Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/pkg
Path: blob/main/external/lua/src/lmathlib.c
2065 views
1
/*
2
** $Id: lmathlib.c $
3
** Standard mathematical library
4
** See Copyright Notice in lua.h
5
*/
6
7
#define lmathlib_c
8
#define LUA_LIB
9
10
#include "lprefix.h"
11
12
13
#include <float.h>
14
#include <limits.h>
15
#include <math.h>
16
#include <stdlib.h>
17
#include <time.h>
18
19
#include "lua.h"
20
21
#include "lauxlib.h"
22
#include "lualib.h"
23
24
25
#undef PI
26
#define PI (l_mathop(3.141592653589793238462643383279502884))
27
28
29
static int math_abs (lua_State *L) {
30
if (lua_isinteger(L, 1)) {
31
lua_Integer n = lua_tointeger(L, 1);
32
if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n);
33
lua_pushinteger(L, n);
34
}
35
else
36
lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1)));
37
return 1;
38
}
39
40
static int math_sin (lua_State *L) {
41
lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1)));
42
return 1;
43
}
44
45
static int math_cos (lua_State *L) {
46
lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1)));
47
return 1;
48
}
49
50
static int math_tan (lua_State *L) {
51
lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1)));
52
return 1;
53
}
54
55
static int math_asin (lua_State *L) {
56
lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1)));
57
return 1;
58
}
59
60
static int math_acos (lua_State *L) {
61
lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1)));
62
return 1;
63
}
64
65
static int math_atan (lua_State *L) {
66
lua_Number y = luaL_checknumber(L, 1);
67
lua_Number x = luaL_optnumber(L, 2, 1);
68
lua_pushnumber(L, l_mathop(atan2)(y, x));
69
return 1;
70
}
71
72
73
static int math_toint (lua_State *L) {
74
int valid;
75
lua_Integer n = lua_tointegerx(L, 1, &valid);
76
if (l_likely(valid))
77
lua_pushinteger(L, n);
78
else {
79
luaL_checkany(L, 1);
80
luaL_pushfail(L); /* value is not convertible to integer */
81
}
82
return 1;
83
}
84
85
86
static void pushnumint (lua_State *L, lua_Number d) {
87
lua_Integer n;
88
if (lua_numbertointeger(d, &n)) /* does 'd' fit in an integer? */
89
lua_pushinteger(L, n); /* result is integer */
90
else
91
lua_pushnumber(L, d); /* result is float */
92
}
93
94
95
static int math_floor (lua_State *L) {
96
if (lua_isinteger(L, 1))
97
lua_settop(L, 1); /* integer is its own floor */
98
else {
99
lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1));
100
pushnumint(L, d);
101
}
102
return 1;
103
}
104
105
106
static int math_ceil (lua_State *L) {
107
if (lua_isinteger(L, 1))
108
lua_settop(L, 1); /* integer is its own ceil */
109
else {
110
lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1));
111
pushnumint(L, d);
112
}
113
return 1;
114
}
115
116
117
static int math_fmod (lua_State *L) {
118
if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) {
119
lua_Integer d = lua_tointeger(L, 2);
120
if ((lua_Unsigned)d + 1u <= 1u) { /* special cases: -1 or 0 */
121
luaL_argcheck(L, d != 0, 2, "zero");
122
lua_pushinteger(L, 0); /* avoid overflow with 0x80000... / -1 */
123
}
124
else
125
lua_pushinteger(L, lua_tointeger(L, 1) % d);
126
}
127
else
128
lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1),
129
luaL_checknumber(L, 2)));
130
return 1;
131
}
132
133
134
/*
135
** next function does not use 'modf', avoiding problems with 'double*'
136
** (which is not compatible with 'float*') when lua_Number is not
137
** 'double'.
138
*/
139
static int math_modf (lua_State *L) {
140
if (lua_isinteger(L ,1)) {
141
lua_settop(L, 1); /* number is its own integer part */
142
lua_pushnumber(L, 0); /* no fractional part */
143
}
144
else {
145
lua_Number n = luaL_checknumber(L, 1);
146
/* integer part (rounds toward zero) */
147
lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n);
148
pushnumint(L, ip);
149
/* fractional part (test needed for inf/-inf) */
150
lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip));
151
}
152
return 2;
153
}
154
155
156
static int math_sqrt (lua_State *L) {
157
lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1)));
158
return 1;
159
}
160
161
162
static int math_ult (lua_State *L) {
163
lua_Integer a = luaL_checkinteger(L, 1);
164
lua_Integer b = luaL_checkinteger(L, 2);
165
lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b);
166
return 1;
167
}
168
169
static int math_log (lua_State *L) {
170
lua_Number x = luaL_checknumber(L, 1);
171
lua_Number res;
172
if (lua_isnoneornil(L, 2))
173
res = l_mathop(log)(x);
174
else {
175
lua_Number base = luaL_checknumber(L, 2);
176
#if !defined(LUA_USE_C89)
177
if (base == l_mathop(2.0))
178
res = l_mathop(log2)(x);
179
else
180
#endif
181
if (base == l_mathop(10.0))
182
res = l_mathop(log10)(x);
183
else
184
res = l_mathop(log)(x)/l_mathop(log)(base);
185
}
186
lua_pushnumber(L, res);
187
return 1;
188
}
189
190
static int math_exp (lua_State *L) {
191
lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1)));
192
return 1;
193
}
194
195
static int math_deg (lua_State *L) {
196
lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI));
197
return 1;
198
}
199
200
static int math_rad (lua_State *L) {
201
lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0)));
202
return 1;
203
}
204
205
206
static int math_min (lua_State *L) {
207
int n = lua_gettop(L); /* number of arguments */
208
int imin = 1; /* index of current minimum value */
209
int i;
210
luaL_argcheck(L, n >= 1, 1, "value expected");
211
for (i = 2; i <= n; i++) {
212
if (lua_compare(L, i, imin, LUA_OPLT))
213
imin = i;
214
}
215
lua_pushvalue(L, imin);
216
return 1;
217
}
218
219
220
static int math_max (lua_State *L) {
221
int n = lua_gettop(L); /* number of arguments */
222
int imax = 1; /* index of current maximum value */
223
int i;
224
luaL_argcheck(L, n >= 1, 1, "value expected");
225
for (i = 2; i <= n; i++) {
226
if (lua_compare(L, imax, i, LUA_OPLT))
227
imax = i;
228
}
229
lua_pushvalue(L, imax);
230
return 1;
231
}
232
233
234
static int math_type (lua_State *L) {
235
if (lua_type(L, 1) == LUA_TNUMBER)
236
lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float");
237
else {
238
luaL_checkany(L, 1);
239
luaL_pushfail(L);
240
}
241
return 1;
242
}
243
244
245
246
/*
247
** {==================================================================
248
** Pseudo-Random Number Generator based on 'xoshiro256**'.
249
** ===================================================================
250
*/
251
252
/*
253
** This code uses lots of shifts. ANSI C does not allow shifts greater
254
** than or equal to the width of the type being shifted, so some shifts
255
** are written in convoluted ways to match that restriction. For
256
** preprocessor tests, it assumes a width of 32 bits, so the maximum
257
** shift there is 31 bits.
258
*/
259
260
261
/* number of binary digits in the mantissa of a float */
262
#define FIGS l_floatatt(MANT_DIG)
263
264
#if FIGS > 64
265
/* there are only 64 random bits; use them all */
266
#undef FIGS
267
#define FIGS 64
268
#endif
269
270
271
/*
272
** LUA_RAND32 forces the use of 32-bit integers in the implementation
273
** of the PRN generator (mainly for testing).
274
*/
275
#if !defined(LUA_RAND32) && !defined(Rand64)
276
277
/* try to find an integer type with at least 64 bits */
278
279
#if ((ULONG_MAX >> 31) >> 31) >= 3
280
281
/* 'long' has at least 64 bits */
282
#define Rand64 unsigned long
283
#define SRand64 long
284
285
#elif !defined(LUA_USE_C89) && defined(LLONG_MAX)
286
287
/* there is a 'long long' type (which must have at least 64 bits) */
288
#define Rand64 unsigned long long
289
#define SRand64 long long
290
291
#elif ((LUA_MAXUNSIGNED >> 31) >> 31) >= 3
292
293
/* 'lua_Unsigned' has at least 64 bits */
294
#define Rand64 lua_Unsigned
295
#define SRand64 lua_Integer
296
297
#endif
298
299
#endif
300
301
302
#if defined(Rand64) /* { */
303
304
/*
305
** Standard implementation, using 64-bit integers.
306
** If 'Rand64' has more than 64 bits, the extra bits do not interfere
307
** with the 64 initial bits, except in a right shift. Moreover, the
308
** final result has to discard the extra bits.
309
*/
310
311
/* avoid using extra bits when needed */
312
#define trim64(x) ((x) & 0xffffffffffffffffu)
313
314
315
/* rotate left 'x' by 'n' bits */
316
static Rand64 rotl (Rand64 x, int n) {
317
return (x << n) | (trim64(x) >> (64 - n));
318
}
319
320
static Rand64 nextrand (Rand64 *state) {
321
Rand64 state0 = state[0];
322
Rand64 state1 = state[1];
323
Rand64 state2 = state[2] ^ state0;
324
Rand64 state3 = state[3] ^ state1;
325
Rand64 res = rotl(state1 * 5, 7) * 9;
326
state[0] = state0 ^ state3;
327
state[1] = state1 ^ state2;
328
state[2] = state2 ^ (state1 << 17);
329
state[3] = rotl(state3, 45);
330
return res;
331
}
332
333
334
/*
335
** Convert bits from a random integer into a float in the
336
** interval [0,1), getting the higher FIG bits from the
337
** random unsigned integer and converting that to a float.
338
** Some old Microsoft compilers cannot cast an unsigned long
339
** to a floating-point number, so we use a signed long as an
340
** intermediary. When lua_Number is float or double, the shift ensures
341
** that 'sx' is non negative; in that case, a good compiler will remove
342
** the correction.
343
*/
344
345
/* must throw out the extra (64 - FIGS) bits */
346
#define shift64_FIG (64 - FIGS)
347
348
/* 2^(-FIGS) == 2^-1 / 2^(FIGS-1) */
349
#define scaleFIG (l_mathop(0.5) / ((Rand64)1 << (FIGS - 1)))
350
351
static lua_Number I2d (Rand64 x) {
352
SRand64 sx = (SRand64)(trim64(x) >> shift64_FIG);
353
lua_Number res = (lua_Number)(sx) * scaleFIG;
354
if (sx < 0)
355
res += l_mathop(1.0); /* correct the two's complement if negative */
356
lua_assert(0 <= res && res < 1);
357
return res;
358
}
359
360
/* convert a 'Rand64' to a 'lua_Unsigned' */
361
#define I2UInt(x) ((lua_Unsigned)trim64(x))
362
363
/* convert a 'lua_Unsigned' to a 'Rand64' */
364
#define Int2I(x) ((Rand64)(x))
365
366
367
#else /* no 'Rand64' }{ */
368
369
/* get an integer with at least 32 bits */
370
#if LUAI_IS32INT
371
typedef unsigned int lu_int32;
372
#else
373
typedef unsigned long lu_int32;
374
#endif
375
376
377
/*
378
** Use two 32-bit integers to represent a 64-bit quantity.
379
*/
380
typedef struct Rand64 {
381
lu_int32 h; /* higher half */
382
lu_int32 l; /* lower half */
383
} Rand64;
384
385
386
/*
387
** If 'lu_int32' has more than 32 bits, the extra bits do not interfere
388
** with the 32 initial bits, except in a right shift and comparisons.
389
** Moreover, the final result has to discard the extra bits.
390
*/
391
392
/* avoid using extra bits when needed */
393
#define trim32(x) ((x) & 0xffffffffu)
394
395
396
/*
397
** basic operations on 'Rand64' values
398
*/
399
400
/* build a new Rand64 value */
401
static Rand64 packI (lu_int32 h, lu_int32 l) {
402
Rand64 result;
403
result.h = h;
404
result.l = l;
405
return result;
406
}
407
408
/* return i << n */
409
static Rand64 Ishl (Rand64 i, int n) {
410
lua_assert(n > 0 && n < 32);
411
return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n);
412
}
413
414
/* i1 ^= i2 */
415
static void Ixor (Rand64 *i1, Rand64 i2) {
416
i1->h ^= i2.h;
417
i1->l ^= i2.l;
418
}
419
420
/* return i1 + i2 */
421
static Rand64 Iadd (Rand64 i1, Rand64 i2) {
422
Rand64 result = packI(i1.h + i2.h, i1.l + i2.l);
423
if (trim32(result.l) < trim32(i1.l)) /* carry? */
424
result.h++;
425
return result;
426
}
427
428
/* return i * 5 */
429
static Rand64 times5 (Rand64 i) {
430
return Iadd(Ishl(i, 2), i); /* i * 5 == (i << 2) + i */
431
}
432
433
/* return i * 9 */
434
static Rand64 times9 (Rand64 i) {
435
return Iadd(Ishl(i, 3), i); /* i * 9 == (i << 3) + i */
436
}
437
438
/* return 'i' rotated left 'n' bits */
439
static Rand64 rotl (Rand64 i, int n) {
440
lua_assert(n > 0 && n < 32);
441
return packI((i.h << n) | (trim32(i.l) >> (32 - n)),
442
(trim32(i.h) >> (32 - n)) | (i.l << n));
443
}
444
445
/* for offsets larger than 32, rotate right by 64 - offset */
446
static Rand64 rotl1 (Rand64 i, int n) {
447
lua_assert(n > 32 && n < 64);
448
n = 64 - n;
449
return packI((trim32(i.h) >> n) | (i.l << (32 - n)),
450
(i.h << (32 - n)) | (trim32(i.l) >> n));
451
}
452
453
/*
454
** implementation of 'xoshiro256**' algorithm on 'Rand64' values
455
*/
456
static Rand64 nextrand (Rand64 *state) {
457
Rand64 res = times9(rotl(times5(state[1]), 7));
458
Rand64 t = Ishl(state[1], 17);
459
Ixor(&state[2], state[0]);
460
Ixor(&state[3], state[1]);
461
Ixor(&state[1], state[2]);
462
Ixor(&state[0], state[3]);
463
Ixor(&state[2], t);
464
state[3] = rotl1(state[3], 45);
465
return res;
466
}
467
468
469
/*
470
** Converts a 'Rand64' into a float.
471
*/
472
473
/* an unsigned 1 with proper type */
474
#define UONE ((lu_int32)1)
475
476
477
#if FIGS <= 32
478
479
/* 2^(-FIGS) */
480
#define scaleFIG (l_mathop(0.5) / (UONE << (FIGS - 1)))
481
482
/*
483
** get up to 32 bits from higher half, shifting right to
484
** throw out the extra bits.
485
*/
486
static lua_Number I2d (Rand64 x) {
487
lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS));
488
return h * scaleFIG;
489
}
490
491
#else /* 32 < FIGS <= 64 */
492
493
/* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */
494
#define scaleFIG \
495
(l_mathop(1.0) / (UONE << 30) / l_mathop(8.0) / (UONE << (FIGS - 33)))
496
497
/*
498
** use FIGS - 32 bits from lower half, throwing out the other
499
** (32 - (FIGS - 32)) = (64 - FIGS) bits
500
*/
501
#define shiftLOW (64 - FIGS)
502
503
/*
504
** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32)
505
*/
506
#define shiftHI ((lua_Number)(UONE << (FIGS - 33)) * l_mathop(2.0))
507
508
509
static lua_Number I2d (Rand64 x) {
510
lua_Number h = (lua_Number)trim32(x.h) * shiftHI;
511
lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW);
512
return (h + l) * scaleFIG;
513
}
514
515
#endif
516
517
518
/* convert a 'Rand64' to a 'lua_Unsigned' */
519
static lua_Unsigned I2UInt (Rand64 x) {
520
return (((lua_Unsigned)trim32(x.h) << 31) << 1) | (lua_Unsigned)trim32(x.l);
521
}
522
523
/* convert a 'lua_Unsigned' to a 'Rand64' */
524
static Rand64 Int2I (lua_Unsigned n) {
525
return packI((lu_int32)((n >> 31) >> 1), (lu_int32)n);
526
}
527
528
#endif /* } */
529
530
531
/*
532
** A state uses four 'Rand64' values.
533
*/
534
typedef struct {
535
Rand64 s[4];
536
} RanState;
537
538
539
/*
540
** Project the random integer 'ran' into the interval [0, n].
541
** Because 'ran' has 2^B possible values, the projection can only be
542
** uniform when the size of the interval is a power of 2 (exact
543
** division). Otherwise, to get a uniform projection into [0, n], we
544
** first compute 'lim', the smallest Mersenne number not smaller than
545
** 'n'. We then project 'ran' into the interval [0, lim]. If the result
546
** is inside [0, n], we are done. Otherwise, we try with another 'ran',
547
** until we have a result inside the interval.
548
*/
549
static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n,
550
RanState *state) {
551
if ((n & (n + 1)) == 0) /* is 'n + 1' a power of 2? */
552
return ran & n; /* no bias */
553
else {
554
lua_Unsigned lim = n;
555
/* compute the smallest (2^b - 1) not smaller than 'n' */
556
lim |= (lim >> 1);
557
lim |= (lim >> 2);
558
lim |= (lim >> 4);
559
lim |= (lim >> 8);
560
lim |= (lim >> 16);
561
#if (LUA_MAXUNSIGNED >> 31) >= 3
562
lim |= (lim >> 32); /* integer type has more than 32 bits */
563
#endif
564
lua_assert((lim & (lim + 1)) == 0 /* 'lim + 1' is a power of 2, */
565
&& lim >= n /* not smaller than 'n', */
566
&& (lim >> 1) < n); /* and it is the smallest one */
567
while ((ran &= lim) > n) /* project 'ran' into [0..lim] */
568
ran = I2UInt(nextrand(state->s)); /* not inside [0..n]? try again */
569
return ran;
570
}
571
}
572
573
574
static int math_random (lua_State *L) {
575
lua_Integer low, up;
576
lua_Unsigned p;
577
RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
578
Rand64 rv = nextrand(state->s); /* next pseudo-random value */
579
switch (lua_gettop(L)) { /* check number of arguments */
580
case 0: { /* no arguments */
581
lua_pushnumber(L, I2d(rv)); /* float between 0 and 1 */
582
return 1;
583
}
584
case 1: { /* only upper limit */
585
low = 1;
586
up = luaL_checkinteger(L, 1);
587
if (up == 0) { /* single 0 as argument? */
588
lua_pushinteger(L, I2UInt(rv)); /* full random integer */
589
return 1;
590
}
591
break;
592
}
593
case 2: { /* lower and upper limits */
594
low = luaL_checkinteger(L, 1);
595
up = luaL_checkinteger(L, 2);
596
break;
597
}
598
default: return luaL_error(L, "wrong number of arguments");
599
}
600
/* random integer in the interval [low, up] */
601
luaL_argcheck(L, low <= up, 1, "interval is empty");
602
/* project random integer into the interval [0, up - low] */
603
p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state);
604
lua_pushinteger(L, p + (lua_Unsigned)low);
605
return 1;
606
}
607
608
609
static void setseed (lua_State *L, Rand64 *state,
610
lua_Unsigned n1, lua_Unsigned n2) {
611
int i;
612
state[0] = Int2I(n1);
613
state[1] = Int2I(0xff); /* avoid a zero state */
614
state[2] = Int2I(n2);
615
state[3] = Int2I(0);
616
for (i = 0; i < 16; i++)
617
nextrand(state); /* discard initial values to "spread" seed */
618
lua_pushinteger(L, n1);
619
lua_pushinteger(L, n2);
620
}
621
622
623
/*
624
** Set a "random" seed. To get some randomness, use the current time
625
** and the address of 'L' (in case the machine does address space layout
626
** randomization).
627
*/
628
static void randseed (lua_State *L, RanState *state) {
629
lua_Unsigned seed1 = (lua_Unsigned)time(NULL);
630
lua_Unsigned seed2 = (lua_Unsigned)(size_t)L;
631
setseed(L, state->s, seed1, seed2);
632
}
633
634
635
static int math_randomseed (lua_State *L) {
636
RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
637
if (lua_isnone(L, 1)) {
638
randseed(L, state);
639
}
640
else {
641
lua_Integer n1 = luaL_checkinteger(L, 1);
642
lua_Integer n2 = luaL_optinteger(L, 2, 0);
643
setseed(L, state->s, n1, n2);
644
}
645
return 2; /* return seeds */
646
}
647
648
649
static const luaL_Reg randfuncs[] = {
650
{"random", math_random},
651
{"randomseed", math_randomseed},
652
{NULL, NULL}
653
};
654
655
656
/*
657
** Register the random functions and initialize their state.
658
*/
659
static void setrandfunc (lua_State *L) {
660
RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0);
661
randseed(L, state); /* initialize with a "random" seed */
662
lua_pop(L, 2); /* remove pushed seeds */
663
luaL_setfuncs(L, randfuncs, 1);
664
}
665
666
/* }================================================================== */
667
668
669
/*
670
** {==================================================================
671
** Deprecated functions (for compatibility only)
672
** ===================================================================
673
*/
674
#if defined(LUA_COMPAT_MATHLIB)
675
676
static int math_cosh (lua_State *L) {
677
lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1)));
678
return 1;
679
}
680
681
static int math_sinh (lua_State *L) {
682
lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1)));
683
return 1;
684
}
685
686
static int math_tanh (lua_State *L) {
687
lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1)));
688
return 1;
689
}
690
691
static int math_pow (lua_State *L) {
692
lua_Number x = luaL_checknumber(L, 1);
693
lua_Number y = luaL_checknumber(L, 2);
694
lua_pushnumber(L, l_mathop(pow)(x, y));
695
return 1;
696
}
697
698
static int math_frexp (lua_State *L) {
699
int e;
700
lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e));
701
lua_pushinteger(L, e);
702
return 2;
703
}
704
705
static int math_ldexp (lua_State *L) {
706
lua_Number x = luaL_checknumber(L, 1);
707
int ep = (int)luaL_checkinteger(L, 2);
708
lua_pushnumber(L, l_mathop(ldexp)(x, ep));
709
return 1;
710
}
711
712
static int math_log10 (lua_State *L) {
713
lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1)));
714
return 1;
715
}
716
717
#endif
718
/* }================================================================== */
719
720
721
722
static const luaL_Reg mathlib[] = {
723
{"abs", math_abs},
724
{"acos", math_acos},
725
{"asin", math_asin},
726
{"atan", math_atan},
727
{"ceil", math_ceil},
728
{"cos", math_cos},
729
{"deg", math_deg},
730
{"exp", math_exp},
731
{"tointeger", math_toint},
732
{"floor", math_floor},
733
{"fmod", math_fmod},
734
{"ult", math_ult},
735
{"log", math_log},
736
{"max", math_max},
737
{"min", math_min},
738
{"modf", math_modf},
739
{"rad", math_rad},
740
{"sin", math_sin},
741
{"sqrt", math_sqrt},
742
{"tan", math_tan},
743
{"type", math_type},
744
#if defined(LUA_COMPAT_MATHLIB)
745
{"atan2", math_atan},
746
{"cosh", math_cosh},
747
{"sinh", math_sinh},
748
{"tanh", math_tanh},
749
{"pow", math_pow},
750
{"frexp", math_frexp},
751
{"ldexp", math_ldexp},
752
{"log10", math_log10},
753
#endif
754
/* placeholders */
755
{"random", NULL},
756
{"randomseed", NULL},
757
{"pi", NULL},
758
{"huge", NULL},
759
{"maxinteger", NULL},
760
{"mininteger", NULL},
761
{NULL, NULL}
762
};
763
764
765
/*
766
** Open math library
767
*/
768
LUAMOD_API int luaopen_math (lua_State *L) {
769
luaL_newlib(L, mathlib);
770
lua_pushnumber(L, PI);
771
lua_setfield(L, -2, "pi");
772
lua_pushnumber(L, (lua_Number)HUGE_VAL);
773
lua_setfield(L, -2, "huge");
774
lua_pushinteger(L, LUA_MAXINTEGER);
775
lua_setfield(L, -2, "maxinteger");
776
lua_pushinteger(L, LUA_MININTEGER);
777
lua_setfield(L, -2, "mininteger");
778
setrandfunc(L);
779
return 1;
780
}
781
782
783