#pragma once
#include "core/math/aabb.h"
#include "core/templates/list.h"
#include "core/templates/local_vector.h"
#include "core/templates/paged_allocator.h"
#include "core/typedefs.h"
class DynamicBVH {
struct Node;
public:
struct ID {
Node *node = nullptr;
public:
_FORCE_INLINE_ bool is_valid() const { return node != nullptr; }
};
private:
struct Volume {
Vector3 min, max;
_FORCE_INLINE_ Vector3 get_center() const { return ((min + max) / 2); }
_FORCE_INLINE_ Vector3 get_length() const { return (max - min); }
_FORCE_INLINE_ bool contains(const Volume &a) const {
return ((min.x <= a.min.x) &&
(min.y <= a.min.y) &&
(min.z <= a.min.z) &&
(max.x >= a.max.x) &&
(max.y >= a.max.y) &&
(max.z >= a.max.z));
}
_FORCE_INLINE_ Volume merge(const Volume &b) const {
Volume r;
for (int i = 0; i < 3; ++i) {
if (min[i] < b.min[i]) {
r.min[i] = min[i];
} else {
r.min[i] = b.min[i];
}
if (max[i] > b.max[i]) {
r.max[i] = max[i];
} else {
r.max[i] = b.max[i];
}
}
return r;
}
_FORCE_INLINE_ real_t get_size() const {
const Vector3 edges = get_length();
return (edges.x * edges.y * edges.z +
edges.x + edges.y + edges.z);
}
_FORCE_INLINE_ bool is_not_equal_to(const Volume &b) const {
return ((min.x != b.min.x) ||
(min.y != b.min.y) ||
(min.z != b.min.z) ||
(max.x != b.max.x) ||
(max.y != b.max.y) ||
(max.z != b.max.z));
}
_FORCE_INLINE_ real_t get_proximity_to(const Volume &b) const {
const Vector3 d = (min + max) - (b.min + b.max);
return (Math::abs(d.x) + Math::abs(d.y) + Math::abs(d.z));
}
_FORCE_INLINE_ int select_by_proximity(const Volume &a, const Volume &b) const {
return (get_proximity_to(a) < get_proximity_to(b) ? 0 : 1);
}
_FORCE_INLINE_ bool intersects(const Volume &b) const {
return ((min.x <= b.max.x) &&
(max.x >= b.min.x) &&
(min.y <= b.max.y) &&
(max.y >= b.min.y) &&
(min.z <= b.max.z) &&
(max.z >= b.min.z));
}
_FORCE_INLINE_ bool intersects_convex(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const {
Vector3 half_extents = (max - min) * 0.5;
Vector3 ofs = min + half_extents;
for (int i = 0; i < p_plane_count; i++) {
const Plane &p = p_planes[i];
Vector3 point(
(p.normal.x > 0) ? -half_extents.x : half_extents.x,
(p.normal.y > 0) ? -half_extents.y : half_extents.y,
(p.normal.z > 0) ? -half_extents.z : half_extents.z);
point += ofs;
if (p.is_point_over(point)) {
return false;
}
}
int bad_point_counts_positive[3] = { 0 };
int bad_point_counts_negative[3] = { 0 };
for (int k = 0; k < 3; k++) {
for (int i = 0; i < p_point_count; i++) {
if (p_points[i].coord[k] > ofs.coord[k] + half_extents.coord[k]) {
bad_point_counts_positive[k]++;
}
if (p_points[i].coord[k] < ofs.coord[k] - half_extents.coord[k]) {
bad_point_counts_negative[k]++;
}
}
if (bad_point_counts_negative[k] == p_point_count) {
return false;
}
if (bad_point_counts_positive[k] == p_point_count) {
return false;
}
}
return true;
}
};
struct Node {
Volume volume;
Node *parent = nullptr;
union {
Node *children[2];
void *data;
};
_FORCE_INLINE_ bool is_leaf() const { return children[1] == nullptr; }
_FORCE_INLINE_ bool is_internal() const { return (!is_leaf()); }
_FORCE_INLINE_ int get_index_in_parent() const {
ERR_FAIL_NULL_V(parent, 0);
return (parent->children[1] == this) ? 1 : 0;
}
void get_max_depth(int depth, int &maxdepth) {
if (is_internal()) {
children[0]->get_max_depth(depth + 1, maxdepth);
children[1]->get_max_depth(depth + 1, maxdepth);
} else {
maxdepth = MAX(maxdepth, depth);
}
}
int count_leaves() const {
if (is_internal()) {
return children[0]->count_leaves() + children[1]->count_leaves();
} else {
return (1);
}
}
bool is_left_of_axis(const Vector3 &org, const Vector3 &axis) const {
return axis.dot(volume.get_center() - org) <= 0;
}
Node() {
children[0] = nullptr;
children[1] = nullptr;
}
};
PagedAllocator<Node> node_allocator;
Node *bvh_root = nullptr;
int lkhd = -1;
int total_leaves = 0;
uint32_t opath = 0;
uint32_t index = 0;
enum {
ALLOCA_STACK_SIZE = 128
};
_FORCE_INLINE_ void _delete_node(Node *p_node);
void _recurse_delete_node(Node *p_node);
_FORCE_INLINE_ Node *_create_node(Node *p_parent, void *p_data);
_FORCE_INLINE_ DynamicBVH::Node *_create_node_with_volume(Node *p_parent, const Volume &p_volume, void *p_data);
_FORCE_INLINE_ void _insert_leaf(Node *p_root, Node *p_leaf);
_FORCE_INLINE_ Node *_remove_leaf(Node *leaf);
void _fetch_leaves(Node *p_root, LocalVector<Node *> &r_leaves, int p_depth = -1);
static int _split(Node **leaves, int p_count, const Vector3 &p_org, const Vector3 &p_axis);
static Volume _bounds(Node **leaves, int p_count);
void _bottom_up(Node **leaves, int p_count);
Node *_top_down(Node **leaves, int p_count, int p_bu_threshold);
Node *_node_sort(Node *n, Node *&r);
_FORCE_INLINE_ void _update(Node *leaf, int lookahead = -1);
void _extract_leaves(Node *p_node, List<ID> *r_elements);
_FORCE_INLINE_ bool _ray_aabb(const Vector3 &rayFrom, const Vector3 &rayInvDirection, const unsigned int raySign[3], const Vector3 bounds[2], real_t &tmin, real_t lambda_min, real_t lambda_max) {
real_t tmax, tymin, tymax, tzmin, tzmax;
tmin = (bounds[raySign[0]].x - rayFrom.x) * rayInvDirection.x;
tmax = (bounds[1 - raySign[0]].x - rayFrom.x) * rayInvDirection.x;
tymin = (bounds[raySign[1]].y - rayFrom.y) * rayInvDirection.y;
tymax = (bounds[1 - raySign[1]].y - rayFrom.y) * rayInvDirection.y;
if ((tmin > tymax) || (tymin > tmax)) {
return false;
}
if (tymin > tmin) {
tmin = tymin;
}
if (tymax < tmax) {
tmax = tymax;
}
tzmin = (bounds[raySign[2]].z - rayFrom.z) * rayInvDirection.z;
tzmax = (bounds[1 - raySign[2]].z - rayFrom.z) * rayInvDirection.z;
if ((tmin > tzmax) || (tzmin > tmax)) {
return false;
}
if (tzmin > tmin) {
tmin = tzmin;
}
if (tzmax < tmax) {
tmax = tzmax;
}
return ((tmin < lambda_max) && (tmax > lambda_min));
}
public:
void clear();
bool is_empty() const { return (nullptr == bvh_root); }
void optimize_bottom_up();
void optimize_top_down(int bu_threshold = 128);
void optimize_incremental(int passes);
ID insert(const AABB &p_box, void *p_userdata);
bool update(const ID &p_id, const AABB &p_box);
void remove(const ID &p_id);
void get_elements(List<ID> *r_elements);
int get_leaf_count() const;
int get_max_depth() const;
struct DefaultQueryResult {
virtual bool operator()(void *p_data) = 0;
virtual ~DefaultQueryResult() {}
};
template <typename QueryResult>
_FORCE_INLINE_ void aabb_query(const AABB &p_aabb, QueryResult &r_result);
template <typename QueryResult>
_FORCE_INLINE_ void convex_query(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count, QueryResult &r_result);
template <typename QueryResult>
_FORCE_INLINE_ void ray_query(const Vector3 &p_from, const Vector3 &p_to, QueryResult &r_result);
void set_index(uint32_t p_index);
uint32_t get_index() const;
~DynamicBVH();
};
template <typename QueryResult>
void DynamicBVH::aabb_query(const AABB &p_box, QueryResult &r_result) {
if (!bvh_root) {
return;
}
Volume volume;
volume.min = p_box.position;
volume.max = p_box.position + p_box.size;
const Node **alloca_stack = (const Node **)alloca(ALLOCA_STACK_SIZE * sizeof(const Node *));
const Node **stack = alloca_stack;
stack[0] = bvh_root;
int32_t depth = 1;
int32_t threshold = ALLOCA_STACK_SIZE - 2;
LocalVector<const Node *> aux_stack;
do {
depth--;
const Node *n = stack[depth];
if (n->volume.intersects(volume)) {
if (n->is_internal()) {
if (depth > threshold) {
if (aux_stack.is_empty()) {
aux_stack.resize(ALLOCA_STACK_SIZE * 2);
memcpy(aux_stack.ptr(), alloca_stack, ALLOCA_STACK_SIZE * sizeof(const Node *));
alloca_stack = nullptr;
} else {
aux_stack.resize(aux_stack.size() * 2);
}
stack = aux_stack.ptr();
threshold = aux_stack.size() - 2;
}
stack[depth++] = n->children[0];
stack[depth++] = n->children[1];
} else {
if (r_result(n->data)) {
return;
}
}
}
} while (depth > 0);
}
template <typename QueryResult>
void DynamicBVH::convex_query(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count, QueryResult &r_result) {
if (!bvh_root) {
return;
}
Volume volume;
for (int i = 0; i < p_point_count; i++) {
if (i == 0) {
volume.min = p_points[0];
volume.max = p_points[0];
} else {
volume.min = volume.min.min(p_points[i]);
volume.max = volume.max.max(p_points[i]);
}
}
const Node **alloca_stack = (const Node **)alloca(ALLOCA_STACK_SIZE * sizeof(const Node *));
const Node **stack = alloca_stack;
stack[0] = bvh_root;
int32_t depth = 1;
int32_t threshold = ALLOCA_STACK_SIZE - 2;
LocalVector<const Node *> aux_stack;
do {
depth--;
const Node *n = stack[depth];
if (n->volume.intersects(volume) && n->volume.intersects_convex(p_planes, p_plane_count, p_points, p_point_count)) {
if (n->is_internal()) {
if (depth > threshold) {
if (aux_stack.is_empty()) {
aux_stack.resize(ALLOCA_STACK_SIZE * 2);
memcpy(aux_stack.ptr(), alloca_stack, ALLOCA_STACK_SIZE * sizeof(const Node *));
alloca_stack = nullptr;
} else {
aux_stack.resize(aux_stack.size() * 2);
}
stack = aux_stack.ptr();
threshold = aux_stack.size() - 2;
}
stack[depth++] = n->children[0];
stack[depth++] = n->children[1];
} else {
if (r_result(n->data)) {
return;
}
}
}
} while (depth > 0);
}
template <typename QueryResult>
void DynamicBVH::ray_query(const Vector3 &p_from, const Vector3 &p_to, QueryResult &r_result) {
if (!bvh_root) {
return;
}
Vector3 ray_dir = (p_to - p_from);
ray_dir.normalize();
Vector3 inv_dir;
inv_dir[0] = ray_dir[0] == real_t(0.0) ? real_t(1e20) : real_t(1.0) / ray_dir[0];
inv_dir[1] = ray_dir[1] == real_t(0.0) ? real_t(1e20) : real_t(1.0) / ray_dir[1];
inv_dir[2] = ray_dir[2] == real_t(0.0) ? real_t(1e20) : real_t(1.0) / ray_dir[2];
unsigned int signs[3] = { inv_dir[0] < 0.0, inv_dir[1] < 0.0, inv_dir[2] < 0.0 };
real_t lambda_max = ray_dir.dot(p_to - p_from);
Vector3 bounds[2];
const Node **alloca_stack = (const Node **)alloca(ALLOCA_STACK_SIZE * sizeof(const Node *));
const Node **stack = alloca_stack;
stack[0] = bvh_root;
int32_t depth = 1;
int32_t threshold = ALLOCA_STACK_SIZE - 2;
LocalVector<const Node *> aux_stack;
do {
depth--;
const Node *node = stack[depth];
bounds[0] = node->volume.min;
bounds[1] = node->volume.max;
real_t tmin = 1.f, lambda_min = 0.f;
unsigned int result1 = false;
result1 = _ray_aabb(p_from, inv_dir, signs, bounds, tmin, lambda_min, lambda_max);
if (result1) {
if (node->is_internal()) {
if (depth > threshold) {
if (aux_stack.is_empty()) {
aux_stack.resize(ALLOCA_STACK_SIZE * 2);
memcpy(aux_stack.ptr(), alloca_stack, ALLOCA_STACK_SIZE * sizeof(const Node *));
alloca_stack = nullptr;
} else {
aux_stack.resize(aux_stack.size() * 2);
}
stack = aux_stack.ptr();
threshold = aux_stack.size() - 2;
}
stack[depth++] = node->children[0];
stack[depth++] = node->children[1];
} else {
if (r_result(node->data)) {
return;
}
}
}
} while (depth > 0);
}