Path: blob/main/course-contents/2024-02-28--linear.md
909 views
------\newcommand{\F}{\mathbb{F}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\NN}{\mathbb{N}} \newcommand{\CC}{\mathbb{C}} \newcommand{\e}{\mathbf{e}} \newcommand{\h}{\mathbf{h}} \newcommand{\bb}{\mathbf{b}} \newcommand{\vv}{\mathbf{v}} \newcommand{\xx}{\mathbf{x}}
\newcommand{\uu}{\mathbf{u}} \newcommand{\ww}{\mathbf{w}}
\newcommand{\Null}{\operatorname{Null}} \newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\weight}{\operatorname{weight}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\dist}{\operatorname{dist}} \newcommand{\floor}[1]{\lfloor #1 \rfloor}
\newcommand{\tr}{\operatorname{tr}}
Dual codes and weight enumerators
Consider a -code , and write ParseError: KaTeX parse error: Undefined control sequence: \F at position 31: …\cdot \rangle: \̲F̲_q^n \times \F_… for the standard inner product; if ParseError: KaTeX parse error: Undefined control sequence: \e at position 1: \̲e̲_1,\cdots,\e_n are the standard basis vectors, then we have ParseError: KaTeX parse error: Undefined control sequence: \e at position 9: \langle \̲e̲_i,\e_j \rangle…
We write for the dual code to defined by the rule ParseError: KaTeX parse error: Undefined control sequence: \ww at position 14: C^\perp = \{ \̲w̲w̲ ̲\in \F_q^n \mid…
Observe that the natural mapping ParseError: KaTeX parse error: Undefined control sequence: \F at position 1: \̲F̲_q^n \to C^* given by ParseError: KaTeX parse error: Undefined control sequence: \ww at position 1: \̲w̲w̲ ̲\mapsto \langle… is a surjection with kernel . It thus follows that
In particular, is an -code.
Remark : If , we say that is self-dual. Note that if is self dual we must have so that is even.
Weight enumerators
Consider the polynomial with natural-number coefficients ParseError: KaTeX parse error: Undefined control sequence: \uu at position 14: A(T) = \sum_{\̲u̲u̲ ̲\in C} T^{\weig…
We evidently have where ParseError: KaTeX parse error: Undefined control sequence: \uu at position 11: A_i = \#\{\̲u̲u̲ ̲\in C \mid \wei… (note that ). We call the weight-enumerator polynomial of .
Example : Consider the self-dual -code introduced above; namely:
We compute its weight-enumerator:
Write for the weight enumerator. We are going to prove a formula relating and due to McWilliams.
The proof involves some character theory. We need a few extra tools.
Characters of ParseError: KaTeX parse error: Undefined control sequence: \F at position 1: \̲F̲_q-vector spaces.
Let ParseError: KaTeX parse error: Undefined control sequence: \tr at position 1: \̲t̲r̲:\F_q \to \F_p be the trace map.
For any finite degree field extension we have a trace mapping ParseError: KaTeX parse error: Undefined control sequence: \tr at position 1: \̲t̲r̲:E \to F; for , ParseError: KaTeX parse error: Undefined control sequence: \tr at position 1: \̲t̲r̲(\alpha) is the trace of the -linear mapping given by .
Proposition : If is a finite Galois extension, and if is the galois group, then for we have ParseError: KaTeX parse error: Undefined control sequence: \tr at position 1: \̲t̲r̲(\alpha) = \sum…
Proposition : If , then ParseError: KaTeX parse error: Undefined control sequence: \tr at position 1: \̲t̲r̲:\F_q \to \F_p is given by the formula ParseError: KaTeX parse error: Undefined control sequence: \tr at position 1: \̲t̲r̲(\alpha) = \alp…
The importance to us of the trace mapping is this: we know how to describe complex characters of ParseError: KaTeX parse error: Undefined control sequence: \F at position 1: \̲F̲_p, and we use these together with the trace to describe complex characters of ParseError: KaTeX parse error: Undefined control sequence: \F at position 1: \̲F̲_q.
Fix
For a vector ParseError: KaTeX parse error: Undefined control sequence: \uu at position 1: \̲u̲u̲ ̲\in \F_q^n, we define a group homomorphism ("character") ParseError: KaTeX parse error: Undefined control sequence: \uu at position 6: \chi_\̲u̲u̲:\F_q^n \to \CC… by the rule ParseError: KaTeX parse error: Undefined control sequence: \uu at position 6: \chi_\̲u̲u̲(\vv) = \zeta_p…
Observe that since ParseError: KaTeX parse error: Undefined control sequence: \tr at position 1: \̲t̲r̲(\alpha) \in \F… for ParseError: KaTeX parse error: Undefined control sequence: \F at position 12: \alpha \in \̲F̲_q, the complex number ParseError: KaTeX parse error: Undefined control sequence: \tr at position 10: \zeta_p^{\̲t̲r̲(\alpha)} is always well-defined.
Remark : Arguing as in an earlier homework exercise, it is easy to see that ParseError: KaTeX parse error: Undefined control sequence: \F at position 10: \widehat{\̲F̲_q^n} = \Hom(\F….
For a finite abelian group , recall that we write for the character inner product; here .
We have the following result from character theory:
Proposition : For ParseError: KaTeX parse error: Undefined control sequence: \xx at position 1: \̲x̲x̲ ̲\in \F_q^n, we have $$\sum_{\uu \in C} \chi_\uu(\xx) \left \{ \begin{matrix} 0 & \text{if $\xx \not \in C^\perpParseError: KaTeX parse error: Expected 'EOF', got '}' at position 1: }̲ \\ |C| & \tex…\xx \in C^\perpParseError: KaTeX parse error: Expected 'EOF', got '}' at position 1: }̲ \end{matrix…$
Proof : We know that ParseError: KaTeX parse error: Undefined control sequence: \uu at position 6: \chi_\̲u̲u̲\mid_C is a character of ; i.e. an element of .
Theorem (McWilliams' Identity) : If is an -code, then
Proof : see [@ballCourseAlgebraicErrorCorrecting2020, Theorem 4.13 page 56]
Bibliography
::: {.refs} :::