Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/pkg
Path: blob/main/external/lua/src/lcode.c
2065 views
1
/*
2
** $Id: lcode.c $
3
** Code generator for Lua
4
** See Copyright Notice in lua.h
5
*/
6
7
#define lcode_c
8
#define LUA_CORE
9
10
#include "lprefix.h"
11
12
13
#include <float.h>
14
#include <limits.h>
15
#include <math.h>
16
#include <stdlib.h>
17
18
#include "lua.h"
19
20
#include "lcode.h"
21
#include "ldebug.h"
22
#include "ldo.h"
23
#include "lgc.h"
24
#include "llex.h"
25
#include "lmem.h"
26
#include "lobject.h"
27
#include "lopcodes.h"
28
#include "lparser.h"
29
#include "lstring.h"
30
#include "ltable.h"
31
#include "lvm.h"
32
33
34
/* Maximum number of registers in a Lua function (must fit in 8 bits) */
35
#define MAXREGS 255
36
37
38
#define hasjumps(e) ((e)->t != (e)->f)
39
40
41
static int codesJ (FuncState *fs, OpCode o, int sj, int k);
42
43
44
45
/* semantic error */
46
l_noret luaK_semerror (LexState *ls, const char *msg) {
47
ls->t.token = 0; /* remove "near <token>" from final message */
48
luaX_syntaxerror(ls, msg);
49
}
50
51
52
/*
53
** If expression is a numeric constant, fills 'v' with its value
54
** and returns 1. Otherwise, returns 0.
55
*/
56
static int tonumeral (const expdesc *e, TValue *v) {
57
if (hasjumps(e))
58
return 0; /* not a numeral */
59
switch (e->k) {
60
case VKINT:
61
if (v) setivalue(v, e->u.ival);
62
return 1;
63
case VKFLT:
64
if (v) setfltvalue(v, e->u.nval);
65
return 1;
66
default: return 0;
67
}
68
}
69
70
71
/*
72
** Get the constant value from a constant expression
73
*/
74
static TValue *const2val (FuncState *fs, const expdesc *e) {
75
lua_assert(e->k == VCONST);
76
return &fs->ls->dyd->actvar.arr[e->u.info].k;
77
}
78
79
80
/*
81
** If expression is a constant, fills 'v' with its value
82
** and returns 1. Otherwise, returns 0.
83
*/
84
int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
85
if (hasjumps(e))
86
return 0; /* not a constant */
87
switch (e->k) {
88
case VFALSE:
89
setbfvalue(v);
90
return 1;
91
case VTRUE:
92
setbtvalue(v);
93
return 1;
94
case VNIL:
95
setnilvalue(v);
96
return 1;
97
case VKSTR: {
98
setsvalue(fs->ls->L, v, e->u.strval);
99
return 1;
100
}
101
case VCONST: {
102
setobj(fs->ls->L, v, const2val(fs, e));
103
return 1;
104
}
105
default: return tonumeral(e, v);
106
}
107
}
108
109
110
/*
111
** Return the previous instruction of the current code. If there
112
** may be a jump target between the current instruction and the
113
** previous one, return an invalid instruction (to avoid wrong
114
** optimizations).
115
*/
116
static Instruction *previousinstruction (FuncState *fs) {
117
static const Instruction invalidinstruction = ~(Instruction)0;
118
if (fs->pc > fs->lasttarget)
119
return &fs->f->code[fs->pc - 1]; /* previous instruction */
120
else
121
return cast(Instruction*, &invalidinstruction);
122
}
123
124
125
/*
126
** Create a OP_LOADNIL instruction, but try to optimize: if the previous
127
** instruction is also OP_LOADNIL and ranges are compatible, adjust
128
** range of previous instruction instead of emitting a new one. (For
129
** instance, 'local a; local b' will generate a single opcode.)
130
*/
131
void luaK_nil (FuncState *fs, int from, int n) {
132
int l = from + n - 1; /* last register to set nil */
133
Instruction *previous = previousinstruction(fs);
134
if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
135
int pfrom = GETARG_A(*previous); /* get previous range */
136
int pl = pfrom + GETARG_B(*previous);
137
if ((pfrom <= from && from <= pl + 1) ||
138
(from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
139
if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
140
if (pl > l) l = pl; /* l = max(l, pl) */
141
SETARG_A(*previous, from);
142
SETARG_B(*previous, l - from);
143
return;
144
} /* else go through */
145
}
146
luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
147
}
148
149
150
/*
151
** Gets the destination address of a jump instruction. Used to traverse
152
** a list of jumps.
153
*/
154
static int getjump (FuncState *fs, int pc) {
155
int offset = GETARG_sJ(fs->f->code[pc]);
156
if (offset == NO_JUMP) /* point to itself represents end of list */
157
return NO_JUMP; /* end of list */
158
else
159
return (pc+1)+offset; /* turn offset into absolute position */
160
}
161
162
163
/*
164
** Fix jump instruction at position 'pc' to jump to 'dest'.
165
** (Jump addresses are relative in Lua)
166
*/
167
static void fixjump (FuncState *fs, int pc, int dest) {
168
Instruction *jmp = &fs->f->code[pc];
169
int offset = dest - (pc + 1);
170
lua_assert(dest != NO_JUMP);
171
if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
172
luaX_syntaxerror(fs->ls, "control structure too long");
173
lua_assert(GET_OPCODE(*jmp) == OP_JMP);
174
SETARG_sJ(*jmp, offset);
175
}
176
177
178
/*
179
** Concatenate jump-list 'l2' into jump-list 'l1'
180
*/
181
void luaK_concat (FuncState *fs, int *l1, int l2) {
182
if (l2 == NO_JUMP) return; /* nothing to concatenate? */
183
else if (*l1 == NO_JUMP) /* no original list? */
184
*l1 = l2; /* 'l1' points to 'l2' */
185
else {
186
int list = *l1;
187
int next;
188
while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
189
list = next;
190
fixjump(fs, list, l2); /* last element links to 'l2' */
191
}
192
}
193
194
195
/*
196
** Create a jump instruction and return its position, so its destination
197
** can be fixed later (with 'fixjump').
198
*/
199
int luaK_jump (FuncState *fs) {
200
return codesJ(fs, OP_JMP, NO_JUMP, 0);
201
}
202
203
204
/*
205
** Code a 'return' instruction
206
*/
207
void luaK_ret (FuncState *fs, int first, int nret) {
208
OpCode op;
209
switch (nret) {
210
case 0: op = OP_RETURN0; break;
211
case 1: op = OP_RETURN1; break;
212
default: op = OP_RETURN; break;
213
}
214
luaK_codeABC(fs, op, first, nret + 1, 0);
215
}
216
217
218
/*
219
** Code a "conditional jump", that is, a test or comparison opcode
220
** followed by a jump. Return jump position.
221
*/
222
static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
223
luaK_codeABCk(fs, op, A, B, C, k);
224
return luaK_jump(fs);
225
}
226
227
228
/*
229
** returns current 'pc' and marks it as a jump target (to avoid wrong
230
** optimizations with consecutive instructions not in the same basic block).
231
*/
232
int luaK_getlabel (FuncState *fs) {
233
fs->lasttarget = fs->pc;
234
return fs->pc;
235
}
236
237
238
/*
239
** Returns the position of the instruction "controlling" a given
240
** jump (that is, its condition), or the jump itself if it is
241
** unconditional.
242
*/
243
static Instruction *getjumpcontrol (FuncState *fs, int pc) {
244
Instruction *pi = &fs->f->code[pc];
245
if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
246
return pi-1;
247
else
248
return pi;
249
}
250
251
252
/*
253
** Patch destination register for a TESTSET instruction.
254
** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
255
** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
256
** register. Otherwise, change instruction to a simple 'TEST' (produces
257
** no register value)
258
*/
259
static int patchtestreg (FuncState *fs, int node, int reg) {
260
Instruction *i = getjumpcontrol(fs, node);
261
if (GET_OPCODE(*i) != OP_TESTSET)
262
return 0; /* cannot patch other instructions */
263
if (reg != NO_REG && reg != GETARG_B(*i))
264
SETARG_A(*i, reg);
265
else {
266
/* no register to put value or register already has the value;
267
change instruction to simple test */
268
*i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
269
}
270
return 1;
271
}
272
273
274
/*
275
** Traverse a list of tests ensuring no one produces a value
276
*/
277
static void removevalues (FuncState *fs, int list) {
278
for (; list != NO_JUMP; list = getjump(fs, list))
279
patchtestreg(fs, list, NO_REG);
280
}
281
282
283
/*
284
** Traverse a list of tests, patching their destination address and
285
** registers: tests producing values jump to 'vtarget' (and put their
286
** values in 'reg'), other tests jump to 'dtarget'.
287
*/
288
static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
289
int dtarget) {
290
while (list != NO_JUMP) {
291
int next = getjump(fs, list);
292
if (patchtestreg(fs, list, reg))
293
fixjump(fs, list, vtarget);
294
else
295
fixjump(fs, list, dtarget); /* jump to default target */
296
list = next;
297
}
298
}
299
300
301
/*
302
** Path all jumps in 'list' to jump to 'target'.
303
** (The assert means that we cannot fix a jump to a forward address
304
** because we only know addresses once code is generated.)
305
*/
306
void luaK_patchlist (FuncState *fs, int list, int target) {
307
lua_assert(target <= fs->pc);
308
patchlistaux(fs, list, target, NO_REG, target);
309
}
310
311
312
void luaK_patchtohere (FuncState *fs, int list) {
313
int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
314
luaK_patchlist(fs, list, hr);
315
}
316
317
318
/* limit for difference between lines in relative line info. */
319
#define LIMLINEDIFF 0x80
320
321
322
/*
323
** Save line info for a new instruction. If difference from last line
324
** does not fit in a byte, of after that many instructions, save a new
325
** absolute line info; (in that case, the special value 'ABSLINEINFO'
326
** in 'lineinfo' signals the existence of this absolute information.)
327
** Otherwise, store the difference from last line in 'lineinfo'.
328
*/
329
static void savelineinfo (FuncState *fs, Proto *f, int line) {
330
int linedif = line - fs->previousline;
331
int pc = fs->pc - 1; /* last instruction coded */
332
if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
333
luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
334
f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
335
f->abslineinfo[fs->nabslineinfo].pc = pc;
336
f->abslineinfo[fs->nabslineinfo++].line = line;
337
linedif = ABSLINEINFO; /* signal that there is absolute information */
338
fs->iwthabs = 1; /* restart counter */
339
}
340
luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
341
MAX_INT, "opcodes");
342
f->lineinfo[pc] = linedif;
343
fs->previousline = line; /* last line saved */
344
}
345
346
347
/*
348
** Remove line information from the last instruction.
349
** If line information for that instruction is absolute, set 'iwthabs'
350
** above its max to force the new (replacing) instruction to have
351
** absolute line info, too.
352
*/
353
static void removelastlineinfo (FuncState *fs) {
354
Proto *f = fs->f;
355
int pc = fs->pc - 1; /* last instruction coded */
356
if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
357
fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
358
fs->iwthabs--; /* undo previous increment */
359
}
360
else { /* absolute line information */
361
lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
362
fs->nabslineinfo--; /* remove it */
363
fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
364
}
365
}
366
367
368
/*
369
** Remove the last instruction created, correcting line information
370
** accordingly.
371
*/
372
static void removelastinstruction (FuncState *fs) {
373
removelastlineinfo(fs);
374
fs->pc--;
375
}
376
377
378
/*
379
** Emit instruction 'i', checking for array sizes and saving also its
380
** line information. Return 'i' position.
381
*/
382
int luaK_code (FuncState *fs, Instruction i) {
383
Proto *f = fs->f;
384
/* put new instruction in code array */
385
luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
386
MAX_INT, "opcodes");
387
f->code[fs->pc++] = i;
388
savelineinfo(fs, f, fs->ls->lastline);
389
return fs->pc - 1; /* index of new instruction */
390
}
391
392
393
/*
394
** Format and emit an 'iABC' instruction. (Assertions check consistency
395
** of parameters versus opcode.)
396
*/
397
int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
398
lua_assert(getOpMode(o) == iABC);
399
lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
400
c <= MAXARG_C && (k & ~1) == 0);
401
return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
402
}
403
404
405
/*
406
** Format and emit an 'iABx' instruction.
407
*/
408
int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
409
lua_assert(getOpMode(o) == iABx);
410
lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
411
return luaK_code(fs, CREATE_ABx(o, a, bc));
412
}
413
414
415
/*
416
** Format and emit an 'iAsBx' instruction.
417
*/
418
static int codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
419
unsigned int b = bc + OFFSET_sBx;
420
lua_assert(getOpMode(o) == iAsBx);
421
lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
422
return luaK_code(fs, CREATE_ABx(o, a, b));
423
}
424
425
426
/*
427
** Format and emit an 'isJ' instruction.
428
*/
429
static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
430
unsigned int j = sj + OFFSET_sJ;
431
lua_assert(getOpMode(o) == isJ);
432
lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
433
return luaK_code(fs, CREATE_sJ(o, j, k));
434
}
435
436
437
/*
438
** Emit an "extra argument" instruction (format 'iAx')
439
*/
440
static int codeextraarg (FuncState *fs, int a) {
441
lua_assert(a <= MAXARG_Ax);
442
return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
443
}
444
445
446
/*
447
** Emit a "load constant" instruction, using either 'OP_LOADK'
448
** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
449
** instruction with "extra argument".
450
*/
451
static int luaK_codek (FuncState *fs, int reg, int k) {
452
if (k <= MAXARG_Bx)
453
return luaK_codeABx(fs, OP_LOADK, reg, k);
454
else {
455
int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
456
codeextraarg(fs, k);
457
return p;
458
}
459
}
460
461
462
/*
463
** Check register-stack level, keeping track of its maximum size
464
** in field 'maxstacksize'
465
*/
466
void luaK_checkstack (FuncState *fs, int n) {
467
int newstack = fs->freereg + n;
468
if (newstack > fs->f->maxstacksize) {
469
if (newstack >= MAXREGS)
470
luaX_syntaxerror(fs->ls,
471
"function or expression needs too many registers");
472
fs->f->maxstacksize = cast_byte(newstack);
473
}
474
}
475
476
477
/*
478
** Reserve 'n' registers in register stack
479
*/
480
void luaK_reserveregs (FuncState *fs, int n) {
481
luaK_checkstack(fs, n);
482
fs->freereg += n;
483
}
484
485
486
/*
487
** Free register 'reg', if it is neither a constant index nor
488
** a local variable.
489
)
490
*/
491
static void freereg (FuncState *fs, int reg) {
492
if (reg >= luaY_nvarstack(fs)) {
493
fs->freereg--;
494
lua_assert(reg == fs->freereg);
495
}
496
}
497
498
499
/*
500
** Free two registers in proper order
501
*/
502
static void freeregs (FuncState *fs, int r1, int r2) {
503
if (r1 > r2) {
504
freereg(fs, r1);
505
freereg(fs, r2);
506
}
507
else {
508
freereg(fs, r2);
509
freereg(fs, r1);
510
}
511
}
512
513
514
/*
515
** Free register used by expression 'e' (if any)
516
*/
517
static void freeexp (FuncState *fs, expdesc *e) {
518
if (e->k == VNONRELOC)
519
freereg(fs, e->u.info);
520
}
521
522
523
/*
524
** Free registers used by expressions 'e1' and 'e2' (if any) in proper
525
** order.
526
*/
527
static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
528
int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
529
int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
530
freeregs(fs, r1, r2);
531
}
532
533
534
/*
535
** Add constant 'v' to prototype's list of constants (field 'k').
536
** Use scanner's table to cache position of constants in constant list
537
** and try to reuse constants. Because some values should not be used
538
** as keys (nil cannot be a key, integer keys can collapse with float
539
** keys), the caller must provide a useful 'key' for indexing the cache.
540
** Note that all functions share the same table, so entering or exiting
541
** a function can make some indices wrong.
542
*/
543
static int addk (FuncState *fs, TValue *key, TValue *v) {
544
TValue val;
545
lua_State *L = fs->ls->L;
546
Proto *f = fs->f;
547
const TValue *idx = luaH_get(fs->ls->h, key); /* query scanner table */
548
int k, oldsize;
549
if (ttisinteger(idx)) { /* is there an index there? */
550
k = cast_int(ivalue(idx));
551
/* correct value? (warning: must distinguish floats from integers!) */
552
if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
553
luaV_rawequalobj(&f->k[k], v))
554
return k; /* reuse index */
555
}
556
/* constant not found; create a new entry */
557
oldsize = f->sizek;
558
k = fs->nk;
559
/* numerical value does not need GC barrier;
560
table has no metatable, so it does not need to invalidate cache */
561
setivalue(&val, k);
562
luaH_finishset(L, fs->ls->h, key, idx, &val);
563
luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
564
while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
565
setobj(L, &f->k[k], v);
566
fs->nk++;
567
luaC_barrier(L, f, v);
568
return k;
569
}
570
571
572
/*
573
** Add a string to list of constants and return its index.
574
*/
575
static int stringK (FuncState *fs, TString *s) {
576
TValue o;
577
setsvalue(fs->ls->L, &o, s);
578
return addk(fs, &o, &o); /* use string itself as key */
579
}
580
581
582
/*
583
** Add an integer to list of constants and return its index.
584
*/
585
static int luaK_intK (FuncState *fs, lua_Integer n) {
586
TValue o;
587
setivalue(&o, n);
588
return addk(fs, &o, &o); /* use integer itself as key */
589
}
590
591
/*
592
** Add a float to list of constants and return its index. Floats
593
** with integral values need a different key, to avoid collision
594
** with actual integers. To that, we add to the number its smaller
595
** power-of-two fraction that is still significant in its scale.
596
** For doubles, that would be 1/2^52.
597
** (This method is not bulletproof: there may be another float
598
** with that value, and for floats larger than 2^53 the result is
599
** still an integer. At worst, this only wastes an entry with
600
** a duplicate.)
601
*/
602
static int luaK_numberK (FuncState *fs, lua_Number r) {
603
TValue o;
604
lua_Integer ik;
605
setfltvalue(&o, r);
606
if (!luaV_flttointeger(r, &ik, F2Ieq)) /* not an integral value? */
607
return addk(fs, &o, &o); /* use number itself as key */
608
else { /* must build an alternative key */
609
const int nbm = l_floatatt(MANT_DIG);
610
const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
611
const lua_Number k = (ik == 0) ? q : r + r*q; /* new key */
612
TValue kv;
613
setfltvalue(&kv, k);
614
/* result is not an integral value, unless value is too large */
615
lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) ||
616
l_mathop(fabs)(r) >= l_mathop(1e6));
617
return addk(fs, &kv, &o);
618
}
619
}
620
621
622
/*
623
** Add a false to list of constants and return its index.
624
*/
625
static int boolF (FuncState *fs) {
626
TValue o;
627
setbfvalue(&o);
628
return addk(fs, &o, &o); /* use boolean itself as key */
629
}
630
631
632
/*
633
** Add a true to list of constants and return its index.
634
*/
635
static int boolT (FuncState *fs) {
636
TValue o;
637
setbtvalue(&o);
638
return addk(fs, &o, &o); /* use boolean itself as key */
639
}
640
641
642
/*
643
** Add nil to list of constants and return its index.
644
*/
645
static int nilK (FuncState *fs) {
646
TValue k, v;
647
setnilvalue(&v);
648
/* cannot use nil as key; instead use table itself to represent nil */
649
sethvalue(fs->ls->L, &k, fs->ls->h);
650
return addk(fs, &k, &v);
651
}
652
653
654
/*
655
** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
656
** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
657
** overflows in the hidden addition inside 'int2sC'.
658
*/
659
static int fitsC (lua_Integer i) {
660
return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
661
}
662
663
664
/*
665
** Check whether 'i' can be stored in an 'sBx' operand.
666
*/
667
static int fitsBx (lua_Integer i) {
668
return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
669
}
670
671
672
void luaK_int (FuncState *fs, int reg, lua_Integer i) {
673
if (fitsBx(i))
674
codeAsBx(fs, OP_LOADI, reg, cast_int(i));
675
else
676
luaK_codek(fs, reg, luaK_intK(fs, i));
677
}
678
679
680
static void luaK_float (FuncState *fs, int reg, lua_Number f) {
681
lua_Integer fi;
682
if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
683
codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
684
else
685
luaK_codek(fs, reg, luaK_numberK(fs, f));
686
}
687
688
689
/*
690
** Convert a constant in 'v' into an expression description 'e'
691
*/
692
static void const2exp (TValue *v, expdesc *e) {
693
switch (ttypetag(v)) {
694
case LUA_VNUMINT:
695
e->k = VKINT; e->u.ival = ivalue(v);
696
break;
697
case LUA_VNUMFLT:
698
e->k = VKFLT; e->u.nval = fltvalue(v);
699
break;
700
case LUA_VFALSE:
701
e->k = VFALSE;
702
break;
703
case LUA_VTRUE:
704
e->k = VTRUE;
705
break;
706
case LUA_VNIL:
707
e->k = VNIL;
708
break;
709
case LUA_VSHRSTR: case LUA_VLNGSTR:
710
e->k = VKSTR; e->u.strval = tsvalue(v);
711
break;
712
default: lua_assert(0);
713
}
714
}
715
716
717
/*
718
** Fix an expression to return the number of results 'nresults'.
719
** 'e' must be a multi-ret expression (function call or vararg).
720
*/
721
void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
722
Instruction *pc = &getinstruction(fs, e);
723
if (e->k == VCALL) /* expression is an open function call? */
724
SETARG_C(*pc, nresults + 1);
725
else {
726
lua_assert(e->k == VVARARG);
727
SETARG_C(*pc, nresults + 1);
728
SETARG_A(*pc, fs->freereg);
729
luaK_reserveregs(fs, 1);
730
}
731
}
732
733
734
/*
735
** Convert a VKSTR to a VK
736
*/
737
static void str2K (FuncState *fs, expdesc *e) {
738
lua_assert(e->k == VKSTR);
739
e->u.info = stringK(fs, e->u.strval);
740
e->k = VK;
741
}
742
743
744
/*
745
** Fix an expression to return one result.
746
** If expression is not a multi-ret expression (function call or
747
** vararg), it already returns one result, so nothing needs to be done.
748
** Function calls become VNONRELOC expressions (as its result comes
749
** fixed in the base register of the call), while vararg expressions
750
** become VRELOC (as OP_VARARG puts its results where it wants).
751
** (Calls are created returning one result, so that does not need
752
** to be fixed.)
753
*/
754
void luaK_setoneret (FuncState *fs, expdesc *e) {
755
if (e->k == VCALL) { /* expression is an open function call? */
756
/* already returns 1 value */
757
lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
758
e->k = VNONRELOC; /* result has fixed position */
759
e->u.info = GETARG_A(getinstruction(fs, e));
760
}
761
else if (e->k == VVARARG) {
762
SETARG_C(getinstruction(fs, e), 2);
763
e->k = VRELOC; /* can relocate its simple result */
764
}
765
}
766
767
768
/*
769
** Ensure that expression 'e' is not a variable (nor a <const>).
770
** (Expression still may have jump lists.)
771
*/
772
void luaK_dischargevars (FuncState *fs, expdesc *e) {
773
switch (e->k) {
774
case VCONST: {
775
const2exp(const2val(fs, e), e);
776
break;
777
}
778
case VLOCAL: { /* already in a register */
779
int temp = e->u.var.ridx;
780
e->u.info = temp; /* (can't do a direct assignment; values overlap) */
781
e->k = VNONRELOC; /* becomes a non-relocatable value */
782
break;
783
}
784
case VUPVAL: { /* move value to some (pending) register */
785
e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
786
e->k = VRELOC;
787
break;
788
}
789
case VINDEXUP: {
790
e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
791
e->k = VRELOC;
792
break;
793
}
794
case VINDEXI: {
795
freereg(fs, e->u.ind.t);
796
e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
797
e->k = VRELOC;
798
break;
799
}
800
case VINDEXSTR: {
801
freereg(fs, e->u.ind.t);
802
e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
803
e->k = VRELOC;
804
break;
805
}
806
case VINDEXED: {
807
freeregs(fs, e->u.ind.t, e->u.ind.idx);
808
e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
809
e->k = VRELOC;
810
break;
811
}
812
case VVARARG: case VCALL: {
813
luaK_setoneret(fs, e);
814
break;
815
}
816
default: break; /* there is one value available (somewhere) */
817
}
818
}
819
820
821
/*
822
** Ensure expression value is in register 'reg', making 'e' a
823
** non-relocatable expression.
824
** (Expression still may have jump lists.)
825
*/
826
static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
827
luaK_dischargevars(fs, e);
828
switch (e->k) {
829
case VNIL: {
830
luaK_nil(fs, reg, 1);
831
break;
832
}
833
case VFALSE: {
834
luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
835
break;
836
}
837
case VTRUE: {
838
luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
839
break;
840
}
841
case VKSTR: {
842
str2K(fs, e);
843
} /* FALLTHROUGH */
844
case VK: {
845
luaK_codek(fs, reg, e->u.info);
846
break;
847
}
848
case VKFLT: {
849
luaK_float(fs, reg, e->u.nval);
850
break;
851
}
852
case VKINT: {
853
luaK_int(fs, reg, e->u.ival);
854
break;
855
}
856
case VRELOC: {
857
Instruction *pc = &getinstruction(fs, e);
858
SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
859
break;
860
}
861
case VNONRELOC: {
862
if (reg != e->u.info)
863
luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
864
break;
865
}
866
default: {
867
lua_assert(e->k == VJMP);
868
return; /* nothing to do... */
869
}
870
}
871
e->u.info = reg;
872
e->k = VNONRELOC;
873
}
874
875
876
/*
877
** Ensure expression value is in a register, making 'e' a
878
** non-relocatable expression.
879
** (Expression still may have jump lists.)
880
*/
881
static void discharge2anyreg (FuncState *fs, expdesc *e) {
882
if (e->k != VNONRELOC) { /* no fixed register yet? */
883
luaK_reserveregs(fs, 1); /* get a register */
884
discharge2reg(fs, e, fs->freereg-1); /* put value there */
885
}
886
}
887
888
889
static int code_loadbool (FuncState *fs, int A, OpCode op) {
890
luaK_getlabel(fs); /* those instructions may be jump targets */
891
return luaK_codeABC(fs, op, A, 0, 0);
892
}
893
894
895
/*
896
** check whether list has any jump that do not produce a value
897
** or produce an inverted value
898
*/
899
static int need_value (FuncState *fs, int list) {
900
for (; list != NO_JUMP; list = getjump(fs, list)) {
901
Instruction i = *getjumpcontrol(fs, list);
902
if (GET_OPCODE(i) != OP_TESTSET) return 1;
903
}
904
return 0; /* not found */
905
}
906
907
908
/*
909
** Ensures final expression result (which includes results from its
910
** jump lists) is in register 'reg'.
911
** If expression has jumps, need to patch these jumps either to
912
** its final position or to "load" instructions (for those tests
913
** that do not produce values).
914
*/
915
static void exp2reg (FuncState *fs, expdesc *e, int reg) {
916
discharge2reg(fs, e, reg);
917
if (e->k == VJMP) /* expression itself is a test? */
918
luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
919
if (hasjumps(e)) {
920
int final; /* position after whole expression */
921
int p_f = NO_JUMP; /* position of an eventual LOAD false */
922
int p_t = NO_JUMP; /* position of an eventual LOAD true */
923
if (need_value(fs, e->t) || need_value(fs, e->f)) {
924
int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
925
p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
926
p_t = code_loadbool(fs, reg, OP_LOADTRUE);
927
/* jump around these booleans if 'e' is not a test */
928
luaK_patchtohere(fs, fj);
929
}
930
final = luaK_getlabel(fs);
931
patchlistaux(fs, e->f, final, reg, p_f);
932
patchlistaux(fs, e->t, final, reg, p_t);
933
}
934
e->f = e->t = NO_JUMP;
935
e->u.info = reg;
936
e->k = VNONRELOC;
937
}
938
939
940
/*
941
** Ensures final expression result is in next available register.
942
*/
943
void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
944
luaK_dischargevars(fs, e);
945
freeexp(fs, e);
946
luaK_reserveregs(fs, 1);
947
exp2reg(fs, e, fs->freereg - 1);
948
}
949
950
951
/*
952
** Ensures final expression result is in some (any) register
953
** and return that register.
954
*/
955
int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
956
luaK_dischargevars(fs, e);
957
if (e->k == VNONRELOC) { /* expression already has a register? */
958
if (!hasjumps(e)) /* no jumps? */
959
return e->u.info; /* result is already in a register */
960
if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
961
exp2reg(fs, e, e->u.info); /* put final result in it */
962
return e->u.info;
963
}
964
/* else expression has jumps and cannot change its register
965
to hold the jump values, because it is a local variable.
966
Go through to the default case. */
967
}
968
luaK_exp2nextreg(fs, e); /* default: use next available register */
969
return e->u.info;
970
}
971
972
973
/*
974
** Ensures final expression result is either in a register
975
** or in an upvalue.
976
*/
977
void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
978
if (e->k != VUPVAL || hasjumps(e))
979
luaK_exp2anyreg(fs, e);
980
}
981
982
983
/*
984
** Ensures final expression result is either in a register
985
** or it is a constant.
986
*/
987
void luaK_exp2val (FuncState *fs, expdesc *e) {
988
if (hasjumps(e))
989
luaK_exp2anyreg(fs, e);
990
else
991
luaK_dischargevars(fs, e);
992
}
993
994
995
/*
996
** Try to make 'e' a K expression with an index in the range of R/K
997
** indices. Return true iff succeeded.
998
*/
999
static int luaK_exp2K (FuncState *fs, expdesc *e) {
1000
if (!hasjumps(e)) {
1001
int info;
1002
switch (e->k) { /* move constants to 'k' */
1003
case VTRUE: info = boolT(fs); break;
1004
case VFALSE: info = boolF(fs); break;
1005
case VNIL: info = nilK(fs); break;
1006
case VKINT: info = luaK_intK(fs, e->u.ival); break;
1007
case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
1008
case VKSTR: info = stringK(fs, e->u.strval); break;
1009
case VK: info = e->u.info; break;
1010
default: return 0; /* not a constant */
1011
}
1012
if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
1013
e->k = VK; /* make expression a 'K' expression */
1014
e->u.info = info;
1015
return 1;
1016
}
1017
}
1018
/* else, expression doesn't fit; leave it unchanged */
1019
return 0;
1020
}
1021
1022
1023
/*
1024
** Ensures final expression result is in a valid R/K index
1025
** (that is, it is either in a register or in 'k' with an index
1026
** in the range of R/K indices).
1027
** Returns 1 iff expression is K.
1028
*/
1029
static int exp2RK (FuncState *fs, expdesc *e) {
1030
if (luaK_exp2K(fs, e))
1031
return 1;
1032
else { /* not a constant in the right range: put it in a register */
1033
luaK_exp2anyreg(fs, e);
1034
return 0;
1035
}
1036
}
1037
1038
1039
static void codeABRK (FuncState *fs, OpCode o, int a, int b,
1040
expdesc *ec) {
1041
int k = exp2RK(fs, ec);
1042
luaK_codeABCk(fs, o, a, b, ec->u.info, k);
1043
}
1044
1045
1046
/*
1047
** Generate code to store result of expression 'ex' into variable 'var'.
1048
*/
1049
void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
1050
switch (var->k) {
1051
case VLOCAL: {
1052
freeexp(fs, ex);
1053
exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
1054
return;
1055
}
1056
case VUPVAL: {
1057
int e = luaK_exp2anyreg(fs, ex);
1058
luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
1059
break;
1060
}
1061
case VINDEXUP: {
1062
codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
1063
break;
1064
}
1065
case VINDEXI: {
1066
codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
1067
break;
1068
}
1069
case VINDEXSTR: {
1070
codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
1071
break;
1072
}
1073
case VINDEXED: {
1074
codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
1075
break;
1076
}
1077
default: lua_assert(0); /* invalid var kind to store */
1078
}
1079
freeexp(fs, ex);
1080
}
1081
1082
1083
/*
1084
** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
1085
*/
1086
void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
1087
int ereg;
1088
luaK_exp2anyreg(fs, e);
1089
ereg = e->u.info; /* register where 'e' was placed */
1090
freeexp(fs, e);
1091
e->u.info = fs->freereg; /* base register for op_self */
1092
e->k = VNONRELOC; /* self expression has a fixed register */
1093
luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
1094
codeABRK(fs, OP_SELF, e->u.info, ereg, key);
1095
freeexp(fs, key);
1096
}
1097
1098
1099
/*
1100
** Negate condition 'e' (where 'e' is a comparison).
1101
*/
1102
static void negatecondition (FuncState *fs, expdesc *e) {
1103
Instruction *pc = getjumpcontrol(fs, e->u.info);
1104
lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
1105
GET_OPCODE(*pc) != OP_TEST);
1106
SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
1107
}
1108
1109
1110
/*
1111
** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
1112
** is true, code will jump if 'e' is true.) Return jump position.
1113
** Optimize when 'e' is 'not' something, inverting the condition
1114
** and removing the 'not'.
1115
*/
1116
static int jumponcond (FuncState *fs, expdesc *e, int cond) {
1117
if (e->k == VRELOC) {
1118
Instruction ie = getinstruction(fs, e);
1119
if (GET_OPCODE(ie) == OP_NOT) {
1120
removelastinstruction(fs); /* remove previous OP_NOT */
1121
return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
1122
}
1123
/* else go through */
1124
}
1125
discharge2anyreg(fs, e);
1126
freeexp(fs, e);
1127
return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
1128
}
1129
1130
1131
/*
1132
** Emit code to go through if 'e' is true, jump otherwise.
1133
*/
1134
void luaK_goiftrue (FuncState *fs, expdesc *e) {
1135
int pc; /* pc of new jump */
1136
luaK_dischargevars(fs, e);
1137
switch (e->k) {
1138
case VJMP: { /* condition? */
1139
negatecondition(fs, e); /* jump when it is false */
1140
pc = e->u.info; /* save jump position */
1141
break;
1142
}
1143
case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1144
pc = NO_JUMP; /* always true; do nothing */
1145
break;
1146
}
1147
default: {
1148
pc = jumponcond(fs, e, 0); /* jump when false */
1149
break;
1150
}
1151
}
1152
luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
1153
luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
1154
e->t = NO_JUMP;
1155
}
1156
1157
1158
/*
1159
** Emit code to go through if 'e' is false, jump otherwise.
1160
*/
1161
void luaK_goiffalse (FuncState *fs, expdesc *e) {
1162
int pc; /* pc of new jump */
1163
luaK_dischargevars(fs, e);
1164
switch (e->k) {
1165
case VJMP: {
1166
pc = e->u.info; /* already jump if true */
1167
break;
1168
}
1169
case VNIL: case VFALSE: {
1170
pc = NO_JUMP; /* always false; do nothing */
1171
break;
1172
}
1173
default: {
1174
pc = jumponcond(fs, e, 1); /* jump if true */
1175
break;
1176
}
1177
}
1178
luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
1179
luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
1180
e->f = NO_JUMP;
1181
}
1182
1183
1184
/*
1185
** Code 'not e', doing constant folding.
1186
*/
1187
static void codenot (FuncState *fs, expdesc *e) {
1188
switch (e->k) {
1189
case VNIL: case VFALSE: {
1190
e->k = VTRUE; /* true == not nil == not false */
1191
break;
1192
}
1193
case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1194
e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
1195
break;
1196
}
1197
case VJMP: {
1198
negatecondition(fs, e);
1199
break;
1200
}
1201
case VRELOC:
1202
case VNONRELOC: {
1203
discharge2anyreg(fs, e);
1204
freeexp(fs, e);
1205
e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
1206
e->k = VRELOC;
1207
break;
1208
}
1209
default: lua_assert(0); /* cannot happen */
1210
}
1211
/* interchange true and false lists */
1212
{ int temp = e->f; e->f = e->t; e->t = temp; }
1213
removevalues(fs, e->f); /* values are useless when negated */
1214
removevalues(fs, e->t);
1215
}
1216
1217
1218
/*
1219
** Check whether expression 'e' is a short literal string
1220
*/
1221
static int isKstr (FuncState *fs, expdesc *e) {
1222
return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
1223
ttisshrstring(&fs->f->k[e->u.info]));
1224
}
1225
1226
/*
1227
** Check whether expression 'e' is a literal integer.
1228
*/
1229
static int isKint (expdesc *e) {
1230
return (e->k == VKINT && !hasjumps(e));
1231
}
1232
1233
1234
/*
1235
** Check whether expression 'e' is a literal integer in
1236
** proper range to fit in register C
1237
*/
1238
static int isCint (expdesc *e) {
1239
return isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
1240
}
1241
1242
1243
/*
1244
** Check whether expression 'e' is a literal integer in
1245
** proper range to fit in register sC
1246
*/
1247
static int isSCint (expdesc *e) {
1248
return isKint(e) && fitsC(e->u.ival);
1249
}
1250
1251
1252
/*
1253
** Check whether expression 'e' is a literal integer or float in
1254
** proper range to fit in a register (sB or sC).
1255
*/
1256
static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
1257
lua_Integer i;
1258
if (e->k == VKINT)
1259
i = e->u.ival;
1260
else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
1261
*isfloat = 1;
1262
else
1263
return 0; /* not a number */
1264
if (!hasjumps(e) && fitsC(i)) {
1265
*pi = int2sC(cast_int(i));
1266
return 1;
1267
}
1268
else
1269
return 0;
1270
}
1271
1272
1273
/*
1274
** Create expression 't[k]'. 't' must have its final result already in a
1275
** register or upvalue. Upvalues can only be indexed by literal strings.
1276
** Keys can be literal strings in the constant table or arbitrary
1277
** values in registers.
1278
*/
1279
void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
1280
if (k->k == VKSTR)
1281
str2K(fs, k);
1282
lua_assert(!hasjumps(t) &&
1283
(t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
1284
if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
1285
luaK_exp2anyreg(fs, t); /* put it in a register */
1286
if (t->k == VUPVAL) {
1287
int temp = t->u.info; /* upvalue index */
1288
lua_assert(isKstr(fs, k));
1289
t->u.ind.t = temp; /* (can't do a direct assignment; values overlap) */
1290
t->u.ind.idx = k->u.info; /* literal short string */
1291
t->k = VINDEXUP;
1292
}
1293
else {
1294
/* register index of the table */
1295
t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
1296
if (isKstr(fs, k)) {
1297
t->u.ind.idx = k->u.info; /* literal short string */
1298
t->k = VINDEXSTR;
1299
}
1300
else if (isCint(k)) {
1301
t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */
1302
t->k = VINDEXI;
1303
}
1304
else {
1305
t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
1306
t->k = VINDEXED;
1307
}
1308
}
1309
}
1310
1311
1312
/*
1313
** Return false if folding can raise an error.
1314
** Bitwise operations need operands convertible to integers; division
1315
** operations cannot have 0 as divisor.
1316
*/
1317
static int validop (int op, TValue *v1, TValue *v2) {
1318
switch (op) {
1319
case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
1320
case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
1321
lua_Integer i;
1322
return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
1323
luaV_tointegerns(v2, &i, LUA_FLOORN2I));
1324
}
1325
case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
1326
return (nvalue(v2) != 0);
1327
default: return 1; /* everything else is valid */
1328
}
1329
}
1330
1331
1332
/*
1333
** Try to "constant-fold" an operation; return 1 iff successful.
1334
** (In this case, 'e1' has the final result.)
1335
*/
1336
static int constfolding (FuncState *fs, int op, expdesc *e1,
1337
const expdesc *e2) {
1338
TValue v1, v2, res;
1339
if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
1340
return 0; /* non-numeric operands or not safe to fold */
1341
luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
1342
if (ttisinteger(&res)) {
1343
e1->k = VKINT;
1344
e1->u.ival = ivalue(&res);
1345
}
1346
else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
1347
lua_Number n = fltvalue(&res);
1348
if (luai_numisnan(n) || n == 0)
1349
return 0;
1350
e1->k = VKFLT;
1351
e1->u.nval = n;
1352
}
1353
return 1;
1354
}
1355
1356
1357
/*
1358
** Convert a BinOpr to an OpCode (ORDER OPR - ORDER OP)
1359
*/
1360
l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
1361
lua_assert(baser <= opr &&
1362
((baser == OPR_ADD && opr <= OPR_SHR) ||
1363
(baser == OPR_LT && opr <= OPR_LE)));
1364
return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
1365
}
1366
1367
1368
/*
1369
** Convert a UnOpr to an OpCode (ORDER OPR - ORDER OP)
1370
*/
1371
l_sinline OpCode unopr2op (UnOpr opr) {
1372
return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
1373
cast_int(OP_UNM));
1374
}
1375
1376
1377
/*
1378
** Convert a BinOpr to a tag method (ORDER OPR - ORDER TM)
1379
*/
1380
l_sinline TMS binopr2TM (BinOpr opr) {
1381
lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
1382
return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
1383
}
1384
1385
1386
/*
1387
** Emit code for unary expressions that "produce values"
1388
** (everything but 'not').
1389
** Expression to produce final result will be encoded in 'e'.
1390
*/
1391
static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1392
int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
1393
freeexp(fs, e);
1394
e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
1395
e->k = VRELOC; /* all those operations are relocatable */
1396
luaK_fixline(fs, line);
1397
}
1398
1399
1400
/*
1401
** Emit code for binary expressions that "produce values"
1402
** (everything but logical operators 'and'/'or' and comparison
1403
** operators).
1404
** Expression to produce final result will be encoded in 'e1'.
1405
*/
1406
static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
1407
OpCode op, int v2, int flip, int line,
1408
OpCode mmop, TMS event) {
1409
int v1 = luaK_exp2anyreg(fs, e1);
1410
int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
1411
freeexps(fs, e1, e2);
1412
e1->u.info = pc;
1413
e1->k = VRELOC; /* all those operations are relocatable */
1414
luaK_fixline(fs, line);
1415
luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
1416
luaK_fixline(fs, line);
1417
}
1418
1419
1420
/*
1421
** Emit code for binary expressions that "produce values" over
1422
** two registers.
1423
*/
1424
static void codebinexpval (FuncState *fs, BinOpr opr,
1425
expdesc *e1, expdesc *e2, int line) {
1426
OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
1427
int v2 = luaK_exp2anyreg(fs, e2); /* make sure 'e2' is in a register */
1428
/* 'e1' must be already in a register or it is a constant */
1429
lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
1430
e1->k == VNONRELOC || e1->k == VRELOC);
1431
lua_assert(OP_ADD <= op && op <= OP_SHR);
1432
finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
1433
}
1434
1435
1436
/*
1437
** Code binary operators with immediate operands.
1438
*/
1439
static void codebini (FuncState *fs, OpCode op,
1440
expdesc *e1, expdesc *e2, int flip, int line,
1441
TMS event) {
1442
int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
1443
lua_assert(e2->k == VKINT);
1444
finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
1445
}
1446
1447
1448
/*
1449
** Code binary operators with K operand.
1450
*/
1451
static void codebinK (FuncState *fs, BinOpr opr,
1452
expdesc *e1, expdesc *e2, int flip, int line) {
1453
TMS event = binopr2TM(opr);
1454
int v2 = e2->u.info; /* K index */
1455
OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
1456
finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
1457
}
1458
1459
1460
/* Try to code a binary operator negating its second operand.
1461
** For the metamethod, 2nd operand must keep its original value.
1462
*/
1463
static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
1464
OpCode op, int line, TMS event) {
1465
if (!isKint(e2))
1466
return 0; /* not an integer constant */
1467
else {
1468
lua_Integer i2 = e2->u.ival;
1469
if (!(fitsC(i2) && fitsC(-i2)))
1470
return 0; /* not in the proper range */
1471
else { /* operating a small integer constant */
1472
int v2 = cast_int(i2);
1473
finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
1474
/* correct metamethod argument */
1475
SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
1476
return 1; /* successfully coded */
1477
}
1478
}
1479
}
1480
1481
1482
static void swapexps (expdesc *e1, expdesc *e2) {
1483
expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
1484
}
1485
1486
1487
/*
1488
** Code binary operators with no constant operand.
1489
*/
1490
static void codebinNoK (FuncState *fs, BinOpr opr,
1491
expdesc *e1, expdesc *e2, int flip, int line) {
1492
if (flip)
1493
swapexps(e1, e2); /* back to original order */
1494
codebinexpval(fs, opr, e1, e2, line); /* use standard operators */
1495
}
1496
1497
1498
/*
1499
** Code arithmetic operators ('+', '-', ...). If second operand is a
1500
** constant in the proper range, use variant opcodes with K operands.
1501
*/
1502
static void codearith (FuncState *fs, BinOpr opr,
1503
expdesc *e1, expdesc *e2, int flip, int line) {
1504
if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) /* K operand? */
1505
codebinK(fs, opr, e1, e2, flip, line);
1506
else /* 'e2' is neither an immediate nor a K operand */
1507
codebinNoK(fs, opr, e1, e2, flip, line);
1508
}
1509
1510
1511
/*
1512
** Code commutative operators ('+', '*'). If first operand is a
1513
** numeric constant, change order of operands to try to use an
1514
** immediate or K operator.
1515
*/
1516
static void codecommutative (FuncState *fs, BinOpr op,
1517
expdesc *e1, expdesc *e2, int line) {
1518
int flip = 0;
1519
if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
1520
swapexps(e1, e2); /* change order */
1521
flip = 1;
1522
}
1523
if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
1524
codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
1525
else
1526
codearith(fs, op, e1, e2, flip, line);
1527
}
1528
1529
1530
/*
1531
** Code bitwise operations; they are all commutative, so the function
1532
** tries to put an integer constant as the 2nd operand (a K operand).
1533
*/
1534
static void codebitwise (FuncState *fs, BinOpr opr,
1535
expdesc *e1, expdesc *e2, int line) {
1536
int flip = 0;
1537
if (e1->k == VKINT) {
1538
swapexps(e1, e2); /* 'e2' will be the constant operand */
1539
flip = 1;
1540
}
1541
if (e2->k == VKINT && luaK_exp2K(fs, e2)) /* K operand? */
1542
codebinK(fs, opr, e1, e2, flip, line);
1543
else /* no constants */
1544
codebinNoK(fs, opr, e1, e2, flip, line);
1545
}
1546
1547
1548
/*
1549
** Emit code for order comparisons. When using an immediate operand,
1550
** 'isfloat' tells whether the original value was a float.
1551
*/
1552
static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1553
int r1, r2;
1554
int im;
1555
int isfloat = 0;
1556
OpCode op;
1557
if (isSCnumber(e2, &im, &isfloat)) {
1558
/* use immediate operand */
1559
r1 = luaK_exp2anyreg(fs, e1);
1560
r2 = im;
1561
op = binopr2op(opr, OPR_LT, OP_LTI);
1562
}
1563
else if (isSCnumber(e1, &im, &isfloat)) {
1564
/* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
1565
r1 = luaK_exp2anyreg(fs, e2);
1566
r2 = im;
1567
op = binopr2op(opr, OPR_LT, OP_GTI);
1568
}
1569
else { /* regular case, compare two registers */
1570
r1 = luaK_exp2anyreg(fs, e1);
1571
r2 = luaK_exp2anyreg(fs, e2);
1572
op = binopr2op(opr, OPR_LT, OP_LT);
1573
}
1574
freeexps(fs, e1, e2);
1575
e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
1576
e1->k = VJMP;
1577
}
1578
1579
1580
/*
1581
** Emit code for equality comparisons ('==', '~=').
1582
** 'e1' was already put as RK by 'luaK_infix'.
1583
*/
1584
static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1585
int r1, r2;
1586
int im;
1587
int isfloat = 0; /* not needed here, but kept for symmetry */
1588
OpCode op;
1589
if (e1->k != VNONRELOC) {
1590
lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
1591
swapexps(e1, e2);
1592
}
1593
r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
1594
if (isSCnumber(e2, &im, &isfloat)) {
1595
op = OP_EQI;
1596
r2 = im; /* immediate operand */
1597
}
1598
else if (exp2RK(fs, e2)) { /* 2nd expression is constant? */
1599
op = OP_EQK;
1600
r2 = e2->u.info; /* constant index */
1601
}
1602
else {
1603
op = OP_EQ; /* will compare two registers */
1604
r2 = luaK_exp2anyreg(fs, e2);
1605
}
1606
freeexps(fs, e1, e2);
1607
e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
1608
e1->k = VJMP;
1609
}
1610
1611
1612
/*
1613
** Apply prefix operation 'op' to expression 'e'.
1614
*/
1615
void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
1616
static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1617
luaK_dischargevars(fs, e);
1618
switch (opr) {
1619
case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
1620
if (constfolding(fs, opr + LUA_OPUNM, e, &ef))
1621
break;
1622
/* else */ /* FALLTHROUGH */
1623
case OPR_LEN:
1624
codeunexpval(fs, unopr2op(opr), e, line);
1625
break;
1626
case OPR_NOT: codenot(fs, e); break;
1627
default: lua_assert(0);
1628
}
1629
}
1630
1631
1632
/*
1633
** Process 1st operand 'v' of binary operation 'op' before reading
1634
** 2nd operand.
1635
*/
1636
void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
1637
luaK_dischargevars(fs, v);
1638
switch (op) {
1639
case OPR_AND: {
1640
luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
1641
break;
1642
}
1643
case OPR_OR: {
1644
luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
1645
break;
1646
}
1647
case OPR_CONCAT: {
1648
luaK_exp2nextreg(fs, v); /* operand must be on the stack */
1649
break;
1650
}
1651
case OPR_ADD: case OPR_SUB:
1652
case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1653
case OPR_MOD: case OPR_POW:
1654
case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1655
case OPR_SHL: case OPR_SHR: {
1656
if (!tonumeral(v, NULL))
1657
luaK_exp2anyreg(fs, v);
1658
/* else keep numeral, which may be folded or used as an immediate
1659
operand */
1660
break;
1661
}
1662
case OPR_EQ: case OPR_NE: {
1663
if (!tonumeral(v, NULL))
1664
exp2RK(fs, v);
1665
/* else keep numeral, which may be an immediate operand */
1666
break;
1667
}
1668
case OPR_LT: case OPR_LE:
1669
case OPR_GT: case OPR_GE: {
1670
int dummy, dummy2;
1671
if (!isSCnumber(v, &dummy, &dummy2))
1672
luaK_exp2anyreg(fs, v);
1673
/* else keep numeral, which may be an immediate operand */
1674
break;
1675
}
1676
default: lua_assert(0);
1677
}
1678
}
1679
1680
/*
1681
** Create code for '(e1 .. e2)'.
1682
** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
1683
** because concatenation is right associative), merge both CONCATs.
1684
*/
1685
static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
1686
Instruction *ie2 = previousinstruction(fs);
1687
if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
1688
int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
1689
lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
1690
freeexp(fs, e2);
1691
SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
1692
SETARG_B(*ie2, n + 1); /* will concatenate one more element */
1693
}
1694
else { /* 'e2' is not a concatenation */
1695
luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
1696
freeexp(fs, e2);
1697
luaK_fixline(fs, line);
1698
}
1699
}
1700
1701
1702
/*
1703
** Finalize code for binary operation, after reading 2nd operand.
1704
*/
1705
void luaK_posfix (FuncState *fs, BinOpr opr,
1706
expdesc *e1, expdesc *e2, int line) {
1707
luaK_dischargevars(fs, e2);
1708
if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
1709
return; /* done by folding */
1710
switch (opr) {
1711
case OPR_AND: {
1712
lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
1713
luaK_concat(fs, &e2->f, e1->f);
1714
*e1 = *e2;
1715
break;
1716
}
1717
case OPR_OR: {
1718
lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
1719
luaK_concat(fs, &e2->t, e1->t);
1720
*e1 = *e2;
1721
break;
1722
}
1723
case OPR_CONCAT: { /* e1 .. e2 */
1724
luaK_exp2nextreg(fs, e2);
1725
codeconcat(fs, e1, e2, line);
1726
break;
1727
}
1728
case OPR_ADD: case OPR_MUL: {
1729
codecommutative(fs, opr, e1, e2, line);
1730
break;
1731
}
1732
case OPR_SUB: {
1733
if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
1734
break; /* coded as (r1 + -I) */
1735
/* ELSE */
1736
} /* FALLTHROUGH */
1737
case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
1738
codearith(fs, opr, e1, e2, 0, line);
1739
break;
1740
}
1741
case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
1742
codebitwise(fs, opr, e1, e2, line);
1743
break;
1744
}
1745
case OPR_SHL: {
1746
if (isSCint(e1)) {
1747
swapexps(e1, e2);
1748
codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
1749
}
1750
else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
1751
/* coded as (r1 >> -I) */;
1752
}
1753
else /* regular case (two registers) */
1754
codebinexpval(fs, opr, e1, e2, line);
1755
break;
1756
}
1757
case OPR_SHR: {
1758
if (isSCint(e2))
1759
codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
1760
else /* regular case (two registers) */
1761
codebinexpval(fs, opr, e1, e2, line);
1762
break;
1763
}
1764
case OPR_EQ: case OPR_NE: {
1765
codeeq(fs, opr, e1, e2);
1766
break;
1767
}
1768
case OPR_GT: case OPR_GE: {
1769
/* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
1770
swapexps(e1, e2);
1771
opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
1772
} /* FALLTHROUGH */
1773
case OPR_LT: case OPR_LE: {
1774
codeorder(fs, opr, e1, e2);
1775
break;
1776
}
1777
default: lua_assert(0);
1778
}
1779
}
1780
1781
1782
/*
1783
** Change line information associated with current position, by removing
1784
** previous info and adding it again with new line.
1785
*/
1786
void luaK_fixline (FuncState *fs, int line) {
1787
removelastlineinfo(fs);
1788
savelineinfo(fs, fs->f, line);
1789
}
1790
1791
1792
void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
1793
Instruction *inst = &fs->f->code[pc];
1794
int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */
1795
int extra = asize / (MAXARG_C + 1); /* higher bits of array size */
1796
int rc = asize % (MAXARG_C + 1); /* lower bits of array size */
1797
int k = (extra > 0); /* true iff needs extra argument */
1798
*inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
1799
*(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
1800
}
1801
1802
1803
/*
1804
** Emit a SETLIST instruction.
1805
** 'base' is register that keeps table;
1806
** 'nelems' is #table plus those to be stored now;
1807
** 'tostore' is number of values (in registers 'base + 1',...) to add to
1808
** table (or LUA_MULTRET to add up to stack top).
1809
*/
1810
void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1811
lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
1812
if (tostore == LUA_MULTRET)
1813
tostore = 0;
1814
if (nelems <= MAXARG_C)
1815
luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
1816
else {
1817
int extra = nelems / (MAXARG_C + 1);
1818
nelems %= (MAXARG_C + 1);
1819
luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
1820
codeextraarg(fs, extra);
1821
}
1822
fs->freereg = base + 1; /* free registers with list values */
1823
}
1824
1825
1826
/*
1827
** return the final target of a jump (skipping jumps to jumps)
1828
*/
1829
static int finaltarget (Instruction *code, int i) {
1830
int count;
1831
for (count = 0; count < 100; count++) { /* avoid infinite loops */
1832
Instruction pc = code[i];
1833
if (GET_OPCODE(pc) != OP_JMP)
1834
break;
1835
else
1836
i += GETARG_sJ(pc) + 1;
1837
}
1838
return i;
1839
}
1840
1841
1842
/*
1843
** Do a final pass over the code of a function, doing small peephole
1844
** optimizations and adjustments.
1845
*/
1846
void luaK_finish (FuncState *fs) {
1847
int i;
1848
Proto *p = fs->f;
1849
for (i = 0; i < fs->pc; i++) {
1850
Instruction *pc = &p->code[i];
1851
lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
1852
switch (GET_OPCODE(*pc)) {
1853
case OP_RETURN0: case OP_RETURN1: {
1854
if (!(fs->needclose || p->is_vararg))
1855
break; /* no extra work */
1856
/* else use OP_RETURN to do the extra work */
1857
SET_OPCODE(*pc, OP_RETURN);
1858
} /* FALLTHROUGH */
1859
case OP_RETURN: case OP_TAILCALL: {
1860
if (fs->needclose)
1861
SETARG_k(*pc, 1); /* signal that it needs to close */
1862
if (p->is_vararg)
1863
SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
1864
break;
1865
}
1866
case OP_JMP: {
1867
int target = finaltarget(p->code, i);
1868
fixjump(fs, i, target);
1869
break;
1870
}
1871
default: break;
1872
}
1873
}
1874
}
1875
1876