Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/core/math/geometry_2d.h
9896 views
1
/**************************************************************************/
2
/* geometry_2d.h */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#pragma once
32
33
#include "core/math/delaunay_2d.h"
34
#include "core/math/math_funcs.h"
35
#include "core/math/triangulate.h"
36
#include "core/math/vector2.h"
37
#include "core/math/vector2i.h"
38
#include "core/math/vector3.h"
39
#include "core/math/vector3i.h"
40
#include "core/templates/vector.h"
41
42
class Geometry2D {
43
public:
44
static real_t get_closest_points_between_segments(const Vector2 &p1, const Vector2 &q1, const Vector2 &p2, const Vector2 &q2, Vector2 &c1, Vector2 &c2) {
45
Vector2 d1 = q1 - p1; // Direction vector of segment S1.
46
Vector2 d2 = q2 - p2; // Direction vector of segment S2.
47
Vector2 r = p1 - p2;
48
real_t a = d1.dot(d1); // Squared length of segment S1, always nonnegative.
49
real_t e = d2.dot(d2); // Squared length of segment S2, always nonnegative.
50
real_t f = d2.dot(r);
51
real_t s, t;
52
// Check if either or both segments degenerate into points.
53
if (a <= (real_t)CMP_EPSILON && e <= (real_t)CMP_EPSILON) {
54
// Both segments degenerate into points.
55
c1 = p1;
56
c2 = p2;
57
return Math::sqrt((c1 - c2).dot(c1 - c2));
58
}
59
if (a <= (real_t)CMP_EPSILON) {
60
// First segment degenerates into a point.
61
s = 0.0;
62
t = f / e; // s = 0 => t = (b*s + f) / e = f / e
63
t = CLAMP(t, 0.0f, 1.0f);
64
} else {
65
real_t c = d1.dot(r);
66
if (e <= (real_t)CMP_EPSILON) {
67
// Second segment degenerates into a point.
68
t = 0.0;
69
s = CLAMP(-c / a, 0.0f, 1.0f); // t = 0 => s = (b*t - c) / a = -c / a
70
} else {
71
// The general nondegenerate case starts here.
72
real_t b = d1.dot(d2);
73
real_t denom = a * e - b * b; // Always nonnegative.
74
// If segments not parallel, compute closest point on L1 to L2 and
75
// clamp to segment S1. Else pick arbitrary s (here 0).
76
if (denom != 0.0f) {
77
s = CLAMP((b * f - c * e) / denom, 0.0f, 1.0f);
78
} else {
79
s = 0.0;
80
}
81
// Compute point on L2 closest to S1(s) using
82
// t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e
83
t = (b * s + f) / e;
84
85
//If t in [0,1] done. Else clamp t, recompute s for the new value
86
// of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a
87
// and clamp s to [0, 1].
88
if (t < 0.0f) {
89
t = 0.0;
90
s = CLAMP(-c / a, 0.0f, 1.0f);
91
} else if (t > 1.0f) {
92
t = 1.0;
93
s = CLAMP((b - c) / a, 0.0f, 1.0f);
94
}
95
}
96
}
97
c1 = p1 + d1 * s;
98
c2 = p2 + d2 * t;
99
return Math::sqrt((c1 - c2).dot(c1 - c2));
100
}
101
102
#ifndef DISABLE_DEPRECATED
103
static Vector2 get_closest_point_to_segment(const Vector2 &p_point, const Vector2 *p_segment) {
104
return get_closest_point_to_segment(p_point, p_segment[0], p_segment[1]);
105
}
106
#endif // DISABLE_DEPRECATED
107
108
static Vector2 get_closest_point_to_segment(const Vector2 &p_point, const Vector2 &p_segment_a, const Vector2 &p_segment_b) {
109
Vector2 p = p_point - p_segment_a;
110
Vector2 n = p_segment_b - p_segment_a;
111
real_t l2 = n.length_squared();
112
if (l2 < 1e-20f) {
113
return p_segment_a; // Both points are the same, just give any.
114
}
115
116
real_t d = n.dot(p) / l2;
117
118
if (d <= 0.0f) {
119
return p_segment_a; // Before first point.
120
} else if (d >= 1.0f) {
121
return p_segment_b; // After first point.
122
} else {
123
return p_segment_a + n * d; // Inside.
124
}
125
}
126
127
#ifndef DISABLE_DEPRECATED
128
static real_t get_distance_to_segment(const Vector2 &p_point, const Vector2 *p_segment) {
129
return get_distance_to_segment(p_point, p_segment[0], p_segment[1]);
130
}
131
#endif // DISABLE_DEPRECATED
132
133
static real_t get_distance_to_segment(const Vector2 &p_point, const Vector2 &p_segment_a, const Vector2 &p_segment_b) {
134
return p_point.distance_to(get_closest_point_to_segment(p_point, p_segment_a, p_segment_b));
135
}
136
137
static bool is_point_in_triangle(const Vector2 &s, const Vector2 &a, const Vector2 &b, const Vector2 &c) {
138
Vector2 an = a - s;
139
Vector2 bn = b - s;
140
Vector2 cn = c - s;
141
142
bool orientation = an.cross(bn) > 0;
143
144
if ((bn.cross(cn) > 0) != orientation) {
145
return false;
146
}
147
148
return (cn.cross(an) > 0) == orientation;
149
}
150
151
#ifndef DISABLE_DEPRECATED
152
static Vector2 get_closest_point_to_segment_uncapped(const Vector2 &p_point, const Vector2 *p_segment) {
153
return get_closest_point_to_segment_uncapped(p_point, p_segment[0], p_segment[1]);
154
}
155
#endif // DISABLE_DEPRECATED
156
157
static Vector2 get_closest_point_to_segment_uncapped(const Vector2 &p_point, const Vector2 &p_segment_a, const Vector2 &p_segment_b) {
158
Vector2 p = p_point - p_segment_a;
159
Vector2 n = p_segment_b - p_segment_a;
160
real_t l2 = n.length_squared();
161
if (l2 < 1e-20f) {
162
return p_segment_a; // Both points are the same, just give any.
163
}
164
165
real_t d = n.dot(p) / l2;
166
167
return p_segment_a + n * d; // Inside.
168
}
169
170
GODOT_MSVC_WARNING_PUSH_AND_IGNORE(4723) // Potential divide by 0. False positive (see: GH-44274).
171
172
static bool line_intersects_line(const Vector2 &p_from_a, const Vector2 &p_dir_a, const Vector2 &p_from_b, const Vector2 &p_dir_b, Vector2 &r_result) {
173
// See http://paulbourke.net/geometry/pointlineplane/
174
175
const real_t denom = p_dir_b.y * p_dir_a.x - p_dir_b.x * p_dir_a.y;
176
if (Math::is_zero_approx(denom)) { // Parallel?
177
return false;
178
}
179
180
const Vector2 v = p_from_a - p_from_b;
181
const real_t t = (p_dir_b.x * v.y - p_dir_b.y * v.x) / denom;
182
r_result = p_from_a + t * p_dir_a;
183
return true;
184
}
185
186
GODOT_MSVC_WARNING_POP
187
188
static bool segment_intersects_segment(const Vector2 &p_from_a, const Vector2 &p_to_a, const Vector2 &p_from_b, const Vector2 &p_to_b, Vector2 *r_result) {
189
Vector2 B = p_to_a - p_from_a;
190
Vector2 C = p_from_b - p_from_a;
191
Vector2 D = p_to_b - p_from_a;
192
193
real_t ABlen = B.dot(B);
194
if (ABlen <= 0) {
195
return false;
196
}
197
Vector2 Bn = B / ABlen;
198
C = Vector2(C.x * Bn.x + C.y * Bn.y, C.y * Bn.x - C.x * Bn.y);
199
D = Vector2(D.x * Bn.x + D.y * Bn.y, D.y * Bn.x - D.x * Bn.y);
200
201
// Fail if C x B and D x B have the same sign (segments don't intersect).
202
if ((C.y < (real_t)-CMP_EPSILON && D.y < (real_t)-CMP_EPSILON) || (C.y > (real_t)CMP_EPSILON && D.y > (real_t)CMP_EPSILON)) {
203
return false;
204
}
205
206
// Fail if segments are parallel or colinear.
207
// (when A x B == zero, i.e (C - D) x B == zero, i.e C x B == D x B)
208
if (Math::is_equal_approx(C.y, D.y)) {
209
return false;
210
}
211
212
real_t ABpos = D.x + (C.x - D.x) * D.y / (D.y - C.y);
213
214
// Fail if segment C-D crosses line A-B outside of segment A-B.
215
if ((ABpos < 0) || (ABpos > 1)) {
216
return false;
217
}
218
219
// Apply the discovered position to line A-B in the original coordinate system.
220
if (r_result) {
221
*r_result = p_from_a + B * ABpos;
222
}
223
224
return true;
225
}
226
227
static inline bool is_point_in_circle(const Vector2 &p_point, const Vector2 &p_circle_pos, real_t p_circle_radius) {
228
return p_point.distance_squared_to(p_circle_pos) <= p_circle_radius * p_circle_radius;
229
}
230
231
static real_t segment_intersects_circle(const Vector2 &p_from, const Vector2 &p_to, const Vector2 &p_circle_pos, real_t p_circle_radius) {
232
Vector2 line_vec = p_to - p_from;
233
Vector2 vec_to_line = p_from - p_circle_pos;
234
235
// Create a quadratic formula of the form ax^2 + bx + c = 0
236
real_t a, b, c;
237
238
a = line_vec.dot(line_vec);
239
b = 2 * vec_to_line.dot(line_vec);
240
c = vec_to_line.dot(vec_to_line) - p_circle_radius * p_circle_radius;
241
242
// Solve for t.
243
real_t sqrtterm = b * b - 4 * a * c;
244
245
// If the term we intend to square root is less than 0 then the answer won't be real,
246
// so it definitely won't be t in the range 0 to 1.
247
if (sqrtterm < 0) {
248
return -1;
249
}
250
251
// If we can assume that the line segment starts outside the circle (e.g. for continuous time collision detection)
252
// then the following can be skipped and we can just return the equivalent of res1.
253
sqrtterm = Math::sqrt(sqrtterm);
254
real_t res1 = (-b - sqrtterm) / (2 * a);
255
real_t res2 = (-b + sqrtterm) / (2 * a);
256
257
if (res1 >= 0 && res1 <= 1) {
258
return res1;
259
}
260
if (res2 >= 0 && res2 <= 1) {
261
return res2;
262
}
263
return -1;
264
}
265
266
static bool segment_intersects_rect(const Vector2 &p_from, const Vector2 &p_to, const Rect2 &p_rect) {
267
if (p_rect.has_point(p_from) || p_rect.has_point(p_to)) {
268
return true;
269
}
270
271
const Vector2 rect_points[4] = {
272
p_rect.position,
273
p_rect.position + Vector2(p_rect.size.x, 0),
274
p_rect.position + p_rect.size,
275
p_rect.position + Vector2(0, p_rect.size.y)
276
};
277
278
// Check if any of the rect's edges intersect the segment.
279
for (int i = 0; i < 4; i++) {
280
if (segment_intersects_segment(p_from, p_to, rect_points[i], rect_points[(i + 1) % 4], nullptr)) {
281
return true;
282
}
283
}
284
285
return false;
286
}
287
288
enum PolyBooleanOperation {
289
OPERATION_UNION,
290
OPERATION_DIFFERENCE,
291
OPERATION_INTERSECTION,
292
OPERATION_XOR
293
};
294
enum PolyJoinType {
295
JOIN_SQUARE,
296
JOIN_ROUND,
297
JOIN_MITER
298
};
299
enum PolyEndType {
300
END_POLYGON,
301
END_JOINED,
302
END_BUTT,
303
END_SQUARE,
304
END_ROUND
305
};
306
307
static Vector<Vector<Point2>> merge_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
308
return _polypaths_do_operation(OPERATION_UNION, p_polygon_a, p_polygon_b);
309
}
310
311
static Vector<Vector<Point2>> clip_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
312
return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polygon_a, p_polygon_b);
313
}
314
315
static Vector<Vector<Point2>> intersect_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
316
return _polypaths_do_operation(OPERATION_INTERSECTION, p_polygon_a, p_polygon_b);
317
}
318
319
static Vector<Vector<Point2>> exclude_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
320
return _polypaths_do_operation(OPERATION_XOR, p_polygon_a, p_polygon_b);
321
}
322
323
static Vector<Vector<Point2>> clip_polyline_with_polygon(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) {
324
return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polyline, p_polygon, true);
325
}
326
327
static Vector<Vector<Point2>> intersect_polyline_with_polygon(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) {
328
return _polypaths_do_operation(OPERATION_INTERSECTION, p_polyline, p_polygon, true);
329
}
330
331
static Vector<Vector<Point2>> offset_polygon(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type) {
332
return _polypath_offset(p_polygon, p_delta, p_join_type, END_POLYGON);
333
}
334
335
static Vector<Vector<Point2>> offset_polyline(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
336
ERR_FAIL_COND_V_MSG(p_end_type == END_POLYGON, Vector<Vector<Point2>>(), "Attempt to offset a polyline like a polygon (use offset_polygon instead).");
337
338
return _polypath_offset(p_polygon, p_delta, p_join_type, p_end_type);
339
}
340
341
static Vector<int> triangulate_delaunay(const Vector<Vector2> &p_points) {
342
Vector<Delaunay2D::Triangle> tr = Delaunay2D::triangulate(p_points);
343
Vector<int> triangles;
344
345
triangles.resize(3 * tr.size());
346
int *ptr = triangles.ptrw();
347
for (int i = 0; i < tr.size(); i++) {
348
*ptr++ = tr[i].points[0];
349
*ptr++ = tr[i].points[1];
350
*ptr++ = tr[i].points[2];
351
}
352
return triangles;
353
}
354
355
static Vector<int> triangulate_polygon(const Vector<Vector2> &p_polygon) {
356
Vector<int> triangles;
357
if (!Triangulate::triangulate(p_polygon, triangles)) {
358
return Vector<int>(); //fail
359
}
360
return triangles;
361
}
362
363
// Assumes cartesian coordinate system with +x to the right, +y up.
364
// If using screen coordinates (+x to the right, +y down) the result will need to be flipped.
365
static bool is_polygon_clockwise(const Vector<Vector2> &p_polygon) {
366
int c = p_polygon.size();
367
if (c < 3) {
368
return false;
369
}
370
const Vector2 *p = p_polygon.ptr();
371
real_t sum = 0;
372
for (int i = 0; i < c; i++) {
373
const Vector2 &v1 = p[i];
374
const Vector2 &v2 = p[(i + 1) % c];
375
sum += (v2.x - v1.x) * (v2.y + v1.y);
376
}
377
378
return sum > 0.0f;
379
}
380
381
// Alternate implementation that should be faster.
382
static bool is_point_in_polygon(const Vector2 &p_point, const Vector<Vector2> &p_polygon) {
383
int c = p_polygon.size();
384
if (c < 3) {
385
return false;
386
}
387
const Vector2 *p = p_polygon.ptr();
388
Vector2 further_away(-1e20, -1e20);
389
Vector2 further_away_opposite(1e20, 1e20);
390
391
for (int i = 0; i < c; i++) {
392
further_away = further_away.max(p[i]);
393
further_away_opposite = further_away_opposite.min(p[i]);
394
}
395
396
// Make point outside that won't intersect with points in segment from p_point.
397
further_away += (further_away - further_away_opposite) * Vector2(1.221313, 1.512312);
398
399
int intersections = 0;
400
for (int i = 0; i < c; i++) {
401
const Vector2 &v1 = p[i];
402
const Vector2 &v2 = p[(i + 1) % c];
403
404
Vector2 res;
405
if (segment_intersects_segment(v1, v2, p_point, further_away, &res)) {
406
intersections++;
407
if (res.is_equal_approx(p_point)) {
408
// Point is in one of the polygon edges.
409
return true;
410
}
411
}
412
}
413
414
return (intersections & 1);
415
}
416
417
static bool is_segment_intersecting_polygon(const Vector2 &p_from, const Vector2 &p_to, const Vector<Vector2> &p_polygon) {
418
int c = p_polygon.size();
419
const Vector2 *p = p_polygon.ptr();
420
for (int i = 0; i < c; i++) {
421
const Vector2 &v1 = p[i];
422
const Vector2 &v2 = p[(i + 1) % c];
423
if (segment_intersects_segment(p_from, p_to, v1, v2, nullptr)) {
424
return true;
425
}
426
}
427
return false;
428
}
429
430
static real_t vec2_cross(const Point2 &O, const Point2 &A, const Point2 &B) {
431
return (real_t)(A.x - O.x) * (B.y - O.y) - (real_t)(A.y - O.y) * (B.x - O.x);
432
}
433
434
// Returns a list of points on the convex hull in counter-clockwise order.
435
// Note: the last point in the returned list is the same as the first one.
436
static Vector<Point2> convex_hull(Vector<Point2> P) {
437
int n = P.size(), k = 0;
438
Vector<Point2> H;
439
H.resize(2 * n);
440
441
// Sort points lexicographically.
442
P.sort();
443
444
// Build lower hull.
445
for (int i = 0; i < n; ++i) {
446
while (k >= 2 && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) {
447
k--;
448
}
449
H.write[k++] = P[i];
450
}
451
452
// Build upper hull.
453
for (int i = n - 2, t = k + 1; i >= 0; i--) {
454
while (k >= t && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) {
455
k--;
456
}
457
H.write[k++] = P[i];
458
}
459
460
H.resize(k);
461
return H;
462
}
463
464
static Vector<Point2i> bresenham_line(const Point2i &p_from, const Point2i &p_to) {
465
Vector<Point2i> points;
466
467
Vector2i delta = (p_to - p_from).abs() * 2;
468
Vector2i step = (p_to - p_from).sign();
469
Vector2i current = p_from;
470
471
if (delta.x > delta.y) {
472
int err = delta.x / 2;
473
474
for (; current.x != p_to.x; current.x += step.x) {
475
points.push_back(current);
476
477
err -= delta.y;
478
if (err < 0) {
479
current.y += step.y;
480
err += delta.x;
481
}
482
}
483
} else {
484
int err = delta.y / 2;
485
486
for (; current.y != p_to.y; current.y += step.y) {
487
points.push_back(current);
488
489
err -= delta.x;
490
if (err < 0) {
491
current.x += step.x;
492
err += delta.y;
493
}
494
}
495
}
496
497
points.push_back(current);
498
499
return points;
500
}
501
502
static void merge_many_polygons(const Vector<Vector<Point2>> &p_polygons, Vector<Vector<Vector2>> &r_out_polygons, Vector<Vector<Vector2>> &r_out_holes);
503
static Vector<Vector<Vector2>> decompose_many_polygons_in_convex(const Vector<Vector<Point2>> &p_polygons, const Vector<Vector<Point2>> &p_holes);
504
505
static Vector<Vector<Vector2>> decompose_polygon_in_convex(const Vector<Point2> &p_polygon);
506
507
static void make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size);
508
static Vector<Vector3i> partial_pack_rects(const Vector<Vector2i> &p_sizes, const Size2i &p_atlas_size);
509
510
private:
511
static Vector<Vector<Point2>> _polypaths_do_operation(PolyBooleanOperation p_op, const Vector<Point2> &p_polypath_a, const Vector<Point2> &p_polypath_b, bool is_a_open = false);
512
static Vector<Vector<Point2>> _polypath_offset(const Vector<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type);
513
};
514
515