Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/core/math/geometry_3d.cpp
9903 views
1
/**************************************************************************/
2
/* geometry_3d.cpp */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#include "geometry_3d.h"
32
33
#include "core/templates/hash_map.h"
34
35
void Geometry3D::get_closest_points_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1, Vector3 &r_ps, Vector3 &r_qt) {
36
// Based on David Eberly's Computation of Distance Between Line Segments algorithm.
37
38
Vector3 p = p_p1 - p_p0;
39
Vector3 q = p_q1 - p_q0;
40
Vector3 r = p_p0 - p_q0;
41
42
real_t a = p.dot(p);
43
real_t b = p.dot(q);
44
real_t c = q.dot(q);
45
real_t d = p.dot(r);
46
real_t e = q.dot(r);
47
48
real_t s = 0.0f;
49
real_t t = 0.0f;
50
51
real_t det = a * c - b * b;
52
if (det > CMP_EPSILON) {
53
// Non-parallel segments
54
real_t bte = b * e;
55
real_t ctd = c * d;
56
57
if (bte <= ctd) {
58
// s <= 0.0f
59
if (e <= 0.0f) {
60
// t <= 0.0f
61
s = (-d >= a ? 1 : (-d > 0.0f ? -d / a : 0.0f));
62
t = 0.0f;
63
} else if (e < c) {
64
// 0.0f < t < 1
65
s = 0.0f;
66
t = e / c;
67
} else {
68
// t >= 1
69
s = (b - d >= a ? 1 : (b - d > 0.0f ? (b - d) / a : 0.0f));
70
t = 1;
71
}
72
} else {
73
// s > 0.0f
74
s = bte - ctd;
75
if (s >= det) {
76
// s >= 1
77
if (b + e <= 0.0f) {
78
// t <= 0.0f
79
s = (-d <= 0.0f ? 0.0f : (-d < a ? -d / a : 1));
80
t = 0.0f;
81
} else if (b + e < c) {
82
// 0.0f < t < 1
83
s = 1;
84
t = (b + e) / c;
85
} else {
86
// t >= 1
87
s = (b - d <= 0.0f ? 0.0f : (b - d < a ? (b - d) / a : 1));
88
t = 1;
89
}
90
} else {
91
// 0.0f < s < 1
92
real_t ate = a * e;
93
real_t btd = b * d;
94
95
if (ate <= btd) {
96
// t <= 0.0f
97
s = (-d <= 0.0f ? 0.0f : (-d >= a ? 1 : -d / a));
98
t = 0.0f;
99
} else {
100
// t > 0.0f
101
t = ate - btd;
102
if (t >= det) {
103
// t >= 1
104
s = (b - d <= 0.0f ? 0.0f : (b - d >= a ? 1 : (b - d) / a));
105
t = 1;
106
} else {
107
// 0.0f < t < 1
108
s /= det;
109
t /= det;
110
}
111
}
112
}
113
}
114
} else {
115
// Parallel segments
116
if (e <= 0.0f) {
117
s = (-d <= 0.0f ? 0.0f : (-d >= a ? 1 : -d / a));
118
t = 0.0f;
119
} else if (e >= c) {
120
s = (b - d <= 0.0f ? 0.0f : (b - d >= a ? 1 : (b - d) / a));
121
t = 1;
122
} else {
123
s = 0.0f;
124
t = e / c;
125
}
126
}
127
128
r_ps = (1 - s) * p_p0 + s * p_p1;
129
r_qt = (1 - t) * p_q0 + t * p_q1;
130
}
131
132
real_t Geometry3D::get_closest_distance_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1) {
133
Vector3 ps;
134
Vector3 qt;
135
get_closest_points_between_segments(p_p0, p_p1, p_q0, p_q1, ps, qt);
136
Vector3 st = qt - ps;
137
return st.length();
138
}
139
140
void Geometry3D::MeshData::optimize_vertices() {
141
HashMap<int, int> vtx_remap;
142
143
for (MeshData::Face &face : faces) {
144
for (int &index : face.indices) {
145
if (!vtx_remap.has(index)) {
146
int ni = vtx_remap.size();
147
vtx_remap[index] = ni;
148
}
149
index = vtx_remap[index];
150
}
151
}
152
153
for (MeshData::Edge &edge : edges) {
154
int a = edge.vertex_a;
155
int b = edge.vertex_b;
156
157
if (!vtx_remap.has(a)) {
158
int ni = vtx_remap.size();
159
vtx_remap[a] = ni;
160
}
161
if (!vtx_remap.has(b)) {
162
int ni = vtx_remap.size();
163
vtx_remap[b] = ni;
164
}
165
166
edge.vertex_a = vtx_remap[a];
167
edge.vertex_b = vtx_remap[b];
168
}
169
170
LocalVector<Vector3> new_vertices;
171
new_vertices.resize(vtx_remap.size());
172
173
for (uint32_t i = 0; i < vertices.size(); i++) {
174
if (vtx_remap.has(i)) {
175
new_vertices[vtx_remap[i]] = vertices[i];
176
}
177
}
178
vertices = new_vertices;
179
}
180
181
struct _FaceClassify {
182
struct _Link {
183
int face = -1;
184
int edge = -1;
185
void clear() {
186
face = -1;
187
edge = -1;
188
}
189
_Link() {}
190
};
191
bool valid = false;
192
int group = -1;
193
_Link links[3];
194
Face3 face;
195
_FaceClassify() {}
196
};
197
198
/*** GEOMETRY WRAPPER ***/
199
200
enum _CellFlags {
201
_CELL_SOLID = 1,
202
_CELL_EXTERIOR = 2,
203
_CELL_STEP_MASK = 0x1C,
204
_CELL_STEP_NONE = 0 << 2,
205
_CELL_STEP_Y_POS = 1 << 2,
206
_CELL_STEP_Y_NEG = 2 << 2,
207
_CELL_STEP_X_POS = 3 << 2,
208
_CELL_STEP_X_NEG = 4 << 2,
209
_CELL_STEP_Z_POS = 5 << 2,
210
_CELL_STEP_Z_NEG = 6 << 2,
211
_CELL_STEP_DONE = 7 << 2,
212
_CELL_PREV_MASK = 0xE0,
213
_CELL_PREV_NONE = 0 << 5,
214
_CELL_PREV_Y_POS = 1 << 5,
215
_CELL_PREV_Y_NEG = 2 << 5,
216
_CELL_PREV_X_POS = 3 << 5,
217
_CELL_PREV_X_NEG = 4 << 5,
218
_CELL_PREV_Z_POS = 5 << 5,
219
_CELL_PREV_Z_NEG = 6 << 5,
220
_CELL_PREV_FIRST = 7 << 5,
221
};
222
223
static inline void _plot_face(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, const Vector3 &voxelsize, const Face3 &p_face) {
224
AABB aabb(Vector3(x, y, z), Vector3(len_x, len_y, len_z));
225
aabb.position = aabb.position * voxelsize;
226
aabb.size = aabb.size * voxelsize;
227
228
if (!p_face.intersects_aabb(aabb)) {
229
return;
230
}
231
232
if (len_x == 1 && len_y == 1 && len_z == 1) {
233
p_cell_status[x][y][z] = _CELL_SOLID;
234
return;
235
}
236
237
int div_x = len_x > 1 ? 2 : 1;
238
int div_y = len_y > 1 ? 2 : 1;
239
int div_z = len_z > 1 ? 2 : 1;
240
241
#define SPLIT_DIV(m_i, m_div, m_v, m_len_v, m_new_v, m_new_len_v) \
242
if (m_div == 1) { \
243
m_new_v = m_v; \
244
m_new_len_v = 1; \
245
} else if (m_i == 0) { \
246
m_new_v = m_v; \
247
m_new_len_v = m_len_v / 2; \
248
} else { \
249
m_new_v = m_v + m_len_v / 2; \
250
m_new_len_v = m_len_v - m_len_v / 2; \
251
}
252
253
int new_x;
254
int new_len_x;
255
int new_y;
256
int new_len_y;
257
int new_z;
258
int new_len_z;
259
260
for (int i = 0; i < div_x; i++) {
261
SPLIT_DIV(i, div_x, x, len_x, new_x, new_len_x);
262
263
for (int j = 0; j < div_y; j++) {
264
SPLIT_DIV(j, div_y, y, len_y, new_y, new_len_y);
265
266
for (int k = 0; k < div_z; k++) {
267
SPLIT_DIV(k, div_z, z, len_z, new_z, new_len_z);
268
269
_plot_face(p_cell_status, new_x, new_y, new_z, new_len_x, new_len_y, new_len_z, voxelsize, p_face);
270
}
271
}
272
}
273
274
#undef SPLIT_DIV
275
}
276
277
static inline void _mark_outside(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z) {
278
if (p_cell_status[x][y][z] & 3) {
279
return; // Nothing to do, already used and/or visited.
280
}
281
282
p_cell_status[x][y][z] = _CELL_PREV_FIRST;
283
284
while (true) {
285
uint8_t &c = p_cell_status[x][y][z];
286
287
if ((c & _CELL_STEP_MASK) == _CELL_STEP_NONE) {
288
// Haven't been in here, mark as outside.
289
p_cell_status[x][y][z] |= _CELL_EXTERIOR;
290
}
291
292
if ((c & _CELL_STEP_MASK) != _CELL_STEP_DONE) {
293
// If not done, increase step.
294
c += 1 << 2;
295
}
296
297
if ((c & _CELL_STEP_MASK) == _CELL_STEP_DONE) {
298
// Go back.
299
switch (c & _CELL_PREV_MASK) {
300
case _CELL_PREV_FIRST: {
301
return;
302
} break;
303
case _CELL_PREV_Y_POS: {
304
y++;
305
ERR_FAIL_COND(y >= len_y);
306
} break;
307
case _CELL_PREV_Y_NEG: {
308
y--;
309
ERR_FAIL_COND(y < 0);
310
} break;
311
case _CELL_PREV_X_POS: {
312
x++;
313
ERR_FAIL_COND(x >= len_x);
314
} break;
315
case _CELL_PREV_X_NEG: {
316
x--;
317
ERR_FAIL_COND(x < 0);
318
} break;
319
case _CELL_PREV_Z_POS: {
320
z++;
321
ERR_FAIL_COND(z >= len_z);
322
} break;
323
case _CELL_PREV_Z_NEG: {
324
z--;
325
ERR_FAIL_COND(z < 0);
326
} break;
327
default: {
328
ERR_FAIL();
329
}
330
}
331
continue;
332
}
333
334
int next_x = x, next_y = y, next_z = z;
335
uint8_t prev = 0;
336
337
switch (c & _CELL_STEP_MASK) {
338
case _CELL_STEP_Y_POS: {
339
next_y++;
340
prev = _CELL_PREV_Y_NEG;
341
} break;
342
case _CELL_STEP_Y_NEG: {
343
next_y--;
344
prev = _CELL_PREV_Y_POS;
345
} break;
346
case _CELL_STEP_X_POS: {
347
next_x++;
348
prev = _CELL_PREV_X_NEG;
349
} break;
350
case _CELL_STEP_X_NEG: {
351
next_x--;
352
prev = _CELL_PREV_X_POS;
353
} break;
354
case _CELL_STEP_Z_POS: {
355
next_z++;
356
prev = _CELL_PREV_Z_NEG;
357
} break;
358
case _CELL_STEP_Z_NEG: {
359
next_z--;
360
prev = _CELL_PREV_Z_POS;
361
} break;
362
default:
363
ERR_FAIL();
364
}
365
366
if (next_x < 0 || next_x >= len_x) {
367
continue;
368
}
369
if (next_y < 0 || next_y >= len_y) {
370
continue;
371
}
372
if (next_z < 0 || next_z >= len_z) {
373
continue;
374
}
375
376
if (p_cell_status[next_x][next_y][next_z] & 3) {
377
continue;
378
}
379
380
x = next_x;
381
y = next_y;
382
z = next_z;
383
p_cell_status[x][y][z] |= prev;
384
}
385
}
386
387
static inline void _build_faces(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, Vector<Face3> &p_faces) {
388
ERR_FAIL_INDEX(x, len_x);
389
ERR_FAIL_INDEX(y, len_y);
390
ERR_FAIL_INDEX(z, len_z);
391
392
if (p_cell_status[x][y][z] & _CELL_EXTERIOR) {
393
return;
394
}
395
396
#define vert(m_idx) Vector3(((m_idx) & 4) >> 2, ((m_idx) & 2) >> 1, (m_idx) & 1)
397
398
static const uint8_t indices[6][4] = {
399
{ 7, 6, 4, 5 },
400
{ 7, 3, 2, 6 },
401
{ 7, 5, 1, 3 },
402
{ 0, 2, 3, 1 },
403
{ 0, 1, 5, 4 },
404
{ 0, 4, 6, 2 },
405
406
};
407
408
for (int i = 0; i < 6; i++) {
409
Vector3 face_points[4];
410
int disp_x = x + ((i % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
411
int disp_y = y + (((i - 1) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
412
int disp_z = z + (((i - 2) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
413
414
bool plot = false;
415
416
if (disp_x < 0 || disp_x >= len_x) {
417
plot = true;
418
}
419
if (disp_y < 0 || disp_y >= len_y) {
420
plot = true;
421
}
422
if (disp_z < 0 || disp_z >= len_z) {
423
plot = true;
424
}
425
426
if (!plot && (p_cell_status[disp_x][disp_y][disp_z] & _CELL_EXTERIOR)) {
427
plot = true;
428
}
429
430
if (!plot) {
431
continue;
432
}
433
434
for (int j = 0; j < 4; j++) {
435
face_points[j] = vert(indices[i][j]) + Vector3(x, y, z);
436
}
437
438
p_faces.push_back(
439
Face3(
440
face_points[0],
441
face_points[1],
442
face_points[2]));
443
444
p_faces.push_back(
445
Face3(
446
face_points[2],
447
face_points[3],
448
face_points[0]));
449
}
450
}
451
452
Vector<Face3> Geometry3D::wrap_geometry(const Vector<Face3> &p_array, real_t *p_error) {
453
int face_count = p_array.size();
454
const Face3 *faces = p_array.ptr();
455
constexpr double min_size = 1.0;
456
constexpr int max_length = 20;
457
458
AABB global_aabb;
459
460
for (int i = 0; i < face_count; i++) {
461
if (i == 0) {
462
global_aabb = faces[i].get_aabb();
463
} else {
464
global_aabb.merge_with(faces[i].get_aabb());
465
}
466
}
467
468
global_aabb.grow_by(0.01f); // Avoid numerical error.
469
470
// Determine amount of cells in grid axis.
471
int div_x, div_y, div_z;
472
473
if (global_aabb.size.x / min_size < max_length) {
474
div_x = (int)(global_aabb.size.x / min_size) + 1;
475
} else {
476
div_x = max_length;
477
}
478
479
if (global_aabb.size.y / min_size < max_length) {
480
div_y = (int)(global_aabb.size.y / min_size) + 1;
481
} else {
482
div_y = max_length;
483
}
484
485
if (global_aabb.size.z / min_size < max_length) {
486
div_z = (int)(global_aabb.size.z / min_size) + 1;
487
} else {
488
div_z = max_length;
489
}
490
491
Vector3 voxelsize = global_aabb.size;
492
voxelsize.x /= div_x;
493
voxelsize.y /= div_y;
494
voxelsize.z /= div_z;
495
496
// Create and initialize cells to zero.
497
498
uint8_t ***cell_status = memnew_arr(uint8_t **, div_x);
499
for (int i = 0; i < div_x; i++) {
500
cell_status[i] = memnew_arr(uint8_t *, div_y);
501
502
for (int j = 0; j < div_y; j++) {
503
cell_status[i][j] = memnew_arr(uint8_t, div_z);
504
505
for (int k = 0; k < div_z; k++) {
506
cell_status[i][j][k] = 0;
507
}
508
}
509
}
510
511
// Plot faces into cells.
512
513
for (int i = 0; i < face_count; i++) {
514
Face3 f = faces[i];
515
for (int j = 0; j < 3; j++) {
516
f.vertex[j] -= global_aabb.position;
517
}
518
_plot_face(cell_status, 0, 0, 0, div_x, div_y, div_z, voxelsize, f);
519
}
520
521
// Determine which cells connect to the outside by traversing the outside and recursively flood-fill marking.
522
523
for (int i = 0; i < div_x; i++) {
524
for (int j = 0; j < div_y; j++) {
525
_mark_outside(cell_status, i, j, 0, div_x, div_y, div_z);
526
_mark_outside(cell_status, i, j, div_z - 1, div_x, div_y, div_z);
527
}
528
}
529
530
for (int i = 0; i < div_z; i++) {
531
for (int j = 0; j < div_y; j++) {
532
_mark_outside(cell_status, 0, j, i, div_x, div_y, div_z);
533
_mark_outside(cell_status, div_x - 1, j, i, div_x, div_y, div_z);
534
}
535
}
536
537
for (int i = 0; i < div_x; i++) {
538
for (int j = 0; j < div_z; j++) {
539
_mark_outside(cell_status, i, 0, j, div_x, div_y, div_z);
540
_mark_outside(cell_status, i, div_y - 1, j, div_x, div_y, div_z);
541
}
542
}
543
544
// Build faces for the inside-outside cell divisors.
545
546
Vector<Face3> wrapped_faces;
547
548
for (int i = 0; i < div_x; i++) {
549
for (int j = 0; j < div_y; j++) {
550
for (int k = 0; k < div_z; k++) {
551
_build_faces(cell_status, i, j, k, div_x, div_y, div_z, wrapped_faces);
552
}
553
}
554
}
555
556
// Transform face vertices to global coords.
557
558
int wrapped_faces_count = wrapped_faces.size();
559
Face3 *wrapped_faces_ptr = wrapped_faces.ptrw();
560
561
for (int i = 0; i < wrapped_faces_count; i++) {
562
for (int j = 0; j < 3; j++) {
563
Vector3 &v = wrapped_faces_ptr[i].vertex[j];
564
v = v * voxelsize;
565
v += global_aabb.position;
566
}
567
}
568
569
// clean up grid
570
571
for (int i = 0; i < div_x; i++) {
572
for (int j = 0; j < div_y; j++) {
573
memdelete_arr(cell_status[i][j]);
574
}
575
576
memdelete_arr(cell_status[i]);
577
}
578
579
memdelete_arr(cell_status);
580
if (p_error) {
581
*p_error = voxelsize.length();
582
}
583
584
return wrapped_faces;
585
}
586
587
Geometry3D::MeshData Geometry3D::build_convex_mesh(const Vector<Plane> &p_planes) {
588
MeshData mesh;
589
590
#define SUBPLANE_SIZE 1024.0
591
592
real_t subplane_size = 1024.0; // Should compute this from the actual plane.
593
for (int i = 0; i < p_planes.size(); i++) {
594
Plane p = p_planes[i];
595
596
Vector3 ref = Vector3(0.0, 1.0, 0.0);
597
598
if (Math::abs(p.normal.dot(ref)) > 0.95f) {
599
ref = Vector3(0.0, 0.0, 1.0); // Change axis.
600
}
601
602
Vector3 right = p.normal.cross(ref).normalized();
603
Vector3 up = p.normal.cross(right).normalized();
604
605
Vector3 center = p.get_center();
606
607
// make a quad clockwise
608
LocalVector<Vector3> vertices = {
609
center - up * subplane_size + right * subplane_size,
610
center - up * subplane_size - right * subplane_size,
611
center + up * subplane_size - right * subplane_size,
612
center + up * subplane_size + right * subplane_size
613
};
614
615
for (int j = 0; j < p_planes.size(); j++) {
616
if (j == i) {
617
continue;
618
}
619
620
LocalVector<Vector3> new_vertices;
621
Plane clip = p_planes[j];
622
623
if (clip.normal.dot(p.normal) > 0.95f) {
624
continue;
625
}
626
627
if (vertices.size() < 3) {
628
break;
629
}
630
631
for (uint32_t k = 0; k < vertices.size(); k++) {
632
int k_n = (k + 1) % vertices.size();
633
634
Vector3 edge0_A = vertices[k];
635
Vector3 edge1_A = vertices[k_n];
636
637
real_t dist0 = clip.distance_to(edge0_A);
638
real_t dist1 = clip.distance_to(edge1_A);
639
640
if (dist0 <= 0) { // Behind plane.
641
642
new_vertices.push_back(vertices[k]);
643
}
644
645
// Check for different sides and non coplanar.
646
if ((dist0 * dist1) < 0) {
647
// Calculate intersection.
648
Vector3 rel = edge1_A - edge0_A;
649
650
real_t den = clip.normal.dot(rel);
651
if (Math::is_zero_approx(den)) {
652
continue; // Point too short.
653
}
654
655
real_t dist = -(clip.normal.dot(edge0_A) - clip.d) / den;
656
Vector3 inters = edge0_A + rel * dist;
657
new_vertices.push_back(inters);
658
}
659
}
660
661
vertices = new_vertices;
662
}
663
664
if (vertices.size() < 3) {
665
continue;
666
}
667
668
// Result is a clockwise face.
669
670
MeshData::Face face;
671
672
// Add face indices.
673
for (const Vector3 &vertex : vertices) {
674
int idx = -1;
675
for (uint32_t k = 0; k < mesh.vertices.size(); k++) {
676
if (mesh.vertices[k].distance_to(vertex) < 0.001f) {
677
idx = k;
678
break;
679
}
680
}
681
682
if (idx == -1) {
683
idx = mesh.vertices.size();
684
mesh.vertices.push_back(vertex);
685
}
686
687
face.indices.push_back(idx);
688
}
689
face.plane = p;
690
mesh.faces.push_back(face);
691
692
// Add edge.
693
694
for (uint32_t j = 0; j < face.indices.size(); j++) {
695
int a = face.indices[j];
696
int b = face.indices[(j + 1) % face.indices.size()];
697
698
bool found = false;
699
int found_idx = -1;
700
for (uint32_t k = 0; k < mesh.edges.size(); k++) {
701
if (mesh.edges[k].vertex_a == a && mesh.edges[k].vertex_b == b) {
702
found = true;
703
found_idx = k;
704
break;
705
}
706
if (mesh.edges[k].vertex_b == a && mesh.edges[k].vertex_a == b) {
707
found = true;
708
found_idx = k;
709
break;
710
}
711
}
712
713
if (found) {
714
mesh.edges[found_idx].face_b = j;
715
continue;
716
}
717
MeshData::Edge edge;
718
edge.vertex_a = a;
719
edge.vertex_b = b;
720
edge.face_a = j;
721
edge.face_b = -1;
722
mesh.edges.push_back(edge);
723
}
724
}
725
726
return mesh;
727
}
728
729
Vector<Plane> Geometry3D::build_box_planes(const Vector3 &p_extents) {
730
Vector<Plane> planes = {
731
Plane(Vector3(1, 0, 0), p_extents.x),
732
Plane(Vector3(-1, 0, 0), p_extents.x),
733
Plane(Vector3(0, 1, 0), p_extents.y),
734
Plane(Vector3(0, -1, 0), p_extents.y),
735
Plane(Vector3(0, 0, 1), p_extents.z),
736
Plane(Vector3(0, 0, -1), p_extents.z)
737
};
738
739
return planes;
740
}
741
742
Vector<Plane> Geometry3D::build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis) {
743
ERR_FAIL_INDEX_V(p_axis, 3, Vector<Plane>());
744
745
Vector<Plane> planes;
746
747
const double sides_step = Math::TAU / p_sides;
748
for (int i = 0; i < p_sides; i++) {
749
Vector3 normal;
750
normal[(p_axis + 1) % 3] = Math::cos(i * sides_step);
751
normal[(p_axis + 2) % 3] = Math::sin(i * sides_step);
752
753
planes.push_back(Plane(normal, p_radius));
754
}
755
756
Vector3 axis;
757
axis[p_axis] = 1.0;
758
759
planes.push_back(Plane(axis, p_height * 0.5f));
760
planes.push_back(Plane(-axis, p_height * 0.5f));
761
762
return planes;
763
}
764
765
Vector<Plane> Geometry3D::build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis) {
766
ERR_FAIL_INDEX_V(p_axis, 3, Vector<Plane>());
767
768
Vector<Plane> planes;
769
770
Vector3 axis;
771
axis[p_axis] = 1.0;
772
773
Vector3 axis_neg;
774
axis_neg[(p_axis + 1) % 3] = 1.0;
775
axis_neg[(p_axis + 2) % 3] = 1.0;
776
axis_neg[p_axis] = -1.0;
777
778
const double lon_step = Math::TAU / p_lons;
779
for (int i = 0; i < p_lons; i++) {
780
Vector3 normal;
781
normal[(p_axis + 1) % 3] = Math::cos(i * lon_step);
782
normal[(p_axis + 2) % 3] = Math::sin(i * lon_step);
783
784
planes.push_back(Plane(normal, p_radius));
785
786
for (int j = 1; j <= p_lats; j++) {
787
Vector3 plane_normal = normal.lerp(axis, j / (real_t)p_lats).normalized();
788
planes.push_back(Plane(plane_normal, p_radius));
789
planes.push_back(Plane(plane_normal * axis_neg, p_radius));
790
}
791
}
792
793
return planes;
794
}
795
796
Vector<Plane> Geometry3D::build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis) {
797
ERR_FAIL_INDEX_V(p_axis, 3, Vector<Plane>());
798
799
Vector<Plane> planes;
800
801
Vector3 axis;
802
axis[p_axis] = 1.0;
803
804
Vector3 axis_neg;
805
axis_neg[(p_axis + 1) % 3] = 1.0;
806
axis_neg[(p_axis + 2) % 3] = 1.0;
807
axis_neg[p_axis] = -1.0;
808
809
const double sides_step = Math::TAU / p_sides;
810
for (int i = 0; i < p_sides; i++) {
811
Vector3 normal;
812
normal[(p_axis + 1) % 3] = Math::cos(i * sides_step);
813
normal[(p_axis + 2) % 3] = Math::sin(i * sides_step);
814
815
planes.push_back(Plane(normal, p_radius));
816
817
for (int j = 1; j <= p_lats; j++) {
818
Vector3 plane_normal = normal.lerp(axis, j / (real_t)p_lats).normalized();
819
Vector3 position = axis * p_height * 0.5f + plane_normal * p_radius;
820
planes.push_back(Plane(plane_normal, position));
821
planes.push_back(Plane(plane_normal * axis_neg, position * axis_neg));
822
}
823
}
824
825
return planes;
826
}
827
828
Vector<Vector3> Geometry3D::compute_convex_mesh_points(const Plane *p_planes, int p_plane_count) {
829
Vector<Vector3> points;
830
831
// Iterate through every unique combination of any three planes.
832
for (int i = p_plane_count - 1; i >= 0; i--) {
833
for (int j = i - 1; j >= 0; j--) {
834
for (int k = j - 1; k >= 0; k--) {
835
// Find the point where these planes all cross over (if they
836
// do at all).
837
Vector3 convex_shape_point;
838
if (p_planes[i].intersect_3(p_planes[j], p_planes[k], &convex_shape_point)) {
839
// See if any *other* plane excludes this point because it's
840
// on the wrong side.
841
bool excluded = false;
842
for (int n = 0; n < p_plane_count; n++) {
843
if (n != i && n != j && n != k) {
844
real_t dp = p_planes[n].normal.dot(convex_shape_point);
845
if (dp - p_planes[n].d > (real_t)CMP_EPSILON) {
846
excluded = true;
847
break;
848
}
849
}
850
}
851
852
// Only add the point if it passed all tests.
853
if (!excluded) {
854
points.push_back(convex_shape_point);
855
}
856
}
857
}
858
}
859
}
860
861
return points;
862
}
863
864
#define square(m_s) ((m_s) * (m_s))
865
#define BIG_VAL 1e20
866
867
/* dt of 1d function using squared distance */
868
static void edt(float *f, int stride, int n) {
869
float *d = (float *)alloca(sizeof(float) * n + sizeof(int) * n + sizeof(float) * (n + 1));
870
int *v = reinterpret_cast<int *>(&(d[n]));
871
float *z = reinterpret_cast<float *>(&v[n]);
872
873
int k = 0;
874
v[0] = 0;
875
z[0] = -BIG_VAL;
876
z[1] = +BIG_VAL;
877
for (int q = 1; q <= n - 1; q++) {
878
float s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]);
879
while (s <= z[k]) {
880
k--;
881
s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]);
882
}
883
k++;
884
v[k] = q;
885
886
z[k] = s;
887
z[k + 1] = +BIG_VAL;
888
}
889
890
k = 0;
891
for (int q = 0; q <= n - 1; q++) {
892
while (z[k + 1] < q) {
893
k++;
894
}
895
d[q] = square(q - v[k]) + f[v[k] * stride];
896
}
897
898
for (int i = 0; i < n; i++) {
899
f[i * stride] = d[i];
900
}
901
}
902
903
#undef square
904
905
Vector<uint32_t> Geometry3D::generate_edf(const Vector<bool> &p_voxels, const Vector3i &p_size, bool p_negative) {
906
uint32_t float_count = p_size.x * p_size.y * p_size.z;
907
908
ERR_FAIL_COND_V((uint32_t)p_voxels.size() != float_count, Vector<uint32_t>());
909
910
float *work_memory = memnew_arr(float, float_count);
911
for (uint32_t i = 0; i < float_count; i++) {
912
work_memory[i] = BIG_VAL;
913
}
914
915
uint32_t y_mult = p_size.x;
916
uint32_t z_mult = y_mult * p_size.y;
917
918
//plot solid cells
919
{
920
const bool *voxr = p_voxels.ptr();
921
for (uint32_t i = 0; i < float_count; i++) {
922
bool plot = voxr[i];
923
if (p_negative) {
924
plot = !plot;
925
}
926
if (plot) {
927
work_memory[i] = 0;
928
}
929
}
930
}
931
932
//process in each direction
933
934
//xy->z
935
936
for (int i = 0; i < p_size.x; i++) {
937
for (int j = 0; j < p_size.y; j++) {
938
edt(&work_memory[i + j * y_mult], z_mult, p_size.z);
939
}
940
}
941
942
//xz->y
943
944
for (int i = 0; i < p_size.x; i++) {
945
for (int j = 0; j < p_size.z; j++) {
946
edt(&work_memory[i + j * z_mult], y_mult, p_size.y);
947
}
948
}
949
950
//yz->x
951
for (int i = 0; i < p_size.y; i++) {
952
for (int j = 0; j < p_size.z; j++) {
953
edt(&work_memory[i * y_mult + j * z_mult], 1, p_size.x);
954
}
955
}
956
957
Vector<uint32_t> ret;
958
ret.resize(float_count);
959
{
960
uint32_t *w = ret.ptrw();
961
for (uint32_t i = 0; i < float_count; i++) {
962
w[i] = uint32_t(Math::sqrt(work_memory[i]));
963
}
964
}
965
966
memdelete_arr(work_memory);
967
968
return ret;
969
}
970
971
#undef BIG_VAL
972
973
Vector<int8_t> Geometry3D::generate_sdf8(const Vector<uint32_t> &p_positive, const Vector<uint32_t> &p_negative) {
974
ERR_FAIL_COND_V(p_positive.size() != p_negative.size(), Vector<int8_t>());
975
Vector<int8_t> sdf8;
976
int s = p_positive.size();
977
sdf8.resize(s);
978
979
const uint32_t *rpos = p_positive.ptr();
980
const uint32_t *rneg = p_negative.ptr();
981
int8_t *wsdf = sdf8.ptrw();
982
for (int i = 0; i < s; i++) {
983
int32_t diff = int32_t(rpos[i]) - int32_t(rneg[i]);
984
wsdf[i] = CLAMP(diff, -128, 127);
985
}
986
return sdf8;
987
}
988
989