Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
gmcninch-tufts
GitHub Repository: gmcninch-tufts/2024-Sp-Math190
Path: blob/main/course-assignments/PS04--ECC.md
905 views
---
title: | ProblemSet 4 -- Finite fields and codes author: George McNinch date: due 2024-03-01
---

\newcommand{\F}{\mathbb{F}} \newcommand{\trivial}{\mathbf{1}}

\newcommand{\GL}{\operatorname{GL}}

\newcommand{\PP}{\mathbb{P}}

  1. Find the irreducible factors of the polynomial T91T^9 - 1 in ParseError: KaTeX parse error: Undefined control sequence: \F at position 1: \̲F̲_7[T].

    (You should include proofs that the factors you describe are irreducible).

  2. Let 0<k,mN0 < k,m \in \mathbb{N}, put n=mkn =mk, and consider the subspace ParseError: KaTeX parse error: Undefined control sequence: \F at position 11: C \subset \̲F̲_q^n defined by ParseError: KaTeX parse error: Undefined control sequence: \F at position 35: …v ) \mid v \in \̲F̲_q^k\} \subset … Find the minimal distance dd of this code.

    For example, if n=6n = 6, k=3k=3 and m=2m = 2 then ParseError: KaTeX parse error: Undefined control sequence: \F at position 46: …) \mid a_i \in \̲F̲_q\} \subset \F…

    (Corrected)

  3. By an [n,k,d]q[n,k,d]_q-system we mean a pair (V,P)(V,\mathcal{P}), where VV is a finite dimensional vector space over ParseError: KaTeX parse error: Undefined control sequence: \F at position 1: \̲F̲_q and P\mathcal{P} is an ordered finite family P=(P1,P2,,Pn)\mathcal{P} = (P_1,P_2,\cdots,P_n) of points in VV (in general, points of P\mathcal{P} need not be distinct -- you should view P\mathcal{P} as a list of points which may contain repetitions) such that P\mathcal{P} spans VV as a vector space. Evidently PdimV|\mathcal{P}| \ge \dim V.

    The parameters [n,k,d][n,k,d] are defined by n=P,k=dimV,d=nmaxHPH.n = |\mathcal{P}|, \quad k = \dim V, \quad d = n - \max_H |\mathcal{P} \cap H|. where the maximum defining dd is taken over all linear hyperplanes HVH \subset V and where points are counted with their multiplicity -- i.e. PH={iPiH}|\mathcal{P} \cap H| = |\{i \mid P_i \in H \}|.

    Gjven a [n,k,d]q[n,k,d]_q-system (V,P)(V,\mathcal{P}), let VV^* denote the dual space to VV and consider the linear mapping ParseError: KaTeX parse error: Undefined control sequence: \F at position 14: \Phi:V^* \to \̲F̲_q^n defined by Φ(ψ)=(ψ(P1),,ψ(Pn)).\Phi(\psi) = (\psi(P_1),\cdots,\psi(P_n)).

    a. Show that Φ\Phi is injective.

    b. Write C=Φ(V)C = \Phi(V^*) for the image of Φ\Phi, so that CC is an [n,k]q[n,k]_q-code. Show that the minimal distance of the code CC is given by dd.

    c. Conversely, let ParseError: KaTeX parse error: Undefined control sequence: \F at position 11: C \subset \̲F̲_q^n be an [n,k,d]q[n,k,d]_q-code, and put V=CV = C^*. Let ParseError: KaTeX parse error: Undefined control sequence: \F at position 21: …cdots,e^n \in (\̲F̲_q^n)^* be the dual basis to the standard basis. The restriction of eie^i to the subspace CC determines an element PiP_i of C=VC^* = V. Write P=(P1,P2,,Pn)\mathcal{P} = (P_1,P_2,\cdots,P_n) for the resulting list of vectors in VV..

    Prove that the minimum distance dd of the code CC satisfies d=nmaxHPH.d = n - \max_H | \mathcal{P} \cap H |.

  4. Let CC be the linear code over ParseError: KaTeX parse error: Undefined control sequence: \F at position 1: \̲F̲_5 generated by the matrix G=(100112010121001211).G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 & 1 \end{pmatrix}.

    a. Find a check matrix HH for CC.

    b. Find the minimum distance of CC.

    c. Decode the received vectors (0,2,3,4,3,2)(0,2,3,4,3,2) and (0,1,2,0,4,0)(0,1,2,0,4,0) using syndrome decoding.