Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
gmcninch-tufts
GitHub Repository: gmcninch-tufts/2024-Sp-Math190
Path: blob/main/course-assignments/PS05--ECC.md
905 views
---
title: | ProblemSet 5 -- Solutions of equations and cyclic codes author: George McNinch date: due 2024-03-29
---

\newcommand{\F}{\mathbb{F}} \newcommand{\trivial}{\mathbf{1}}

\newcommand{\GL}{\operatorname{GL}}

\newcommand{\PP}{\mathbb{P}}

\newcommand{\tr}{\operatorname{tr}}

  1. Let qq be a power of a prime p>3p > 3 and let ParseError: KaTeX parse error: Undefined control sequence: \F at position 5: k = \̲F̲_q.

    For a homogeneous polynomial Fk[X,Y,Z,W]F \in k[X,Y,Z,W], let us write ParseError: KaTeX parse error: Undefined control sequence: \PP at position 29: … (x:y:z:w) \in \̲P̲P̲^3_k \mid F(x,y… for the set of solutions of the equation F=0F=0 in ParseError: KaTeX parse error: Undefined control sequence: \PP at position 1: \̲P̲P̲^3_k.

    For ak×a \in k^\times, consider the polynomial Fa=XY+Z2aW2k[X,Y,Z,W].F_a = XY + Z^2 - aW^2 \in k[X,Y,Z,W].

    a. If 4q14 \mid q -1 show that V(Fa)=V(X2+Y2+Z2aW2)|V(F_a)| = |V(X^2 + Y^2 + Z^2 - aW^2)|

    Hint: First show that X2+Y2+Z2aW2X^2 + Y^2 + Z^2 - aW^2 is obtained from FaF_a by a linear change of variables.

    b. If a=1a = 1, show that V(F1)=q2+2q+1|V(F_1)| = q^2 + 2q + 1.

    Hint: Making a linear change of variables, first show that V(F1)=V(G)|V(F_1)| = |V(G)| where G=XY+ZWG = XY + ZW.

    To count the points (x:y:z:w)(x:y:z:w) in V(G)V(G), first count the points with xy=0xy = 0 (and hence also zw=0zw = 0), and then the points with xy0xy \ne 0.

    Let S={a2ak}S = \{ a^2 \mid a \in k\}.

    c. Show that S=q+12|S| = \dfrac{q+1}{2}. Conclude that there are qq+12=q12q - \dfrac{q+1}{2} = \dfrac{q-1}{2} non-squares in kk.

    d. If aSa \in S, show that V(Fa)=V(F1)=q2+2q+1|V(F_a)| = |V(F_1)| = q^2 + 2q + 1.

    e. If aka \in k, a∉Sa \not \in S, show for any αk×\alpha \in k^\times that there are exactly q+1q+1 pairs (c,d)k×k(c,d) \in k \times k with c2ad2=αc^2 - ad^2 = \alpha.

    Hint: We may identify ParseError: KaTeX parse error: Undefined control sequence: \F at position 8: \ell = \̲F̲_{q^2} = \F_…. Under this identification, the norm homomorphism N=N/k:×k×N=N_{\ell/k}: \ell^\times \to k^\times is given by the formula N(c+da)=(c+da)(cda)=c2ad2.N(c + d\sqrt{a}) = (c+d\sqrt{a})(c-d\sqrt{a}) = c^2 - ad^2. On the other hand, by Galois Theory, we have N(x)=xxq=x1+qN(x) = x \cdot x^q = x^{1+q} for any xx \in \ell. Thus N(×)=k×N(\ell^\times) = k^\times and kerN=q+1|\ker N| = q+1.

    f. If aka \in k, a∉Sa \not \in S show that V(Fa)=q2+1|V(F_a)| = q^2 + 1

    Hint: Notice that the equation Z2aW2=0Z^2 - aW^2 = 0 has no solutions ParseError: KaTeX parse error: Undefined control sequence: \PP at position 11: (z:w) \in \̲P̲P̲^1_k, and use (e) to help count.

  2. Let ParseError: KaTeX parse error: Undefined control sequence: \F at position 20: …T^{11} - 1 \in \̲F̲_4[T].

    a. Show that T111T^{11} -1 has a root in ParseError: KaTeX parse error: Undefined control sequence: \F at position 1: \̲F̲_{4^5}.

    b. If αF45\alpha \in F_{4^5} is a primitive element -- i.e. an element of order 4514^5 -1, find an element ParseError: KaTeX parse error: Undefined control sequence: \F at position 21: …alpha^i \in \̲F̲_{4^5} of order 1111, for a suitable ii.

    c. Show that the minimal polynomial gg of aa over ParseError: KaTeX parse error: Undefined control sequence: \F at position 1: \̲F̲_4 has degree 5, and that the roots of gg are powers of aa. Which powers?

    d. Show that f=gh(T1)f = g\cdot h \cdot (T-1) for another irreducible polynomial ParseError: KaTeX parse error: Undefined control sequence: \F at position 7: h \in \̲F̲_4[T] of degree 5. The roots of hh are again powers of aa. Which powers?

    b. Show that f\langle f \rangle is a [11,6,d]4[11,6,d]_4 code for which d4d \ge 4.

  3. Consider the following variant of a Reed-Solomon code: let ParseError: KaTeX parse error: Undefined control sequence: \F at position 21: …cal{P} \subset \̲F̲_q be a subset with n=Pn = |\mathcal{P}| and write P={a1,,an}\mathcal{P} = \{a_1,\cdots,a_n\}.

    Let 1kn1 \le k \le n and write ParseError: KaTeX parse error: Undefined control sequence: \F at position 1: \̲F̲_q[T]_{< k} for the space of polynomial of degree <k< k, and let

    ParseError: KaTeX parse error: Undefined control sequence: \F at position 11: C \subset \̲F̲_q^n be given by ParseError: KaTeX parse error: Undefined control sequence: \F at position 42: …n)) \mid p \in \̲F̲_q[T]_{

    a. If nkn \ge k, prove that CC is a [n,k,nk+1]q[n,k,n-k+1]_q-code.

    b. If ParseError: KaTeX parse error: Undefined control sequence: \F at position 5: P = \̲F̲_q^\times, prove that CC is a cyclic code.

    c. If q=pq = p is prime and if ParseError: KaTeX parse error: Undefined control sequence: \F at position 5: P = \̲F̲_p, prove that CC is a cyclic code.