#include <libecc/lib_ecc_config.h>
#ifdef WITH_HASH_BELT_HASH
#include <libecc/hash/belt-hash.h>
#define ROTL_BELT(x, n) ((((u32)(x)) << (n)) | (((u32)(x)) >> (32-(n))))
#define SWAP_BELT(x, y) do { \
u32 z; \
z = (x); \
(x) = (y); \
(y) = z; \
} while(0)
static u8 S[256] =
{
0xB1, 0x94, 0xBA, 0xC8, 0x0A, 0x08, 0xF5, 0x3B, 0x36, 0x6D, 0x00, 0x8E, 0x58, 0x4A, 0x5D, 0xE4,
0x85, 0x04, 0xFA, 0x9D, 0x1B, 0xB6, 0xC7, 0xAC, 0x25, 0x2E, 0x72, 0xC2, 0x02, 0xFD, 0xCE, 0x0D,
0x5B, 0xE3, 0xD6, 0x12, 0x17, 0xB9, 0x61, 0x81, 0xFE, 0x67, 0x86, 0xAD, 0x71, 0x6B, 0x89, 0x0B,
0x5C, 0xB0, 0xC0, 0xFF, 0x33, 0xC3, 0x56, 0xB8, 0x35, 0xC4, 0x05, 0xAE, 0xD8, 0xE0, 0x7F, 0x99,
0xE1, 0x2B, 0xDC, 0x1A, 0xE2, 0x82, 0x57, 0xEC, 0x70, 0x3F, 0xCC, 0xF0, 0x95, 0xEE, 0x8D, 0xF1,
0xC1, 0xAB, 0x76, 0x38, 0x9F, 0xE6, 0x78, 0xCA, 0xF7, 0xC6, 0xF8, 0x60, 0xD5, 0xBB, 0x9C, 0x4F,
0xF3, 0x3C, 0x65, 0x7B, 0x63, 0x7C, 0x30, 0x6A, 0xDD, 0x4E, 0xA7, 0x79, 0x9E, 0xB2, 0x3D, 0x31,
0x3E, 0x98, 0xB5, 0x6E, 0x27, 0xD3, 0xBC, 0xCF, 0x59, 0x1E, 0x18, 0x1F, 0x4C, 0x5A, 0xB7, 0x93,
0xE9, 0xDE, 0xE7, 0x2C, 0x8F, 0x0C, 0x0F, 0xA6, 0x2D, 0xDB, 0x49, 0xF4, 0x6F, 0x73, 0x96, 0x47,
0x06, 0x07, 0x53, 0x16, 0xED, 0x24, 0x7A, 0x37, 0x39, 0xCB, 0xA3, 0x83, 0x03, 0xA9, 0x8B, 0xF6,
0x92, 0xBD, 0x9B, 0x1C, 0xE5, 0xD1, 0x41, 0x01, 0x54, 0x45, 0xFB, 0xC9, 0x5E, 0x4D, 0x0E, 0xF2,
0x68, 0x20, 0x80, 0xAA, 0x22, 0x7D, 0x64, 0x2F, 0x26, 0x87, 0xF9, 0x34, 0x90, 0x40, 0x55, 0x11,
0xBE, 0x32, 0x97, 0x13, 0x43, 0xFC, 0x9A, 0x48, 0xA0, 0x2A, 0x88, 0x5F, 0x19, 0x4B, 0x09, 0xA1,
0x7E, 0xCD, 0xA4, 0xD0, 0x15, 0x44, 0xAF, 0x8C, 0xA5, 0x84, 0x50, 0xBF, 0x66, 0xD2, 0xE8, 0x8A,
0xA2, 0xD7, 0x46, 0x52, 0x42, 0xA8, 0xDF, 0xB3, 0x69, 0x74, 0xC5, 0x51, 0xEB, 0x23, 0x29, 0x21,
0xD4, 0xEF, 0xD9, 0xB4, 0x3A, 0x62, 0x28, 0x75, 0x91, 0x14, 0x10, 0xEA, 0x77, 0x6C, 0xDA, 0x1D,
};
#define GET_BYTE(x, a) ( ((x) >> (a)) & 0xff )
#define PUT_BYTE(x, a) ( (u32)(x) << (a) )
#define SB(x, a) PUT_BYTE( S[GET_BYTE((x), (a))], (a) )
#define G(x, r) ROTL_BELT( SB((x), 24) | SB((x), 16) | SB((x), 8) | SB((x), 0), (r) )
static u32 KIdx[8][7] =
{
{ 0, 1, 2, 3, 4, 5, 6 },
{ 7, 0, 1, 2, 3, 4, 5 },
{ 6, 7, 0, 1, 2, 3, 4 },
{ 5, 6, 7, 0, 1, 2, 3 },
{ 4, 5, 6, 7, 0, 1, 2 },
{ 3, 4, 5, 6, 7, 0, 1 },
{ 2, 3, 4, 5, 6, 7, 0 },
{ 1, 2, 3, 4, 5, 6, 7 },
};
int belt_init(const u8 *k, u32 k_len, u8 ks[BELT_KEY_SCHED_LEN])
{
int ret = -1;
unsigned int i;
switch(k_len){
case 16:{
for(i = 0; i < 16; i++){
ks[i] = k[i];
ks[i + 16] = k[i];
}
break;
}
case 24:{
for(i = 0; i < 24; i++){
ks[i] = k[i];
}
for(i = 24; i < 32; i++){
ks[i] = k[i - 24] ^ k[i - 20] ^ k[i - 16];
}
break;
}
case 32:{
for(i = 0; i < 32; i++){
ks[i] = k[i];
}
break;
}
default:{
ret = -1;
goto err;
}
}
ret = 0;
err:
return ret;
}
void belt_encrypt(const u8 in[BELT_BLOCK_LEN], u8 out[BELT_BLOCK_LEN], const u8 ks[BELT_KEY_SCHED_LEN])
{
u32 a, b, c, d, e;
u32 i;
GET_UINT32_LE(a, in, 0);
GET_UINT32_LE(b, in, 4);
GET_UINT32_LE(c, in, 8);
GET_UINT32_LE(d, in, 12);
for(i = 0; i < 8; i++){
u32 key;
GET_UINT32_LE(key, ks, 4*KIdx[i][0]);
b ^= G(a + key, 5);
GET_UINT32_LE(key, ks, 4*KIdx[i][1]);
c ^= G(d + key, 21);
GET_UINT32_LE(key, ks, 4*KIdx[i][2]);
a = (u32)(a - G(b + key, 13));
GET_UINT32_LE(key, ks, 4*KIdx[i][3]);
e = G(b + c + key, 21) ^ (i + 1);
b += e;
c = (u32)(c - e);
GET_UINT32_LE(key, ks, 4*KIdx[i][4]);
d += G(c + key, 13);
GET_UINT32_LE(key, ks, 4*KIdx[i][5]);
b ^= G(a + key, 21);
GET_UINT32_LE(key, ks, 4*KIdx[i][6]);
c ^= G(d + key, 5);
SWAP_BELT(a, b);
SWAP_BELT(c, d);
SWAP_BELT(b, c);
}
PUT_UINT32_LE(b, out, 0);
PUT_UINT32_LE(d, out, 4);
PUT_UINT32_LE(a, out, 8);
PUT_UINT32_LE(c, out, 12);
return;
}
void belt_decrypt(const u8 in[BELT_BLOCK_LEN], u8 out[BELT_BLOCK_LEN], const u8 ks[BELT_KEY_SCHED_LEN])
{
u32 a, b, c, d, e;
u32 i;
GET_UINT32_LE(a, in, 0);
GET_UINT32_LE(b, in, 4);
GET_UINT32_LE(c, in, 8);
GET_UINT32_LE(d, in, 12);
for(i = 0; i < 8; i++){
u32 key;
u32 j = (7 - i);
GET_UINT32_LE(key, ks, 4*KIdx[i][6]);
b ^= G(a + key, 5);
GET_UINT32_LE(key, ks, 4*KIdx[i][5]);
c ^= G(d + key, 21);
GET_UINT32_LE(key, ks, 4*KIdx[i][4]);
a = (u32)(a - G(b + key, 13));
GET_UINT32_LE(key, ks, 4*KIdx[i][3]);
e = G(b + c + key, 21) ^ (j + 1);
b += e;
c = (u32)(c - e);
GET_UINT32_LE(key, ks, 4*KIdx[i][2]);
d += G(c + key, 13);
GET_UINT32_LE(key, ks, 4*KIdx[i][1]);
b ^= G(a + key, 21);
GET_UINT32_LE(key, ks, 4*KIdx[i][0]);
c ^= G(d + key, 5);
SWAP_BELT(a, b);
SWAP_BELT(c, d);
SWAP_BELT(a, d);
}
PUT_UINT32_LE(c, out, 0);
PUT_UINT32_LE(a, out, 4);
PUT_UINT32_LE(d, out, 8);
PUT_UINT32_LE(b, out, 12);
return;
}
static void sigma1_xor(const u8 x[2 * BELT_BLOCK_LEN], const u8 h[2 * BELT_BLOCK_LEN], u8 s[BELT_BLOCK_LEN], u8 use_xor){
u8 tmp1[BELT_BLOCK_LEN];
unsigned int i;
for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){
tmp1[i] = (h[i] ^ h[i + BELT_BLOCK_LEN]);
tmp1[i + (BELT_BLOCK_LEN / 2)] = (h[i + (BELT_BLOCK_LEN / 2)] ^ h[i + BELT_BLOCK_LEN + (BELT_BLOCK_LEN / 2)]);
}
if(use_xor){
u8 tmp2[BELT_BLOCK_LEN];
belt_encrypt(tmp1, tmp2, x);
for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){
s[i] ^= (tmp1[i] ^ tmp2[i]);
s[i + (BELT_BLOCK_LEN / 2)] ^= (tmp1[i + (BELT_BLOCK_LEN / 2)] ^ tmp2[i + (BELT_BLOCK_LEN / 2)]);
}
}
else{
belt_encrypt(tmp1, s, x);
for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){
s[i] ^= tmp1[i];
s[i + (BELT_BLOCK_LEN / 2)] ^= tmp1[i + (BELT_BLOCK_LEN / 2)];
}
}
return;
}
static void sigma2(const u8 x[2 * BELT_BLOCK_LEN], u8 const h[2 * BELT_BLOCK_LEN], u8 result[2 * BELT_BLOCK_LEN])
{
u8 teta[BELT_KEY_SCHED_LEN];
u8 tmp[BELT_BLOCK_LEN];
unsigned int i;
IGNORE_RET_VAL(local_memcpy(&tmp[0], &h[0], BELT_BLOCK_LEN));
sigma1_xor(x, h, teta, 0);
IGNORE_RET_VAL(local_memcpy(&teta[BELT_BLOCK_LEN], &h[BELT_BLOCK_LEN], BELT_BLOCK_LEN));
belt_encrypt(x, result, teta);
for(i = 0; i < BELT_BLOCK_LEN; i++){
result[i] ^= x[i];
teta[i] ^= 0xff;
teta[i + BELT_BLOCK_LEN] = tmp[i];
}
belt_encrypt(&x[BELT_BLOCK_LEN], &result[BELT_BLOCK_LEN], teta);
for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){
result[i + BELT_BLOCK_LEN] ^= x[i + BELT_BLOCK_LEN];
result[i + BELT_BLOCK_LEN + (BELT_BLOCK_LEN / 2)] ^= x[i + BELT_BLOCK_LEN + (BELT_BLOCK_LEN / 2)];
}
return;
}
static void _belt_hash_process(const u8 x[2 * BELT_BLOCK_LEN], u8 h[2 * BELT_BLOCK_LEN], u8 s[BELT_BLOCK_LEN])
{
sigma1_xor(x, h, s, 1);
sigma2(x, h, h);
return;
}
ATTRIBUTE_WARN_UNUSED_RET static int belt_hash_process(belt_hash_context *ctx, const u8 data[BELT_HASH_BLOCK_SIZE])
{
_belt_hash_process(data, ctx->belt_hash_h, &(ctx->belt_hash_state[BELT_BLOCK_LEN]));
return 0;
}
ATTRIBUTE_WARN_UNUSED_RET static int belt_hash_finalize(const u8 s[2 * BELT_BLOCK_LEN], const u8 h[2 * BELT_BLOCK_LEN], u8 res[2 * BELT_BLOCK_LEN])
{
sigma2(s, h, res);
return 0;
}
static void belt_update_ctr(belt_hash_context *ctx, u8 len_bytes)
{
u64 a0, a1, b, c;
GET_UINT64_LE(a0, (const u8*)(ctx->belt_hash_state), 0);
GET_UINT64_LE(a1, (const u8*)(ctx->belt_hash_state), 8);
b = (u64)(len_bytes << 3);
c = (a0 + b);
if(c < b){
a1 += 1;
}
PUT_UINT64_LE(c, (u8*)(ctx->belt_hash_state), 0);
PUT_UINT64_LE(a1, (u8*)(ctx->belt_hash_state), 8);
return;
}
int belt_hash_init(belt_hash_context *ctx)
{
int ret;
MUST_HAVE((ctx != NULL), ret, err);
ctx->belt_hash_total = 0;
ret = local_memset(ctx->belt_hash_state, 0, sizeof(ctx->belt_hash_state)); EG(ret, err);
PUT_UINT64_LE(0x3bf5080ac8ba94b1ULL, ctx->belt_hash_h, 0);
PUT_UINT64_LE(0xe45d4a588e006d36ULL, ctx->belt_hash_h, 8);
PUT_UINT64_LE(0xacc7b61b9dfa0485ULL, ctx->belt_hash_h, 16);
PUT_UINT64_LE(0x0dcefd02c2722e25ULL, ctx->belt_hash_h, 24);
ctx->magic = BELT_HASH_HASH_MAGIC;
ret = 0;
err:
return ret;
}
int belt_hash_update(belt_hash_context *ctx, const u8 *input, u32 ilen)
{
const u8 *data_ptr = input;
u32 remain_ilen = ilen;
u16 fill;
u8 left;
int ret;
MUST_HAVE((input != NULL) || (ilen == 0), ret, err);
BELT_HASH_HASH_CHECK_INITIALIZED(ctx, ret, err);
if (ilen == 0) {
ret = 0;
goto err;
}
left = (ctx->belt_hash_total & (BELT_HASH_BLOCK_SIZE - 1));
fill = (u16)(BELT_HASH_BLOCK_SIZE - left);
ctx->belt_hash_total += ilen;
if ((left > 0) && (remain_ilen >= fill)) {
ret = local_memcpy(ctx->belt_hash_buffer + left, data_ptr, fill); EG(ret, err);
belt_update_ctr(ctx, BELT_HASH_BLOCK_SIZE);
ret = belt_hash_process(ctx, ctx->belt_hash_buffer); EG(ret, err);
data_ptr += fill;
remain_ilen -= fill;
left = 0;
}
while (remain_ilen >= BELT_HASH_BLOCK_SIZE) {
belt_update_ctr(ctx, BELT_HASH_BLOCK_SIZE);
ret = belt_hash_process(ctx, data_ptr); EG(ret, err);
data_ptr += BELT_HASH_BLOCK_SIZE;
remain_ilen -= BELT_HASH_BLOCK_SIZE;
}
if (remain_ilen > 0) {
ret = local_memcpy(ctx->belt_hash_buffer + left, data_ptr, remain_ilen); EG(ret, err);
}
ret = 0;
err:
return ret;
}
int belt_hash_final(belt_hash_context *ctx, u8 output[BELT_HASH_DIGEST_SIZE])
{
int ret;
unsigned int i;
MUST_HAVE((output != NULL), ret, err);
BELT_HASH_HASH_CHECK_INITIALIZED(ctx, ret, err);
if((ctx->belt_hash_total % BELT_HASH_BLOCK_SIZE) != 0){
for(i = (ctx->belt_hash_total % BELT_HASH_BLOCK_SIZE); i < BELT_HASH_BLOCK_SIZE; i++){
ctx->belt_hash_buffer[i] = 0;
}
belt_update_ctr(ctx, (u8)(ctx->belt_hash_total % BELT_HASH_BLOCK_SIZE));
ret = belt_hash_process(ctx, ctx->belt_hash_buffer); EG(ret, err);
}
ret = belt_hash_finalize(ctx->belt_hash_state, ctx->belt_hash_h, output); EG(ret, err);
ctx->magic = WORD(0);
ret = 0;
err:
return ret;
}
int belt_hash_scattered(const u8 **inputs, const u32 *ilens,
u8 output[BELT_HASH_DIGEST_SIZE])
{
belt_hash_context ctx;
int ret, pos = 0;
MUST_HAVE((inputs != NULL) && (ilens != NULL) && (output != NULL), ret, err);
ret = belt_hash_init(&ctx); EG(ret, err);
while (inputs[pos] != NULL) {
ret = belt_hash_update(&ctx, inputs[pos], ilens[pos]); EG(ret, err);
pos += 1;
}
ret = belt_hash_final(&ctx, output);
err:
return ret;
}
int belt_hash(const u8 *input, u32 ilen, u8 output[BELT_HASH_DIGEST_SIZE])
{
belt_hash_context ctx;
int ret;
ret = belt_hash_init(&ctx); EG(ret, err);
ret = belt_hash_update(&ctx, input, ilen); EG(ret, err);
ret = belt_hash_final(&ctx, output);
err:
return ret;
}
#else
typedef int dummy;
#endif