Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/core/io/marshalls.cpp
9973 views
1
/**************************************************************************/
2
/* marshalls.cpp */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#include "marshalls.h"
32
33
#include "core/io/resource_loader.h"
34
#include "core/object/ref_counted.h"
35
#include "core/object/script_language.h"
36
#include "core/variant/container_type_validate.h"
37
38
#include <climits>
39
#include <cstdio>
40
41
void EncodedObjectAsID::_bind_methods() {
42
ClassDB::bind_method(D_METHOD("set_object_id", "id"), &EncodedObjectAsID::set_object_id);
43
ClassDB::bind_method(D_METHOD("get_object_id"), &EncodedObjectAsID::get_object_id);
44
45
ADD_PROPERTY(PropertyInfo(Variant::INT, "object_id"), "set_object_id", "get_object_id");
46
}
47
48
void EncodedObjectAsID::set_object_id(ObjectID p_id) {
49
id = p_id;
50
}
51
52
ObjectID EncodedObjectAsID::get_object_id() const {
53
return id;
54
}
55
56
#define ERR_FAIL_ADD_OF(a, b, err) ERR_FAIL_COND_V(((int32_t)(b)) < 0 || ((int32_t)(a)) < 0 || ((int32_t)(a)) > INT_MAX - ((int32_t)(b)), err)
57
#define ERR_FAIL_MUL_OF(a, b, err) ERR_FAIL_COND_V(((int32_t)(a)) < 0 || ((int32_t)(b)) <= 0 || ((int32_t)(a)) > INT_MAX / ((int32_t)(b)), err)
58
59
// Byte 0: `Variant::Type`, byte 1: unused, bytes 2 and 3: additional data.
60
#define HEADER_TYPE_MASK 0xFF
61
62
// For `Variant::INT`, `Variant::FLOAT` and other math types.
63
#define HEADER_DATA_FLAG_64 (1 << 16)
64
65
// For `Variant::OBJECT`.
66
#define HEADER_DATA_FLAG_OBJECT_AS_ID (1 << 16)
67
68
// For `Variant::ARRAY`.
69
// Occupies bits 16 and 17.
70
#define HEADER_DATA_FIELD_TYPED_ARRAY_MASK (0b11 << 16)
71
#define HEADER_DATA_FIELD_TYPED_ARRAY_SHIFT 16
72
73
// For `Variant::DICTIONARY`.
74
// Occupies bits 16 and 17.
75
#define HEADER_DATA_FIELD_TYPED_DICTIONARY_KEY_MASK (0b11 << 16)
76
#define HEADER_DATA_FIELD_TYPED_DICTIONARY_KEY_SHIFT 16
77
// Occupies bits 18 and 19.
78
#define HEADER_DATA_FIELD_TYPED_DICTIONARY_VALUE_MASK (0b11 << 18)
79
#define HEADER_DATA_FIELD_TYPED_DICTIONARY_VALUE_SHIFT 18
80
81
enum ContainerTypeKind {
82
CONTAINER_TYPE_KIND_NONE = 0b00,
83
CONTAINER_TYPE_KIND_BUILTIN = 0b01,
84
CONTAINER_TYPE_KIND_CLASS_NAME = 0b10,
85
CONTAINER_TYPE_KIND_SCRIPT = 0b11,
86
};
87
88
#define GET_CONTAINER_TYPE_KIND(m_header, m_field) \
89
((ContainerTypeKind)(((m_header) & HEADER_DATA_FIELD_##m_field##_MASK) >> HEADER_DATA_FIELD_##m_field##_SHIFT))
90
91
static Error _decode_string(const uint8_t *&buf, int &len, int *r_len, String &r_string) {
92
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
93
94
int32_t strlen = decode_uint32(buf);
95
int32_t pad = 0;
96
97
// Handle padding.
98
if (strlen % 4) {
99
pad = 4 - strlen % 4;
100
}
101
102
buf += 4;
103
len -= 4;
104
105
// Ensure buffer is big enough.
106
ERR_FAIL_ADD_OF(strlen, pad, ERR_FILE_EOF);
107
ERR_FAIL_COND_V(strlen < 0 || strlen + pad > len, ERR_FILE_EOF);
108
109
String str;
110
ERR_FAIL_COND_V(str.append_utf8((const char *)buf, strlen) != OK, ERR_INVALID_DATA);
111
r_string = str;
112
113
// Add padding.
114
strlen += pad;
115
116
// Update buffer pos, left data count, and return size.
117
buf += strlen;
118
len -= strlen;
119
if (r_len) {
120
(*r_len) += 4 + strlen;
121
}
122
123
return OK;
124
}
125
126
static Error _decode_container_type(const uint8_t *&buf, int &len, int *r_len, bool p_allow_objects, ContainerTypeKind p_type_kind, ContainerType &r_type) {
127
switch (p_type_kind) {
128
case CONTAINER_TYPE_KIND_NONE: {
129
return OK;
130
} break;
131
case CONTAINER_TYPE_KIND_BUILTIN: {
132
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
133
134
int32_t bt = decode_uint32(buf);
135
buf += 4;
136
len -= 4;
137
if (r_len) {
138
(*r_len) += 4;
139
}
140
141
ERR_FAIL_INDEX_V(bt, Variant::VARIANT_MAX, ERR_INVALID_DATA);
142
r_type.builtin_type = (Variant::Type)bt;
143
if (!p_allow_objects && r_type.builtin_type == Variant::OBJECT) {
144
r_type.class_name = EncodedObjectAsID::get_class_static();
145
}
146
return OK;
147
} break;
148
case CONTAINER_TYPE_KIND_CLASS_NAME: {
149
String str;
150
Error err = _decode_string(buf, len, r_len, str);
151
if (err) {
152
return err;
153
}
154
155
r_type.builtin_type = Variant::OBJECT;
156
if (p_allow_objects) {
157
r_type.class_name = str;
158
} else {
159
r_type.class_name = EncodedObjectAsID::get_class_static();
160
}
161
return OK;
162
} break;
163
case CONTAINER_TYPE_KIND_SCRIPT: {
164
String path;
165
Error err = _decode_string(buf, len, r_len, path);
166
if (err) {
167
return err;
168
}
169
170
r_type.builtin_type = Variant::OBJECT;
171
if (p_allow_objects) {
172
ERR_FAIL_COND_V_MSG(path.is_empty() || !path.begins_with("res://") || !ResourceLoader::exists(path, "Script"), ERR_INVALID_DATA, vformat("Invalid script path \"%s\".", path));
173
r_type.script = ResourceLoader::load(path, "Script");
174
ERR_FAIL_COND_V_MSG(r_type.script.is_null(), ERR_INVALID_DATA, vformat("Can't load script at path \"%s\".", path));
175
r_type.class_name = r_type.script->get_instance_base_type();
176
} else {
177
r_type.class_name = EncodedObjectAsID::get_class_static();
178
}
179
return OK;
180
} break;
181
}
182
ERR_FAIL_V_MSG(ERR_INVALID_DATA, "Invalid container type kind."); // Future proofing.
183
}
184
185
Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int *r_len, bool p_allow_objects, int p_depth) {
186
ERR_FAIL_COND_V_MSG(p_depth > Variant::MAX_RECURSION_DEPTH, ERR_OUT_OF_MEMORY, "Variant is too deep. Bailing.");
187
const uint8_t *buf = p_buffer;
188
int len = p_len;
189
190
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
191
192
uint32_t header = decode_uint32(buf);
193
194
ERR_FAIL_COND_V((header & HEADER_TYPE_MASK) >= Variant::VARIANT_MAX, ERR_INVALID_DATA);
195
196
buf += 4;
197
len -= 4;
198
if (r_len) {
199
*r_len = 4;
200
}
201
202
// NOTE: We cannot use `sizeof(real_t)` for decoding, in case a different size is encoded.
203
// Decoding math types always checks for the encoded size, while encoding always uses compilation setting.
204
// This does lead to some code duplication for decoding, but compatibility is the priority.
205
switch (header & HEADER_TYPE_MASK) {
206
case Variant::NIL: {
207
r_variant = Variant();
208
} break;
209
case Variant::BOOL: {
210
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
211
bool val = decode_uint32(buf);
212
r_variant = val;
213
if (r_len) {
214
(*r_len) += 4;
215
}
216
} break;
217
case Variant::INT: {
218
if (header & HEADER_DATA_FLAG_64) {
219
ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
220
int64_t val = int64_t(decode_uint64(buf));
221
r_variant = val;
222
if (r_len) {
223
(*r_len) += 8;
224
}
225
226
} else {
227
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
228
int32_t val = int32_t(decode_uint32(buf));
229
r_variant = val;
230
if (r_len) {
231
(*r_len) += 4;
232
}
233
}
234
235
} break;
236
case Variant::FLOAT: {
237
if (header & HEADER_DATA_FLAG_64) {
238
ERR_FAIL_COND_V((size_t)len < sizeof(double), ERR_INVALID_DATA);
239
double val = decode_double(buf);
240
r_variant = val;
241
if (r_len) {
242
(*r_len) += sizeof(double);
243
}
244
} else {
245
ERR_FAIL_COND_V((size_t)len < sizeof(float), ERR_INVALID_DATA);
246
float val = decode_float(buf);
247
r_variant = val;
248
if (r_len) {
249
(*r_len) += sizeof(float);
250
}
251
}
252
253
} break;
254
case Variant::STRING: {
255
String str;
256
Error err = _decode_string(buf, len, r_len, str);
257
if (err) {
258
return err;
259
}
260
r_variant = str;
261
262
} break;
263
264
// Math types.
265
case Variant::VECTOR2: {
266
Vector2 val;
267
if (header & HEADER_DATA_FLAG_64) {
268
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 2, ERR_INVALID_DATA);
269
val.x = decode_double(&buf[0]);
270
val.y = decode_double(&buf[sizeof(double)]);
271
272
if (r_len) {
273
(*r_len) += sizeof(double) * 2;
274
}
275
} else {
276
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 2, ERR_INVALID_DATA);
277
val.x = decode_float(&buf[0]);
278
val.y = decode_float(&buf[sizeof(float)]);
279
280
if (r_len) {
281
(*r_len) += sizeof(float) * 2;
282
}
283
}
284
r_variant = val;
285
286
} break;
287
case Variant::VECTOR2I: {
288
ERR_FAIL_COND_V(len < 4 * 2, ERR_INVALID_DATA);
289
Vector2i val;
290
val.x = decode_uint32(&buf[0]);
291
val.y = decode_uint32(&buf[4]);
292
r_variant = val;
293
294
if (r_len) {
295
(*r_len) += 4 * 2;
296
}
297
298
} break;
299
case Variant::RECT2: {
300
Rect2 val;
301
if (header & HEADER_DATA_FLAG_64) {
302
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
303
val.position.x = decode_double(&buf[0]);
304
val.position.y = decode_double(&buf[sizeof(double)]);
305
val.size.x = decode_double(&buf[sizeof(double) * 2]);
306
val.size.y = decode_double(&buf[sizeof(double) * 3]);
307
308
if (r_len) {
309
(*r_len) += sizeof(double) * 4;
310
}
311
} else {
312
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
313
val.position.x = decode_float(&buf[0]);
314
val.position.y = decode_float(&buf[sizeof(float)]);
315
val.size.x = decode_float(&buf[sizeof(float) * 2]);
316
val.size.y = decode_float(&buf[sizeof(float) * 3]);
317
318
if (r_len) {
319
(*r_len) += sizeof(float) * 4;
320
}
321
}
322
r_variant = val;
323
324
} break;
325
case Variant::RECT2I: {
326
ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
327
Rect2i val;
328
val.position.x = decode_uint32(&buf[0]);
329
val.position.y = decode_uint32(&buf[4]);
330
val.size.x = decode_uint32(&buf[8]);
331
val.size.y = decode_uint32(&buf[12]);
332
r_variant = val;
333
334
if (r_len) {
335
(*r_len) += 4 * 4;
336
}
337
338
} break;
339
case Variant::VECTOR3: {
340
Vector3 val;
341
if (header & HEADER_DATA_FLAG_64) {
342
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 3, ERR_INVALID_DATA);
343
val.x = decode_double(&buf[0]);
344
val.y = decode_double(&buf[sizeof(double)]);
345
val.z = decode_double(&buf[sizeof(double) * 2]);
346
347
if (r_len) {
348
(*r_len) += sizeof(double) * 3;
349
}
350
} else {
351
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 3, ERR_INVALID_DATA);
352
val.x = decode_float(&buf[0]);
353
val.y = decode_float(&buf[sizeof(float)]);
354
val.z = decode_float(&buf[sizeof(float) * 2]);
355
356
if (r_len) {
357
(*r_len) += sizeof(float) * 3;
358
}
359
}
360
r_variant = val;
361
362
} break;
363
case Variant::VECTOR3I: {
364
ERR_FAIL_COND_V(len < 4 * 3, ERR_INVALID_DATA);
365
Vector3i val;
366
val.x = decode_uint32(&buf[0]);
367
val.y = decode_uint32(&buf[4]);
368
val.z = decode_uint32(&buf[8]);
369
r_variant = val;
370
371
if (r_len) {
372
(*r_len) += 4 * 3;
373
}
374
375
} break;
376
case Variant::VECTOR4: {
377
Vector4 val;
378
if (header & HEADER_DATA_FLAG_64) {
379
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
380
val.x = decode_double(&buf[0]);
381
val.y = decode_double(&buf[sizeof(double)]);
382
val.z = decode_double(&buf[sizeof(double) * 2]);
383
val.w = decode_double(&buf[sizeof(double) * 3]);
384
385
if (r_len) {
386
(*r_len) += sizeof(double) * 4;
387
}
388
} else {
389
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
390
val.x = decode_float(&buf[0]);
391
val.y = decode_float(&buf[sizeof(float)]);
392
val.z = decode_float(&buf[sizeof(float) * 2]);
393
val.w = decode_float(&buf[sizeof(float) * 3]);
394
395
if (r_len) {
396
(*r_len) += sizeof(float) * 4;
397
}
398
}
399
r_variant = val;
400
401
} break;
402
case Variant::VECTOR4I: {
403
ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
404
Vector4i val;
405
val.x = decode_uint32(&buf[0]);
406
val.y = decode_uint32(&buf[4]);
407
val.z = decode_uint32(&buf[8]);
408
val.w = decode_uint32(&buf[12]);
409
r_variant = val;
410
411
if (r_len) {
412
(*r_len) += 4 * 4;
413
}
414
415
} break;
416
case Variant::TRANSFORM2D: {
417
Transform2D val;
418
if (header & HEADER_DATA_FLAG_64) {
419
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
420
for (int i = 0; i < 3; i++) {
421
for (int j = 0; j < 2; j++) {
422
val.columns[i][j] = decode_double(&buf[(i * 2 + j) * sizeof(double)]);
423
}
424
}
425
426
if (r_len) {
427
(*r_len) += sizeof(double) * 6;
428
}
429
} else {
430
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
431
for (int i = 0; i < 3; i++) {
432
for (int j = 0; j < 2; j++) {
433
val.columns[i][j] = decode_float(&buf[(i * 2 + j) * sizeof(float)]);
434
}
435
}
436
437
if (r_len) {
438
(*r_len) += sizeof(float) * 6;
439
}
440
}
441
r_variant = val;
442
443
} break;
444
case Variant::PLANE: {
445
Plane val;
446
if (header & HEADER_DATA_FLAG_64) {
447
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
448
val.normal.x = decode_double(&buf[0]);
449
val.normal.y = decode_double(&buf[sizeof(double)]);
450
val.normal.z = decode_double(&buf[sizeof(double) * 2]);
451
val.d = decode_double(&buf[sizeof(double) * 3]);
452
453
if (r_len) {
454
(*r_len) += sizeof(double) * 4;
455
}
456
} else {
457
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
458
val.normal.x = decode_float(&buf[0]);
459
val.normal.y = decode_float(&buf[sizeof(float)]);
460
val.normal.z = decode_float(&buf[sizeof(float) * 2]);
461
val.d = decode_float(&buf[sizeof(float) * 3]);
462
463
if (r_len) {
464
(*r_len) += sizeof(float) * 4;
465
}
466
}
467
r_variant = val;
468
469
} break;
470
case Variant::QUATERNION: {
471
Quaternion val;
472
if (header & HEADER_DATA_FLAG_64) {
473
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
474
val.x = decode_double(&buf[0]);
475
val.y = decode_double(&buf[sizeof(double)]);
476
val.z = decode_double(&buf[sizeof(double) * 2]);
477
val.w = decode_double(&buf[sizeof(double) * 3]);
478
479
if (r_len) {
480
(*r_len) += sizeof(double) * 4;
481
}
482
} else {
483
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
484
val.x = decode_float(&buf[0]);
485
val.y = decode_float(&buf[sizeof(float)]);
486
val.z = decode_float(&buf[sizeof(float) * 2]);
487
val.w = decode_float(&buf[sizeof(float) * 3]);
488
489
if (r_len) {
490
(*r_len) += sizeof(float) * 4;
491
}
492
}
493
r_variant = val;
494
495
} break;
496
case Variant::AABB: {
497
AABB val;
498
if (header & HEADER_DATA_FLAG_64) {
499
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
500
val.position.x = decode_double(&buf[0]);
501
val.position.y = decode_double(&buf[sizeof(double)]);
502
val.position.z = decode_double(&buf[sizeof(double) * 2]);
503
val.size.x = decode_double(&buf[sizeof(double) * 3]);
504
val.size.y = decode_double(&buf[sizeof(double) * 4]);
505
val.size.z = decode_double(&buf[sizeof(double) * 5]);
506
507
if (r_len) {
508
(*r_len) += sizeof(double) * 6;
509
}
510
} else {
511
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
512
val.position.x = decode_float(&buf[0]);
513
val.position.y = decode_float(&buf[sizeof(float)]);
514
val.position.z = decode_float(&buf[sizeof(float) * 2]);
515
val.size.x = decode_float(&buf[sizeof(float) * 3]);
516
val.size.y = decode_float(&buf[sizeof(float) * 4]);
517
val.size.z = decode_float(&buf[sizeof(float) * 5]);
518
519
if (r_len) {
520
(*r_len) += sizeof(float) * 6;
521
}
522
}
523
r_variant = val;
524
525
} break;
526
case Variant::BASIS: {
527
Basis val;
528
if (header & HEADER_DATA_FLAG_64) {
529
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 9, ERR_INVALID_DATA);
530
for (int i = 0; i < 3; i++) {
531
for (int j = 0; j < 3; j++) {
532
val.rows[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
533
}
534
}
535
536
if (r_len) {
537
(*r_len) += sizeof(double) * 9;
538
}
539
} else {
540
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 9, ERR_INVALID_DATA);
541
for (int i = 0; i < 3; i++) {
542
for (int j = 0; j < 3; j++) {
543
val.rows[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
544
}
545
}
546
547
if (r_len) {
548
(*r_len) += sizeof(float) * 9;
549
}
550
}
551
r_variant = val;
552
553
} break;
554
case Variant::TRANSFORM3D: {
555
Transform3D val;
556
if (header & HEADER_DATA_FLAG_64) {
557
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 12, ERR_INVALID_DATA);
558
for (int i = 0; i < 3; i++) {
559
for (int j = 0; j < 3; j++) {
560
val.basis.rows[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
561
}
562
}
563
val.origin[0] = decode_double(&buf[sizeof(double) * 9]);
564
val.origin[1] = decode_double(&buf[sizeof(double) * 10]);
565
val.origin[2] = decode_double(&buf[sizeof(double) * 11]);
566
567
if (r_len) {
568
(*r_len) += sizeof(double) * 12;
569
}
570
} else {
571
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 12, ERR_INVALID_DATA);
572
for (int i = 0; i < 3; i++) {
573
for (int j = 0; j < 3; j++) {
574
val.basis.rows[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
575
}
576
}
577
val.origin[0] = decode_float(&buf[sizeof(float) * 9]);
578
val.origin[1] = decode_float(&buf[sizeof(float) * 10]);
579
val.origin[2] = decode_float(&buf[sizeof(float) * 11]);
580
581
if (r_len) {
582
(*r_len) += sizeof(float) * 12;
583
}
584
}
585
r_variant = val;
586
587
} break;
588
case Variant::PROJECTION: {
589
Projection val;
590
if (header & HEADER_DATA_FLAG_64) {
591
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 16, ERR_INVALID_DATA);
592
for (int i = 0; i < 4; i++) {
593
for (int j = 0; j < 4; j++) {
594
val.columns[i][j] = decode_double(&buf[(i * 4 + j) * sizeof(double)]);
595
}
596
}
597
if (r_len) {
598
(*r_len) += sizeof(double) * 16;
599
}
600
} else {
601
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 16, ERR_INVALID_DATA);
602
for (int i = 0; i < 4; i++) {
603
for (int j = 0; j < 4; j++) {
604
val.columns[i][j] = decode_float(&buf[(i * 4 + j) * sizeof(float)]);
605
}
606
}
607
608
if (r_len) {
609
(*r_len) += sizeof(float) * 16;
610
}
611
}
612
r_variant = val;
613
614
} break;
615
616
// Misc types.
617
case Variant::COLOR: {
618
ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
619
Color val;
620
val.r = decode_float(&buf[0]);
621
val.g = decode_float(&buf[4]);
622
val.b = decode_float(&buf[8]);
623
val.a = decode_float(&buf[12]);
624
r_variant = val;
625
626
if (r_len) {
627
(*r_len) += 4 * 4; // Colors should always be in single-precision.
628
}
629
} break;
630
case Variant::STRING_NAME: {
631
String str;
632
Error err = _decode_string(buf, len, r_len, str);
633
if (err) {
634
return err;
635
}
636
r_variant = StringName(str);
637
638
} break;
639
640
case Variant::NODE_PATH: {
641
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
642
int32_t strlen = decode_uint32(buf);
643
644
if (strlen & 0x80000000) {
645
// New format.
646
ERR_FAIL_COND_V(len < 12, ERR_INVALID_DATA);
647
Vector<StringName> names;
648
Vector<StringName> subnames;
649
650
uint32_t namecount = strlen &= 0x7FFFFFFF;
651
uint32_t subnamecount = decode_uint32(buf + 4);
652
uint32_t np_flags = decode_uint32(buf + 8);
653
654
len -= 12;
655
buf += 12;
656
657
if (np_flags & 2) { // Obsolete format with property separate from subpath.
658
subnamecount++;
659
}
660
661
uint32_t total = namecount + subnamecount;
662
663
if (r_len) {
664
(*r_len) += 12;
665
}
666
667
for (uint32_t i = 0; i < total; i++) {
668
String str;
669
Error err = _decode_string(buf, len, r_len, str);
670
if (err) {
671
return err;
672
}
673
674
if (i < namecount) {
675
names.push_back(str);
676
} else {
677
subnames.push_back(str);
678
}
679
}
680
681
r_variant = NodePath(names, subnames, np_flags & 1);
682
683
} else {
684
// Old format, just a string.
685
ERR_FAIL_V(ERR_INVALID_DATA);
686
}
687
688
} break;
689
case Variant::RID: {
690
ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
691
uint64_t id = decode_uint64(buf);
692
if (r_len) {
693
(*r_len) += 8;
694
}
695
696
r_variant = RID::from_uint64(id);
697
} break;
698
case Variant::OBJECT: {
699
if (header & HEADER_DATA_FLAG_OBJECT_AS_ID) {
700
// This _is_ allowed.
701
ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
702
ObjectID val = ObjectID(decode_uint64(buf));
703
if (r_len) {
704
(*r_len) += 8;
705
}
706
707
if (val.is_null()) {
708
r_variant = (Object *)nullptr;
709
} else {
710
Ref<EncodedObjectAsID> obj_as_id;
711
obj_as_id.instantiate();
712
obj_as_id->set_object_id(val);
713
714
r_variant = obj_as_id;
715
}
716
} else {
717
ERR_FAIL_COND_V(!p_allow_objects, ERR_UNAUTHORIZED);
718
719
String str;
720
Error err = _decode_string(buf, len, r_len, str);
721
if (err) {
722
return err;
723
}
724
725
if (str.is_empty()) {
726
r_variant = (Object *)nullptr;
727
} else {
728
ERR_FAIL_COND_V(!ClassDB::can_instantiate(str), ERR_INVALID_DATA);
729
730
Object *obj = ClassDB::instantiate(str);
731
ERR_FAIL_NULL_V(obj, ERR_UNAVAILABLE);
732
733
// Avoid premature free `RefCounted`. This must be done before properties are initialized,
734
// since script functions (setters, implicit initializer) may be called. See GH-68666.
735
Variant variant;
736
if (Object::cast_to<RefCounted>(obj)) {
737
Ref<RefCounted> ref = Ref<RefCounted>(Object::cast_to<RefCounted>(obj));
738
variant = ref;
739
} else {
740
variant = obj;
741
}
742
743
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
744
int32_t count = decode_uint32(buf);
745
buf += 4;
746
len -= 4;
747
if (r_len) {
748
(*r_len) += 4; // Size of count number.
749
}
750
751
for (int i = 0; i < count; i++) {
752
str = String();
753
err = _decode_string(buf, len, r_len, str);
754
if (err) {
755
return err;
756
}
757
758
Variant value;
759
int used;
760
err = decode_variant(value, buf, len, &used, p_allow_objects, p_depth + 1);
761
if (err) {
762
return err;
763
}
764
765
buf += used;
766
len -= used;
767
if (r_len) {
768
(*r_len) += used;
769
}
770
771
if (str == "script" && value.get_type() != Variant::NIL) {
772
ERR_FAIL_COND_V_MSG(value.get_type() != Variant::STRING, ERR_INVALID_DATA, "Invalid value for \"script\" property, expected script path as String.");
773
String path = value;
774
ERR_FAIL_COND_V_MSG(path.is_empty() || !path.begins_with("res://") || !ResourceLoader::exists(path, "Script"), ERR_INVALID_DATA, vformat("Invalid script path \"%s\".", path));
775
Ref<Script> script = ResourceLoader::load(path, "Script");
776
ERR_FAIL_COND_V_MSG(script.is_null(), ERR_INVALID_DATA, vformat("Can't load script at path \"%s\".", path));
777
obj->set_script(script);
778
} else {
779
obj->set(str, value);
780
}
781
}
782
783
r_variant = variant;
784
}
785
}
786
787
} break;
788
case Variant::CALLABLE: {
789
r_variant = Callable();
790
} break;
791
case Variant::SIGNAL: {
792
String name;
793
Error err = _decode_string(buf, len, r_len, name);
794
if (err) {
795
return err;
796
}
797
798
ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
799
ObjectID id = ObjectID(decode_uint64(buf));
800
if (r_len) {
801
(*r_len) += 8;
802
}
803
804
r_variant = Signal(id, StringName(name));
805
} break;
806
case Variant::DICTIONARY: {
807
ContainerType key_type;
808
809
{
810
ContainerTypeKind key_type_kind = GET_CONTAINER_TYPE_KIND(header, TYPED_DICTIONARY_KEY);
811
Error err = _decode_container_type(buf, len, r_len, p_allow_objects, key_type_kind, key_type);
812
if (err) {
813
return err;
814
}
815
}
816
817
ContainerType value_type;
818
819
{
820
ContainerTypeKind value_type_kind = GET_CONTAINER_TYPE_KIND(header, TYPED_DICTIONARY_VALUE);
821
Error err = _decode_container_type(buf, len, r_len, p_allow_objects, value_type_kind, value_type);
822
if (err) {
823
return err;
824
}
825
}
826
827
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
828
829
int32_t count = decode_uint32(buf);
830
//bool shared = count & 0x80000000;
831
count &= 0x7FFFFFFF;
832
833
buf += 4;
834
len -= 4;
835
836
if (r_len) {
837
(*r_len) += 4; // Size of count number.
838
}
839
840
Dictionary dict;
841
if (key_type.builtin_type != Variant::NIL || value_type.builtin_type != Variant::NIL) {
842
dict.set_typed(key_type, value_type);
843
}
844
845
for (int i = 0; i < count; i++) {
846
Variant key, value;
847
848
int used;
849
Error err = decode_variant(key, buf, len, &used, p_allow_objects, p_depth + 1);
850
ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
851
852
buf += used;
853
len -= used;
854
if (r_len) {
855
(*r_len) += used;
856
}
857
858
err = decode_variant(value, buf, len, &used, p_allow_objects, p_depth + 1);
859
ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
860
861
buf += used;
862
len -= used;
863
if (r_len) {
864
(*r_len) += used;
865
}
866
867
dict[key] = value;
868
}
869
870
r_variant = dict;
871
872
} break;
873
case Variant::ARRAY: {
874
ContainerType type;
875
876
{
877
ContainerTypeKind type_kind = GET_CONTAINER_TYPE_KIND(header, TYPED_ARRAY);
878
Error err = _decode_container_type(buf, len, r_len, p_allow_objects, type_kind, type);
879
if (err) {
880
return err;
881
}
882
}
883
884
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
885
886
int32_t count = decode_uint32(buf);
887
//bool shared = count & 0x80000000;
888
count &= 0x7FFFFFFF;
889
890
buf += 4;
891
len -= 4;
892
893
if (r_len) {
894
(*r_len) += 4; // Size of count number.
895
}
896
897
Array array;
898
if (type.builtin_type != Variant::NIL) {
899
array.set_typed(type);
900
}
901
902
for (int i = 0; i < count; i++) {
903
int used = 0;
904
Variant elem;
905
Error err = decode_variant(elem, buf, len, &used, p_allow_objects, p_depth + 1);
906
ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
907
buf += used;
908
len -= used;
909
array.push_back(elem);
910
if (r_len) {
911
(*r_len) += used;
912
}
913
}
914
915
r_variant = array;
916
917
} break;
918
919
// Packed arrays.
920
case Variant::PACKED_BYTE_ARRAY: {
921
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
922
int32_t count = decode_uint32(buf);
923
buf += 4;
924
len -= 4;
925
ERR_FAIL_COND_V(count < 0 || count > len, ERR_INVALID_DATA);
926
927
Vector<uint8_t> data;
928
929
if (count) {
930
data.resize(count);
931
uint8_t *w = data.ptrw();
932
for (int32_t i = 0; i < count; i++) {
933
w[i] = buf[i];
934
}
935
}
936
937
r_variant = data;
938
939
if (r_len) {
940
if (count % 4) {
941
(*r_len) += 4 - count % 4;
942
}
943
(*r_len) += 4 + count;
944
}
945
946
} break;
947
case Variant::PACKED_INT32_ARRAY: {
948
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
949
int32_t count = decode_uint32(buf);
950
buf += 4;
951
len -= 4;
952
ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
953
ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
954
955
Vector<int32_t> data;
956
957
if (count) {
958
//const int *rbuf = (const int *)buf;
959
data.resize(count);
960
int32_t *w = data.ptrw();
961
for (int32_t i = 0; i < count; i++) {
962
w[i] = decode_uint32(&buf[i * 4]);
963
}
964
}
965
r_variant = Variant(data);
966
if (r_len) {
967
(*r_len) += 4 + count * sizeof(int32_t);
968
}
969
970
} break;
971
case Variant::PACKED_INT64_ARRAY: {
972
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
973
int32_t count = decode_uint32(buf);
974
buf += 4;
975
len -= 4;
976
ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA);
977
ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA);
978
979
Vector<int64_t> data;
980
981
if (count) {
982
//const int *rbuf = (const int *)buf;
983
data.resize(count);
984
int64_t *w = data.ptrw();
985
for (int64_t i = 0; i < count; i++) {
986
w[i] = decode_uint64(&buf[i * 8]);
987
}
988
}
989
r_variant = Variant(data);
990
if (r_len) {
991
(*r_len) += 4 + count * sizeof(int64_t);
992
}
993
994
} break;
995
case Variant::PACKED_FLOAT32_ARRAY: {
996
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
997
int32_t count = decode_uint32(buf);
998
buf += 4;
999
len -= 4;
1000
ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
1001
ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
1002
1003
Vector<float> data;
1004
1005
if (count) {
1006
//const float *rbuf = (const float *)buf;
1007
data.resize(count);
1008
float *w = data.ptrw();
1009
for (int32_t i = 0; i < count; i++) {
1010
w[i] = decode_float(&buf[i * 4]);
1011
}
1012
}
1013
r_variant = data;
1014
1015
if (r_len) {
1016
(*r_len) += 4 + count * sizeof(float);
1017
}
1018
1019
} break;
1020
case Variant::PACKED_FLOAT64_ARRAY: {
1021
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
1022
int32_t count = decode_uint32(buf);
1023
buf += 4;
1024
len -= 4;
1025
ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA);
1026
ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA);
1027
1028
Vector<double> data;
1029
1030
if (count) {
1031
data.resize(count);
1032
double *w = data.ptrw();
1033
for (int64_t i = 0; i < count; i++) {
1034
w[i] = decode_double(&buf[i * 8]);
1035
}
1036
}
1037
r_variant = data;
1038
1039
if (r_len) {
1040
(*r_len) += 4 + count * sizeof(double);
1041
}
1042
1043
} break;
1044
case Variant::PACKED_STRING_ARRAY: {
1045
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
1046
int32_t count = decode_uint32(buf);
1047
1048
Vector<String> strings;
1049
buf += 4;
1050
len -= 4;
1051
1052
if (r_len) {
1053
(*r_len) += 4; // Size of count number.
1054
}
1055
1056
for (int32_t i = 0; i < count; i++) {
1057
String str;
1058
Error err = _decode_string(buf, len, r_len, str);
1059
if (err) {
1060
return err;
1061
}
1062
1063
strings.push_back(str);
1064
}
1065
1066
r_variant = strings;
1067
1068
} break;
1069
case Variant::PACKED_VECTOR2_ARRAY: {
1070
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
1071
int32_t count = decode_uint32(buf);
1072
buf += 4;
1073
len -= 4;
1074
1075
Vector<Vector2> varray;
1076
1077
if (header & HEADER_DATA_FLAG_64) {
1078
ERR_FAIL_MUL_OF(count, sizeof(double) * 2, ERR_INVALID_DATA);
1079
ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 2 > (size_t)len, ERR_INVALID_DATA);
1080
1081
if (r_len) {
1082
(*r_len) += 4; // Size of count number.
1083
}
1084
1085
if (count) {
1086
varray.resize(count);
1087
Vector2 *w = varray.ptrw();
1088
1089
for (int32_t i = 0; i < count; i++) {
1090
w[i].x = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 0);
1091
w[i].y = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 1);
1092
}
1093
1094
int adv = sizeof(double) * 2 * count;
1095
1096
if (r_len) {
1097
(*r_len) += adv;
1098
}
1099
len -= adv;
1100
buf += adv;
1101
}
1102
} else {
1103
ERR_FAIL_MUL_OF(count, sizeof(float) * 2, ERR_INVALID_DATA);
1104
ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 2 > (size_t)len, ERR_INVALID_DATA);
1105
1106
if (r_len) {
1107
(*r_len) += 4; // Size of count number.
1108
}
1109
1110
if (count) {
1111
varray.resize(count);
1112
Vector2 *w = varray.ptrw();
1113
1114
for (int32_t i = 0; i < count; i++) {
1115
w[i].x = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 0);
1116
w[i].y = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 1);
1117
}
1118
1119
int adv = sizeof(float) * 2 * count;
1120
1121
if (r_len) {
1122
(*r_len) += adv;
1123
}
1124
}
1125
}
1126
r_variant = varray;
1127
1128
} break;
1129
case Variant::PACKED_VECTOR3_ARRAY: {
1130
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
1131
int32_t count = decode_uint32(buf);
1132
buf += 4;
1133
len -= 4;
1134
1135
Vector<Vector3> varray;
1136
1137
if (header & HEADER_DATA_FLAG_64) {
1138
ERR_FAIL_MUL_OF(count, sizeof(double) * 3, ERR_INVALID_DATA);
1139
ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 3 > (size_t)len, ERR_INVALID_DATA);
1140
1141
if (r_len) {
1142
(*r_len) += 4; // Size of count number.
1143
}
1144
1145
if (count) {
1146
varray.resize(count);
1147
Vector3 *w = varray.ptrw();
1148
1149
for (int32_t i = 0; i < count; i++) {
1150
w[i].x = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 0);
1151
w[i].y = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 1);
1152
w[i].z = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 2);
1153
}
1154
1155
int adv = sizeof(double) * 3 * count;
1156
1157
if (r_len) {
1158
(*r_len) += adv;
1159
}
1160
len -= adv;
1161
buf += adv;
1162
}
1163
} else {
1164
ERR_FAIL_MUL_OF(count, sizeof(float) * 3, ERR_INVALID_DATA);
1165
ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 3 > (size_t)len, ERR_INVALID_DATA);
1166
1167
if (r_len) {
1168
(*r_len) += 4; // Size of count number.
1169
}
1170
1171
if (count) {
1172
varray.resize(count);
1173
Vector3 *w = varray.ptrw();
1174
1175
for (int32_t i = 0; i < count; i++) {
1176
w[i].x = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 0);
1177
w[i].y = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 1);
1178
w[i].z = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 2);
1179
}
1180
1181
int adv = sizeof(float) * 3 * count;
1182
1183
if (r_len) {
1184
(*r_len) += adv;
1185
}
1186
len -= adv;
1187
buf += adv;
1188
}
1189
}
1190
r_variant = varray;
1191
1192
} break;
1193
case Variant::PACKED_COLOR_ARRAY: {
1194
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
1195
int32_t count = decode_uint32(buf);
1196
buf += 4;
1197
len -= 4;
1198
1199
ERR_FAIL_MUL_OF(count, 4 * 4, ERR_INVALID_DATA);
1200
ERR_FAIL_COND_V(count < 0 || count * 4 * 4 > len, ERR_INVALID_DATA);
1201
1202
Vector<Color> carray;
1203
1204
if (r_len) {
1205
(*r_len) += 4; // Size of count number.
1206
}
1207
1208
if (count) {
1209
carray.resize(count);
1210
Color *w = carray.ptrw();
1211
1212
for (int32_t i = 0; i < count; i++) {
1213
// Colors should always be in single-precision.
1214
w[i].r = decode_float(buf + i * 4 * 4 + 4 * 0);
1215
w[i].g = decode_float(buf + i * 4 * 4 + 4 * 1);
1216
w[i].b = decode_float(buf + i * 4 * 4 + 4 * 2);
1217
w[i].a = decode_float(buf + i * 4 * 4 + 4 * 3);
1218
}
1219
1220
int adv = 4 * 4 * count;
1221
1222
if (r_len) {
1223
(*r_len) += adv;
1224
}
1225
}
1226
1227
r_variant = carray;
1228
1229
} break;
1230
1231
case Variant::PACKED_VECTOR4_ARRAY: {
1232
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
1233
int32_t count = decode_uint32(buf);
1234
buf += 4;
1235
len -= 4;
1236
1237
Vector<Vector4> varray;
1238
1239
if (header & HEADER_DATA_FLAG_64) {
1240
ERR_FAIL_MUL_OF(count, sizeof(double) * 4, ERR_INVALID_DATA);
1241
ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 4 > (size_t)len, ERR_INVALID_DATA);
1242
1243
if (r_len) {
1244
(*r_len) += 4; // Size of count number.
1245
}
1246
1247
if (count) {
1248
varray.resize(count);
1249
Vector4 *w = varray.ptrw();
1250
1251
for (int32_t i = 0; i < count; i++) {
1252
w[i].x = decode_double(buf + i * sizeof(double) * 4 + sizeof(double) * 0);
1253
w[i].y = decode_double(buf + i * sizeof(double) * 4 + sizeof(double) * 1);
1254
w[i].z = decode_double(buf + i * sizeof(double) * 4 + sizeof(double) * 2);
1255
w[i].w = decode_double(buf + i * sizeof(double) * 4 + sizeof(double) * 3);
1256
}
1257
1258
int adv = sizeof(double) * 4 * count;
1259
1260
if (r_len) {
1261
(*r_len) += adv;
1262
}
1263
len -= adv;
1264
buf += adv;
1265
}
1266
} else {
1267
ERR_FAIL_MUL_OF(count, sizeof(float) * 4, ERR_INVALID_DATA);
1268
ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 4 > (size_t)len, ERR_INVALID_DATA);
1269
1270
if (r_len) {
1271
(*r_len) += 4; // Size of count number.
1272
}
1273
1274
if (count) {
1275
varray.resize(count);
1276
Vector4 *w = varray.ptrw();
1277
1278
for (int32_t i = 0; i < count; i++) {
1279
w[i].x = decode_float(buf + i * sizeof(float) * 4 + sizeof(float) * 0);
1280
w[i].y = decode_float(buf + i * sizeof(float) * 4 + sizeof(float) * 1);
1281
w[i].z = decode_float(buf + i * sizeof(float) * 4 + sizeof(float) * 2);
1282
w[i].w = decode_float(buf + i * sizeof(float) * 4 + sizeof(float) * 3);
1283
}
1284
1285
int adv = sizeof(float) * 4 * count;
1286
1287
if (r_len) {
1288
(*r_len) += adv;
1289
}
1290
len -= adv;
1291
buf += adv;
1292
}
1293
}
1294
r_variant = varray;
1295
1296
} break;
1297
default: {
1298
ERR_FAIL_V(ERR_BUG);
1299
}
1300
}
1301
1302
return OK;
1303
}
1304
1305
static void _encode_string(const String &p_string, uint8_t *&buf, int &r_len) {
1306
CharString utf8 = p_string.utf8();
1307
1308
if (buf) {
1309
encode_uint32(utf8.length(), buf);
1310
buf += 4;
1311
memcpy(buf, utf8.get_data(), utf8.length());
1312
buf += utf8.length();
1313
}
1314
1315
r_len += 4 + utf8.length();
1316
while (r_len % 4) {
1317
r_len++; // Pad.
1318
if (buf) {
1319
*(buf++) = 0;
1320
}
1321
}
1322
}
1323
1324
static void _encode_container_type_header(const ContainerType &p_type, uint32_t &header, uint32_t p_shift, bool p_full_objects) {
1325
if (p_type.builtin_type != Variant::NIL) {
1326
if (p_type.script.is_valid()) {
1327
header |= (p_full_objects ? CONTAINER_TYPE_KIND_SCRIPT : CONTAINER_TYPE_KIND_CLASS_NAME) << p_shift;
1328
} else if (p_type.class_name != StringName()) {
1329
header |= CONTAINER_TYPE_KIND_CLASS_NAME << p_shift;
1330
} else {
1331
// No need to check `p_full_objects` since `class_name` should be non-empty for `builtin_type == Variant::OBJECT`.
1332
header |= CONTAINER_TYPE_KIND_BUILTIN << p_shift;
1333
}
1334
}
1335
}
1336
1337
static Error _encode_container_type(const ContainerType &p_type, uint8_t *&buf, int &r_len, bool p_full_objects) {
1338
if (p_type.builtin_type != Variant::NIL) {
1339
if (p_type.script.is_valid()) {
1340
if (p_full_objects) {
1341
String path = p_type.script->get_path();
1342
ERR_FAIL_COND_V_MSG(path.is_empty() || !path.begins_with("res://"), ERR_UNAVAILABLE, "Failed to encode a path to a custom script for a container type.");
1343
_encode_string(path, buf, r_len);
1344
} else {
1345
_encode_string(EncodedObjectAsID::get_class_static(), buf, r_len);
1346
}
1347
} else if (p_type.class_name != StringName()) {
1348
_encode_string(p_full_objects ? p_type.class_name : EncodedObjectAsID::get_class_static(), buf, r_len);
1349
} else {
1350
// No need to check `p_full_objects` since `class_name` should be non-empty for `builtin_type == Variant::OBJECT`.
1351
if (buf) {
1352
encode_uint32(p_type.builtin_type, buf);
1353
buf += 4;
1354
}
1355
r_len += 4;
1356
}
1357
}
1358
return OK;
1359
}
1360
1361
Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bool p_full_objects, int p_depth) {
1362
ERR_FAIL_COND_V_MSG(p_depth > Variant::MAX_RECURSION_DEPTH, ERR_OUT_OF_MEMORY, "Potential infinite recursion detected. Bailing.");
1363
uint8_t *buf = r_buffer;
1364
1365
r_len = 0;
1366
1367
uint32_t header = p_variant.get_type();
1368
1369
switch (p_variant.get_type()) {
1370
case Variant::INT: {
1371
int64_t val = p_variant;
1372
if (val > (int64_t)INT_MAX || val < (int64_t)INT_MIN) {
1373
header |= HEADER_DATA_FLAG_64;
1374
}
1375
} break;
1376
case Variant::FLOAT: {
1377
double d = p_variant;
1378
float f = d;
1379
if (double(f) != d) {
1380
header |= HEADER_DATA_FLAG_64;
1381
}
1382
} break;
1383
case Variant::OBJECT: {
1384
// Test for potential wrong values sent by the debugger when it breaks.
1385
Object *obj = p_variant.get_validated_object();
1386
if (!obj) {
1387
// Object is invalid, send a nullptr instead.
1388
if (buf) {
1389
encode_uint32(Variant::NIL, buf);
1390
}
1391
r_len += 4;
1392
return OK;
1393
}
1394
1395
if (!p_full_objects) {
1396
header |= HEADER_DATA_FLAG_OBJECT_AS_ID;
1397
}
1398
} break;
1399
case Variant::DICTIONARY: {
1400
const Dictionary dict = p_variant;
1401
_encode_container_type_header(dict.get_key_type(), header, HEADER_DATA_FIELD_TYPED_DICTIONARY_KEY_SHIFT, p_full_objects);
1402
_encode_container_type_header(dict.get_value_type(), header, HEADER_DATA_FIELD_TYPED_DICTIONARY_VALUE_SHIFT, p_full_objects);
1403
} break;
1404
case Variant::ARRAY: {
1405
const Array array = p_variant;
1406
_encode_container_type_header(array.get_element_type(), header, HEADER_DATA_FIELD_TYPED_ARRAY_SHIFT, p_full_objects);
1407
} break;
1408
#ifdef REAL_T_IS_DOUBLE
1409
case Variant::VECTOR2:
1410
case Variant::VECTOR3:
1411
case Variant::VECTOR4:
1412
case Variant::PACKED_VECTOR2_ARRAY:
1413
case Variant::PACKED_VECTOR3_ARRAY:
1414
case Variant::PACKED_VECTOR4_ARRAY:
1415
case Variant::TRANSFORM2D:
1416
case Variant::TRANSFORM3D:
1417
case Variant::PROJECTION:
1418
case Variant::QUATERNION:
1419
case Variant::PLANE:
1420
case Variant::BASIS:
1421
case Variant::RECT2:
1422
case Variant::AABB: {
1423
header |= HEADER_DATA_FLAG_64;
1424
} break;
1425
#endif // REAL_T_IS_DOUBLE
1426
default: {
1427
// Nothing to do at this stage.
1428
} break;
1429
}
1430
1431
if (buf) {
1432
encode_uint32(header, buf);
1433
buf += 4;
1434
}
1435
r_len += 4;
1436
1437
switch (p_variant.get_type()) {
1438
case Variant::NIL: {
1439
// Nothing to do.
1440
} break;
1441
case Variant::BOOL: {
1442
if (buf) {
1443
encode_uint32(p_variant.operator bool(), buf);
1444
}
1445
1446
r_len += 4;
1447
1448
} break;
1449
case Variant::INT: {
1450
if (header & HEADER_DATA_FLAG_64) {
1451
// 64 bits.
1452
if (buf) {
1453
encode_uint64(p_variant.operator uint64_t(), buf);
1454
}
1455
1456
r_len += 8;
1457
} else {
1458
if (buf) {
1459
encode_uint32(p_variant.operator uint32_t(), buf);
1460
}
1461
1462
r_len += 4;
1463
}
1464
} break;
1465
case Variant::FLOAT: {
1466
if (header & HEADER_DATA_FLAG_64) {
1467
if (buf) {
1468
encode_double(p_variant.operator double(), buf);
1469
}
1470
1471
r_len += 8;
1472
1473
} else {
1474
if (buf) {
1475
encode_float(p_variant.operator float(), buf);
1476
}
1477
1478
r_len += 4;
1479
}
1480
1481
} break;
1482
case Variant::NODE_PATH: {
1483
NodePath np = p_variant;
1484
if (buf) {
1485
encode_uint32(uint32_t(np.get_name_count()) | 0x80000000, buf); // For compatibility with the old format.
1486
encode_uint32(np.get_subname_count(), buf + 4);
1487
uint32_t np_flags = 0;
1488
if (np.is_absolute()) {
1489
np_flags |= 1;
1490
}
1491
1492
encode_uint32(np_flags, buf + 8);
1493
1494
buf += 12;
1495
}
1496
1497
r_len += 12;
1498
1499
int total = np.get_name_count() + np.get_subname_count();
1500
1501
for (int i = 0; i < total; i++) {
1502
String str;
1503
1504
if (i < np.get_name_count()) {
1505
str = np.get_name(i);
1506
} else {
1507
str = np.get_subname(i - np.get_name_count());
1508
}
1509
1510
CharString utf8 = str.utf8();
1511
1512
int pad = 0;
1513
1514
if (utf8.length() % 4) {
1515
pad = 4 - utf8.length() % 4;
1516
}
1517
1518
if (buf) {
1519
encode_uint32(utf8.length(), buf);
1520
buf += 4;
1521
memcpy(buf, utf8.get_data(), utf8.length());
1522
buf += pad + utf8.length();
1523
}
1524
1525
r_len += 4 + utf8.length() + pad;
1526
}
1527
1528
} break;
1529
case Variant::STRING:
1530
case Variant::STRING_NAME: {
1531
_encode_string(p_variant, buf, r_len);
1532
1533
} break;
1534
1535
// Math types.
1536
case Variant::VECTOR2: {
1537
if (buf) {
1538
Vector2 v2 = p_variant;
1539
encode_real(v2.x, &buf[0]);
1540
encode_real(v2.y, &buf[sizeof(real_t)]);
1541
}
1542
1543
r_len += 2 * sizeof(real_t);
1544
1545
} break;
1546
case Variant::VECTOR2I: {
1547
if (buf) {
1548
Vector2i v2 = p_variant;
1549
encode_uint32(v2.x, &buf[0]);
1550
encode_uint32(v2.y, &buf[4]);
1551
}
1552
1553
r_len += 2 * 4;
1554
1555
} break;
1556
case Variant::RECT2: {
1557
if (buf) {
1558
Rect2 r2 = p_variant;
1559
encode_real(r2.position.x, &buf[0]);
1560
encode_real(r2.position.y, &buf[sizeof(real_t)]);
1561
encode_real(r2.size.x, &buf[sizeof(real_t) * 2]);
1562
encode_real(r2.size.y, &buf[sizeof(real_t) * 3]);
1563
}
1564
r_len += 4 * sizeof(real_t);
1565
1566
} break;
1567
case Variant::RECT2I: {
1568
if (buf) {
1569
Rect2i r2 = p_variant;
1570
encode_uint32(r2.position.x, &buf[0]);
1571
encode_uint32(r2.position.y, &buf[4]);
1572
encode_uint32(r2.size.x, &buf[8]);
1573
encode_uint32(r2.size.y, &buf[12]);
1574
}
1575
r_len += 4 * 4;
1576
1577
} break;
1578
case Variant::VECTOR3: {
1579
if (buf) {
1580
Vector3 v3 = p_variant;
1581
encode_real(v3.x, &buf[0]);
1582
encode_real(v3.y, &buf[sizeof(real_t)]);
1583
encode_real(v3.z, &buf[sizeof(real_t) * 2]);
1584
}
1585
1586
r_len += 3 * sizeof(real_t);
1587
1588
} break;
1589
case Variant::VECTOR3I: {
1590
if (buf) {
1591
Vector3i v3 = p_variant;
1592
encode_uint32(v3.x, &buf[0]);
1593
encode_uint32(v3.y, &buf[4]);
1594
encode_uint32(v3.z, &buf[8]);
1595
}
1596
1597
r_len += 3 * 4;
1598
1599
} break;
1600
case Variant::TRANSFORM2D: {
1601
if (buf) {
1602
Transform2D val = p_variant;
1603
for (int i = 0; i < 3; i++) {
1604
for (int j = 0; j < 2; j++) {
1605
memcpy(&buf[(i * 2 + j) * sizeof(real_t)], &val.columns[i][j], sizeof(real_t));
1606
}
1607
}
1608
}
1609
1610
r_len += 6 * sizeof(real_t);
1611
1612
} break;
1613
case Variant::VECTOR4: {
1614
if (buf) {
1615
Vector4 v4 = p_variant;
1616
encode_real(v4.x, &buf[0]);
1617
encode_real(v4.y, &buf[sizeof(real_t)]);
1618
encode_real(v4.z, &buf[sizeof(real_t) * 2]);
1619
encode_real(v4.w, &buf[sizeof(real_t) * 3]);
1620
}
1621
1622
r_len += 4 * sizeof(real_t);
1623
1624
} break;
1625
case Variant::VECTOR4I: {
1626
if (buf) {
1627
Vector4i v4 = p_variant;
1628
encode_uint32(v4.x, &buf[0]);
1629
encode_uint32(v4.y, &buf[4]);
1630
encode_uint32(v4.z, &buf[8]);
1631
encode_uint32(v4.w, &buf[12]);
1632
}
1633
1634
r_len += 4 * 4;
1635
1636
} break;
1637
case Variant::PLANE: {
1638
if (buf) {
1639
Plane p = p_variant;
1640
encode_real(p.normal.x, &buf[0]);
1641
encode_real(p.normal.y, &buf[sizeof(real_t)]);
1642
encode_real(p.normal.z, &buf[sizeof(real_t) * 2]);
1643
encode_real(p.d, &buf[sizeof(real_t) * 3]);
1644
}
1645
1646
r_len += 4 * sizeof(real_t);
1647
1648
} break;
1649
case Variant::QUATERNION: {
1650
if (buf) {
1651
Quaternion q = p_variant;
1652
encode_real(q.x, &buf[0]);
1653
encode_real(q.y, &buf[sizeof(real_t)]);
1654
encode_real(q.z, &buf[sizeof(real_t) * 2]);
1655
encode_real(q.w, &buf[sizeof(real_t) * 3]);
1656
}
1657
1658
r_len += 4 * sizeof(real_t);
1659
1660
} break;
1661
case Variant::AABB: {
1662
if (buf) {
1663
AABB aabb = p_variant;
1664
encode_real(aabb.position.x, &buf[0]);
1665
encode_real(aabb.position.y, &buf[sizeof(real_t)]);
1666
encode_real(aabb.position.z, &buf[sizeof(real_t) * 2]);
1667
encode_real(aabb.size.x, &buf[sizeof(real_t) * 3]);
1668
encode_real(aabb.size.y, &buf[sizeof(real_t) * 4]);
1669
encode_real(aabb.size.z, &buf[sizeof(real_t) * 5]);
1670
}
1671
1672
r_len += 6 * sizeof(real_t);
1673
1674
} break;
1675
case Variant::BASIS: {
1676
if (buf) {
1677
Basis val = p_variant;
1678
for (int i = 0; i < 3; i++) {
1679
for (int j = 0; j < 3; j++) {
1680
memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.rows[i][j], sizeof(real_t));
1681
}
1682
}
1683
}
1684
1685
r_len += 9 * sizeof(real_t);
1686
1687
} break;
1688
case Variant::TRANSFORM3D: {
1689
if (buf) {
1690
Transform3D val = p_variant;
1691
for (int i = 0; i < 3; i++) {
1692
for (int j = 0; j < 3; j++) {
1693
memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.basis.rows[i][j], sizeof(real_t));
1694
}
1695
}
1696
1697
encode_real(val.origin.x, &buf[sizeof(real_t) * 9]);
1698
encode_real(val.origin.y, &buf[sizeof(real_t) * 10]);
1699
encode_real(val.origin.z, &buf[sizeof(real_t) * 11]);
1700
}
1701
1702
r_len += 12 * sizeof(real_t);
1703
1704
} break;
1705
case Variant::PROJECTION: {
1706
if (buf) {
1707
Projection val = p_variant;
1708
for (int i = 0; i < 4; i++) {
1709
for (int j = 0; j < 4; j++) {
1710
memcpy(&buf[(i * 4 + j) * sizeof(real_t)], &val.columns[i][j], sizeof(real_t));
1711
}
1712
}
1713
}
1714
1715
r_len += 16 * sizeof(real_t);
1716
1717
} break;
1718
1719
// Misc types.
1720
case Variant::COLOR: {
1721
if (buf) {
1722
Color c = p_variant;
1723
encode_float(c.r, &buf[0]);
1724
encode_float(c.g, &buf[4]);
1725
encode_float(c.b, &buf[8]);
1726
encode_float(c.a, &buf[12]);
1727
}
1728
1729
r_len += 4 * 4; // Colors should always be in single-precision.
1730
1731
} break;
1732
case Variant::RID: {
1733
RID rid = p_variant;
1734
1735
if (buf) {
1736
encode_uint64(rid.get_id(), buf);
1737
}
1738
r_len += 8;
1739
} break;
1740
case Variant::OBJECT: {
1741
if (p_full_objects) {
1742
Object *obj = p_variant;
1743
if (!obj) {
1744
if (buf) {
1745
encode_uint32(0, buf);
1746
}
1747
r_len += 4;
1748
1749
} else {
1750
ERR_FAIL_COND_V(!ClassDB::can_instantiate(obj->get_class()), ERR_INVALID_PARAMETER);
1751
1752
_encode_string(obj->get_class(), buf, r_len);
1753
1754
List<PropertyInfo> props;
1755
obj->get_property_list(&props);
1756
1757
int pc = 0;
1758
for (const PropertyInfo &E : props) {
1759
if (!(E.usage & PROPERTY_USAGE_STORAGE)) {
1760
continue;
1761
}
1762
pc++;
1763
}
1764
1765
if (buf) {
1766
encode_uint32(pc, buf);
1767
buf += 4;
1768
}
1769
1770
r_len += 4;
1771
1772
for (const PropertyInfo &E : props) {
1773
if (!(E.usage & PROPERTY_USAGE_STORAGE)) {
1774
continue;
1775
}
1776
1777
_encode_string(E.name, buf, r_len);
1778
1779
Variant value;
1780
1781
if (E.name == CoreStringName(script)) {
1782
Ref<Script> script = obj->get_script();
1783
if (script.is_valid()) {
1784
String path = script->get_path();
1785
ERR_FAIL_COND_V_MSG(path.is_empty() || !path.begins_with("res://"), ERR_UNAVAILABLE, "Failed to encode a path to a custom script.");
1786
value = path;
1787
}
1788
} else {
1789
value = obj->get(E.name);
1790
}
1791
1792
int len;
1793
Error err = encode_variant(value, buf, len, p_full_objects, p_depth + 1);
1794
ERR_FAIL_COND_V(err, err);
1795
ERR_FAIL_COND_V(len % 4, ERR_BUG);
1796
r_len += len;
1797
if (buf) {
1798
buf += len;
1799
}
1800
}
1801
}
1802
} else {
1803
if (buf) {
1804
Object *obj = p_variant.get_validated_object();
1805
ObjectID id;
1806
if (obj) {
1807
id = obj->get_instance_id();
1808
}
1809
1810
encode_uint64(id, buf);
1811
}
1812
1813
r_len += 8;
1814
}
1815
1816
} break;
1817
case Variant::CALLABLE: {
1818
} break;
1819
case Variant::SIGNAL: {
1820
Signal signal = p_variant;
1821
1822
_encode_string(signal.get_name(), buf, r_len);
1823
1824
if (buf) {
1825
encode_uint64(signal.get_object_id(), buf);
1826
}
1827
r_len += 8;
1828
} break;
1829
case Variant::DICTIONARY: {
1830
const Dictionary dict = p_variant;
1831
1832
{
1833
Error err = _encode_container_type(dict.get_key_type(), buf, r_len, p_full_objects);
1834
if (err) {
1835
return err;
1836
}
1837
}
1838
1839
{
1840
Error err = _encode_container_type(dict.get_value_type(), buf, r_len, p_full_objects);
1841
if (err) {
1842
return err;
1843
}
1844
}
1845
1846
if (buf) {
1847
encode_uint32(uint32_t(dict.size()), buf);
1848
buf += 4;
1849
}
1850
r_len += 4;
1851
1852
for (const KeyValue<Variant, Variant> &kv : dict) {
1853
int len;
1854
Error err = encode_variant(kv.key, buf, len, p_full_objects, p_depth + 1);
1855
ERR_FAIL_COND_V(err, err);
1856
ERR_FAIL_COND_V(len % 4, ERR_BUG);
1857
r_len += len;
1858
if (buf) {
1859
buf += len;
1860
}
1861
err = encode_variant(kv.value, buf, len, p_full_objects, p_depth + 1);
1862
ERR_FAIL_COND_V(err, err);
1863
ERR_FAIL_COND_V(len % 4, ERR_BUG);
1864
r_len += len;
1865
if (buf) {
1866
buf += len;
1867
}
1868
}
1869
1870
} break;
1871
case Variant::ARRAY: {
1872
const Array array = p_variant;
1873
1874
{
1875
Error err = _encode_container_type(array.get_element_type(), buf, r_len, p_full_objects);
1876
if (err) {
1877
return err;
1878
}
1879
}
1880
1881
if (buf) {
1882
encode_uint32(uint32_t(array.size()), buf);
1883
buf += 4;
1884
}
1885
r_len += 4;
1886
1887
for (const Variant &elem : array) {
1888
int len;
1889
Error err = encode_variant(elem, buf, len, p_full_objects, p_depth + 1);
1890
ERR_FAIL_COND_V(err, err);
1891
ERR_FAIL_COND_V(len % 4, ERR_BUG);
1892
if (buf) {
1893
buf += len;
1894
}
1895
r_len += len;
1896
}
1897
1898
} break;
1899
1900
// Packed arrays.
1901
case Variant::PACKED_BYTE_ARRAY: {
1902
Vector<uint8_t> data = p_variant;
1903
int datalen = data.size();
1904
int datasize = sizeof(uint8_t);
1905
1906
if (buf) {
1907
encode_uint32(datalen, buf);
1908
buf += 4;
1909
const uint8_t *r = data.ptr();
1910
if (r) {
1911
memcpy(buf, &r[0], datalen * datasize);
1912
buf += datalen * datasize;
1913
}
1914
}
1915
1916
r_len += 4 + datalen * datasize;
1917
while (r_len % 4) {
1918
r_len++;
1919
if (buf) {
1920
*(buf++) = 0;
1921
}
1922
}
1923
1924
} break;
1925
case Variant::PACKED_INT32_ARRAY: {
1926
Vector<int32_t> data = p_variant;
1927
int datalen = data.size();
1928
int datasize = sizeof(int32_t);
1929
1930
if (buf) {
1931
encode_uint32(datalen, buf);
1932
buf += 4;
1933
const int32_t *r = data.ptr();
1934
for (int32_t i = 0; i < datalen; i++) {
1935
encode_uint32(r[i], &buf[i * datasize]);
1936
}
1937
}
1938
1939
r_len += 4 + datalen * datasize;
1940
1941
} break;
1942
case Variant::PACKED_INT64_ARRAY: {
1943
Vector<int64_t> data = p_variant;
1944
int datalen = data.size();
1945
int datasize = sizeof(int64_t);
1946
1947
if (buf) {
1948
encode_uint32(datalen, buf);
1949
buf += 4;
1950
const int64_t *r = data.ptr();
1951
for (int64_t i = 0; i < datalen; i++) {
1952
encode_uint64(r[i], &buf[i * datasize]);
1953
}
1954
}
1955
1956
r_len += 4 + datalen * datasize;
1957
1958
} break;
1959
case Variant::PACKED_FLOAT32_ARRAY: {
1960
Vector<float> data = p_variant;
1961
int datalen = data.size();
1962
int datasize = sizeof(float);
1963
1964
if (buf) {
1965
encode_uint32(datalen, buf);
1966
buf += 4;
1967
const float *r = data.ptr();
1968
for (int i = 0; i < datalen; i++) {
1969
encode_float(r[i], &buf[i * datasize]);
1970
}
1971
}
1972
1973
r_len += 4 + datalen * datasize;
1974
1975
} break;
1976
case Variant::PACKED_FLOAT64_ARRAY: {
1977
Vector<double> data = p_variant;
1978
int datalen = data.size();
1979
int datasize = sizeof(double);
1980
1981
if (buf) {
1982
encode_uint32(datalen, buf);
1983
buf += 4;
1984
const double *r = data.ptr();
1985
for (int i = 0; i < datalen; i++) {
1986
encode_double(r[i], &buf[i * datasize]);
1987
}
1988
}
1989
1990
r_len += 4 + datalen * datasize;
1991
1992
} break;
1993
case Variant::PACKED_STRING_ARRAY: {
1994
Vector<String> data = p_variant;
1995
int len = data.size();
1996
1997
if (buf) {
1998
encode_uint32(len, buf);
1999
buf += 4;
2000
}
2001
2002
r_len += 4;
2003
2004
for (int i = 0; i < len; i++) {
2005
CharString utf8 = data.get(i).utf8();
2006
2007
if (buf) {
2008
encode_uint32(utf8.length() + 1, buf);
2009
buf += 4;
2010
memcpy(buf, utf8.get_data(), utf8.length() + 1);
2011
buf += utf8.length() + 1;
2012
}
2013
2014
r_len += 4 + utf8.length() + 1;
2015
while (r_len % 4) {
2016
r_len++; // Pad.
2017
if (buf) {
2018
*(buf++) = 0;
2019
}
2020
}
2021
}
2022
2023
} break;
2024
case Variant::PACKED_VECTOR2_ARRAY: {
2025
Vector<Vector2> data = p_variant;
2026
int len = data.size();
2027
2028
if (buf) {
2029
encode_uint32(len, buf);
2030
buf += 4;
2031
}
2032
2033
r_len += 4;
2034
2035
if (buf) {
2036
for (int i = 0; i < len; i++) {
2037
Vector2 v = data.get(i);
2038
2039
encode_real(v.x, &buf[0]);
2040
encode_real(v.y, &buf[sizeof(real_t)]);
2041
buf += sizeof(real_t) * 2;
2042
}
2043
}
2044
2045
r_len += sizeof(real_t) * 2 * len;
2046
2047
} break;
2048
case Variant::PACKED_VECTOR3_ARRAY: {
2049
Vector<Vector3> data = p_variant;
2050
int len = data.size();
2051
2052
if (buf) {
2053
encode_uint32(len, buf);
2054
buf += 4;
2055
}
2056
2057
r_len += 4;
2058
2059
if (buf) {
2060
for (int i = 0; i < len; i++) {
2061
Vector3 v = data.get(i);
2062
2063
encode_real(v.x, &buf[0]);
2064
encode_real(v.y, &buf[sizeof(real_t)]);
2065
encode_real(v.z, &buf[sizeof(real_t) * 2]);
2066
buf += sizeof(real_t) * 3;
2067
}
2068
}
2069
2070
r_len += sizeof(real_t) * 3 * len;
2071
2072
} break;
2073
case Variant::PACKED_COLOR_ARRAY: {
2074
Vector<Color> data = p_variant;
2075
int len = data.size();
2076
2077
if (buf) {
2078
encode_uint32(len, buf);
2079
buf += 4;
2080
}
2081
2082
r_len += 4;
2083
2084
if (buf) {
2085
for (int i = 0; i < len; i++) {
2086
Color c = data.get(i);
2087
2088
encode_float(c.r, &buf[0]);
2089
encode_float(c.g, &buf[4]);
2090
encode_float(c.b, &buf[8]);
2091
encode_float(c.a, &buf[12]);
2092
buf += 4 * 4; // Colors should always be in single-precision.
2093
}
2094
}
2095
2096
r_len += 4 * 4 * len;
2097
2098
} break;
2099
case Variant::PACKED_VECTOR4_ARRAY: {
2100
Vector<Vector4> data = p_variant;
2101
int len = data.size();
2102
2103
if (buf) {
2104
encode_uint32(len, buf);
2105
buf += 4;
2106
}
2107
2108
r_len += 4;
2109
2110
if (buf) {
2111
for (int i = 0; i < len; i++) {
2112
Vector4 v = data.get(i);
2113
2114
encode_real(v.x, &buf[0]);
2115
encode_real(v.y, &buf[sizeof(real_t)]);
2116
encode_real(v.z, &buf[sizeof(real_t) * 2]);
2117
encode_real(v.w, &buf[sizeof(real_t) * 3]);
2118
buf += sizeof(real_t) * 4;
2119
}
2120
}
2121
2122
r_len += sizeof(real_t) * 4 * len;
2123
2124
} break;
2125
default: {
2126
ERR_FAIL_V(ERR_BUG);
2127
}
2128
}
2129
2130
return OK;
2131
}
2132
2133
Vector<float> vector3_to_float32_array(const Vector3 *vecs, size_t count) {
2134
// We always allocate a new array, and we don't `memcpy()`.
2135
// We also don't consider returning a pointer to the passed vectors when `sizeof(real_t) == 4`.
2136
// One reason is that we could decide to put a 4th component in `Vector3` for SIMD/mobile performance,
2137
// which would cause trouble with these optimizations.
2138
Vector<float> floats;
2139
if (count == 0) {
2140
return floats;
2141
}
2142
floats.resize(count * 3);
2143
float *floats_w = floats.ptrw();
2144
for (size_t i = 0; i < count; ++i) {
2145
const Vector3 v = vecs[i];
2146
floats_w[0] = v.x;
2147
floats_w[1] = v.y;
2148
floats_w[2] = v.z;
2149
floats_w += 3;
2150
}
2151
return floats;
2152
}
2153
2154