#include <sys/types.h>
#define _WANT_KERNEL_ERRNO 1
#include <sys/errno.h>
#include <sys/tree.h>
#include <machine/vmm.h>
#include <machine/vmm_instruction_emul.h>
#include <assert.h>
#include <err.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <vmmapi.h>
#include "mem.h"
struct mmio_rb_range {
RB_ENTRY(mmio_rb_range) mr_link;
struct mem_range mr_param;
uint64_t mr_base;
uint64_t mr_end;
};
struct mmio_rb_tree;
RB_PROTOTYPE(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare);
static RB_HEAD(mmio_rb_tree, mmio_rb_range) mmio_rb_root, mmio_rb_fallback;
static struct mmio_rb_range **mmio_hint;
static int mmio_ncpu;
static pthread_rwlock_t mmio_rwlock;
static int
mmio_rb_range_compare(struct mmio_rb_range *a, struct mmio_rb_range *b)
{
if (a->mr_end < b->mr_base)
return (-1);
else if (a->mr_base > b->mr_end)
return (1);
return (0);
}
static int
mmio_rb_lookup(struct mmio_rb_tree *rbt, uint64_t addr,
struct mmio_rb_range **entry)
{
struct mmio_rb_range find, *res;
find.mr_base = find.mr_end = addr;
res = RB_FIND(mmio_rb_tree, rbt, &find);
if (res != NULL) {
*entry = res;
return (0);
}
return (ENOENT);
}
static int
mmio_rb_add(struct mmio_rb_tree *rbt, struct mmio_rb_range *new)
{
struct mmio_rb_range *overlap;
overlap = RB_INSERT(mmio_rb_tree, rbt, new);
if (overlap != NULL) {
#ifdef RB_DEBUG
printf("overlap detected: new %lx:%lx, tree %lx:%lx, '%s' "
"claims region already claimed for '%s'\n",
new->mr_base, new->mr_end,
overlap->mr_base, overlap->mr_end,
new->mr_param.name, overlap->mr_param.name);
#endif
return (EEXIST);
}
return (0);
}
#if 0
static void
mmio_rb_dump(struct mmio_rb_tree *rbt)
{
int perror;
struct mmio_rb_range *np;
pthread_rwlock_rdlock(&mmio_rwlock);
RB_FOREACH(np, mmio_rb_tree, rbt) {
printf(" %lx:%lx, %s\n", np->mr_base, np->mr_end,
np->mr_param.name);
}
perror = pthread_rwlock_unlock(&mmio_rwlock);
assert(perror == 0);
}
#endif
RB_GENERATE(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare);
typedef int (mem_cb_t)(struct vcpu *vcpu, uint64_t gpa, struct mem_range *mr,
void *arg);
static int
mem_read(struct vcpu *vcpu, uint64_t gpa, uint64_t *rval, int size, void *arg)
{
int error;
struct mem_range *mr = arg;
error = (*mr->handler)(vcpu, MEM_F_READ, gpa, size, rval, mr->arg1,
mr->arg2);
return (error);
}
static int
mem_write(struct vcpu *vcpu, uint64_t gpa, uint64_t wval, int size, void *arg)
{
int error;
struct mem_range *mr = arg;
error = (*mr->handler)(vcpu, MEM_F_WRITE, gpa, size, &wval, mr->arg1,
mr->arg2);
return (error);
}
static int
access_memory(struct vcpu *vcpu, uint64_t paddr, mem_cb_t *cb, void *arg)
{
struct mmio_rb_range *entry;
struct mem_range *mr;
int err, perror, immutable, vcpuid;
vcpuid = vcpu_id(vcpu);
mr = NULL;
pthread_rwlock_rdlock(&mmio_rwlock);
if (mmio_hint[vcpuid] &&
paddr >= mmio_hint[vcpuid]->mr_base &&
paddr <= mmio_hint[vcpuid]->mr_end) {
entry = mmio_hint[vcpuid];
} else
entry = NULL;
if (entry == NULL) {
if (mmio_rb_lookup(&mmio_rb_root, paddr, &entry) == 0) {
mmio_hint[vcpuid] = entry;
} else if (mmio_rb_lookup(&mmio_rb_fallback, paddr,
&entry) == 0) {
} else {
err = mmio_handle_non_backed_mem(vcpu, paddr, &mr);
if (err != 0) {
perror = pthread_rwlock_unlock(&mmio_rwlock);
assert(perror == 0);
return (err == EJUSTRETURN ? 0 : err);
}
}
}
if (mr == NULL) {
assert(entry != NULL);
mr = &entry->mr_param;
}
immutable = (mr->flags & MEM_F_IMMUTABLE) != 0;
if (immutable) {
perror = pthread_rwlock_unlock(&mmio_rwlock);
assert(perror == 0);
}
err = cb(vcpu, paddr, mr, arg);
if (!immutable) {
perror = pthread_rwlock_unlock(&mmio_rwlock);
assert(perror == 0);
}
return (err);
}
struct emulate_mem_args {
struct vie *vie;
struct vm_guest_paging *paging;
};
static int
emulate_mem_cb(struct vcpu *vcpu, uint64_t paddr, struct mem_range *mr,
void *arg)
{
struct emulate_mem_args *ema;
ema = arg;
return (vmm_emulate_instruction(vcpu, paddr, ema->vie, ema->paging,
mem_read, mem_write, mr));
}
int
emulate_mem(struct vcpu *vcpu, uint64_t paddr, struct vie *vie,
struct vm_guest_paging *paging)
{
struct emulate_mem_args ema;
ema.vie = vie;
ema.paging = paging;
return (access_memory(vcpu, paddr, emulate_mem_cb, &ema));
}
struct rw_mem_args {
uint64_t *val;
int size;
int operation;
};
static int
rw_mem_cb(struct vcpu *vcpu, uint64_t paddr, struct mem_range *mr, void *arg)
{
struct rw_mem_args *rma;
rma = arg;
return (mr->handler(vcpu, rma->operation, paddr, rma->size,
rma->val, mr->arg1, mr->arg2));
}
int
read_mem(struct vcpu *vcpu, uint64_t gpa, uint64_t *rval, int size)
{
struct rw_mem_args rma;
rma.val = rval;
rma.size = size;
rma.operation = MEM_F_READ;
return (access_memory(vcpu, gpa, rw_mem_cb, &rma));
}
int
write_mem(struct vcpu *vcpu, uint64_t gpa, uint64_t wval, int size)
{
struct rw_mem_args rma;
rma.val = &wval;
rma.size = size;
rma.operation = MEM_F_WRITE;
return (access_memory(vcpu, gpa, rw_mem_cb, &rma));
}
static int
register_mem_int(struct mmio_rb_tree *rbt, struct mem_range *memp)
{
struct mmio_rb_range *entry, *mrp;
int err, perror;
err = 0;
mrp = malloc(sizeof(struct mmio_rb_range));
if (mrp == NULL) {
warn("%s: couldn't allocate memory for mrp\n",
__func__);
err = ENOMEM;
} else {
mrp->mr_param = *memp;
mrp->mr_base = memp->base;
mrp->mr_end = memp->base + memp->size - 1;
pthread_rwlock_wrlock(&mmio_rwlock);
if (mmio_rb_lookup(rbt, memp->base, &entry) != 0)
err = mmio_rb_add(rbt, mrp);
perror = pthread_rwlock_unlock(&mmio_rwlock);
assert(perror == 0);
if (err)
free(mrp);
}
return (err);
}
int
register_mem(struct mem_range *memp)
{
return (register_mem_int(&mmio_rb_root, memp));
}
int
register_mem_fallback(struct mem_range *memp)
{
return (register_mem_int(&mmio_rb_fallback, memp));
}
int
unregister_mem(struct mem_range *memp)
{
struct mem_range *mr;
struct mmio_rb_range *entry = NULL;
int err, perror, i;
pthread_rwlock_wrlock(&mmio_rwlock);
err = mmio_rb_lookup(&mmio_rb_root, memp->base, &entry);
if (err == 0) {
mr = &entry->mr_param;
assert(mr->name == memp->name);
assert(mr->base == memp->base && mr->size == memp->size);
assert((mr->flags & MEM_F_IMMUTABLE) == 0);
RB_REMOVE(mmio_rb_tree, &mmio_rb_root, entry);
for (i = 0; i < mmio_ncpu; i++) {
if (mmio_hint[i] == entry)
mmio_hint[i] = NULL;
}
}
perror = pthread_rwlock_unlock(&mmio_rwlock);
assert(perror == 0);
if (entry)
free(entry);
return (err);
}
void
init_mem(int ncpu)
{
mmio_ncpu = ncpu;
mmio_hint = calloc(ncpu, sizeof(*mmio_hint));
RB_INIT(&mmio_rb_root);
RB_INIT(&mmio_rb_fallback);
pthread_rwlock_init(&mmio_rwlock, NULL);
}