#include <sys/param.h>
#include <sys/endian.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <assert.h>
#include <err.h>
#include <fcntl.h>
#include <paths.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <uuid.h>
#include "acpidump.h"
#define BEGIN_COMMENT "
\n"
static void acpi_print_string(char *s, size_t length);
static void acpi_print_gas(ACPI_GENERIC_ADDRESS *gas);
static int acpi_get_fadt_revision(ACPI_TABLE_FADT *fadt);
static void acpi_handle_fadt(ACPI_TABLE_HEADER *fadt);
static void acpi_print_cpu(u_char cpu_id);
static void acpi_print_cpu_uid(uint32_t uid, char *uid_string);
static void acpi_print_local_apic(uint32_t apic_id, uint32_t flags);
static void acpi_print_io_apic(uint32_t apic_id, uint32_t int_base,
uint64_t apic_addr);
static void acpi_print_mps_flags(uint16_t flags);
static void acpi_print_intr(uint32_t intr, uint16_t mps_flags);
static void acpi_print_local_nmi(u_int lint, uint16_t mps_flags);
static void acpi_print_madt(ACPI_SUBTABLE_HEADER *mp);
static void acpi_handle_madt(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_ecdt(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_hpet(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_mcfg(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_slit(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_wddt(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_lpit(ACPI_TABLE_HEADER *sdp);
static void acpi_print_srat_cpu(uint32_t apic_id, uint32_t proximity_domain,
uint32_t flags);
static void acpi_print_srat_memory(ACPI_SRAT_MEM_AFFINITY *mp);
static void acpi_print_srat(ACPI_SUBTABLE_HEADER *srat);
static void acpi_handle_srat(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_tcpa(ACPI_TABLE_HEADER *sdp);
static void acpi_print_nfit(ACPI_NFIT_HEADER *nfit);
static void acpi_handle_nfit(ACPI_TABLE_HEADER *sdp);
static void acpi_print_sdt(ACPI_TABLE_HEADER *sdp);
static void acpi_print_fadt(ACPI_TABLE_HEADER *sdp);
static void acpi_print_facs(ACPI_TABLE_FACS *facs);
static void acpi_print_dsdt(ACPI_TABLE_HEADER *dsdp);
static ACPI_TABLE_HEADER *acpi_map_sdt(vm_offset_t pa);
static void acpi_print_rsd_ptr(ACPI_TABLE_RSDP *rp);
static void acpi_handle_rsdt(ACPI_TABLE_HEADER *rsdp, const char *elm);
static void acpi_walk_subtables(ACPI_TABLE_HEADER *table, void *first,
void (*action)(ACPI_SUBTABLE_HEADER *));
static void acpi_walk_nfit(ACPI_TABLE_HEADER *table, void *first,
void (*action)(ACPI_NFIT_HEADER *));
static int addr_size;
static const char *tcpa_event_type_strings[] = {
"PREBOOT Certificate",
"POST Code",
"Unused",
"No Action",
"Separator",
"Action",
"Event Tag",
"S-CRTM Contents",
"S-CRTM Version",
"CPU Microcode",
"Platform Config Flags",
"Table of Devices",
"Compact Hash",
"IPL",
"IPL Partition Data",
"Non-Host Code",
"Non-Host Config",
"Non-Host Info"
};
static const char *TCPA_pcclient_strings[] = {
"<undefined>",
"SMBIOS",
"BIS Certificate",
"POST BIOS ROM Strings",
"ESCD",
"CMOS",
"NVRAM",
"Option ROM Execute",
"Option ROM Configurateion",
"<undefined>",
"Option ROM Microcode Update ",
"S-CRTM Version String",
"S-CRTM Contents",
"POST Contents",
"Table of Devices",
};
#define PRINTFLAG_END() printflag_end()
static char pf_sep = '{';
static void
printflag_end(void)
{
if (pf_sep != '{') {
printf("}");
pf_sep = '{';
}
printf("\n");
}
static void
printflag(uint64_t var, uint64_t mask, const char *name)
{
if (var & mask) {
printf("%c%s", pf_sep, name);
pf_sep = ',';
}
}
static void
printfield(uint64_t var, int lbit, int hbit, const char *name)
{
uint64_t mask;
int len;
len = hbit - lbit + 1;
mask = ((1 << (len + 1)) - 1) << lbit;
printf("%c%s=%#jx", pf_sep, name, (uintmax_t)((var & mask) >> lbit));
pf_sep = ',';
}
static void
acpi_print_string(char *s, size_t length)
{
int c;
while (length > 0 && (s[length - 1] == ' ' || s[length - 1] == '\0'))
length--;
while (length--) {
c = *s++;
putchar(c);
}
}
static void
acpi_print_gas(ACPI_GENERIC_ADDRESS *gas)
{
switch(gas->SpaceId) {
case ACPI_GAS_MEMORY:
printf("0x%016jx:%u[%u] (Memory)", (uintmax_t)gas->Address,
gas->BitOffset, gas->BitWidth);
break;
case ACPI_GAS_IO:
printf("0x%02jx:%u[%u] (IO)", (uintmax_t)gas->Address,
gas->BitOffset, gas->BitWidth);
break;
case ACPI_GAS_PCI:
printf("%x:%x+0x%x:%u[%u] (PCI)", (uint16_t)(gas->Address >> 32),
(uint16_t)((gas->Address >> 16) & 0xffff),
(uint16_t)gas->Address, gas->BitOffset, gas->BitWidth);
break;
case ACPI_GAS_EMBEDDED:
printf("0x%x:%u[%u] (EC)", (uint16_t)gas->Address,
gas->BitOffset, gas->BitWidth);
break;
case ACPI_GAS_SMBUS:
printf("0x%x:%u[%u] (SMBus)", (uint16_t)gas->Address,
gas->BitOffset, gas->BitWidth);
break;
case ACPI_GAS_CMOS:
case ACPI_GAS_PCIBAR:
case ACPI_GAS_DATATABLE:
case ACPI_GAS_FIXED:
default:
printf("0x%016jx (?)", (uintmax_t)gas->Address);
break;
}
}
static int
acpi_get_fadt_revision(ACPI_TABLE_FADT *fadt __unused)
{
int fadt_revision;
if (addr_size == 8) {
fadt_revision = 2;
#if defined(__i386__)
if (fadt->Facs != 0 &&
(fadt->XFacs & 0xffffffff) != fadt->Facs)
fadt_revision = 1;
#endif
} else
fadt_revision = 1;
return (fadt_revision);
}
static void
acpi_handle_fadt(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_HEADER *dsdp;
ACPI_TABLE_FACS *facs;
ACPI_TABLE_FADT *fadt;
vm_offset_t addr;
int fadt_revision;
fadt = (ACPI_TABLE_FADT *)sdp;
acpi_print_fadt(sdp);
fadt_revision = acpi_get_fadt_revision(fadt);
if (fadt_revision == 1)
addr = fadt->Facs;
else
addr = fadt->XFacs;
if (addr != 0) {
facs = (ACPI_TABLE_FACS *)acpi_map_sdt(addr);
if (memcmp(facs->Signature, ACPI_SIG_FACS, ACPI_NAMESEG_SIZE) != 0 ||
facs->Length < 64)
errx(1, "FACS is corrupt");
acpi_print_facs(facs);
}
if (fadt_revision == 1)
dsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->Dsdt);
else
dsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->XDsdt);
if (acpi_checksum(dsdp, dsdp->Length))
errx(1, "DSDT is corrupt");
acpi_print_dsdt(dsdp);
}
static void
acpi_walk_subtables(ACPI_TABLE_HEADER *table, void *first,
void (*action)(ACPI_SUBTABLE_HEADER *))
{
ACPI_SUBTABLE_HEADER *subtable;
char *end;
subtable = first;
end = (char *)table + table->Length;
while ((char *)subtable < end) {
printf("\n");
if (subtable->Length < sizeof(ACPI_SUBTABLE_HEADER)) {
warnx("invalid subtable length %u", subtable->Length);
return;
}
action(subtable);
subtable = (ACPI_SUBTABLE_HEADER *)((char *)subtable +
subtable->Length);
}
}
static void
acpi_walk_nfit(ACPI_TABLE_HEADER *table, void *first,
void (*action)(ACPI_NFIT_HEADER *))
{
ACPI_NFIT_HEADER *subtable;
char *end;
subtable = first;
end = (char *)table + table->Length;
while ((char *)subtable < end) {
printf("\n");
if (subtable->Length < sizeof(ACPI_NFIT_HEADER)) {
warnx("invalid subtable length %u", subtable->Length);
return;
}
action(subtable);
subtable = (ACPI_NFIT_HEADER *)((char *)subtable +
subtable->Length);
}
}
static void
acpi_print_cpu(u_char cpu_id)
{
printf("\tACPI CPU=");
if (cpu_id == 0xff)
printf("ALL\n");
else
printf("%d\n", (u_int)cpu_id);
}
static void
acpi_print_cpu_uid(uint32_t uid, char *uid_string)
{
printf("\tUID=%d", uid);
if (uid_string != NULL)
printf(" (%s)", uid_string);
printf("\n");
}
static void
acpi_print_local_apic(uint32_t apic_id, uint32_t flags)
{
printf("\tFlags={");
if (flags & ACPI_MADT_ENABLED)
printf("ENABLED");
else
printf("DISABLED");
printf("}\n");
printf("\tAPIC ID=%d\n", apic_id);
}
static void
acpi_print_io_apic(uint32_t apic_id, uint32_t int_base, uint64_t apic_addr)
{
printf("\tAPIC ID=%d\n", apic_id);
printf("\tINT BASE=%d\n", int_base);
printf("\tADDR=0x%016jx\n", (uintmax_t)apic_addr);
}
static void
acpi_print_mps_flags(uint16_t flags)
{
printf("\tFlags={Polarity=");
switch (flags & ACPI_MADT_POLARITY_MASK) {
case ACPI_MADT_POLARITY_CONFORMS:
printf("conforming");
break;
case ACPI_MADT_POLARITY_ACTIVE_HIGH:
printf("active-hi");
break;
case ACPI_MADT_POLARITY_ACTIVE_LOW:
printf("active-lo");
break;
default:
printf("0x%x", flags & ACPI_MADT_POLARITY_MASK);
break;
}
printf(", Trigger=");
switch (flags & ACPI_MADT_TRIGGER_MASK) {
case ACPI_MADT_TRIGGER_CONFORMS:
printf("conforming");
break;
case ACPI_MADT_TRIGGER_EDGE:
printf("edge");
break;
case ACPI_MADT_TRIGGER_LEVEL:
printf("level");
break;
default:
printf("0x%x", (flags & ACPI_MADT_TRIGGER_MASK) >> 2);
}
printf("}\n");
}
static void
acpi_print_gicc_flags(uint32_t flags)
{
printf("\tFlags={Performance intr=");
if (flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
printf("edge");
else
printf("level");
printf(", VGIC intr=");
if (flags & ACPI_MADT_VGIC_IRQ_MODE)
printf("edge");
else
printf("level");
printf("}\n");
}
static void
acpi_print_intr(uint32_t intr, uint16_t mps_flags)
{
printf("\tINTR=%d\n", intr);
acpi_print_mps_flags(mps_flags);
}
static void
acpi_print_local_nmi(u_int lint, uint16_t mps_flags)
{
printf("\tLINT Pin=%d\n", lint);
acpi_print_mps_flags(mps_flags);
}
static const char *apic_types[] = {
[ACPI_MADT_TYPE_LOCAL_APIC] = "Local APIC",
[ACPI_MADT_TYPE_IO_APIC] = "IO APIC",
[ACPI_MADT_TYPE_INTERRUPT_OVERRIDE] = "INT Override",
[ACPI_MADT_TYPE_NMI_SOURCE] = "NMI",
[ACPI_MADT_TYPE_LOCAL_APIC_NMI] = "Local APIC NMI",
[ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE] = "Local APIC Override",
[ACPI_MADT_TYPE_IO_SAPIC] = "IO SAPIC",
[ACPI_MADT_TYPE_LOCAL_SAPIC] = "Local SAPIC",
[ACPI_MADT_TYPE_INTERRUPT_SOURCE] = "Platform Interrupt",
[ACPI_MADT_TYPE_LOCAL_X2APIC] = "Local X2APIC",
[ACPI_MADT_TYPE_LOCAL_X2APIC_NMI] = "Local X2APIC NMI",
[ACPI_MADT_TYPE_GENERIC_INTERRUPT] = "GIC CPU Interface Structure",
[ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR] = "GIC Distributor Structure",
[ACPI_MADT_TYPE_GENERIC_MSI_FRAME] = "GICv2m MSI Frame",
[ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR] = "GIC Redistributor Structure",
[ACPI_MADT_TYPE_GENERIC_TRANSLATOR] = "GIC ITS Structure"
};
static const char *platform_int_types[] = { "0 (unknown)", "PMI", "INIT",
"Corrected Platform Error" };
static void
acpi_print_madt(ACPI_SUBTABLE_HEADER *mp)
{
ACPI_MADT_LOCAL_APIC *lapic;
ACPI_MADT_IO_APIC *ioapic;
ACPI_MADT_INTERRUPT_OVERRIDE *over;
ACPI_MADT_NMI_SOURCE *nmi;
ACPI_MADT_LOCAL_APIC_NMI *lapic_nmi;
ACPI_MADT_LOCAL_APIC_OVERRIDE *lapic_over;
ACPI_MADT_IO_SAPIC *iosapic;
ACPI_MADT_LOCAL_SAPIC *lsapic;
ACPI_MADT_INTERRUPT_SOURCE *isrc;
ACPI_MADT_LOCAL_X2APIC *x2apic;
ACPI_MADT_LOCAL_X2APIC_NMI *x2apic_nmi;
ACPI_MADT_GENERIC_INTERRUPT *gicc;
ACPI_MADT_GENERIC_DISTRIBUTOR *gicd;
ACPI_MADT_GENERIC_REDISTRIBUTOR *gicr;
ACPI_MADT_GENERIC_TRANSLATOR *gict;
if (mp->Type < nitems(apic_types))
printf("\tType=%s\n", apic_types[mp->Type]);
else
printf("\tType=%d (unknown)\n", mp->Type);
switch (mp->Type) {
case ACPI_MADT_TYPE_LOCAL_APIC:
lapic = (ACPI_MADT_LOCAL_APIC *)mp;
acpi_print_cpu(lapic->ProcessorId);
acpi_print_local_apic(lapic->Id, lapic->LapicFlags);
break;
case ACPI_MADT_TYPE_IO_APIC:
ioapic = (ACPI_MADT_IO_APIC *)mp;
acpi_print_io_apic(ioapic->Id, ioapic->GlobalIrqBase,
ioapic->Address);
break;
case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:
over = (ACPI_MADT_INTERRUPT_OVERRIDE *)mp;
printf("\tBUS=%d\n", (u_int)over->Bus);
printf("\tIRQ=%d\n", (u_int)over->SourceIrq);
acpi_print_intr(over->GlobalIrq, over->IntiFlags);
break;
case ACPI_MADT_TYPE_NMI_SOURCE:
nmi = (ACPI_MADT_NMI_SOURCE *)mp;
acpi_print_intr(nmi->GlobalIrq, nmi->IntiFlags);
break;
case ACPI_MADT_TYPE_LOCAL_APIC_NMI:
lapic_nmi = (ACPI_MADT_LOCAL_APIC_NMI *)mp;
acpi_print_cpu(lapic_nmi->ProcessorId);
acpi_print_local_nmi(lapic_nmi->Lint, lapic_nmi->IntiFlags);
break;
case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:
lapic_over = (ACPI_MADT_LOCAL_APIC_OVERRIDE *)mp;
printf("\tLocal APIC ADDR=0x%016jx\n",
(uintmax_t)lapic_over->Address);
break;
case ACPI_MADT_TYPE_IO_SAPIC:
iosapic = (ACPI_MADT_IO_SAPIC *)mp;
acpi_print_io_apic(iosapic->Id, iosapic->GlobalIrqBase,
iosapic->Address);
break;
case ACPI_MADT_TYPE_LOCAL_SAPIC:
lsapic = (ACPI_MADT_LOCAL_SAPIC *)mp;
acpi_print_cpu(lsapic->ProcessorId);
acpi_print_local_apic(lsapic->Id, lsapic->LapicFlags);
printf("\tAPIC EID=%d\n", (u_int)lsapic->Eid);
if (mp->Length > __offsetof(ACPI_MADT_LOCAL_SAPIC, Uid))
acpi_print_cpu_uid(lsapic->Uid, lsapic->UidString);
break;
case ACPI_MADT_TYPE_INTERRUPT_SOURCE:
isrc = (ACPI_MADT_INTERRUPT_SOURCE *)mp;
if (isrc->Type < nitems(platform_int_types))
printf("\tType=%s\n", platform_int_types[isrc->Type]);
else
printf("\tType=%d (unknown)\n", isrc->Type);
printf("\tAPIC ID=%d\n", (u_int)isrc->Id);
printf("\tAPIC EID=%d\n", (u_int)isrc->Eid);
printf("\tSAPIC Vector=%d\n", (u_int)isrc->IoSapicVector);
acpi_print_intr(isrc->GlobalIrq, isrc->IntiFlags);
break;
case ACPI_MADT_TYPE_LOCAL_X2APIC:
x2apic = (ACPI_MADT_LOCAL_X2APIC *)mp;
acpi_print_cpu_uid(x2apic->Uid, NULL);
acpi_print_local_apic(x2apic->LocalApicId, x2apic->LapicFlags);
break;
case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:
x2apic_nmi = (ACPI_MADT_LOCAL_X2APIC_NMI *)mp;
acpi_print_cpu_uid(x2apic_nmi->Uid, NULL);
acpi_print_local_nmi(x2apic_nmi->Lint, x2apic_nmi->IntiFlags);
break;
case ACPI_MADT_TYPE_GENERIC_INTERRUPT:
gicc = (ACPI_MADT_GENERIC_INTERRUPT *)mp;
acpi_print_cpu_uid(gicc->Uid, NULL);
printf("\tCPU INTERFACE=%x\n", gicc->CpuInterfaceNumber);
acpi_print_gicc_flags(gicc->Flags);
printf("\tParking Protocol Version=%x\n", gicc->ParkingVersion);
printf("\tPERF INTR=%d\n", gicc->PerformanceInterrupt);
printf("\tParked ADDR=%016jx\n",
(uintmax_t)gicc->ParkedAddress);
printf("\tBase ADDR=%016jx\n", (uintmax_t)gicc->BaseAddress);
printf("\tGICV=%016jx\n", (uintmax_t)gicc->GicvBaseAddress);
printf("\tGICH=%016jx\n", (uintmax_t)gicc->GichBaseAddress);
printf("\tVGIC INTR=%d\n", gicc->VgicInterrupt);
printf("\tGICR ADDR=%016jx\n",
(uintmax_t)gicc->GicrBaseAddress);
printf("\tMPIDR=%jx\n", (uintmax_t)gicc->ArmMpidr);
printf("\tEfficiency Class=%d\n", (u_int)gicc->EfficiencyClass);
printf("\tSPE INTR=%d\n", gicc->SpeInterrupt);
break;
case ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR:
gicd = (ACPI_MADT_GENERIC_DISTRIBUTOR *)mp;
printf("\tGIC ID=%d\n", (u_int)gicd->GicId);
printf("\tBase ADDR=%016jx\n", (uintmax_t)gicd->BaseAddress);
printf("\tVector Base=%d\n", gicd->GlobalIrqBase);
printf("\tGIC VERSION=%d\n", (u_int)gicd->Version);
break;
case ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR:
gicr = (ACPI_MADT_GENERIC_REDISTRIBUTOR *)mp;
printf("\tBase ADDR=%016jx\n", (uintmax_t)gicr->BaseAddress);
printf("\tLength=%08x\n", gicr->Length);
break;
case ACPI_MADT_TYPE_GENERIC_TRANSLATOR:
gict = (ACPI_MADT_GENERIC_TRANSLATOR *)mp;
printf("\tGIC ITS ID=%d\n", gict->TranslationId);
printf("\tBase ADDR=%016jx\n", (uintmax_t)gict->BaseAddress);
break;
}
}
static void
acpi_handle_madt(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_MADT *madt;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
madt = (ACPI_TABLE_MADT *)sdp;
printf("\tLocal APIC ADDR=0x%08x\n", madt->Address);
printf("\tFlags={");
if (madt->Flags & ACPI_MADT_PCAT_COMPAT)
printf("PC-AT");
printf("}\n");
acpi_walk_subtables(sdp, (madt + 1), acpi_print_madt);
printf(END_COMMENT);
}
static void
acpi_handle_bert(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_BERT *bert;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
bert = (ACPI_TABLE_BERT *)sdp;
printf("\tRegionLength=%d\n", bert->RegionLength);
printf("\tAddress=0x%016jx\n", bert->Address);
printf(END_COMMENT);
}
static const char *
einj_action(UINT8 Action)
{
static char buf[32];
#define ACTION(name) \
case __CONCAT(ACPI_EINJ_, name): \
return (__STRING(name))
#define ACTIONV2(name) \
case __CONCAT(ACPI_EINJV2_, name): \
return (__XSTRING(__CONCAT(V2_, name)))
switch (Action) {
ACTION(BEGIN_OPERATION);
ACTION(GET_TRIGGER_TABLE);
ACTION(SET_ERROR_TYPE);
ACTION(GET_ERROR_TYPE);
ACTION(END_OPERATION);
ACTION(EXECUTE_OPERATION);
ACTION(CHECK_BUSY_STATUS);
ACTION(GET_COMMAND_STATUS);
ACTION(SET_ERROR_TYPE_WITH_ADDRESS);
ACTION(GET_EXECUTE_TIMINGS);
ACTIONV2(GET_ERROR_TYPE);
ACTION(TRIGGER_ERROR);
default:
snprintf(buf, sizeof(buf), "UNKNOWN (%#x)", Action);
return (buf);
}
#undef ACTION
#undef ACTIONV2
}
static const char *
einj_instruction(UINT8 Instruction)
{
static char buf[32];
#define INSTRUCTION(name) \
case __CONCAT(ACPI_EINJ_, name): \
return (__STRING(name))
switch (Instruction) {
INSTRUCTION(READ_REGISTER);
INSTRUCTION(READ_REGISTER_VALUE);
INSTRUCTION(WRITE_REGISTER);
INSTRUCTION(WRITE_REGISTER_VALUE);
INSTRUCTION(NOOP);
INSTRUCTION(FLUSH_CACHELINE);
default:
snprintf(buf, sizeof(buf), "UNKNOWN (%#x)", Instruction);
return (buf);
}
#undef INSTRUCTION
}
static void
acpi_print_einj_entry(ACPI_EINJ_ENTRY *entry)
{
ACPI_WHEA_HEADER *w = &entry->WheaHeader;
printf("\n\tAction=%s\n", einj_action(w->Action));
printf("\tInstruction=%s\n", einj_instruction(w->Instruction));
if (w->Flags != 0) {
printf("\tFlags=%02x", w->Flags);
if (w->Flags & 0x1)
printf("<PRESERVE_REGISTER>");
printf("\n");
}
printf("\tRegisterRegion=");
acpi_print_gas(&w->RegisterRegion);
printf("\n");
switch (w->Instruction) {
case ACPI_EINJ_READ_REGISTER:
case ACPI_EINJ_WRITE_REGISTER:
case ACPI_EINJ_NOOP:
case ACPI_EINJ_FLUSH_CACHELINE:
break;
default:
printf("\tValue=0x%016jx\n", w->Value);
}
printf("\tMask=0x%016jx\n", w->Mask);
}
static void
acpi_handle_einj(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_EINJ *einj;
ACPI_EINJ_ENTRY *w;
u_int i;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
einj = (ACPI_TABLE_EINJ *)sdp;
printf("\tHeaderLength=%d\n", einj->HeaderLength);
printf("\tFlags=0x%02x\n", einj->Flags);
printf("\tEntries=%d\n", einj->Entries);
w = (ACPI_EINJ_ENTRY *)(einj + 1);
for (i = 0; i < MIN(einj->Entries, (sdp->Length -
sizeof(ACPI_TABLE_EINJ)) / sizeof(ACPI_EINJ_ENTRY)); i++)
acpi_print_einj_entry(w + i);
printf(END_COMMENT);
}
static const char *
erst_action(UINT8 Action)
{
static char buf[32];
#define ACTION(name) \
case __CONCAT(ACPI_ERST_, name): \
return (__STRING(name))
switch (Action) {
ACTION(BEGIN_WRITE);
ACTION(BEGIN_READ);
ACTION(BEGIN_CLEAR);
ACTION(END);
ACTION(SET_RECORD_OFFSET);
ACTION(EXECUTE_OPERATION);
ACTION(CHECK_BUSY_STATUS);
ACTION(GET_COMMAND_STATUS);
ACTION(GET_RECORD_ID);
ACTION(SET_RECORD_ID);
ACTION(GET_RECORD_COUNT);
ACTION(BEGIN_DUMMY_WRIITE);
ACTION(GET_ERROR_RANGE);
ACTION(GET_ERROR_LENGTH);
ACTION(GET_ERROR_ATTRIBUTES);
ACTION(EXECUTE_TIMINGS);
default:
snprintf(buf, sizeof(buf), "UNKNOWN (%#x)", Action);
return (buf);
}
#undef ACTION
}
static const char *
erst_instruction(UINT8 Instruction)
{
static char buf[32];
#define INSTRUCTION(name) \
case __CONCAT(ACPI_ERST_, name): \
return (__STRING(name))
switch (Instruction) {
INSTRUCTION(READ_REGISTER);
INSTRUCTION(READ_REGISTER_VALUE);
INSTRUCTION(WRITE_REGISTER);
INSTRUCTION(WRITE_REGISTER_VALUE);
INSTRUCTION(NOOP);
INSTRUCTION(LOAD_VAR1);
INSTRUCTION(LOAD_VAR2);
INSTRUCTION(STORE_VAR1);
INSTRUCTION(ADD);
INSTRUCTION(SUBTRACT);
INSTRUCTION(ADD_VALUE);
INSTRUCTION(SUBTRACT_VALUE);
INSTRUCTION(STALL);
INSTRUCTION(STALL_WHILE_TRUE);
INSTRUCTION(SKIP_NEXT_IF_TRUE);
INSTRUCTION(GOTO);
INSTRUCTION(SET_SRC_ADDRESS_BASE);
INSTRUCTION(SET_DST_ADDRESS_BASE);
INSTRUCTION(MOVE_DATA);
default:
snprintf(buf, sizeof(buf), "UNKNOWN (%#x)", Instruction);
return (buf);
}
#undef INSTRUCTION
}
static void
acpi_print_erst_entry(ACPI_ERST_ENTRY *entry)
{
ACPI_WHEA_HEADER *w = &entry->WheaHeader;
printf("\n\tAction=%s\n", erst_action(w->Action));
printf("\tInstruction=%s\n", erst_instruction(w->Instruction));
if (w->Flags != 0) {
printf("\tFlags=%02x", w->Flags);
if (w->Flags & 0x1)
printf("<PRESERVE_REGISTER>");
printf("\n");
}
printf("\tRegisterRegion=");
acpi_print_gas(&w->RegisterRegion);
printf("\n");
switch (w->Instruction) {
case ACPI_ERST_READ_REGISTER:
case ACPI_ERST_WRITE_REGISTER:
case ACPI_ERST_NOOP:
case ACPI_ERST_LOAD_VAR1:
case ACPI_ERST_LOAD_VAR2:
case ACPI_ERST_STORE_VAR1:
case ACPI_ERST_ADD:
case ACPI_ERST_SUBTRACT:
case ACPI_ERST_SET_SRC_ADDRESS_BASE:
case ACPI_ERST_SET_DST_ADDRESS_BASE:
case ACPI_ERST_MOVE_DATA:
break;
default:
printf("\tValue=0x%016jx\n", w->Value);
break;
}
printf("\tMask=0x%016jx\n", w->Mask);
}
static void
acpi_handle_erst(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_ERST *erst;
ACPI_ERST_ENTRY *w;
u_int i;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
erst = (ACPI_TABLE_ERST *)sdp;
printf("\tHeaderLength=%d\n", erst->HeaderLength);
printf("\tEntries=%d\n", erst->Entries);
w = (ACPI_ERST_ENTRY *)(erst + 1);
for (i = 0; i < MIN(erst->Entries, (sdp->Length -
sizeof(ACPI_TABLE_ERST)) / sizeof(ACPI_ERST_ENTRY)); i++)
acpi_print_erst_entry(w + i);
printf(END_COMMENT);
}
static void
acpi_print_hest_bank(ACPI_HEST_IA_ERROR_BANK *b)
{
printf("\tBank:\n");
printf("\t\tBankNumber=%d\n", b->BankNumber);
printf("\t\tClearStatusOnInit=%d\n", b->ClearStatusOnInit);
printf("\t\tStatusFormat=%d\n", b->StatusFormat);
printf("\t\tControlRegister=%x\n", b->ControlRegister);
printf("\t\tControlData=%jx\n", b->ControlData);
printf("\t\tStatusRegister=%x\n", b->StatusRegister);
printf("\t\tAddressRegister=%x\n", b->AddressRegister);
printf("\t\tMiscRegister=%x\n", b->MiscRegister);
}
static void
acpi_print_hest_notify(ACPI_HEST_NOTIFY *n)
{
printf("\t\tType=%d\n", n->Type);
printf("\t\tLength=%d\n", n->Length);
printf("\t\tConfigWriteEnable=%04x\n", n->ConfigWriteEnable);
printf("\t\tPollInterval=%d\n", n->PollInterval);
printf("\t\tVector=%d\n", n->Vector);
printf("\t\tPollingThresholdValue=%d\n", n->PollingThresholdValue);
printf("\t\tPollingThresholdWindow=%d\n", n->PollingThresholdWindow);
printf("\t\tErrorThresholdValue=%d\n", n->ErrorThresholdValue);
printf("\t\tErrorThresholdWindow=%d\n", n->ErrorThresholdWindow);
}
static void
acpi_print_hest_aer(ACPI_HEST_AER_COMMON *a)
{
printf("\tFlags=%02x\n", a->Flags);
printf("\tEnabled=%d\n", a->Enabled);
printf("\tRecordsToPreallocate=%d\n", a->RecordsToPreallocate);
printf("\tMaxSectionsPerRecord=%d\n", a->MaxSectionsPerRecord);
printf("\tBus=%d\n", a->Bus);
printf("\tDevice=%d\n", a->Device);
printf("\tFunction=%d\n", a->Function);
printf("\tDeviceControl=%d\n", a->DeviceControl);
printf("\tUncorrectableMask=%d\n", a->UncorrectableMask);
printf("\tUncorrectableSeverity=%d\n", a->UncorrectableSeverity);
printf("\tCorrectableMask=%d\n", a->CorrectableMask);
printf("\tAdvancedCapabilities=%d\n", a->AdvancedCapabilities);
}
static int
acpi_handle_hest_structure(void *addr, int remaining)
{
ACPI_HEST_HEADER *hdr = addr;
int i;
if (remaining < (int)sizeof(ACPI_HEST_HEADER))
return (-1);
printf("\n\tType=%d\n", hdr->Type);
printf("\tSourceId=%d\n", hdr->SourceId);
switch (hdr->Type) {
case ACPI_HEST_TYPE_IA32_CHECK: {
ACPI_HEST_IA_MACHINE_CHECK *s = addr;
printf("\tFlags=%02x\n", s->Flags);
printf("\tEnabled=%d\n", s->Enabled);
printf("\tRecordsToPreallocate=%d\n", s->RecordsToPreallocate);
printf("\tMaxSectionsPerRecord=%d\n", s->MaxSectionsPerRecord);
printf("\tGlobalCapabilityData=%jd\n", s->GlobalCapabilityData);
printf("\tGlobalControlData=%jd\n", s->GlobalControlData);
printf("\tNumHardwareBanks=%d\n", s->NumHardwareBanks);
for (i = 0; i < s->NumHardwareBanks; i++) {
acpi_print_hest_bank((ACPI_HEST_IA_ERROR_BANK *)
(s + 1) + i);
}
return (sizeof(*s) + s->NumHardwareBanks *
sizeof(ACPI_HEST_IA_ERROR_BANK));
}
case ACPI_HEST_TYPE_IA32_CORRECTED_CHECK: {
ACPI_HEST_IA_CORRECTED *s = addr;
printf("\tFlags=%02x\n", s->Flags);
printf("\tEnabled=%d\n", s->Enabled);
printf("\tRecordsToPreallocate=%d\n", s->RecordsToPreallocate);
printf("\tMaxSectionsPerRecord=%d\n", s->MaxSectionsPerRecord);
printf("\tNotify:\n");
acpi_print_hest_notify(&s->Notify);
printf("\tNumHardwareBanks=%d\n", s->NumHardwareBanks);
for (i = 0; i < s->NumHardwareBanks; i++) {
acpi_print_hest_bank((ACPI_HEST_IA_ERROR_BANK *)
(s + 1) + i);
}
return (sizeof(*s) + s->NumHardwareBanks *
sizeof(ACPI_HEST_IA_ERROR_BANK));
}
case ACPI_HEST_TYPE_IA32_NMI: {
ACPI_HEST_IA_NMI *s = addr;
printf("\tRecordsToPreallocate=%d\n", s->RecordsToPreallocate);
printf("\tMaxSectionsPerRecord=%d\n", s->MaxSectionsPerRecord);
printf("\tMaxRawDataLength=%d\n", s->MaxRawDataLength);
return (sizeof(*s));
}
case ACPI_HEST_TYPE_AER_ROOT_PORT: {
ACPI_HEST_AER_ROOT *s = addr;
acpi_print_hest_aer(&s->Aer);
printf("\tRootErrorCommand=%d\n", s->RootErrorCommand);
return (sizeof(*s));
}
case ACPI_HEST_TYPE_AER_ENDPOINT: {
ACPI_HEST_AER *s = addr;
acpi_print_hest_aer(&s->Aer);
return (sizeof(*s));
}
case ACPI_HEST_TYPE_AER_BRIDGE: {
ACPI_HEST_AER_BRIDGE *s = addr;
acpi_print_hest_aer(&s->Aer);
printf("\tUncorrectableMask2=%d\n", s->UncorrectableMask2);
printf("\tUncorrectableSeverity2=%d\n", s->UncorrectableSeverity2);
printf("\tAdvancedCapabilities2=%d\n", s->AdvancedCapabilities2);
return (sizeof(*s));
}
case ACPI_HEST_TYPE_GENERIC_ERROR: {
ACPI_HEST_GENERIC *s = addr;
printf("\tRelatedSourceId=%d\n", s->RelatedSourceId);
printf("\tEnabled=%d\n", s->Enabled);
printf("\tRecordsToPreallocate=%d\n", s->RecordsToPreallocate);
printf("\tMaxSectionsPerRecord=%d\n", s->MaxSectionsPerRecord);
printf("\tMaxRawDataLength=%d\n", s->MaxRawDataLength);
printf("\tErrorStatusAddress=");
acpi_print_gas(&s->ErrorStatusAddress);
printf("\n");
printf("\tNotify:\n");
acpi_print_hest_notify(&s->Notify);
printf("\tErrorBlockLength=%d\n", s->ErrorBlockLength);
return (sizeof(*s));
}
case ACPI_HEST_TYPE_GENERIC_ERROR_V2: {
ACPI_HEST_GENERIC_V2 *s = addr;
printf("\tRelatedSourceId=%d\n", s->RelatedSourceId);
printf("\tEnabled=%d\n", s->Enabled);
printf("\tRecordsToPreallocate=%d\n", s->RecordsToPreallocate);
printf("\tMaxSectionsPerRecord=%d\n", s->MaxSectionsPerRecord);
printf("\tMaxRawDataLength=%d\n", s->MaxRawDataLength);
printf("\tErrorStatusAddress=");
acpi_print_gas(&s->ErrorStatusAddress);
printf("\n");
printf("\tNotify:\n");
acpi_print_hest_notify(&s->Notify);
printf("\tErrorBlockLength=%d\n", s->ErrorBlockLength);
printf("\tReadAckRegister=");
acpi_print_gas(&s->ReadAckRegister);
printf("\n");
printf("\tReadAckPreserve=%jd\n", s->ReadAckPreserve);
printf("\tReadAckWrite=%jd\n", s->ReadAckWrite);
return (sizeof(*s));
}
case ACPI_HEST_TYPE_IA32_DEFERRED_CHECK: {
ACPI_HEST_IA_DEFERRED_CHECK *s = addr;
printf("\tFlags=%02x\n", s->Flags);
printf("\tEnabled=%d\n", s->Enabled);
printf("\tRecordsToPreallocate=%d\n", s->RecordsToPreallocate);
printf("\tMaxSectionsPerRecord=%d\n", s->MaxSectionsPerRecord);
printf("\tNotify:\n");
acpi_print_hest_notify(&s->Notify);
printf("\tNumHardwareBanks=%d\n", s->NumHardwareBanks);
for (i = 0; i < s->NumHardwareBanks; i++) {
acpi_print_hest_bank((ACPI_HEST_IA_ERROR_BANK *)
(s + 1) + i);
}
return (sizeof(*s) + s->NumHardwareBanks *
sizeof(ACPI_HEST_IA_ERROR_BANK));
}
default:
return (-1);
}
}
static void
acpi_handle_hest(ACPI_TABLE_HEADER *sdp)
{
char *cp;
int remaining, consumed;
ACPI_TABLE_HEST *hest;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
hest = (ACPI_TABLE_HEST *)sdp;
printf("\tErrorSourceCount=%d\n", hest->ErrorSourceCount);
remaining = sdp->Length - sizeof(ACPI_TABLE_HEST);
while (remaining > 0) {
cp = (char *)sdp + sdp->Length - remaining;
consumed = acpi_handle_hest_structure(cp, remaining);
if (consumed <= 0)
break;
else
remaining -= consumed;
}
printf(END_COMMENT);
}
static void
acpi_handle_hpet(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_HPET *hpet;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
hpet = (ACPI_TABLE_HPET *)sdp;
printf("\tHPET Number=%d\n", hpet->Sequence);
printf("\tADDR=");
acpi_print_gas(&hpet->Address);
printf("\n\tHW Rev=0x%x\n", hpet->Id & ACPI_HPET_ID_HARDWARE_REV_ID);
printf("\tComparators=%d\n", (hpet->Id & ACPI_HPET_ID_COMPARATORS) >>
8);
printf("\tCounter Size=%d\n", hpet->Id & ACPI_HPET_ID_COUNT_SIZE_CAP ?
1 : 0);
printf("\tLegacy IRQ routing capable={");
if (hpet->Id & ACPI_HPET_ID_LEGACY_CAPABLE)
printf("TRUE}\n");
else
printf("FALSE}\n");
printf("\tPCI Vendor ID=0x%04x\n", hpet->Id >> 16);
printf("\tMinimal Tick=%d\n", hpet->MinimumTick);
printf("\tFlags=0x%02x\n", hpet->Flags);
printf(END_COMMENT);
}
static void
acpi_handle_ecdt(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_ECDT *ecdt;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
ecdt = (ACPI_TABLE_ECDT *)sdp;
printf("\tEC_CONTROL=");
acpi_print_gas(&ecdt->Control);
printf("\n\tEC_DATA=");
acpi_print_gas(&ecdt->Data);
printf("\n\tUID=%#x, ", ecdt->Uid);
printf("GPE_BIT=%#x\n", ecdt->Gpe);
printf("\tEC_ID=%s\n", ecdt->Id);
printf(END_COMMENT);
}
static void
acpi_handle_mcfg(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_MCFG *mcfg;
ACPI_MCFG_ALLOCATION *alloc;
u_int i, entries;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
mcfg = (ACPI_TABLE_MCFG *)sdp;
entries = (sdp->Length - sizeof(ACPI_TABLE_MCFG)) /
sizeof(ACPI_MCFG_ALLOCATION);
alloc = (ACPI_MCFG_ALLOCATION *)(mcfg + 1);
for (i = 0; i < entries; i++, alloc++) {
printf("\n");
printf("\tBase Address=0x%016jx\n", (uintmax_t)alloc->Address);
printf("\tSegment Group=0x%04x\n", alloc->PciSegment);
printf("\tStart Bus=%d\n", alloc->StartBusNumber);
printf("\tEnd Bus=%d\n", alloc->EndBusNumber);
}
printf(END_COMMENT);
}
static void
acpi_handle_slit(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_SLIT *slit;
UINT64 i, j;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
slit = (ACPI_TABLE_SLIT *)sdp;
printf("\tLocality Count=%ju\n", (uintmax_t)slit->LocalityCount);
printf("\n\t ");
for (i = 0; i < slit->LocalityCount; i++)
printf(" %3ju", (uintmax_t)i);
printf("\n\t +");
for (i = 0; i < slit->LocalityCount; i++)
printf("----");
printf("\n");
for (i = 0; i < slit->LocalityCount; i++) {
printf("\t %3ju |", (uintmax_t)i);
for (j = 0; j < slit->LocalityCount; j++)
printf(" %3d",
slit->Entry[i * slit->LocalityCount + j]);
printf("\n");
}
printf(END_COMMENT);
}
static void
acpi_handle_wddt(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_WDDT *wddt;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
wddt = (ACPI_TABLE_WDDT *)sdp;
printf("\tSpecVersion=0x%04x, TableVersion=0x%04x\n",
wddt->SpecVersion, wddt->TableVersion);
printf("\tPciVendorId=0x%04x, Address=", wddt->PciVendorId);
acpi_print_gas(&wddt->Address);
printf("\n\tMaxCount=%u, MinCount=%u, Period=%ums\n",
wddt->MaxCount, wddt->MinCount, wddt->Period);
#define PRINTFLAG(var, flag) printflag((var), ACPI_WDDT_## flag, #flag)
printf("\tStatus=");
PRINTFLAG(wddt->Status, AVAILABLE);
PRINTFLAG(wddt->Status, ACTIVE);
PRINTFLAG(wddt->Status, TCO_OS_OWNED);
PRINTFLAG(wddt->Status, USER_RESET);
PRINTFLAG(wddt->Status, WDT_RESET);
PRINTFLAG(wddt->Status, POWER_FAIL);
PRINTFLAG(wddt->Status, UNKNOWN_RESET);
PRINTFLAG_END();
printf("\tCapability=");
PRINTFLAG(wddt->Capability, AUTO_RESET);
PRINTFLAG(wddt->Capability, ALERT_SUPPORT);
PRINTFLAG_END();
#undef PRINTFLAG
printf(END_COMMENT);
}
static void
acpi_print_native_lpit(ACPI_LPIT_NATIVE *nl)
{
printf("\tEntryTrigger=");
acpi_print_gas(&nl->EntryTrigger);
printf("\n\tResidency=%u\n", nl->Residency);
printf("\tLatency=%u\n", nl->Latency);
if (nl->Header.Flags & ACPI_LPIT_NO_COUNTER)
printf("\tResidencyCounter=Not Present");
else {
printf("\tResidencyCounter=");
acpi_print_gas(&nl->ResidencyCounter);
printf("\n");
}
if (nl->CounterFrequency)
printf("\tCounterFrequency=%ju\n", nl->CounterFrequency);
else
printf("\tCounterFrequency=TSC\n");
}
static void
acpi_print_lpit(ACPI_LPIT_HEADER *lpit)
{
if (lpit->Type == ACPI_LPIT_TYPE_NATIVE_CSTATE)
printf("\tType=ACPI_LPIT_TYPE_NATIVE_CSTATE\n");
else
warnx("unknown LPIT type %u", lpit->Type);
printf("\tLength=%u\n", lpit->Length);
printf("\tUniqueId=0x%04x\n", lpit->UniqueId);
#define PRINTFLAG(var, flag) printflag((var), ACPI_LPIT_## flag, #flag)
printf("\tFlags=");
PRINTFLAG(lpit->Flags, STATE_DISABLED);
PRINTFLAG_END();
#undef PRINTFLAG
if (lpit->Type == ACPI_LPIT_TYPE_NATIVE_CSTATE)
return acpi_print_native_lpit((ACPI_LPIT_NATIVE *)lpit);
}
static void
acpi_walk_lpit(ACPI_TABLE_HEADER *table, void *first,
void (*action)(ACPI_LPIT_HEADER *))
{
ACPI_LPIT_HEADER *subtable;
char *end;
subtable = first;
end = (char *)table + table->Length;
while ((char *)subtable < end) {
printf("\n");
if (subtable->Length < sizeof(ACPI_LPIT_HEADER)) {
warnx("invalid subtable length %u", subtable->Length);
return;
}
action(subtable);
subtable = (ACPI_LPIT_HEADER *)((char *)subtable +
subtable->Length);
}
}
static void
acpi_handle_lpit(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_LPIT *lpit;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
lpit = (ACPI_TABLE_LPIT *)sdp;
acpi_walk_lpit(sdp, (lpit + 1), acpi_print_lpit);
printf(END_COMMENT);
}
static void
acpi_print_srat_cpu(uint32_t apic_id, uint32_t proximity_domain,
uint32_t flags)
{
printf("\tFlags={");
if (flags & ACPI_SRAT_CPU_ENABLED)
printf("ENABLED");
else
printf("DISABLED");
printf("}\n");
printf("\tAPIC ID=%d\n", apic_id);
printf("\tProximity Domain=%d\n", proximity_domain);
}
static char *
acpi_tcpa_evname(struct TCPAevent *event)
{
struct TCPApc_event *pc_event;
char *eventname = NULL;
pc_event = (struct TCPApc_event *)(event + 1);
switch(event->event_type) {
case PREBOOT:
case POST_CODE:
case UNUSED:
case NO_ACTION:
case SEPARATOR:
case SCRTM_CONTENTS:
case SCRTM_VERSION:
case CPU_MICROCODE:
case PLATFORM_CONFIG_FLAGS:
case TABLE_OF_DEVICES:
case COMPACT_HASH:
case IPL:
case IPL_PARTITION_DATA:
case NONHOST_CODE:
case NONHOST_CONFIG:
case NONHOST_INFO:
asprintf(&eventname, "%s",
tcpa_event_type_strings[event->event_type]);
break;
case ACTION:
eventname = calloc(event->event_size + 1, sizeof(char));
memcpy(eventname, pc_event, event->event_size);
break;
case EVENT_TAG:
switch (pc_event->event_id) {
case SMBIOS:
case BIS_CERT:
case CMOS:
case NVRAM:
case OPTION_ROM_EXEC:
case OPTION_ROM_CONFIG:
case S_CRTM_VERSION:
case POST_BIOS_ROM:
case ESCD:
case OPTION_ROM_MICROCODE:
case S_CRTM_CONTENTS:
case POST_CONTENTS:
asprintf(&eventname, "%s",
TCPA_pcclient_strings[pc_event->event_id]);
break;
default:
asprintf(&eventname, "<unknown tag 0x%02x>",
pc_event->event_id);
break;
}
break;
default:
asprintf(&eventname, "<unknown 0x%02x>", event->event_type);
break;
}
return eventname;
}
static void
acpi_print_tcpa(struct TCPAevent *event)
{
int i;
char *eventname;
eventname = acpi_tcpa_evname(event);
printf("\t%d", event->pcr_index);
printf(" 0x");
for (i = 0; i < 20; i++)
printf("%02x", event->pcr_value[i]);
printf(" [%s]\n", eventname ? eventname : "<unknown>");
free(eventname);
}
static void
acpi_handle_tcpa(ACPI_TABLE_HEADER *sdp)
{
struct TCPAbody *tcpa;
struct TCPAevent *event;
uintmax_t len, paddr;
unsigned char *vaddr = NULL;
unsigned char *vend = NULL;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
tcpa = (struct TCPAbody *) sdp;
switch (tcpa->platform_class) {
case ACPI_TCPA_BIOS_CLIENT:
len = tcpa->client.log_max_len;
paddr = tcpa->client.log_start_addr;
break;
case ACPI_TCPA_BIOS_SERVER:
len = tcpa->server.log_max_len;
paddr = tcpa->server.log_start_addr;
break;
default:
printf("XXX");
printf(END_COMMENT);
return;
}
printf("\tClass %u Base Address 0x%jx Length %ju\n\n",
tcpa->platform_class, paddr, len);
if (len == 0) {
printf("\tEmpty TCPA table\n");
printf(END_COMMENT);
return;
}
if(sdp->Revision == 1){
printf("\tOLD TCPA spec log found. Dumping not supported.\n");
printf(END_COMMENT);
return;
}
vaddr = (unsigned char *)acpi_map_physical(paddr, len);
vend = vaddr + len;
while (vaddr != NULL) {
if ((uintptr_t)vaddr + sizeof(struct TCPAevent) >=
(uintptr_t)vend || (uintptr_t)vaddr + sizeof(
struct TCPAevent) < (uintptr_t)vaddr)
break;
event = (struct TCPAevent *)(void *)vaddr;
if ((uintptr_t)vaddr + event->event_size >= (uintptr_t)vend)
break;
if ((uintptr_t)vaddr + event->event_size < (uintptr_t)vaddr)
break;
if (event->event_type == 0 && event->event_size == 0)
break;
#if 0
{
unsigned int i, j, k;
printf("\n\tsize %d\n\t\t%p ", event->event_size, vaddr);
for (j = 0, i = 0; i <
sizeof(struct TCPAevent) + event->event_size; i++) {
printf("%02x ", vaddr[i]);
if ((i+1) % 8 == 0) {
for (k = 0; k < 8; k++)
printf("%c", isprint(vaddr[j+k]) ?
vaddr[j+k] : '.');
printf("\n\t\t%p ", &vaddr[i + 1]);
j = i + 1;
}
}
printf("\n"); }
#endif
acpi_print_tcpa(event);
vaddr += sizeof(struct TCPAevent) + event->event_size;
}
printf(END_COMMENT);
}
static void acpi_handle_tpm2(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_TPM2 *tpm2;
printf (BEGIN_COMMENT);
acpi_print_sdt(sdp);
tpm2 = (ACPI_TABLE_TPM2 *) sdp;
printf ("\t\tControlArea=%jx\n", tpm2->ControlAddress);
printf ("\t\tStartMethod=%x\n", tpm2->StartMethod);
printf (END_COMMENT);
}
static int spcr_xlate_baud(uint8_t r)
{
static int rates[] = { 9600, 19200, -1, 57600, 115200 };
_Static_assert(nitems(rates) == 7 - 3 + 1, "rates array size incorrect");
if (r == 0)
return (0);
if (r < 3 || r > 7)
return (-1);
return (rates[r - 3]);
}
static const char *spcr_interface_type(int ift)
{
static const char *if_names[] = {
[0x00] = "Fully 16550-compatible",
[0x01] = "16550 subset compatible with DBGP Revision 1",
[0x02] = "MAX311xE SPI UART",
[0x03] = "Arm PL011 UART",
[0x04] = "MSM8x60 (e.g. 8960)",
[0x05] = "Nvidia 16550",
[0x06] = "TI OMAP",
[0x07] = "Reserved (Do Not Use)",
[0x08] = "APM88xxxx",
[0x09] = "MSM8974",
[0x0a] = "SAM5250",
[0x0b] = "Intel USIF",
[0x0c] = "i.MX 6",
[0x0d] = "(deprecated) Arm SBSA (2.x only) Generic UART supporting only 32-bit accesses",
[0x0e] = "Arm SBSA Generic UART",
[0x0f] = "Arm DCC",
[0x10] = "BCM2835",
[0x11] = "SDM845 with clock rate of 1.8432 MHz",
[0x12] = "16550-compatible with parameters defined in Generic Address Structure",
[0x13] = "SDM845 with clock rate of 7.372 MHz",
[0x14] = "Intel LPSS",
[0x15] = "RISC-V SBI console (any supported SBI mechanism)",
};
if (ift >= (int)nitems(if_names) || if_names[ift] == NULL)
return ("Reserved");
return (if_names[ift]);
}
static const char *spcr_interrupt_type(int ift)
{
static char buf[100];
#define APPEND(b,s) \
if ((ift & (b)) != 0) { \
if (strlen(buf) > 0) \
strlcat(buf, ",", sizeof(buf)); \
strlcat(buf, s, sizeof(buf)); \
}
*buf = '\0';
APPEND(0x01, "PC/AT IRQ");
APPEND(0x02, "I/O APIC");
APPEND(0x04, "I/O SAPIC");
APPEND(0x08, "ARMH GIC");
APPEND(0x10, "RISC-V PLIC/APLIC");
#undef APPEND
return (buf);
}
static const char *spcr_terminal_type(int type)
{
static const char *term_names[] = {
[0] = "VT100",
[1] = "Extended VT100",
[2] = "VT-UTF8",
[3] = "ANSI",
};
if (type >= (int)nitems(term_names) || term_names[type] == NULL)
return ("Reserved");
return (term_names[type]);
}
static void acpi_handle_spcr(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_SPCR *spcr;
printf (BEGIN_COMMENT);
acpi_print_sdt(sdp);
spcr = (ACPI_TABLE_SPCR *) sdp;
printf ("\tInterfaceType=%d (%s)\n", spcr->InterfaceType,
spcr_interface_type(spcr->InterfaceType));
printf ("\tSerialPort=");
acpi_print_gas(&spcr->SerialPort);
printf ("\n\tInterruptType=%#x (%s)\n", spcr->InterruptType,
spcr_interrupt_type(spcr->InterruptType));
printf ("\tPcInterrupt=%d (%s)\n", spcr->PcInterrupt,
(spcr->InterruptType & 0x1) ? "Valid" : "Invalid");
printf ("\tInterrupt=%d\n", spcr->Interrupt);
printf ("\tBaudRate=%d (%d)\n", spcr_xlate_baud(spcr->BaudRate), spcr->BaudRate);
printf ("\tParity=%d\n", spcr->Parity);
printf ("\tStopBits=%d\n", spcr->StopBits);
printf ("\tFlowControl=%d\n", spcr->FlowControl);
printf ("\tTerminalType=%d (%s)\n", spcr->TerminalType,
spcr_terminal_type(spcr->TerminalType));
printf ("\tPciDeviceId=%#04x\n", spcr->PciDeviceId);
printf ("\tPciVendorId=%#04x\n", spcr->PciVendorId);
printf ("\tPciBus=%d\n", spcr->PciBus);
printf ("\tPciDevice=%d\n", spcr->PciDevice);
printf ("\tPciFunction=%d\n", spcr->PciFunction);
printf ("\tPciFlags=%d\n", spcr->PciFlags);
printf ("\tPciSegment=%d\n", spcr->PciSegment);
if (sdp->Revision >= 3) {
printf("\tLanguage=%d\n", spcr->Language);
printf("\tUartClkFreq=%jd",
(uintmax_t)spcr->UartClkFreq);
}
if (sdp->Revision >= 4) {
printf("\tPreciseBaudrate=%jd",
(uintmax_t)spcr->PreciseBaudrate);
if (spcr->NameSpaceStringLength > 0 &&
spcr->NameSpaceStringOffset >= sizeof(*spcr) &&
sdp->Length >= spcr->NameSpaceStringOffset +
spcr->NameSpaceStringLength) {
printf ("\tNameSpaceString='%s'\n",
(char *)sdp + spcr->NameSpaceStringOffset);
}
}
printf (END_COMMENT);
}
static const char *
devscope_type2str(int type)
{
static char typebuf[16];
switch (type) {
case ACPI_DMAR_SCOPE_TYPE_ENDPOINT:
return ("PCI Endpoint Device");
case ACPI_DMAR_SCOPE_TYPE_BRIDGE:
return ("PCI Sub-Hierarchy");
case ACPI_DMAR_SCOPE_TYPE_IOAPIC:
return ("IOAPIC");
case ACPI_DMAR_SCOPE_TYPE_HPET:
return ("HPET");
case ACPI_DMAR_SCOPE_TYPE_NAMESPACE:
return ("ACPI NS DEV");
default:
snprintf(typebuf, sizeof(typebuf), "%d", type);
return (typebuf);
}
}
static int
acpi_handle_dmar_devscope(void *addr, int remaining)
{
char sep;
int pathlen;
ACPI_DMAR_PCI_PATH *path, *pathend;
ACPI_DMAR_DEVICE_SCOPE *devscope = addr;
if (remaining < (int)sizeof(ACPI_DMAR_DEVICE_SCOPE))
return (-1);
if (remaining < devscope->Length)
return (-1);
printf("\n");
printf("\t\tType=%s\n", devscope_type2str(devscope->EntryType));
printf("\t\tLength=%d\n", devscope->Length);
printf("\t\tEnumerationId=%d\n", devscope->EnumerationId);
printf("\t\tStartBusNumber=%d\n", devscope->Bus);
path = (ACPI_DMAR_PCI_PATH *)(devscope + 1);
pathlen = devscope->Length - sizeof(ACPI_DMAR_DEVICE_SCOPE);
pathend = path + pathlen / sizeof(ACPI_DMAR_PCI_PATH);
if (path < pathend) {
sep = '{';
printf("\t\tPath=");
do {
printf("%c%d:%d", sep, path->Device, path->Function);
sep=',';
path++;
} while (path < pathend);
printf("}\n");
}
return (devscope->Length);
}
static void
acpi_handle_dmar_drhd(ACPI_DMAR_HARDWARE_UNIT *drhd)
{
char *cp;
int remaining, consumed;
printf("\n");
printf("\tType=DRHD\n");
printf("\tLength=%d\n", drhd->Header.Length);
#define PRINTFLAG(var, flag) printflag((var), ACPI_DMAR_## flag, #flag)
printf("\tFlags=");
PRINTFLAG(drhd->Flags, INCLUDE_ALL);
PRINTFLAG_END();
#undef PRINTFLAG
printf("\tSegment=%d\n", drhd->Segment);
printf("\tAddress=0x%016jx\n", (uintmax_t)drhd->Address);
remaining = drhd->Header.Length - sizeof(ACPI_DMAR_HARDWARE_UNIT);
if (remaining > 0)
printf("\tDevice Scope:");
while (remaining > 0) {
cp = (char *)drhd + drhd->Header.Length - remaining;
consumed = acpi_handle_dmar_devscope(cp, remaining);
if (consumed <= 0)
break;
else
remaining -= consumed;
}
}
static void
acpi_handle_dmar_rmrr(ACPI_DMAR_RESERVED_MEMORY *rmrr)
{
char *cp;
int remaining, consumed;
printf("\n");
printf("\tType=RMRR\n");
printf("\tLength=%d\n", rmrr->Header.Length);
printf("\tSegment=%d\n", rmrr->Segment);
printf("\tBaseAddress=0x%016jx\n", (uintmax_t)rmrr->BaseAddress);
printf("\tLimitAddress=0x%016jx\n", (uintmax_t)rmrr->EndAddress);
remaining = rmrr->Header.Length - sizeof(ACPI_DMAR_RESERVED_MEMORY);
if (remaining > 0)
printf("\tDevice Scope:");
while (remaining > 0) {
cp = (char *)rmrr + rmrr->Header.Length - remaining;
consumed = acpi_handle_dmar_devscope(cp, remaining);
if (consumed <= 0)
break;
else
remaining -= consumed;
}
}
static void
acpi_handle_dmar_atsr(ACPI_DMAR_ATSR *atsr)
{
char *cp;
int remaining, consumed;
printf("\n");
printf("\tType=ATSR\n");
printf("\tLength=%d\n", atsr->Header.Length);
#define PRINTFLAG(var, flag) printflag((var), ACPI_DMAR_## flag, #flag)
printf("\tFlags=");
PRINTFLAG(atsr->Flags, ALL_PORTS);
PRINTFLAG_END();
#undef PRINTFLAG
printf("\tSegment=%d\n", atsr->Segment);
remaining = atsr->Header.Length - sizeof(ACPI_DMAR_ATSR);
if (remaining > 0)
printf("\tDevice Scope:");
while (remaining > 0) {
cp = (char *)atsr + atsr->Header.Length - remaining;
consumed = acpi_handle_dmar_devscope(cp, remaining);
if (consumed <= 0)
break;
else
remaining -= consumed;
}
}
static void
acpi_handle_dmar_rhsa(ACPI_DMAR_RHSA *rhsa)
{
printf("\n");
printf("\tType=RHSA\n");
printf("\tLength=%d\n", rhsa->Header.Length);
printf("\tBaseAddress=0x%016jx\n", (uintmax_t)rhsa->BaseAddress);
printf("\tProximityDomain=0x%08x\n", rhsa->ProximityDomain);
}
static int
acpi_handle_dmar_remapping_structure(void *addr, int remaining)
{
ACPI_DMAR_HEADER *hdr = addr;
if (remaining < (int)sizeof(ACPI_DMAR_HEADER))
return (-1);
if (remaining < hdr->Length)
return (-1);
switch (hdr->Type) {
case ACPI_DMAR_TYPE_HARDWARE_UNIT:
acpi_handle_dmar_drhd(addr);
break;
case ACPI_DMAR_TYPE_RESERVED_MEMORY:
acpi_handle_dmar_rmrr(addr);
break;
case ACPI_DMAR_TYPE_ROOT_ATS:
acpi_handle_dmar_atsr(addr);
break;
case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
acpi_handle_dmar_rhsa(addr);
break;
default:
printf("\n");
printf("\tType=%d\n", hdr->Type);
printf("\tLength=%d\n", hdr->Length);
break;
}
return (hdr->Length);
}
#ifndef ACPI_DMAR_X2APIC_OPT_OUT
#define ACPI_DMAR_X2APIC_OPT_OUT (0x2)
#endif
static void
acpi_handle_dmar(ACPI_TABLE_HEADER *sdp)
{
char *cp;
int remaining, consumed;
ACPI_TABLE_DMAR *dmar;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
dmar = (ACPI_TABLE_DMAR *)sdp;
printf("\tHost Address Width=%d\n", dmar->Width + 1);
#define PRINTFLAG(var, flag) printflag((var), ACPI_DMAR_## flag, #flag)
printf("\tFlags=");
PRINTFLAG(dmar->Flags, INTR_REMAP);
PRINTFLAG(dmar->Flags, X2APIC_OPT_OUT);
PRINTFLAG_END();
#undef PRINTFLAG
remaining = sdp->Length - sizeof(ACPI_TABLE_DMAR);
while (remaining > 0) {
cp = (char *)sdp + sdp->Length - remaining;
consumed = acpi_handle_dmar_remapping_structure(cp, remaining);
if (consumed <= 0)
break;
else
remaining -= consumed;
}
printf(END_COMMENT);
}
static void
acpi_handle_ivrs_ivhd_header(ACPI_IVRS_HEADER *addr)
{
printf("\n\tIVHD Type=%#x IOMMU DeviceId=%#06x\n\tFlags=",
addr->Type, addr->DeviceId);
#define PRINTFLAG(flag, name) printflag(addr->Flags, flag, #name)
PRINTFLAG(ACPI_IVHD_TT_ENABLE, HtTunEn);
PRINTFLAG(ACPI_IVHD_ISOC, PassPW);
PRINTFLAG(ACPI_IVHD_RES_PASS_PW, ResPassPW);
PRINTFLAG(ACPI_IVHD_ISOC, Isoc);
PRINTFLAG(ACPI_IVHD_TT_ENABLE, IotlbSup);
PRINTFLAG((1 << 5), Coherent);
PRINTFLAG((1 << 6), PreFSup);
PRINTFLAG((1 << 7), PPRSup);
#undef PRINTFLAG
PRINTFLAG_END();
}
static void
acpi_handle_ivrs_ivhd_dte(UINT8 dte)
{
if (dte == 0) {
printf("\n");
return;
}
printf(" DTE=");
#define PRINTFLAG(flag, name) printflag(dte, flag, #name)
PRINTFLAG(ACPI_IVHD_INIT_PASS, INITPass);
PRINTFLAG(ACPI_IVHD_EINT_PASS, EIntPass);
PRINTFLAG(ACPI_IVHD_NMI_PASS, NMIPass);
PRINTFLAG(ACPI_IVHD_SYSTEM_MGMT, SysMgtPass);
PRINTFLAG(ACPI_IVHD_LINT0_PASS, Lint0Pass);
PRINTFLAG(ACPI_IVHD_LINT1_PASS, Lint1Pass);
#undef PRINTFLAG
PRINTFLAG_END();
}
static void
acpi_handle_ivrs_ivhd_edte(UINT32 edte)
{
if (edte == 0)
return;
printf("\t\t ExtDTE=");
#define PRINTFLAG(flag, name) printflag(edte, flag, #name)
PRINTFLAG(ACPI_IVHD_ATS_DISABLED, AtsDisabled);
#undef PRINTFLAG
PRINTFLAG_END();
}
static const char *
acpi_handle_ivrs_ivhd_variety(UINT8 v)
{
switch (v) {
case ACPI_IVHD_IOAPIC:
return ("IOAPIC");
case ACPI_IVHD_HPET:
return ("HPET");
default:
return ("UNKNOWN");
}
}
static void
acpi_handle_ivrs_ivhd_devs(ACPI_IVRS_DE_HEADER *d, char *de)
{
char *db;
ACPI_IVRS_DEVICE4 *d4;
ACPI_IVRS_DEVICE8A *d8a;
ACPI_IVRS_DEVICE8B *d8b;
ACPI_IVRS_DEVICE8C *d8c;
ACPI_IVRS_DEVICE_HID *dh;
size_t len;
UINT32 x32;
for (; (char *)d < de; d = (ACPI_IVRS_DE_HEADER *)(db + len)) {
db = (char *)d;
if (d->Type == ACPI_IVRS_TYPE_PAD4) {
len = sizeof(*d4);
} else if (d->Type == ACPI_IVRS_TYPE_ALL) {
d4 = (ACPI_IVRS_DEVICE4 *)db;
len = sizeof(*d4);
printf("\t\tDev Type=%#x Id=ALL", d4->Header.Type);
acpi_handle_ivrs_ivhd_dte(d4->Header.DataSetting);
} else if (d->Type == ACPI_IVRS_TYPE_SELECT) {
d4 = (ACPI_IVRS_DEVICE4 *)db;
len = sizeof(*d4);
printf("\t\tDev Type=%#x Id=%#06x", d4->Header.Type,
d4->Header.Id);
acpi_handle_ivrs_ivhd_dte(d4->Header.DataSetting);
} else if (d->Type == ACPI_IVRS_TYPE_START) {
d4 = (ACPI_IVRS_DEVICE4 *)db;
len = 2 * sizeof(*d4);
printf("\t\tDev Type=%#x Id=%#06x-%#06x",
d4->Header.Type,
d4->Header.Id, (d4 + 1)->Header.Id);
acpi_handle_ivrs_ivhd_dte(d4->Header.DataSetting);
} else if (d->Type == ACPI_IVRS_TYPE_END) {
d4 = (ACPI_IVRS_DEVICE4 *)db;
len = 2 * sizeof(*d4);
printf("\t\tDev Type=%#x Id=%#06x BIOS BUG\n",
d4->Header.Type, d4->Header.Id);
} else if (d->Type == ACPI_IVRS_TYPE_PAD8) {
len = sizeof(*d8a);
} else if (d->Type == ACPI_IVRS_TYPE_ALIAS_SELECT) {
d8a = (ACPI_IVRS_DEVICE8A *)db;
len = sizeof(*d8a);
printf("\t\tDev Type=%#x Id=%#06x AliasId=%#06x",
d8a->Header.Type, d8a->Header.Id, d8a->UsedId);
acpi_handle_ivrs_ivhd_dte(d8a->Header.DataSetting);
} else if (d->Type == ACPI_IVRS_TYPE_ALIAS_START) {
d8a = (ACPI_IVRS_DEVICE8A *)db;
d4 = (ACPI_IVRS_DEVICE4 *)(db + sizeof(*d8a));
len = sizeof(*d8a) + sizeof(*d4);
printf("\t\tDev Type=%#x Id=%#06x-%#06x AliasId=%#06x",
d8a->Header.Type, d8a->Header.Id, d4->Header.Id,
d8a->UsedId);
acpi_handle_ivrs_ivhd_dte(d8a->Header.DataSetting);
} else if (d->Type == ACPI_IVRS_TYPE_EXT_SELECT) {
d8b = (ACPI_IVRS_DEVICE8B *)db;
len = sizeof(*d8b);
printf("\t\tDev Type=%#x Id=%#06x",
d8b->Header.Type, d8b->Header.Id);
acpi_handle_ivrs_ivhd_dte(d8b->Header.DataSetting);
printf("\t\t");
acpi_handle_ivrs_ivhd_edte(d8b->ExtendedData);
} else if (d->Type == ACPI_IVRS_TYPE_EXT_START) {
d8b = (ACPI_IVRS_DEVICE8B *)db;
len = sizeof(*d8b);
d4 = (ACPI_IVRS_DEVICE4 *)(db + sizeof(*d8b));
len = sizeof(*d8b) + sizeof(*d4);
printf("\t\tDev Type=%#x Id=%#06x-%#06x",
d8b->Header.Type, d8b->Header.Id, d4->Header.Id);
acpi_handle_ivrs_ivhd_dte(d8b->Header.DataSetting);
acpi_handle_ivrs_ivhd_edte(d8b->ExtendedData);
} else if (d->Type == ACPI_IVRS_TYPE_SPECIAL) {
d8c = (ACPI_IVRS_DEVICE8C *)db;
len = sizeof(*d8c);
printf("\t\tDev Type=%#x Id=%#06x Handle=%#x "
"Variety=%d(%s)",
d8c->Header.Type, d8c->UsedId, d8c->Handle,
d8c->Variety,
acpi_handle_ivrs_ivhd_variety(d8c->Variety));
acpi_handle_ivrs_ivhd_dte(d8c->Header.DataSetting);
} else if (d->Type == ACPI_IVRS_TYPE_HID) {
dh = (ACPI_IVRS_DEVICE_HID *)db;
len = sizeof(*dh) + dh->UidLength;
printf("\t\tDev Type=%#x Id=%#06x HID=",
dh->Header.Type, dh->Header.Id);
acpi_print_string((char *)&dh->AcpiHid,
sizeof(dh->AcpiHid));
printf(" CID=");
acpi_print_string((char *)&dh->AcpiCid,
sizeof(dh->AcpiCid));
printf(" UID=");
switch (dh->UidType) {
case ACPI_IVRS_UID_NOT_PRESENT:
default:
printf("none");
break;
case ACPI_IVRS_UID_IS_INTEGER:
memcpy(&x32, dh + 1, sizeof(x32));
printf("%#x", x32);
break;
case ACPI_IVRS_UID_IS_STRING:
acpi_print_string((char *)(dh + 1),
dh->UidLength);
break;
}
acpi_handle_ivrs_ivhd_dte(dh->Header.DataSetting);
} else {
printf("\t\tDev Type=%#x Unknown\n", d->Type);
if (d->Type <= 63)
len = sizeof(*d4);
else if (d->Type <= 127)
len = sizeof(*d8a);
else {
printf("Abort, cannot advance iterator.\n");
return;
}
}
}
}
static void
acpi_handle_ivrs_ivhd_10(ACPI_IVRS_HARDWARE1 *addr, bool efrsup)
{
acpi_handle_ivrs_ivhd_header(&addr->Header);
printf("\tCapOffset=%#x Base=%#jx PCISeg=%#x Unit=%#x MSIlog=%d\n",
addr->CapabilityOffset, (uintmax_t)addr->BaseAddress,
addr->PciSegmentGroup, (addr->Info & ACPI_IVHD_UNIT_ID_MASK) >> 8,
addr->Info & ACPI_IVHD_MSI_NUMBER_MASK);
if (efrsup) {
#define PRINTFLAG(flag, name) printflag(addr->FeatureReporting, flag, #name)
#define PRINTFIELD(lbit, hbit, name) \
printfield(addr->FeatureReporting, lbit, hbit, #name)
PRINTFIELD(30, 31, HATS);
PRINTFIELD(28, 29, GATS);
PRINTFIELD(23, 27, MsiNumPPR);
PRINTFIELD(17, 22, PNBanks);
PRINTFIELD(13, 16, PNCounters);
PRINTFIELD(8, 12, PASmax);
PRINTFLAG(1 << 7, HESup);
PRINTFLAG(1 << 6, GASup);
PRINTFLAG(1 << 5, UASup);
PRINTFIELD(3, 2, GLXSup);
PRINTFLAG(1 << 1, NXSup);
PRINTFLAG(1 << 0, XTSup);
#undef PRINTFLAG
#undef PRINTFIELD
PRINTFLAG_END();
}
acpi_handle_ivrs_ivhd_devs((ACPI_IVRS_DE_HEADER *)(addr + 1),
(char *)addr + addr->Header.Length);
}
static void
acpi_handle_ivrs_ivhd_info_11(ACPI_IVRS_HARDWARE2 *addr)
{
acpi_handle_ivrs_ivhd_header(&addr->Header);
printf("\tCapOffset=%#x Base=%#jx PCISeg=%#x Unit=%#x MSIlog=%d\n",
addr->CapabilityOffset, (uintmax_t)addr->BaseAddress,
addr->PciSegmentGroup, (addr->Info >> 8) & 0x1f,
addr->Info & 0x5);
printf("\tAttr=");
#define PRINTFIELD(lbit, hbit, name) \
printfield(addr->Attributes, lbit, hbit, #name)
PRINTFIELD(23, 27, MsiNumPPR);
PRINTFIELD(17, 22, PNBanks);
PRINTFIELD(13, 16, PNCounters);
#undef PRINTFIELD
PRINTFLAG_END();
}
static void
acpi_handle_ivrs_ivhd_11(ACPI_IVRS_HARDWARE2 *addr)
{
acpi_handle_ivrs_ivhd_info_11(addr);
printf("\tEFRreg=%#018jx\n", (uintmax_t)addr->EfrRegisterImage);
acpi_handle_ivrs_ivhd_devs((ACPI_IVRS_DE_HEADER *)(addr + 1),
(char *)addr + addr->Header.Length);
}
static void
acpi_handle_ivrs_ivhd_40(ACPI_IVRS_HARDWARE2 *addr)
{
acpi_handle_ivrs_ivhd_info_11(addr);
printf("\tEFRreg=%#018jx EFR2reg=%#018jx\n",
(uintmax_t)addr->EfrRegisterImage, (uintmax_t)addr->Reserved);
acpi_handle_ivrs_ivhd_devs((ACPI_IVRS_DE_HEADER *)(addr + 1),
(char *)addr + addr->Header.Length);
}
static const char *
acpi_handle_ivrs_ivmd_type(ACPI_IVRS_MEMORY *addr)
{
switch (addr->Header.Type) {
case ACPI_IVRS_TYPE_MEMORY1:
return ("ALL");
case ACPI_IVRS_TYPE_MEMORY2:
return ("specified");
case ACPI_IVRS_TYPE_MEMORY3:
return ("range");
default:
return ("unknown");
}
}
static void
acpi_handle_ivrs_ivmd(ACPI_IVRS_MEMORY *addr)
{
UINT16 x16;
printf("\tMem Type=%#x(%s) ",
addr->Header.Type, acpi_handle_ivrs_ivmd_type(addr));
switch (addr->Header.Type) {
case ACPI_IVRS_TYPE_MEMORY2:
memcpy(&x16, &addr->Reserved, sizeof(x16));
printf("Id=%#06x PCISeg=%#x ", addr->Header.DeviceId, x16);
break;
case ACPI_IVRS_TYPE_MEMORY3:
memcpy(&x16, &addr->Reserved, sizeof(x16));
printf("Id=%#06x-%#06x PCISeg=%#x", addr->Header.DeviceId,
addr->AuxData, x16);
break;
}
printf("Start=%#18jx Length=%#jx Flags=",
(uintmax_t)addr->StartAddress, (uintmax_t)addr->MemoryLength);
#define PRINTFLAG(flag, name) printflag(addr->Header.Flags, flag, #name)
PRINTFLAG(ACPI_IVMD_EXCLUSION_RANGE, ExclusionRange);
PRINTFLAG(ACPI_IVMD_WRITE, IW);
PRINTFLAG(ACPI_IVMD_READ, IR);
PRINTFLAG(ACPI_IVMD_UNITY, Unity);
#undef PRINTFLAG
PRINTFLAG_END();
}
static int
acpi_handle_ivrs_blocks(void *addr, int remaining, bool efrsup)
{
ACPI_IVRS_HEADER *hdr = addr;
if (remaining < (int)sizeof(ACPI_IVRS_HEADER))
return (-1);
if (remaining < hdr->Length)
return (-1);
switch (hdr->Type) {
case ACPI_IVRS_TYPE_HARDWARE1:
acpi_handle_ivrs_ivhd_10(addr, efrsup);
break;
case ACPI_IVRS_TYPE_HARDWARE2:
if (!efrsup)
printf("\t!! Found IVHD block 0x11 but !EFRsup\n");
acpi_handle_ivrs_ivhd_11(addr);
break;
case ACPI_IVRS_TYPE_HARDWARE3:
if (!efrsup)
printf("\t!! Found IVHD block 0x40 but !EFRsup\n");
acpi_handle_ivrs_ivhd_40(addr);
break;
case ACPI_IVRS_TYPE_MEMORY1:
case ACPI_IVRS_TYPE_MEMORY2:
case ACPI_IVRS_TYPE_MEMORY3:
acpi_handle_ivrs_ivmd(addr);
break;
default:
printf("\n");
printf("\tType=%d\n", hdr->Type);
printf("\tLength=%d\n", hdr->Length);
break;
}
return (hdr->Length);
}
#define ACPI_IVRS_DMAREMAP 0x00000002
#define ACPI_IVRS_EFRSUP 0x00000001
#define ACPI_IVRS_GVA_SIZE 0x000000e0
static void
acpi_handle_ivrs(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_IVRS *ivrs;
char *cp;
int remaining, consumed;
bool efrsup;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
ivrs = (ACPI_TABLE_IVRS *)sdp;
efrsup = (ivrs->Info & ACPI_IVRS_EFRSUP) != 0;
printf("\tVAsize=%d PAsize=%d GVAsize=%d\n",
(ivrs->Info & ACPI_IVRS_VIRTUAL_SIZE) >> 15,
(ivrs->Info & ACPI_IVRS_PHYSICAL_SIZE) >> 8,
(ivrs->Info & ACPI_IVRS_GVA_SIZE) >> 5);
printf("\tATS_resp_res=%d DMA_preboot_remap=%d EFRsup=%d\n",
(ivrs->Info & ACPI_IVRS_ATS_RESERVED) != 0,
(ivrs->Info & ACPI_IVRS_DMAREMAP) != 0, efrsup);
remaining = sdp->Length - sizeof(ACPI_TABLE_IVRS);
while (remaining > 0) {
cp = (char *)sdp + sdp->Length - remaining;
consumed = acpi_handle_ivrs_blocks(cp, remaining, efrsup);
if (consumed <= 0)
break;
else
remaining -= consumed;
}
printf(END_COMMENT);
}
static void
acpi_print_srat_memory(ACPI_SRAT_MEM_AFFINITY *mp)
{
printf("\tFlags={");
if (mp->Flags & ACPI_SRAT_MEM_ENABLED)
printf("ENABLED");
else
printf("DISABLED");
if (mp->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE)
printf(",HOT_PLUGGABLE");
if (mp->Flags & ACPI_SRAT_MEM_NON_VOLATILE)
printf(",NON_VOLATILE");
printf("}\n");
printf("\tBase Address=0x%016jx\n", (uintmax_t)mp->BaseAddress);
printf("\tLength=0x%016jx\n", (uintmax_t)mp->Length);
printf("\tProximity Domain=%d\n", mp->ProximityDomain);
}
static const char *srat_types[] = {
[ACPI_SRAT_TYPE_CPU_AFFINITY] = "CPU",
[ACPI_SRAT_TYPE_MEMORY_AFFINITY] = "Memory",
[ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY] = "X2APIC",
[ACPI_SRAT_TYPE_GICC_AFFINITY] = "GICC",
[ACPI_SRAT_TYPE_GIC_ITS_AFFINITY] = "GIC ITS",
};
static void
acpi_print_srat(ACPI_SUBTABLE_HEADER *srat)
{
ACPI_SRAT_CPU_AFFINITY *cpu;
ACPI_SRAT_X2APIC_CPU_AFFINITY *x2apic;
ACPI_SRAT_GICC_AFFINITY *gic;
if (srat->Type < nitems(srat_types))
printf("\tType=%s\n", srat_types[srat->Type]);
else
printf("\tType=%d (unknown)\n", srat->Type);
switch (srat->Type) {
case ACPI_SRAT_TYPE_CPU_AFFINITY:
cpu = (ACPI_SRAT_CPU_AFFINITY *)srat;
acpi_print_srat_cpu(cpu->ApicId,
cpu->ProximityDomainHi[2] << 24 |
cpu->ProximityDomainHi[1] << 16 |
cpu->ProximityDomainHi[0] << 0 |
cpu->ProximityDomainLo, cpu->Flags);
break;
case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
acpi_print_srat_memory((ACPI_SRAT_MEM_AFFINITY *)srat);
break;
case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:
x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)srat;
acpi_print_srat_cpu(x2apic->ApicId, x2apic->ProximityDomain,
x2apic->Flags);
break;
case ACPI_SRAT_TYPE_GICC_AFFINITY:
gic = (ACPI_SRAT_GICC_AFFINITY *)srat;
acpi_print_srat_cpu(gic->AcpiProcessorUid, gic->ProximityDomain,
gic->Flags);
break;
}
}
static void
acpi_handle_srat(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_SRAT *srat;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
srat = (ACPI_TABLE_SRAT *)sdp;
printf("\tTable Revision=%d\n", srat->TableRevision);
acpi_walk_subtables(sdp, (srat + 1), acpi_print_srat);
printf(END_COMMENT);
}
static const char *nfit_types[] = {
[ACPI_NFIT_TYPE_SYSTEM_ADDRESS] = "System Address",
[ACPI_NFIT_TYPE_MEMORY_MAP] = "Memory Map",
[ACPI_NFIT_TYPE_INTERLEAVE] = "Interleave",
[ACPI_NFIT_TYPE_SMBIOS] = "SMBIOS",
[ACPI_NFIT_TYPE_CONTROL_REGION] = "Control Region",
[ACPI_NFIT_TYPE_DATA_REGION] = "Data Region",
[ACPI_NFIT_TYPE_FLUSH_ADDRESS] = "Flush Address",
[ACPI_NFIT_TYPE_CAPABILITIES] = "Platform Capabilities"
};
static void
acpi_print_nfit(ACPI_NFIT_HEADER *nfit)
{
char *uuidstr;
uint32_t m, status;
ACPI_NFIT_SYSTEM_ADDRESS *sysaddr;
ACPI_NFIT_MEMORY_MAP *mmap;
ACPI_NFIT_INTERLEAVE *ileave;
ACPI_NFIT_CONTROL_REGION *ctlreg;
ACPI_NFIT_DATA_REGION *datareg;
ACPI_NFIT_FLUSH_ADDRESS *fladdr;
ACPI_NFIT_CAPABILITIES *caps;
if (nfit->Type < nitems(nfit_types))
printf("\tType=%s\n", nfit_types[nfit->Type]);
else
printf("\tType=%u (unknown)\n", nfit->Type);
switch (nfit->Type) {
case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
sysaddr = (ACPI_NFIT_SYSTEM_ADDRESS *)nfit;
printf("\tRangeIndex=%u\n", (u_int)sysaddr->RangeIndex);
printf("\tProximityDomain=%u\n",
(u_int)sysaddr->ProximityDomain);
uuid_to_string((uuid_t *)(uintptr_t)(sysaddr->RangeGuid),
&uuidstr, &status);
if (status != uuid_s_ok)
errx(1, "uuid_to_string: status=%u", status);
printf("\tRangeGuid=%s\n", uuidstr);
free(uuidstr);
printf("\tAddress=0x%016jx\n", (uintmax_t)sysaddr->Address);
printf("\tLength=0x%016jx\n", (uintmax_t)sysaddr->Length);
printf("\tMemoryMapping=0x%016jx\n",
(uintmax_t)sysaddr->MemoryMapping);
#define PRINTFLAG(var, flag) printflag((var), ACPI_NFIT_## flag, #flag)
printf("\tFlags=");
PRINTFLAG(sysaddr->Flags, ADD_ONLINE_ONLY);
PRINTFLAG(sysaddr->Flags, PROXIMITY_VALID);
PRINTFLAG_END();
#undef PRINTFLAG
break;
case ACPI_NFIT_TYPE_MEMORY_MAP:
mmap = (ACPI_NFIT_MEMORY_MAP *)nfit;
printf("\tDeviceHandle=0x%x\n", (u_int)mmap->DeviceHandle);
printf("\tPhysicalId=0x%04x\n", (u_int)mmap->PhysicalId);
printf("\tRegionId=%u\n", (u_int)mmap->RegionId);
printf("\tRangeIndex=%u\n", (u_int)mmap->RangeIndex);
printf("\tRegionIndex=%u\n", (u_int)mmap->RegionIndex);
printf("\tRegionSize=0x%016jx\n", (uintmax_t)mmap->RegionSize);
printf("\tRegionOffset=0x%016jx\n",
(uintmax_t)mmap->RegionOffset);
printf("\tAddress=0x%016jx\n", (uintmax_t)mmap->Address);
printf("\tInterleaveIndex=%u\n", (u_int)mmap->InterleaveIndex);
printf("\tInterleaveWays=%u\n", (u_int)mmap->InterleaveWays);
#define PRINTFLAG(var, flag) printflag((var), ACPI_NFIT_MEM_## flag, #flag)
printf("\tFlags=");
PRINTFLAG(mmap->Flags, SAVE_FAILED);
PRINTFLAG(mmap->Flags, RESTORE_FAILED);
PRINTFLAG(mmap->Flags, FLUSH_FAILED);
PRINTFLAG(mmap->Flags, NOT_ARMED);
PRINTFLAG(mmap->Flags, HEALTH_OBSERVED);
PRINTFLAG(mmap->Flags, HEALTH_ENABLED);
PRINTFLAG(mmap->Flags, MAP_FAILED);
PRINTFLAG_END();
#undef PRINTFLAG
break;
case ACPI_NFIT_TYPE_INTERLEAVE:
ileave = (ACPI_NFIT_INTERLEAVE *)nfit;
printf("\tInterleaveIndex=%u\n",
(u_int)ileave->InterleaveIndex);
printf("\tLineCount=%u\n", (u_int)ileave->LineCount);
printf("\tLineSize=%u\n", (u_int)ileave->LineSize);
for (m = 0; m < ileave->LineCount; m++) {
printf("\tLine%uOffset=0x%08x\n", (u_int)m + 1,
(u_int)ileave->LineOffset[m]);
}
break;
case ACPI_NFIT_TYPE_SMBIOS:
break;
case ACPI_NFIT_TYPE_CONTROL_REGION:
ctlreg = (ACPI_NFIT_CONTROL_REGION *)nfit;
printf("\tRegionIndex=%u\n", (u_int)ctlreg->RegionIndex);
printf("\tVendorId=0x%04x\n", (u_int)ctlreg->VendorId);
printf("\tDeviceId=0x%04x\n", (u_int)ctlreg->DeviceId);
printf("\tRevisionId=0x%02x\n", (u_int)ctlreg->RevisionId);
printf("\tSubsystemVendorId=0x%04x\n",
(u_int)ctlreg->SubsystemVendorId);
printf("\tSubsystemDeviceId=0x%04x\n",
(u_int)ctlreg->SubsystemDeviceId);
printf("\tSubsystemRevisionId=0x%02x\n",
(u_int)ctlreg->SubsystemRevisionId);
printf("\tValidFields=0x%02x\n", (u_int)ctlreg->ValidFields);
printf("\tManufacturingLocation=0x%02x\n",
(u_int)ctlreg->ManufacturingLocation);
printf("\tManufacturingDate=%04x\n",
(u_int)be16toh(ctlreg->ManufacturingDate));
printf("\tSerialNumber=%08X\n",
(u_int)be32toh(ctlreg->SerialNumber));
printf("\tCode=0x%04x\n", (u_int)ctlreg->Code);
printf("\tWindows=%u\n", (u_int)ctlreg->Windows);
printf("\tWindowSize=0x%016jx\n",
(uintmax_t)ctlreg->WindowSize);
printf("\tCommandOffset=0x%016jx\n",
(uintmax_t)ctlreg->CommandOffset);
printf("\tCommandSize=0x%016jx\n",
(uintmax_t)ctlreg->CommandSize);
printf("\tStatusOffset=0x%016jx\n",
(uintmax_t)ctlreg->StatusOffset);
printf("\tStatusSize=0x%016jx\n",
(uintmax_t)ctlreg->StatusSize);
#define PRINTFLAG(var, flag) printflag((var), ACPI_NFIT_## flag, #flag)
printf("\tFlags=");
PRINTFLAG(ctlreg->Flags, CONTROL_BUFFERED);
PRINTFLAG_END();
#undef PRINTFLAG
break;
case ACPI_NFIT_TYPE_DATA_REGION:
datareg = (ACPI_NFIT_DATA_REGION *)nfit;
printf("\tRegionIndex=%u\n", (u_int)datareg->RegionIndex);
printf("\tWindows=%u\n", (u_int)datareg->Windows);
printf("\tOffset=0x%016jx\n", (uintmax_t)datareg->Offset);
printf("\tSize=0x%016jx\n", (uintmax_t)datareg->Size);
printf("\tCapacity=0x%016jx\n", (uintmax_t)datareg->Capacity);
printf("\tStartAddress=0x%016jx\n",
(uintmax_t)datareg->StartAddress);
break;
case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
fladdr = (ACPI_NFIT_FLUSH_ADDRESS *)nfit;
printf("\tDeviceHandle=%u\n", (u_int)fladdr->DeviceHandle);
printf("\tHintCount=%u\n", (u_int)fladdr->HintCount);
for (m = 0; m < fladdr->HintCount; m++) {
printf("\tHintAddress%u=0x%016jx\n", (u_int)m + 1,
(uintmax_t)fladdr->HintAddress[m]);
}
break;
case ACPI_NFIT_TYPE_CAPABILITIES:
caps = (ACPI_NFIT_CAPABILITIES *)nfit;
printf("\tHighestCapability=%u\n", (u_int)caps->HighestCapability);
#define PRINTFLAG(var, flag) printflag((var), ACPI_NFIT_CAPABILITY_## flag, #flag)
printf("\tCapabilities=");
PRINTFLAG(caps->Capabilities, CACHE_FLUSH);
PRINTFLAG(caps->Capabilities, MEM_FLUSH);
PRINTFLAG(caps->Capabilities, MEM_MIRRORING);
PRINTFLAG_END();
#undef PRINTFLAG
break;
}
}
static void
acpi_handle_nfit(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_NFIT *nfit;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
nfit = (ACPI_TABLE_NFIT *)sdp;
acpi_walk_nfit(sdp, (nfit + 1), acpi_print_nfit);
printf(END_COMMENT);
}
static void
acpi_print_sdt(ACPI_TABLE_HEADER *sdp)
{
printf(" ");
acpi_print_string(sdp->Signature, ACPI_NAMESEG_SIZE);
printf(": Length=%d, Revision=%d, Checksum=%d,\n",
sdp->Length, sdp->Revision, sdp->Checksum);
printf("\tOEMID=");
acpi_print_string(sdp->OemId, ACPI_OEM_ID_SIZE);
printf(", OEM Table ID=");
acpi_print_string(sdp->OemTableId, ACPI_OEM_TABLE_ID_SIZE);
printf(", OEM Revision=0x%x,\n", sdp->OemRevision);
printf("\tCreator ID=");
acpi_print_string(sdp->AslCompilerId, ACPI_NAMESEG_SIZE);
printf(", Creator Revision=0x%x\n", sdp->AslCompilerRevision);
}
static void
acpi_print_rsdt(ACPI_TABLE_HEADER *rsdp)
{
ACPI_TABLE_RSDT *rsdt;
ACPI_TABLE_XSDT *xsdt;
int i, entries;
rsdt = (ACPI_TABLE_RSDT *)rsdp;
xsdt = (ACPI_TABLE_XSDT *)rsdp;
printf(BEGIN_COMMENT);
acpi_print_sdt(rsdp);
entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size;
printf("\tEntries={ ");
for (i = 0; i < entries; i++) {
if (i > 0)
printf(", ");
if (addr_size == 4)
printf("0x%08x", le32toh(rsdt->TableOffsetEntry[i]));
else
printf("0x%016jx",
(uintmax_t)le64toh(xsdt->TableOffsetEntry[i]));
}
printf(" }\n");
printf(END_COMMENT);
}
static const char *acpi_pm_profiles[] = {
"Unspecified", "Desktop", "Mobile", "Workstation",
"Enterprise Server", "SOHO Server", "Appliance PC"
};
static void
acpi_print_fadt(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_FADT *fadt;
const char *pm;
fadt = (ACPI_TABLE_FADT *)sdp;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
printf(" \tFACS=0x%x, DSDT=0x%x\n", fadt->Facs,
fadt->Dsdt);
printf("\tINT_MODEL=%s\n", fadt->Model ? "APIC" : "PIC");
if (fadt->PreferredProfile >= sizeof(acpi_pm_profiles) / sizeof(char *))
pm = "Reserved";
else
pm = acpi_pm_profiles[fadt->PreferredProfile];
printf("\tPreferred_PM_Profile=%s (%d)\n", pm, fadt->PreferredProfile);
printf("\tSCI_INT=%d\n", fadt->SciInterrupt);
printf("\tSMI_CMD=0x%x, ", fadt->SmiCommand);
printf("ACPI_ENABLE=0x%x, ", fadt->AcpiEnable);
printf("ACPI_DISABLE=0x%x, ", fadt->AcpiDisable);
printf("S4BIOS_REQ=0x%x\n", fadt->S4BiosRequest);
printf("\tPSTATE_CNT=0x%x\n", fadt->PstateControl);
printf("\tPM1a_EVT_BLK=0x%x-0x%x\n",
fadt->Pm1aEventBlock,
fadt->Pm1aEventBlock + fadt->Pm1EventLength - 1);
if (fadt->Pm1bEventBlock != 0)
printf("\tPM1b_EVT_BLK=0x%x-0x%x\n",
fadt->Pm1bEventBlock,
fadt->Pm1bEventBlock + fadt->Pm1EventLength - 1);
printf("\tPM1a_CNT_BLK=0x%x-0x%x\n",
fadt->Pm1aControlBlock,
fadt->Pm1aControlBlock + fadt->Pm1ControlLength - 1);
if (fadt->Pm1bControlBlock != 0)
printf("\tPM1b_CNT_BLK=0x%x-0x%x\n",
fadt->Pm1bControlBlock,
fadt->Pm1bControlBlock + fadt->Pm1ControlLength - 1);
if (fadt->Pm2ControlBlock != 0)
printf("\tPM2_CNT_BLK=0x%x-0x%x\n",
fadt->Pm2ControlBlock,
fadt->Pm2ControlBlock + fadt->Pm2ControlLength - 1);
printf("\tPM_TMR_BLK=0x%x-0x%x\n",
fadt->PmTimerBlock,
fadt->PmTimerBlock + fadt->PmTimerLength - 1);
if (fadt->Gpe0Block != 0)
printf("\tGPE0_BLK=0x%x-0x%x\n",
fadt->Gpe0Block,
fadt->Gpe0Block + fadt->Gpe0BlockLength - 1);
if (fadt->Gpe1Block != 0)
printf("\tGPE1_BLK=0x%x-0x%x, GPE1_BASE=%d\n",
fadt->Gpe1Block,
fadt->Gpe1Block + fadt->Gpe1BlockLength - 1,
fadt->Gpe1Base);
if (fadt->CstControl != 0)
printf("\tCST_CNT=0x%x\n", fadt->CstControl);
printf("\tP_LVL2_LAT=%d us, P_LVL3_LAT=%d us\n",
fadt->C2Latency, fadt->C3Latency);
printf("\tFLUSH_SIZE=%d, FLUSH_STRIDE=%d\n",
fadt->FlushSize, fadt->FlushStride);
printf("\tDUTY_OFFSET=%d, DUTY_WIDTH=%d\n",
fadt->DutyOffset, fadt->DutyWidth);
printf("\tDAY_ALRM=%d, MON_ALRM=%d, CENTURY=%d\n",
fadt->DayAlarm, fadt->MonthAlarm, fadt->Century);
#define PRINTFLAG(var, flag) printflag((var), ACPI_FADT_## flag, #flag)
printf("\tIAPC_BOOT_ARCH=");
PRINTFLAG(fadt->BootFlags, LEGACY_DEVICES);
PRINTFLAG(fadt->BootFlags, 8042);
PRINTFLAG(fadt->BootFlags, NO_VGA);
PRINTFLAG(fadt->BootFlags, NO_MSI);
PRINTFLAG(fadt->BootFlags, NO_ASPM);
PRINTFLAG(fadt->BootFlags, NO_CMOS_RTC);
PRINTFLAG_END();
printf("\tFlags=");
PRINTFLAG(fadt->Flags, WBINVD);
PRINTFLAG(fadt->Flags, WBINVD_FLUSH);
PRINTFLAG(fadt->Flags, C1_SUPPORTED);
PRINTFLAG(fadt->Flags, C2_MP_SUPPORTED);
PRINTFLAG(fadt->Flags, POWER_BUTTON);
PRINTFLAG(fadt->Flags, SLEEP_BUTTON);
PRINTFLAG(fadt->Flags, FIXED_RTC);
PRINTFLAG(fadt->Flags, S4_RTC_WAKE);
PRINTFLAG(fadt->Flags, 32BIT_TIMER);
PRINTFLAG(fadt->Flags, DOCKING_SUPPORTED);
PRINTFLAG(fadt->Flags, RESET_REGISTER);
PRINTFLAG(fadt->Flags, SEALED_CASE);
PRINTFLAG(fadt->Flags, HEADLESS);
PRINTFLAG(fadt->Flags, SLEEP_TYPE);
PRINTFLAG(fadt->Flags, PCI_EXPRESS_WAKE);
PRINTFLAG(fadt->Flags, PLATFORM_CLOCK);
PRINTFLAG(fadt->Flags, S4_RTC_VALID);
PRINTFLAG(fadt->Flags, REMOTE_POWER_ON);
PRINTFLAG(fadt->Flags, APIC_CLUSTER);
PRINTFLAG(fadt->Flags, APIC_PHYSICAL);
PRINTFLAG(fadt->Flags, HW_REDUCED);
PRINTFLAG(fadt->Flags, LOW_POWER_S0);
PRINTFLAG_END();
#undef PRINTFLAG
if (fadt->Flags & ACPI_FADT_RESET_REGISTER) {
printf("\tRESET_REG=");
acpi_print_gas(&fadt->ResetRegister);
printf(", RESET_VALUE=%#x\n", fadt->ResetValue);
}
if (acpi_get_fadt_revision(fadt) > 1) {
printf("\tX_FACS=0x%016jx, ", (uintmax_t)fadt->XFacs);
printf("X_DSDT=0x%016jx\n", (uintmax_t)fadt->XDsdt);
printf("\tX_PM1a_EVT_BLK=");
acpi_print_gas(&fadt->XPm1aEventBlock);
if (fadt->XPm1bEventBlock.Address != 0) {
printf("\n\tX_PM1b_EVT_BLK=");
acpi_print_gas(&fadt->XPm1bEventBlock);
}
printf("\n\tX_PM1a_CNT_BLK=");
acpi_print_gas(&fadt->XPm1aControlBlock);
if (fadt->XPm1bControlBlock.Address != 0) {
printf("\n\tX_PM1b_CNT_BLK=");
acpi_print_gas(&fadt->XPm1bControlBlock);
}
if (fadt->XPm2ControlBlock.Address != 0) {
printf("\n\tX_PM2_CNT_BLK=");
acpi_print_gas(&fadt->XPm2ControlBlock);
}
printf("\n\tX_PM_TMR_BLK=");
acpi_print_gas(&fadt->XPmTimerBlock);
if (fadt->XGpe0Block.Address != 0) {
printf("\n\tX_GPE0_BLK=");
acpi_print_gas(&fadt->XGpe0Block);
}
if (fadt->XGpe1Block.Address != 0) {
printf("\n\tX_GPE1_BLK=");
acpi_print_gas(&fadt->XGpe1Block);
}
printf("\n");
}
printf(END_COMMENT);
}
static void
acpi_print_facs(ACPI_TABLE_FACS *facs)
{
printf(BEGIN_COMMENT);
printf(" FACS:\tLength=%u, ", facs->Length);
printf("HwSig=0x%08x, ", facs->HardwareSignature);
printf("Firm_Wake_Vec=0x%08x\n", facs->FirmwareWakingVector);
printf("\tGlobal_Lock=");
if (facs->GlobalLock != 0) {
if (facs->GlobalLock & ACPI_GLOCK_PENDING)
printf("PENDING,");
if (facs->GlobalLock & ACPI_GLOCK_OWNED)
printf("OWNED");
}
printf("\n");
printf("\tFlags=");
if (facs->Flags & ACPI_FACS_S4_BIOS_PRESENT)
printf("S4BIOS");
printf("\n");
if (facs->XFirmwareWakingVector != 0)
printf("\tX_Firm_Wake_Vec=%016jx\n",
(uintmax_t)facs->XFirmwareWakingVector);
printf("\tVersion=%u\n", facs->Version);
printf(END_COMMENT);
}
static void
acpi_print_dsdt(ACPI_TABLE_HEADER *dsdp)
{
printf(BEGIN_COMMENT);
acpi_print_sdt(dsdp);
printf(END_COMMENT);
}
int
acpi_checksum(void *p, size_t length)
{
uint8_t *bp;
uint8_t sum;
bp = p;
sum = 0;
while (length--)
sum += *bp++;
return (sum);
}
static ACPI_TABLE_HEADER *
acpi_map_sdt(vm_offset_t pa)
{
ACPI_TABLE_HEADER *sp;
sp = acpi_map_physical(pa, sizeof(ACPI_TABLE_HEADER));
sp = acpi_map_physical(pa, sp->Length);
return (sp);
}
static void
acpi_print_rsd_ptr(ACPI_TABLE_RSDP *rp)
{
printf(BEGIN_COMMENT);
printf(" RSD PTR: OEM=");
acpi_print_string(rp->OemId, ACPI_OEM_ID_SIZE);
printf(", ACPI_Rev=%s (%d)\n", rp->Revision < 2 ? "1.0x" : "2.0x",
rp->Revision);
if (rp->Revision < 2) {
printf("\tRSDT=0x%08x, cksum=%u\n", rp->RsdtPhysicalAddress,
rp->Checksum);
} else {
printf("\tXSDT=0x%016jx, length=%u, cksum=%u\n",
(uintmax_t)rp->XsdtPhysicalAddress, rp->Length,
rp->ExtendedChecksum);
}
printf(END_COMMENT);
}
static const struct {
const char *sig;
void (*fnp)(ACPI_TABLE_HEADER *);
} known[] = {
{ ACPI_SIG_BERT, acpi_handle_bert },
{ ACPI_SIG_DMAR, acpi_handle_dmar },
{ ACPI_SIG_ECDT, acpi_handle_ecdt },
{ ACPI_SIG_EINJ, acpi_handle_einj },
{ ACPI_SIG_ERST, acpi_handle_erst },
{ ACPI_SIG_FADT, acpi_handle_fadt },
{ ACPI_SIG_HEST, acpi_handle_hest },
{ ACPI_SIG_HPET, acpi_handle_hpet },
{ ACPI_SIG_IVRS, acpi_handle_ivrs },
{ ACPI_SIG_LPIT, acpi_handle_lpit },
{ ACPI_SIG_MADT, acpi_handle_madt },
{ ACPI_SIG_MCFG, acpi_handle_mcfg },
{ ACPI_SIG_NFIT, acpi_handle_nfit },
{ ACPI_SIG_SLIT, acpi_handle_slit },
{ ACPI_SIG_SPCR, acpi_handle_spcr },
{ ACPI_SIG_SRAT, acpi_handle_srat },
{ ACPI_SIG_TCPA, acpi_handle_tcpa },
{ ACPI_SIG_TPM2, acpi_handle_tpm2 },
{ ACPI_SIG_WDDT, acpi_handle_wddt },
};
static void
acpi_report_sdp(ACPI_TABLE_HEADER *sdp)
{
for (u_int i = 0; i < nitems(known); i++) {
if (memcmp(sdp->Signature, known[i].sig, ACPI_NAMESEG_SIZE)
== 0) {
known[i].fnp(sdp);
return;
}
}
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
printf(END_COMMENT);
}
static void
acpi_handle_rsdt(ACPI_TABLE_HEADER *rsdp, const char *tbl)
{
ACPI_TABLE_HEADER *sdp;
ACPI_TABLE_RSDT *rsdt;
ACPI_TABLE_XSDT *xsdt;
vm_offset_t addr;
int entries, i;
if (tbl == NULL) {
acpi_print_rsdt(rsdp);
} else {
if (memcmp(tbl, rsdp->Signature, ACPI_NAMESEG_SIZE) == 0) {
acpi_print_rsdt(rsdp);
return;
}
}
rsdt = (ACPI_TABLE_RSDT *)rsdp;
xsdt = (ACPI_TABLE_XSDT *)rsdp;
entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size;
for (i = 0; i < entries; i++) {
if (addr_size == 4)
addr = le32toh(rsdt->TableOffsetEntry[i]);
else
addr = le64toh(xsdt->TableOffsetEntry[i]);
if (addr == 0)
continue;
sdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr);
if (acpi_checksum(sdp, sdp->Length)) {
warnx("RSDT entry %d (sig %.4s) is corrupt", i,
sdp->Signature);
continue;
}
if (tbl != NULL && memcmp(sdp->Signature, tbl, ACPI_NAMESEG_SIZE) != 0)
continue;
acpi_report_sdp(sdp);
}
}
ACPI_TABLE_HEADER *
sdt_load_devmem(void)
{
ACPI_TABLE_RSDP *rp;
ACPI_TABLE_HEADER *rsdp;
rp = acpi_find_rsd_ptr();
if (!rp)
errx(1, "Can't find ACPI information");
if (tflag)
acpi_print_rsd_ptr(rp);
if (rp->Revision < 2) {
rsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(rp->RsdtPhysicalAddress);
if (memcmp(rsdp->Signature, "RSDT", ACPI_NAMESEG_SIZE) != 0 ||
acpi_checksum(rsdp, rsdp->Length) != 0)
errx(1, "RSDT is corrupted");
addr_size = sizeof(uint32_t);
} else {
rsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(rp->XsdtPhysicalAddress);
if (memcmp(rsdp->Signature, "XSDT", ACPI_NAMESEG_SIZE) != 0 ||
acpi_checksum(rsdp, rsdp->Length) != 0)
errx(1, "XSDT is corrupted");
addr_size = sizeof(uint64_t);
}
return (rsdp);
}
static int
write_dsdt(int fd, ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdt)
{
ACPI_TABLE_HEADER sdt;
ACPI_TABLE_HEADER *ssdt;
uint8_t sum;
sdt = *dsdt;
if (rsdt != NULL) {
sdt.Checksum = 0;
sum = acpi_checksum(dsdt + 1, dsdt->Length -
sizeof(ACPI_TABLE_HEADER));
ssdt = sdt_from_rsdt(rsdt, ACPI_SIG_SSDT, NULL);
while (ssdt != NULL) {
sdt.Length += ssdt->Length - sizeof(ACPI_TABLE_HEADER);
sum += acpi_checksum(ssdt + 1,
ssdt->Length - sizeof(ACPI_TABLE_HEADER));
ssdt = sdt_from_rsdt(rsdt, ACPI_SIG_SSDT, ssdt);
}
sum += acpi_checksum(&sdt, sizeof(ACPI_TABLE_HEADER));
sdt.Checksum -= sum;
}
write(fd, &sdt, sizeof(ACPI_TABLE_HEADER));
write(fd, dsdt + 1, dsdt->Length - sizeof(ACPI_TABLE_HEADER));
if (rsdt != NULL) {
ssdt = sdt_from_rsdt(rsdt, "SSDT", NULL);
while (ssdt != NULL) {
write(fd, ssdt + 1, ssdt->Length -
sizeof(ACPI_TABLE_HEADER));
ssdt = sdt_from_rsdt(rsdt, "SSDT", ssdt);
}
}
return (0);
}
void
dsdt_save_file(char *outfile, ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdp)
{
int fd;
mode_t mode;
assert(outfile != NULL);
mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
fd = open(outfile, O_WRONLY | O_CREAT | O_TRUNC, mode);
if (fd == -1) {
perror("dsdt_save_file");
return;
}
write_dsdt(fd, rsdt, dsdp);
close(fd);
}
void
aml_disassemble(ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdp)
{
char buf[PATH_MAX], tmpstr[PATH_MAX], wrkdir[PATH_MAX];
const char *iname = "/acpdump.din";
const char *oname = "/acpdump.dsl";
const char *tmpdir;
FILE *fp;
size_t len;
int fd, status;
pid_t pid;
tmpdir = getenv("TMPDIR");
if (tmpdir == NULL)
tmpdir = _PATH_TMP;
if (realpath(tmpdir, buf) == NULL) {
perror("realpath tmp dir");
return;
}
len = sizeof(wrkdir) - strlen(iname);
if ((size_t)snprintf(wrkdir, len, "%s/acpidump.XXXXXX", buf) > len-1 ) {
fprintf(stderr, "$TMPDIR too long\n");
return;
}
if (mkdtemp(wrkdir) == NULL) {
perror("mkdtemp tmp working dir");
return;
}
len = (size_t)snprintf(tmpstr, sizeof(tmpstr), "%s%s", wrkdir, iname);
assert(len <= sizeof(tmpstr) - 1);
fd = open(tmpstr, O_CREAT | O_WRONLY, S_IRUSR | S_IWUSR);
if (fd < 0) {
perror("iasl tmp file");
return;
}
write_dsdt(fd, rsdt, dsdp);
close(fd);
if ((pid = fork()) == 0) {
close(STDOUT_FILENO);
if (vflag == 0)
close(STDERR_FILENO);
execl("/usr/sbin/iasl", "iasl", "-d", tmpstr, NULL);
err(1, "exec");
}
if (pid > 0)
wait(&status);
if (unlink(tmpstr) < 0) {
perror("unlink");
goto out;
}
if (pid < 0) {
perror("fork");
goto out;
}
if (status != 0) {
fprintf(stderr, "iasl exit status = %d\n", status);
}
len = (size_t)snprintf(tmpstr, sizeof(tmpstr), "%s%s", wrkdir, oname);
assert(len <= sizeof(tmpstr) - 1);
fp = fopen(tmpstr, "r");
if (unlink(tmpstr) < 0) {
perror("unlink");
goto out;
}
if (fp == NULL) {
perror("iasl tmp file (read)");
goto out;
}
while ((len = fread(buf, 1, sizeof(buf), fp)) > 0)
fwrite(buf, 1, len, stdout);
fclose(fp);
out:
if (rmdir(wrkdir) < 0)
perror("rmdir");
}
void
aml_disassemble_separate(ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdp)
{
ACPI_TABLE_HEADER *ssdt = NULL;
aml_disassemble(NULL, dsdp);
if (rsdt != NULL) {
for (;;) {
ssdt = sdt_from_rsdt(rsdt, "SSDT", ssdt);
if (ssdt == NULL)
break;
aml_disassemble(NULL, ssdt);
}
}
}
void
sdt_print_all(ACPI_TABLE_HEADER *rsdp, const char *tbl)
{
acpi_handle_rsdt(rsdp, tbl);
}
ACPI_TABLE_HEADER *
sdt_from_rsdt(ACPI_TABLE_HEADER *rsdp, const char *sig, ACPI_TABLE_HEADER *last)
{
ACPI_TABLE_HEADER *sdt;
ACPI_TABLE_RSDT *rsdt;
ACPI_TABLE_XSDT *xsdt;
vm_offset_t addr;
int entries, i;
rsdt = (ACPI_TABLE_RSDT *)rsdp;
xsdt = (ACPI_TABLE_XSDT *)rsdp;
entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size;
for (i = 0; i < entries; i++) {
if (addr_size == 4)
addr = le32toh(rsdt->TableOffsetEntry[i]);
else
addr = le64toh(xsdt->TableOffsetEntry[i]);
if (addr == 0)
continue;
sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr);
if (last != NULL) {
if (sdt == last)
last = NULL;
continue;
}
if (memcmp(sdt->Signature, sig, strlen(sig)))
continue;
if (acpi_checksum(sdt, sdt->Length))
errx(1, "RSDT entry %d is corrupt", i);
return (sdt);
}
return (NULL);
}
ACPI_TABLE_HEADER *
dsdt_from_fadt(ACPI_TABLE_FADT *fadt)
{
ACPI_TABLE_HEADER *sdt;
if (acpi_get_fadt_revision(fadt) == 1)
sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->Dsdt);
else
sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->XDsdt);
if (acpi_checksum(sdt, sdt->Length))
errx(1, "DSDT is corrupt\n");
return (sdt);
}