---title : ( R e p r e s e n t a t i o n T h e o r y ) N o t e s o n R e p r e s e n t a t i o n s
date : 2 0 2 4 - 0 1 - 2 2
---Let G G G be a finite group, let F F F be a field (algebraically closed, char. 0).
A representation of G G G is a vector space V V V together with a group homomorphism ρ : G → GL ( V ) . \rho:G \to \operatorname{GL}(V). ρ : G → GL ( V ) .
If we choose a basis B \mathcal{B} B of V V V , we obtain from ρ \rho ρ an assignment g ↦ [ ρ ( g ) ] B g \mapsto [\rho(g)]_{\mathcal{B}} g ↦ [ ρ ( g ) ] B which is a group homomorphism G → GL n ( F ) G \to \operatorname{GL}_n(F) G → GL n ( F ) .
First example Consider the finite cyclic group G = Z / n Z G = \mathbb{Z}/n\mathbb{Z} G = Z / n Z for a natural number n > 0 n > 0 n > 0 .
Suppose that M M M is an m × m m \times m m × m matrix for which M n = I M^n = \mathbf{I} M n = I . Using M M M , we get a representation ρ M : Z / n Z → GL m ( F ) \rho_M:\mathbb{Z}/n\mathbb{Z} \to \operatorname{GL}_m(F) ρ M : Z / n Z → GL m ( F ) by the rule ρ M ( i + n Z ) = M i . \rho_M(i + n \mathbb{Z}) = M^i. ρ M ( i + n Z ) = M i .
One might consider the question: If M M M and M ′ M' M ′ are two m × m m \times m m × m matrices for which M n = ( M ′ ) n = I M^n = (M')^n = \mathbf{I} M n = ( M ′ ) n = I , when are the representations ρ M \rho_M ρ M and ρ M ′ \rho_{M'} ρ M ′ "the same"??
Consider the following 3 × 3 3\times 3 3 × 3 matrices, each of which satisfies M 3 = I M^3 = \mathbf{I} M 3 = I :
( 0 0 1 1 0 0 0 1 0 ) , ( 1 0 0 0 ζ 0 0 0 ζ 2 ) , ( 0 0 − 2 3 / 2 0 0 0 − 1 / 3 0 ) . \begin{equation*}
\begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 0 \\
0 & \zeta & 0 \\
0 & 0 & \zeta^2
\end{pmatrix},
\begin{pmatrix}
0 & 0 & -2 \\
3/2 & 0 & 0 \\
0 & -1/3 & 0
\end{pmatrix}.
\end{equation*} 0 1 0 0 0 1 1 0 0 , 1 0 0 0 ζ 0 0 0 ζ 2 , 0 3/2 0 0 0 − 1/3 − 2 0 0 . where ζ \zeta ζ is a root of T 3 − 1 T − 1 = T 2 + T + 1 \dfrac{T^3-1}{T-1} = T^2 + T + 1 T − 1 T 3 − 1 = T 2 + T + 1 . [^1]
In fact, all three of these matrices have eigenvalues 1 , ζ , ζ 2 1,\zeta,\zeta^2 1 , ζ , ζ 2 each with multiplicity 1.
[^1]: If F = C F = \mathbb{C} F = C then we can take ζ = e 2 π i / 3 \zeta = e^{2\pi i/3} ζ = e 2 πi /3 .
Example: two commuting matrices Suppose that M , N M,N M , N are m × m m \times m m × m matrices for which M n = I M^n =
\mathbf{I} M n = I , N k = I N^k = \mathbf{I} N k = I and M N = N M MN = NM MN = NM .
We get a representation ρ : Z / n Z × Z / k Z → GL m ( F ) \rho:\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/k\mathbb{Z} \to \operatorname{GL}_m(F) ρ : Z / n Z × Z / k Z → GL m ( F ) by the rule ρ ( i + n Z , j + k Z ) = M i N j . \rho(i+n\mathbb{Z},j+k\mathbb{Z}) = M^iN^j. ρ ( i + n Z , j + k Z ) = M i N j .
Remark : Let μ \mu μ be an eigenvalue of the matrix M M M , and let V μ ⊂ F m V_\mu
\subset F^m V μ ⊂ F m be the corresponding eigenspace .
Since $M $ and $N $ commute , a homework exercise shows that $V_ \m u $
is *invariant * under the action of $N $.
Then $$N_ { \m id V_ \m u } :V_ \m u \t o V_ \m u $$ is a linear transformation
satisfying $(N_{\mid V_\mu}) ^k = \o peratorname {id } $.
In particular , we may choose a basis of $V_ \m u $ of eigenvectors for $N_ { \m id V_ \m u } $
In this way , we see that $V = F ^m $ has a basis consisting of
vectors which are simultaneously eigenvectors for $N $ and for $M $.
Construction of representations from group actions Suppose that the (finite) group G G G acts on the (finite) set Ω \Omega Ω . We are going to use this action to define a representation of G G G .
We consider the vector space F [ Ω ] F[\Omega] F [ Ω ] of all F F F -valued functions on Ω \Omega Ω .
For g ∈ G g \in G g ∈ G , we consider the linear transformation ρ ( g ) : F [ Ω ] → F [ Ω ] \rho(g):F[\Omega] \to F[\Omega] ρ ( g ) : F [ Ω ] → F [ Ω ] defined for f ∈ F [ Ω ] f \in F[\Omega] f ∈ F [ Ω ] by the rule ρ ( g ) ( f ) ( ω ) = f ( g − 1 ω ) . \rho(g)(f)(\omega) = f(g^{-1}\omega). ρ ( g ) ( f ) ( ω ) = f ( g − 1 ω ) .
Proposition: : (a). ρ ( g ) \rho(g) ρ ( g ) is an F F F -linear map.
(b ) . $\rho (gh ) = \r ho (g ) \r ho (h ) $ for $g ,h \i n G $.
(c ) . $\rho (g ) :F [ \O mega ] \t o F [ \O mega ] $ is *invertible * .
Proof of (b): : Let f ∈ F [ Ω ] f \in F[\Omega] f ∈ F [ Ω ] . For τ ∈ Ω \tau \in \Omega τ ∈ Ω we have ρ ( g h ) f ( τ ) = f ( ( g h ) − 1 τ ) = f ( h − 1 g − 1 τ ) = ρ ( h ) f ( g − 1 τ ) = ρ ( g ) ρ ( h ) f ( τ ) . \rho(gh)f(\tau) = f((gh)^{-1}\tau) =
f(h^{-1}g^{-1}\tau) =
\rho(h)f(g^{-1}\tau) =
\rho(g)\rho(h)f(\tau). ρ ( g h ) f ( τ ) = f (( g h ) − 1 τ ) = f ( h − 1 g − 1 τ ) = ρ ( h ) f ( g − 1 τ ) = ρ ( g ) ρ ( h ) f ( τ ) .
Since this holds for all $\tau $, conclude that
$$ \r ho (gh )f = \r ho (g ) \r ho (h )f . $$
Since this holds for all $f $, conclude that $\rho (gh ) =
\r ho (g ) \r ho (h ) $ as required .
The Proposition shows that ρ : G → GL ( F [ Ω ] ) \rho:G \to \operatorname{GL}(F[\Omega]) ρ : G → GL ( F [ Ω ]) is a representation of G G G .
Here is an alternate perspective on F [ Ω ] F[\Omega] F [ Ω ] and the action of G G G .
For ω ∈ Ω \omega \in \Omega ω ∈ Ω , consider the Dirac function δ ω ∈ F [ Ω ] \delta_\omega \in F[\Omega] δ ω ∈ F [ Ω ] defined by δ ω ( τ ) = { 1 ω = τ 0 else \delta_\omega(\tau) = \left\{ \begin{matrix}
1 & \omega = \tau \\
0 & \text{else}
\end{matrix} \right. δ ω ( τ ) = { 1 0 ω = τ else
Proposition: : The collection δ ω \delta_\omega δ ω forms a basis for the F F F -vector space F [ Ω ] F[\Omega] F [ Ω ] .
Sketch: : For f ∈ F [ Ω ] f \in F[\Omega] f ∈ F [ Ω ] , we have f = ∑ ω ∈ Ω f ( ω ) δ ω . f = \sum_{\omega \in \Omega} f(\omega) \delta_\omega. f = ω ∈ Ω ∑ f ( ω ) δ ω . This shows that the δ ω \delta_\omega δ ω span F [ Ω ] F[\Omega] F [ Ω ] .
Now , suppose $0 = \s um_ { \o mega \i n \O mega } a_ \o mega \d elta_ \o mega $
for $a_ \o mega \i n F $ for each $\omega \i n \O mega $.
To prove linear independence , we must argue that $a_ \o mega = 0 $ for every $\omega $.
Set $f = \s um_ { \o mega \i n \O mega } a_ \o mega \d elta_ \o mega $. For
$\tau \i n \O mega $, the function $f $ satisfies $$f ( \t au ) =
\s um_ { \o mega \i n \O mega } a_ \o mega \d elta_ \o mega ( \t au ) = a_ \t au . $$
Since $f = 0 $ - i .e . " $f $ is the function which is takes value
zero at every argument" -- we conclude that $a_ \t au = 0 $ for each
$\tau $. This proves linear independence .
Let's consider the action of G G G on these basis vectors.
Proposition: : For g ∈ G g \in G g ∈ G and ω ∈ Ω \omega \in \Omega ω ∈ Ω , we have ρ ( g ) δ ω = δ g ω . \rho(g)\delta_\omega = \delta_{g \omega}. ρ ( g ) δ ω = δ g ω .
Proof: : For τ ∈ Ω \tau \in \Omega τ ∈ Ω we have ρ ( g ) δ ω ( τ ) = δ ω ( g − 1 τ ) = { 1 ω = g − 1 τ 0 else = { 1 g ω = τ 0 else \rho(g) \delta_\omega(\tau) = \delta_\omega(g^{-1}\tau)
= \left\{ \begin{matrix}
1 & \omega = g^{-1}\tau \\
0 & \text{else}
\end{matrix} \right.
= \left\{ \begin{matrix}
1 & g\omega = \tau \\
0 & \text{else}
\end{matrix} \right. ρ ( g ) δ ω ( τ ) = δ ω ( g − 1 τ ) = { 1 0 ω = g − 1 τ else = { 1 0 g ω = τ else
This shows that $\rho (g ) \d elta_ \o mega ( \t au ) =
\d elta_ {g \o mega } ( \t au ) $; since this holds for all $\tau $ we
conclude $\rho (g ) \d elta_ \o mega = \d elta_ {g \o mega } $ as required .
Remark: : Viewing F [ Ω ] F[\Omega] F [ Ω ] as the vector space with basis δ ω \delta_\omega δ ω gives us a perhaps simpler proof that ρ ( g h ) = ρ ( g ) ρ ( h ) \rho(gh) = \rho(g)\rho(h) ρ ( g h ) = ρ ( g ) ρ ( h ) .
Indeed , for $\omega \i n \O mega $ we have $$ \r ho (gh ) \d elta_ \o mega =
\d elta_ {gh \o mega } = \r ho (g ) \d elta_ {h \o mega } =
\r ho (g ) ( \r ho (h ) \d elta_ \o mega ) =
\r ho (g ) \r ho (h ) \d elta_ \o mega . $$
Homomorphisms Let ( ρ , V ) (\rho,V) ( ρ , V ) and ( ψ , W ) (\psi,W) ( ψ , W ) be representations of G G G . a linear mapping Φ : V → W \Phi:V \to W Φ : V → W is a homomorphism of G G G -representations provided that for every v ∈ V v \in V v ∈ V and for every g ∈ G g \in G g ∈ G we have Φ ( ρ ( g ) v ) = ψ ( g ) Φ ( v ) . \Phi(\rho(g)v) = \psi(g) \Phi(v). Φ ( ρ ( g ) v ) = ψ ( g ) Φ ( v ) .
The G G G -representations ( ρ , V ) (\rho,V) ( ρ , V ) and ( ψ , W ) (\psi,W) ( ψ , W ) are isomorphic is there is a homomorphism of G G G -representations which is invertible .
Example For any G G G one has the so-called trivial representation 1. \mathbb{1}. 1. This representation has vector space V = F V = F V = F (it is 1 dimensional!) and the mapping G → GL ( V ) = GL 1 ( F ) = F × G \to \operatorname{GL}(V) = \operatorname{GL}_1(F) = F^\times G → GL ( V ) = GL 1 ( F ) = F × is just the trivial homomorphism g ↦ 1 g \mapsto 1 g ↦ 1 .
One often writes 1 \mathbb{1} 1 for the underlying vector space F F F .
Let G G G act on the (finite) set Ω \Omega Ω . Then there is a homomorphism of G G G -representations 1 → F [ Ω ] . \mathbb{1} \to F[\Omega]. 1 → F [ Ω ] . Viewing 1 = F \mathbb{1} = F 1 = F , the scalar c c c is mapped to the constant function with value c c c .
Put another way, the scalar c c c is mapped to the vector c ∑ ω ∈ Ω δ ω . c \sum_{\omega \in \Omega} \delta_\omega. c ω ∈ Ω ∑ δ ω .