* fit in it exactly). Use the VAX insv instruction to insert each
356
* code in turn. When the buffer fills up empty it and start over.
357
*/
358
359
static char_type lmask[9] =
360
{0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00};
361
static char_type rmask[9] =
362
{0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};
363
364
static int
365
output(struct s_zstate *zs, code_int ocode)
366
{
367
int r_off;
368
u_int bits;
369
char_type *bp;
370
371
r_off = offset;
372
bits = n_bits;
373
bp = buf;
374
if (ocode >= 0) {
375
/* Get to the first byte. */
376
bp += (r_off >> 3);
377
r_off &= 7;
378
/*
379
* Since ocode is always >= 8 bits, only need to mask the first
380
* hunk on the left.
381
*/
382
*bp = (*bp & rmask[r_off]) | ((ocode << r_off) & lmask[r_off]);
383
bp++;
384
bits -= (8 - r_off);
385
ocode >>= 8 - r_off;
386
/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
387
if (bits >= 8) {
388
*bp++ = ocode;
389
ocode >>= 8;
390
bits -= 8;
391
}
392
/* Last bits. */
393
if (bits)
394
*bp = ocode;
395
offset += n_bits;
396
if (offset == (n_bits << 3)) {
397
bp = buf;
398
bits = n_bits;
399
bytes_out += bits;
400
if (fwrite(bp, sizeof(char), bits, fp) != bits)
401
return (-1);
402
bp += bits;
403
bits = 0;
404
offset = 0;
405
}
406
/*
407
* If the next entry is going to be too big for the ocode size,
408
* then increase it, if possible.
409
*/
410
if (free_ent > maxcode || (clear_flg > 0)) {
411
/*
412
* Write the whole buffer, because the input side won't
413
* discover the size increase until after it has read it.
414
*/
415
if (offset > 0) {
416
if (fwrite(buf, 1, n_bits, fp) != n_bits)
417
return (-1);
418
bytes_out += n_bits;
419
}
420
offset = 0;
421
422
if (clear_flg) {
423
maxcode = MAXCODE(n_bits = INIT_BITS);
424
clear_flg = 0;
425
} else {
426
n_bits++;
427
if (n_bits == maxbits)
428
maxcode = maxmaxcode;
429
else
430
maxcode = MAXCODE(n_bits);
431
}
432
}
433
} else {
434
/* At EOF, write the rest of the buffer. */
435
if (offset > 0) {
436
offset = (offset + 7) / 8;
437
if (fwrite(buf, 1, offset, fp) != offset)
438
return (-1);
439
bytes_out += offset;
440
}
441
offset = 0;
442
}
443
return (0);
444
}
445
446
/*
447
* Decompress read. This routine adapts to the codes in the file building
448
* the "string" table on-the-fly; requiring no table to be stored in the
449
* compressed file. The tables used herein are shared with those of the
450
* compress() routine. See the definitions above.
451
*/
452
static int
453
zread(void *cookie, char *rbp, int num)
454
{
455
u_int count;
456
struct s_zstate *zs;
457
u_char *bp, header[3];
458
459
if (num == 0)
460
return (0);
461
462
zs = cookie;
463
count = num;
464
bp = (u_char *)rbp;
465
switch (state) {
466
case S_START:
467
state = S_MIDDLE;
468
break;
469
case S_MIDDLE:
470
goto middle;
471
case S_EOF:
472
goto eof;
473
}
474
475
/* Check the magic number */
476
if (fread(header,
477
sizeof(char), sizeof(header), fp) != sizeof(header) ||
478
memcmp(header, magic_header, sizeof(magic_header)) != 0) {
479
errno = EFTYPE;
480
return (-1);
481
}
482
maxbits = header[2]; /* Set -b from file. */
483
block_compress = maxbits & BLOCK_MASK;
484
maxbits &= BIT_MASK;
485
maxmaxcode = 1L << maxbits;
486
if (maxbits > BITS || maxbits < 12) {
487
errno = EFTYPE;
488
return (-1);
489
}
490
/* As above, initialize the first 256 entries in the table. */
491
maxcode = MAXCODE(n_bits = INIT_BITS);
492
for (code = 255; code >= 0; code--) {
493
tab_prefixof(code) = 0;
494
tab_suffixof(code) = (char_type) code;
495
}
496
free_ent = block_compress ? FIRST : 256;
497
498
finchar = oldcode = getcode(zs);
499
if (oldcode == -1) /* EOF already? */
500
return (0); /* Get out of here */
501
502
/* First code must be 8 bits = char. */
503
*bp++ = (u_char)finchar;
504
count--;
505
stackp = de_stack;
506
507
while ((code = getcode(zs)) > -1) {
508
509
if ((code == CLEAR) && block_compress) {
510
for (code = 255; code >= 0; code--)
511
tab_prefixof(code) = 0;
512
clear_flg = 1;
513
free_ent = FIRST;
514
oldcode = -1;
515
continue;
516
}
517
incode = code;
518
519
/* Special case for kWkWk string. */
520
if (code >= free_ent) {
521
if (code > free_ent || oldcode == -1) {
522
/* Bad stream. */
523
errno = EINVAL;
524
return (-1);
525
}
526
*stackp++ = finchar;
527
code = oldcode;
528
}
529
/*
530
* The above condition ensures that code < free_ent.
531
* The construction of tab_prefixof in turn guarantees that
532
* each iteration decreases code and therefore stack usage is
533
* bound by 1 << BITS - 256.
534
*/
535
536
/* Generate output characters in reverse order. */
537
while (code >= 256) {
538
*stackp++ = tab_suffixof(code);
539
code = tab_prefixof(code);
540
}
541
*stackp++ = finchar = tab_suffixof(code);
542
543
/* And put them out in forward order. */
544
middle: do {
545
if (count-- == 0)
546
return (num);
547
*bp++ = *--stackp;
548
} while (stackp > de_stack);
549
550
/* Generate the new entry. */
551
if ((code = free_ent) < maxmaxcode && oldcode != -1) {
552
tab_prefixof(code) = (u_short) oldcode;
553
tab_suffixof(code) = finchar;
554
free_ent = code + 1;
555
}
556
557
/* Remember previous code. */
558
oldcode = incode;
559
}
560
state = S_EOF;
561
eof: return (num - count);
562
}
563
564
/*-
565
* Read one code from the standard input. If EOF, return -1.
566
* Inputs:
567
* stdin
568
* Outputs:
569
* code or -1 is returned.
570
*/
571
static code_int
572
getcode(struct s_zstate *zs)
573
{
574
code_int gcode;
575
int r_off, bits;
576
char_type *bp;
577
578
bp = gbuf;
579
if (clear_flg > 0 || roffset >= size || free_ent > maxcode) {
580
/*
581
* If the next entry will be too big for the current gcode
582
* size, then we must increase the size. This implies reading
583
* a new buffer full, too.
584
*/
585
if (free_ent > maxcode) {
586
n_bits++;
587
if (n_bits == maxbits) /* Won't get any bigger now. */
588
maxcode = maxmaxcode;
589
else
590
maxcode = MAXCODE(n_bits);
591
}
592
if (clear_flg > 0) {
593
maxcode = MAXCODE(n_bits = INIT_BITS);
594
clear_flg = 0;
595
}
596
size = fread(gbuf, 1, n_bits, fp);
597
if (size <= 0) /* End of file. */
598
return (-1);
599
roffset = 0;
600
/* Round size down to integral number of codes. */
601
size = (size << 3) - (n_bits - 1);
602
}
603
r_off = roffset;
604
bits = n_bits;
605
606
/* Get to the first byte. */
607
bp += (r_off >> 3);
608
r_off &= 7;
609
610
/* Get first part (low order bits). */
611
gcode = (*bp++ >> r_off);
612
bits -= (8 - r_off);
613
r_off = 8 - r_off; /* Now, roffset into gcode word. */
614
615
/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
616
if (bits >= 8) {
617
gcode |= *bp++ << r_off;
618
r_off += 8;
619
bits -= 8;
620
}
621
622
/* High order bits. */
623
if (bits > 0)
624
gcode |= (*bp & rmask[bits]) << r_off;
625
roffset += n_bits;
626
627
return (gcode);
628
}
629
630
static int
631
cl_block(struct s_zstate *zs) /* Table clear for block compress. */
632
{
633
long rat;
634
635
checkpoint = in_count + CHECK_GAP;
636
637
if (in_count > 0x007fffff) { /* Shift will overflow. */
638
rat = bytes_out >> 8;
639
if (rat == 0) /* Don't divide by zero. */
640
rat = 0x7fffffff;
641
else
642
rat = in_count / rat;
643
} else
644
rat = (in_count << 8) / bytes_out; /* 8 fractional bits. */
645
if (rat > ratio)
646
ratio = rat;
647
else {
648
ratio = 0;
649
cl_hash(zs, (count_int) hsize);
650
free_ent = FIRST;
651
clear_flg = 1;
652
if (output(zs, (code_int) CLEAR) == -1)
653
return (-1);
654
}
655
return (0);
656
}
657
658
static void
659
cl_hash(struct s_zstate *zs, count_int cl_hsize) /* Reset code table. */
660
{
661
count_int *htab_p;
662
long i, m1;
663
664
m1 = -1;
665
htab_p = htab + cl_hsize;
666
i = cl_hsize - 16;
667
do { /* Might use Sys V memset(3) here. */
668
*(htab_p - 16) = m1;
669
*(htab_p - 15) = m1;
670
*(htab_p - 14) = m1;
671
*(htab_p - 13) = m1;
672
*(htab_p - 12) = m1;
673
*(htab_p - 11) = m1;
674
*(htab_p - 10) = m1;
675
*(htab_p - 9) = m1;
676
*(htab_p - 8) = m1;
677
*(htab_p - 7) = m1;
678
*(htab_p - 6) = m1;
679
*(htab_p - 5) = m1;
680
*(htab_p - 4) = m1;
681
*(htab_p - 3) = m1;
682
*(htab_p - 2) = m1;
683
*(htab_p - 1) = m1;
684
htab_p -= 16;
685
} while ((i -= 16) >= 0);
686
for (i += 16; i > 0; i--)
687
*--htab_p = m1;
688
}
689
690
FILE *
691
zopen(const char *fname, const char *mode, int bits)
692
{
693
struct s_zstate *zs;
694
695
if ((mode[0] != 'r' && mode[0] != 'w') || mode[1] != '\0' ||
696
bits < 0 || bits > BITS) {
697
errno = EINVAL;
698
return (NULL);
699
}
700
701
if ((zs = calloc(1, sizeof(struct s_zstate))) == NULL)
702
return (NULL);
703
704
maxbits = bits ? bits : BITS; /* User settable max # bits/code. */
705
maxmaxcode = 1L << maxbits; /* Should NEVER generate this code. */
706
hsize = HSIZE; /* For dynamic table sizing. */
707
free_ent = 0; /* First unused entry. */
708
block_compress = BLOCK_MASK;
709
clear_flg = 0;
710
ratio = 0;
711
checkpoint = CHECK_GAP;
712
in_count = 1; /* Length of input. */
713
out_count = 0; /* # of codes output (for debugging). */
714
state = S_START;
715
roffset = 0;
716
size = 0;
717
718
/*
719
* Layering compress on top of stdio in order to provide buffering,
720
* and ensure that reads and write work with the data specified.
721
*/
722
if ((fp = fopen(fname, mode)) == NULL) {
723
free(zs);
724
return (NULL);
725
}
726
switch (*mode) {
727
case 'r':
728
zmode = 'r';
729
return (funopen(zs, zread, NULL, NULL, zclose));
730
case 'w':
731
zmode = 'w';
732
return (funopen(zs, NULL, zwrite, NULL, zclose));
733
}
734
/* NOTREACHED */
735
return (NULL);
736
}
737
738