Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/core/object/worker_thread_pool.cpp
20934 views
1
/**************************************************************************/
2
/* worker_thread_pool.cpp */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#include "worker_thread_pool.h"
32
33
#include "core/object/script_language.h"
34
#include "core/os/os.h"
35
#include "core/os/safe_binary_mutex.h"
36
#include "core/os/thread_safe.h"
37
38
WorkerThreadPool::Task *const WorkerThreadPool::ThreadData::YIELDING = (Task *)1;
39
40
HashMap<StringName, WorkerThreadPool *> WorkerThreadPool::named_pools;
41
42
void WorkerThreadPool::Task::free_template_userdata() {
43
ERR_FAIL_NULL(template_userdata);
44
ERR_FAIL_NULL(native_func_userdata);
45
BaseTemplateUserdata *btu = (BaseTemplateUserdata *)native_func_userdata;
46
memdelete(btu);
47
}
48
49
WorkerThreadPool *WorkerThreadPool::singleton = nullptr;
50
51
#ifdef THREADS_ENABLED
52
thread_local WorkerThreadPool::UnlockableLocks WorkerThreadPool::unlockable_locks[MAX_UNLOCKABLE_LOCKS];
53
#endif
54
55
void WorkerThreadPool::_process_task(Task *p_task) {
56
#ifdef THREADS_ENABLED
57
int pool_thread_index = thread_ids[Thread::get_caller_id()];
58
ThreadData &curr_thread = threads[pool_thread_index];
59
Task *prev_task = nullptr; // In case this is recursively called.
60
61
bool safe_for_nodes_backup = is_current_thread_safe_for_nodes();
62
CallQueue *call_queue_backup = MessageQueue::get_singleton() != MessageQueue::get_main_singleton() ? MessageQueue::get_singleton() : nullptr;
63
64
{
65
// Tasks must start with these at default values. They are free to set-and-forget otherwise.
66
set_current_thread_safe_for_nodes(false);
67
MessageQueue::set_thread_singleton_override(nullptr);
68
69
// Since the WorkerThreadPool is started before the script server,
70
// its pre-created threads can't have ScriptServer::thread_enter() called on them early.
71
// Therefore, we do it late at the first opportunity, so in case the task
72
// about to be run uses scripting, guarantees are held.
73
ScriptServer::thread_enter();
74
75
task_mutex.lock();
76
p_task->pool_thread_index = pool_thread_index;
77
prev_task = curr_thread.current_task;
78
curr_thread.current_task = p_task;
79
curr_thread.has_pump_task = p_task->is_pump_task;
80
if (p_task->pending_notify_yield_over) {
81
curr_thread.yield_is_over = true;
82
}
83
task_mutex.unlock();
84
}
85
#endif
86
87
#ifdef THREADS_ENABLED
88
bool low_priority = p_task->low_priority;
89
#endif
90
91
if (p_task->group) {
92
// Handling a group
93
bool do_post = false;
94
95
while (true) {
96
uint32_t work_index = p_task->group->index.postincrement();
97
98
if (work_index >= p_task->group->max) {
99
break;
100
}
101
if (p_task->native_group_func) {
102
p_task->native_group_func(p_task->native_func_userdata, work_index);
103
} else if (p_task->template_userdata) {
104
p_task->template_userdata->callback_indexed(work_index);
105
} else {
106
p_task->callable.call(work_index);
107
}
108
109
// This is the only way to ensure posting is done when all tasks are really complete.
110
uint32_t completed_amount = p_task->group->completed_index.increment();
111
112
if (completed_amount == p_task->group->max) {
113
do_post = true;
114
}
115
}
116
117
if (do_post && p_task->template_userdata) {
118
memdelete(p_task->template_userdata); // This is no longer needed at this point, so get rid of it.
119
}
120
121
if (do_post) {
122
p_task->group->done_semaphore.post();
123
p_task->group->completed.set_to(true);
124
}
125
uint32_t max_users = p_task->group->tasks_used + 1; // Add 1 because the thread waiting for it is also user. Read before to avoid another thread freeing task after increment.
126
uint32_t finished_users = p_task->group->finished.increment();
127
128
if (finished_users == max_users) {
129
// Get rid of the group, because nobody else is using it.
130
MutexLock task_lock(task_mutex);
131
group_allocator.free(p_task->group);
132
}
133
134
// For groups, tasks get rid of themselves.
135
136
task_mutex.lock();
137
task_allocator.free(p_task);
138
} else {
139
if (p_task->native_func) {
140
p_task->native_func(p_task->native_func_userdata);
141
} else if (p_task->template_userdata) {
142
p_task->template_userdata->callback();
143
memdelete(p_task->template_userdata);
144
} else {
145
p_task->callable.call();
146
}
147
148
task_mutex.lock();
149
p_task->completed = true;
150
p_task->pool_thread_index = -1;
151
if (p_task->waiting_user) {
152
p_task->done_semaphore.post(p_task->waiting_user);
153
}
154
// Let awaiters know.
155
for (uint32_t i = 0; i < threads.size(); i++) {
156
if (threads[i].awaited_task == p_task) {
157
threads[i].cond_var.notify_one();
158
threads[i].signaled = true;
159
}
160
}
161
}
162
163
#ifdef THREADS_ENABLED
164
{
165
curr_thread.current_task = prev_task;
166
if (low_priority) {
167
low_priority_threads_used--;
168
169
if (_try_promote_low_priority_task()) {
170
if (prev_task) { // Otherwise, this thread will catch it.
171
_notify_threads(&curr_thread, 1, 0);
172
}
173
}
174
}
175
176
task_mutex.unlock();
177
}
178
179
set_current_thread_safe_for_nodes(safe_for_nodes_backup);
180
MessageQueue::set_thread_singleton_override(call_queue_backup);
181
#endif
182
}
183
184
void WorkerThreadPool::_thread_function(void *p_user) {
185
ThreadData *thread_data = (ThreadData *)p_user;
186
Thread::set_name(vformat("WorkerThread %d", thread_data->index));
187
188
while (true) {
189
Task *task_to_process = nullptr;
190
{
191
// Create the lock outside the inner loop so it isn't needlessly unlocked and relocked
192
// when no task was found to process, and the loop is re-entered.
193
MutexLock lock(thread_data->pool->task_mutex);
194
195
while (true) {
196
bool exit = thread_data->pool->_handle_runlevel(thread_data, lock);
197
if (unlikely(exit)) {
198
return;
199
}
200
201
thread_data->signaled = false;
202
203
if (!thread_data->pool->task_queue.first()) {
204
// There wasn't a task available yet.
205
// Let's wait for the next notification, then recheck.
206
thread_data->cond_var.wait(lock);
207
continue;
208
}
209
210
// Got a task to process! Remove it from the queue, then break into the task handling section.
211
task_to_process = thread_data->pool->task_queue.first()->self();
212
thread_data->pool->task_queue.remove(thread_data->pool->task_queue.first());
213
break;
214
}
215
}
216
217
DEV_ASSERT(task_to_process);
218
thread_data->pool->_process_task(task_to_process);
219
}
220
}
221
222
void WorkerThreadPool::_post_tasks(Task **p_tasks, uint32_t p_count, bool p_high_priority, MutexLock<BinaryMutex> &p_lock, bool p_pump_task) {
223
// Fall back to processing on the calling thread if there are no worker threads.
224
// Separated into its own variable to make it easier to extend this logic
225
// in custom builds.
226
227
// Avoid calling pump tasks or low priority tasks from the calling thread.
228
bool process_on_calling_thread = threads.is_empty() && !p_pump_task;
229
if (process_on_calling_thread) {
230
p_lock.temp_unlock();
231
for (uint32_t i = 0; i < p_count; i++) {
232
_process_task(p_tasks[i]);
233
}
234
p_lock.temp_relock();
235
return;
236
}
237
238
while (runlevel == RUNLEVEL_EXIT_LANGUAGES) {
239
control_cond_var.wait(p_lock);
240
}
241
242
uint32_t to_process = 0;
243
uint32_t to_promote = 0;
244
245
ThreadData *caller_pool_thread = thread_ids.has(Thread::get_caller_id()) ? &threads[thread_ids[Thread::get_caller_id()]] : nullptr;
246
247
for (uint32_t i = 0; i < p_count; i++) {
248
p_tasks[i]->low_priority = !p_high_priority;
249
if (p_high_priority || low_priority_threads_used < max_low_priority_threads) {
250
task_queue.add_last(&p_tasks[i]->task_elem);
251
if (!p_high_priority) {
252
low_priority_threads_used++;
253
}
254
to_process++;
255
} else {
256
// Too many threads using low priority, must go to queue.
257
low_priority_task_queue.add_last(&p_tasks[i]->task_elem);
258
to_promote++;
259
}
260
}
261
262
_notify_threads(caller_pool_thread, to_process, to_promote);
263
}
264
265
void WorkerThreadPool::_notify_threads(const ThreadData *p_current_thread_data, uint32_t p_process_count, uint32_t p_promote_count) {
266
uint32_t to_process = p_process_count;
267
uint32_t to_promote = p_promote_count;
268
269
// This is where which threads are awaken is decided according to the workload.
270
// Threads that will anyway have a chance to check the situation and process/promote tasks
271
// are excluded from being notified. Others will be tried anyway to try to distribute load.
272
// The current thread, if is a pool thread, is also excluded depending on the promoting/processing
273
// needs because it will anyway loop again. However, it will contribute to decreasing the count,
274
// which helps reducing sync traffic.
275
276
uint32_t thread_count = threads.size();
277
278
// First round:
279
// 1. For processing: notify threads that are not running tasks, to keep the stacks as shallow as possible.
280
// 2. For promoting: since it's exclusive with processing, we fin threads able to promote low-prio tasks now.
281
for (uint32_t i = 0;
282
i < thread_count && (to_process || to_promote);
283
i++, notify_index = (notify_index + 1) % thread_count) {
284
ThreadData &th = threads[notify_index];
285
286
if (th.signaled) {
287
continue;
288
}
289
if (th.current_task) {
290
// Good thread for promoting low-prio?
291
if (to_promote && th.awaited_task && th.current_task->low_priority) {
292
if (likely(&th != p_current_thread_data)) {
293
th.cond_var.notify_one();
294
}
295
th.signaled = true;
296
to_promote--;
297
}
298
} else {
299
if (to_process) {
300
if (likely(&th != p_current_thread_data)) {
301
th.cond_var.notify_one();
302
}
303
th.signaled = true;
304
to_process--;
305
}
306
}
307
}
308
309
// Second round:
310
// For processing: if the first round wasn't enough, let's try now with threads processing tasks but currently awaiting.
311
for (uint32_t i = 0;
312
i < thread_count && to_process;
313
i++, notify_index = (notify_index + 1) % thread_count) {
314
ThreadData &th = threads[notify_index];
315
316
if (th.signaled) {
317
continue;
318
}
319
if (th.awaited_task) {
320
if (likely(&th != p_current_thread_data)) {
321
th.cond_var.notify_one();
322
}
323
th.signaled = true;
324
to_process--;
325
}
326
}
327
}
328
329
bool WorkerThreadPool::_try_promote_low_priority_task() {
330
if (low_priority_task_queue.first()) {
331
Task *low_prio_task = low_priority_task_queue.first()->self();
332
low_priority_task_queue.remove(low_priority_task_queue.first());
333
task_queue.add_last(&low_prio_task->task_elem);
334
low_priority_threads_used++;
335
return true;
336
} else {
337
return false;
338
}
339
}
340
341
WorkerThreadPool::TaskID WorkerThreadPool::add_native_task(void (*p_func)(void *), void *p_userdata, bool p_high_priority, const String &p_description) {
342
return _add_task(Callable(), p_func, p_userdata, nullptr, p_high_priority, p_description);
343
}
344
345
WorkerThreadPool::TaskID WorkerThreadPool::_add_task(const Callable &p_callable, void (*p_func)(void *), void *p_userdata, BaseTemplateUserdata *p_template_userdata, bool p_high_priority, const String &p_description, bool p_pump_task) {
346
MutexLock<BinaryMutex> lock(task_mutex);
347
348
// Get a free task
349
Task *task = task_allocator.alloc();
350
TaskID id = last_task++;
351
task->self = id;
352
task->callable = p_callable;
353
task->native_func = p_func;
354
task->native_func_userdata = p_userdata;
355
task->description = p_description;
356
task->template_userdata = p_template_userdata;
357
task->is_pump_task = p_pump_task;
358
tasks.insert(id, task);
359
360
#ifdef THREADS_ENABLED
361
if (p_pump_task) {
362
pump_task_count++;
363
int thread_count = get_thread_count();
364
if (pump_task_count >= thread_count) {
365
print_verbose(vformat("A greater number of dedicated threads were requested (%d) than threads available (%d). Please increase the number of available worker task threads. Recovering this session by spawning more worker task threads.", pump_task_count + 1, thread_count)); // +1 because we want to keep a Thread without any pump tasks free.
366
367
// Re-sizing implies relocation, which is not supported for this array.
368
CRASH_COND_MSG(thread_count + 1 > (int)threads.get_capacity(), "Reserve trick for worker thread pool failed. Crashing.");
369
threads.resize_initialized(thread_count + 1);
370
threads[thread_count].index = thread_count;
371
threads[thread_count].pool = this;
372
threads[thread_count].thread.start(&WorkerThreadPool::_thread_function, &threads[thread_count]);
373
thread_ids.insert(threads[thread_count].thread.get_id(), thread_count);
374
}
375
}
376
#endif
377
378
_post_tasks(&task, 1, p_high_priority, lock, p_pump_task);
379
380
return id;
381
}
382
383
WorkerThreadPool::TaskID WorkerThreadPool::add_task(const Callable &p_action, bool p_high_priority, const String &p_description, bool p_pump_task) {
384
return _add_task(p_action, nullptr, nullptr, nullptr, p_high_priority, p_description, p_pump_task);
385
}
386
387
WorkerThreadPool::TaskID WorkerThreadPool::add_task_bind(const Callable &p_action, bool p_high_priority, const String &p_description) {
388
return _add_task(p_action, nullptr, nullptr, nullptr, p_high_priority, p_description, false);
389
}
390
391
bool WorkerThreadPool::is_task_completed(TaskID p_task_id) const {
392
MutexLock task_lock(task_mutex);
393
const Task *const *taskp = tasks.getptr(p_task_id);
394
if (!taskp) {
395
ERR_FAIL_V_MSG(false, "Invalid Task ID"); // Invalid task
396
}
397
398
return (*taskp)->completed;
399
}
400
401
Error WorkerThreadPool::wait_for_task_completion(TaskID p_task_id) {
402
task_mutex.lock();
403
Task **taskp = tasks.getptr(p_task_id);
404
if (!taskp) {
405
task_mutex.unlock();
406
ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Invalid Task ID"); // Invalid task
407
}
408
Task *task = *taskp;
409
410
if (task->completed) {
411
if (task->waiting_pool == 0 && task->waiting_user == 0) {
412
tasks.erase(p_task_id);
413
task_allocator.free(task);
414
}
415
task_mutex.unlock();
416
return OK;
417
}
418
419
ThreadData *caller_pool_thread = thread_ids.has(Thread::get_caller_id()) ? &threads[thread_ids[Thread::get_caller_id()]] : nullptr;
420
if (caller_pool_thread && p_task_id <= caller_pool_thread->current_task->self) {
421
// Deadlock prevention:
422
// When a pool thread wants to wait for an older task, the following situations can happen:
423
// 1. Awaited task is deep in the stack of the awaiter.
424
// 2. A group of awaiter threads end up depending on some tasks buried in the stack
425
// of their worker threads in such a way that progress can't be made.
426
// Both would entail a deadlock. Some may be handled here in the WorkerThreadPool
427
// with some extra logic and bookkeeping. However, there would still be unavoidable
428
// cases of deadlock because of the way waiting threads process outstanding tasks.
429
// Taking into account there's no feasible solution for every possible case
430
// with the current design, we just simply reject attempts to await on older tasks,
431
// with a specific error code that signals the situation so the caller can handle it.
432
task_mutex.unlock();
433
return ERR_BUSY;
434
}
435
436
if (caller_pool_thread) {
437
task->waiting_pool++;
438
} else {
439
task->waiting_user++;
440
}
441
442
if (caller_pool_thread) {
443
task_mutex.unlock();
444
_wait_collaboratively(caller_pool_thread, task);
445
task_mutex.lock();
446
task->waiting_pool--;
447
if (task->waiting_pool == 0 && task->waiting_user == 0) {
448
tasks.erase(p_task_id);
449
task_allocator.free(task);
450
}
451
} else {
452
task_mutex.unlock();
453
task->done_semaphore.wait();
454
task_mutex.lock();
455
task->waiting_user--;
456
if (task->waiting_pool == 0 && task->waiting_user == 0) {
457
tasks.erase(p_task_id);
458
task_allocator.free(task);
459
}
460
}
461
462
task_mutex.unlock();
463
return OK;
464
}
465
466
void WorkerThreadPool::_lock_unlockable_mutexes() {
467
#ifdef THREADS_ENABLED
468
for (uint32_t i = 0; i < MAX_UNLOCKABLE_LOCKS; i++) {
469
if (unlockable_locks[i].ulock) {
470
unlockable_locks[i].ulock->lock();
471
}
472
}
473
#endif
474
}
475
476
void WorkerThreadPool::_unlock_unlockable_mutexes() {
477
#ifdef THREADS_ENABLED
478
for (uint32_t i = 0; i < MAX_UNLOCKABLE_LOCKS; i++) {
479
if (unlockable_locks[i].ulock) {
480
unlockable_locks[i].ulock->unlock();
481
}
482
}
483
#endif
484
}
485
486
void WorkerThreadPool::_wait_collaboratively(ThreadData *p_caller_pool_thread, Task *p_task) {
487
// Keep processing tasks until the condition to stop waiting is met.
488
489
while (true) {
490
Task *task_to_process = nullptr;
491
bool relock_unlockables = false;
492
{
493
MutexLock lock(task_mutex);
494
495
bool was_signaled = p_caller_pool_thread->signaled;
496
p_caller_pool_thread->signaled = false;
497
498
bool exit = _handle_runlevel(p_caller_pool_thread, lock);
499
if (unlikely(exit)) {
500
break;
501
}
502
503
bool wait_is_over = false;
504
if (unlikely(p_task == ThreadData::YIELDING)) {
505
if (p_caller_pool_thread->yield_is_over) {
506
p_caller_pool_thread->yield_is_over = false;
507
wait_is_over = true;
508
}
509
} else {
510
if (p_task->completed) {
511
wait_is_over = true;
512
}
513
}
514
515
if (wait_is_over) {
516
if (was_signaled) {
517
// This thread was awaken for some additional reason, but it's about to exit.
518
// Let's find out what may be pending and forward the requests.
519
uint32_t to_process = task_queue.first() ? 1 : 0;
520
uint32_t to_promote = p_caller_pool_thread->current_task->low_priority && low_priority_task_queue.first() ? 1 : 0;
521
if (to_process || to_promote) {
522
// This thread must be left alone since it won't loop again.
523
p_caller_pool_thread->signaled = true;
524
_notify_threads(p_caller_pool_thread, to_process, to_promote);
525
}
526
}
527
528
break;
529
}
530
531
if (p_caller_pool_thread->current_task->low_priority && low_priority_task_queue.first()) {
532
if (_try_promote_low_priority_task()) {
533
_notify_threads(p_caller_pool_thread, 1, 0);
534
}
535
}
536
537
if (p_caller_pool_thread->pool->task_queue.first()) {
538
task_to_process = task_queue.first()->self();
539
if ((p_task == ThreadData::YIELDING || p_caller_pool_thread->has_pump_task == true) && task_to_process->is_pump_task) {
540
task_to_process = nullptr;
541
_notify_threads(p_caller_pool_thread, 1, 0);
542
} else {
543
task_queue.remove(task_queue.first());
544
}
545
}
546
547
if (!task_to_process) {
548
p_caller_pool_thread->awaited_task = p_task;
549
550
if (this == singleton) {
551
_unlock_unlockable_mutexes();
552
}
553
relock_unlockables = true;
554
555
p_caller_pool_thread->cond_var.wait(lock);
556
557
p_caller_pool_thread->awaited_task = nullptr;
558
}
559
}
560
561
if (relock_unlockables && this == singleton) {
562
_lock_unlockable_mutexes();
563
}
564
565
if (task_to_process) {
566
_process_task(task_to_process);
567
}
568
}
569
}
570
571
void WorkerThreadPool::_switch_runlevel(Runlevel p_runlevel) {
572
DEV_ASSERT(p_runlevel > runlevel);
573
runlevel = p_runlevel;
574
memset(&runlevel_data, 0, sizeof(runlevel_data));
575
for (uint32_t i = 0; i < threads.size(); i++) {
576
threads[i].cond_var.notify_one();
577
threads[i].signaled = true;
578
}
579
control_cond_var.notify_all();
580
}
581
582
// Returns whether threads have to exit. This may perform the check about handling needed.
583
bool WorkerThreadPool::_handle_runlevel(ThreadData *p_thread_data, MutexLock<BinaryMutex> &p_lock) {
584
bool exit = false;
585
switch (runlevel) {
586
case RUNLEVEL_NORMAL: {
587
} break;
588
case RUNLEVEL_PRE_EXIT_LANGUAGES: {
589
if (!p_thread_data->pre_exited_languages) {
590
if (!task_queue.first() && !low_priority_task_queue.first()) {
591
p_thread_data->pre_exited_languages = true;
592
runlevel_data.pre_exit_languages.num_idle_threads++;
593
control_cond_var.notify_all();
594
}
595
}
596
} break;
597
case RUNLEVEL_EXIT_LANGUAGES: {
598
if (!p_thread_data->exited_languages) {
599
p_lock.temp_unlock();
600
ScriptServer::thread_exit();
601
p_lock.temp_relock();
602
p_thread_data->exited_languages = true;
603
runlevel_data.exit_languages.num_exited_threads++;
604
control_cond_var.notify_all();
605
}
606
} break;
607
case RUNLEVEL_EXIT: {
608
exit = true;
609
} break;
610
}
611
return exit;
612
}
613
614
void WorkerThreadPool::yield() {
615
int th_index = get_thread_index();
616
ERR_FAIL_COND_MSG(th_index == -1, "This function can only be called from a worker thread.");
617
_wait_collaboratively(&threads[th_index], ThreadData::YIELDING);
618
619
task_mutex.lock();
620
if (runlevel < RUNLEVEL_EXIT_LANGUAGES) {
621
// If this long-lived task started before the scripting server was initialized,
622
// now is a good time to have scripting languages ready for the current thread.
623
// Otherwise, such a piece of setup won't happen unless another task has been
624
// run during the collaborative wait.
625
task_mutex.unlock();
626
ScriptServer::thread_enter();
627
} else {
628
task_mutex.unlock();
629
}
630
}
631
632
void WorkerThreadPool::notify_yield_over(TaskID p_task_id) {
633
MutexLock task_lock(task_mutex);
634
Task **taskp = tasks.getptr(p_task_id);
635
if (!taskp) {
636
ERR_FAIL_MSG("Invalid Task ID.");
637
}
638
Task *task = *taskp;
639
if (task->pool_thread_index == -1) { // Completed or not started yet.
640
if (!task->completed) {
641
// This avoids a race condition where a task is created and yield-over called before it's processed.
642
task->pending_notify_yield_over = true;
643
}
644
return;
645
}
646
647
ThreadData &td = threads[task->pool_thread_index];
648
td.yield_is_over = true;
649
td.signaled = true;
650
td.cond_var.notify_one();
651
}
652
653
WorkerThreadPool::GroupID WorkerThreadPool::_add_group_task(const Callable &p_callable, void (*p_func)(void *, uint32_t), void *p_userdata, BaseTemplateUserdata *p_template_userdata, int p_elements, int p_tasks, bool p_high_priority, const String &p_description) {
654
ERR_FAIL_COND_V(p_elements < 0, INVALID_TASK_ID);
655
if (p_tasks < 0) {
656
p_tasks = MAX(1u, threads.size());
657
}
658
659
MutexLock<BinaryMutex> lock(task_mutex);
660
661
Group *group = group_allocator.alloc();
662
GroupID id = last_task++;
663
group->max = p_elements;
664
group->self = id;
665
666
Task **tasks_posted = nullptr;
667
if (p_elements == 0) {
668
// Should really not call it with zero Elements, but at least it should work.
669
group->completed.set_to(true);
670
group->done_semaphore.post();
671
group->tasks_used = 0;
672
p_tasks = 0;
673
if (p_template_userdata) {
674
memdelete(p_template_userdata);
675
}
676
677
} else {
678
group->tasks_used = p_tasks;
679
tasks_posted = (Task **)alloca(sizeof(Task *) * p_tasks);
680
for (int i = 0; i < p_tasks; i++) {
681
Task *task = task_allocator.alloc();
682
task->native_group_func = p_func;
683
task->native_func_userdata = p_userdata;
684
task->description = p_description;
685
task->group = group;
686
task->callable = p_callable;
687
task->template_userdata = p_template_userdata;
688
tasks_posted[i] = task;
689
// No task ID is used.
690
}
691
}
692
693
groups[id] = group;
694
695
_post_tasks(tasks_posted, p_tasks, p_high_priority, lock, false);
696
697
return id;
698
}
699
700
WorkerThreadPool::GroupID WorkerThreadPool::add_native_group_task(void (*p_func)(void *, uint32_t), void *p_userdata, int p_elements, int p_tasks, bool p_high_priority, const String &p_description) {
701
return _add_group_task(Callable(), p_func, p_userdata, nullptr, p_elements, p_tasks, p_high_priority, p_description);
702
}
703
704
WorkerThreadPool::GroupID WorkerThreadPool::add_group_task(const Callable &p_action, int p_elements, int p_tasks, bool p_high_priority, const String &p_description) {
705
return _add_group_task(p_action, nullptr, nullptr, nullptr, p_elements, p_tasks, p_high_priority, p_description);
706
}
707
708
uint32_t WorkerThreadPool::get_group_processed_element_count(GroupID p_group) const {
709
MutexLock task_lock(task_mutex);
710
const Group *const *groupp = groups.getptr(p_group);
711
if (!groupp) {
712
ERR_FAIL_V_MSG(0, "Invalid Group ID");
713
}
714
return (*groupp)->completed_index.get();
715
}
716
bool WorkerThreadPool::is_group_task_completed(GroupID p_group) const {
717
MutexLock task_lock(task_mutex);
718
const Group *const *groupp = groups.getptr(p_group);
719
if (!groupp) {
720
ERR_FAIL_V_MSG(false, "Invalid Group ID");
721
}
722
return (*groupp)->completed.is_set();
723
}
724
725
void WorkerThreadPool::wait_for_group_task_completion(GroupID p_group) {
726
#ifdef THREADS_ENABLED
727
task_mutex.lock();
728
Group **groupp = groups.getptr(p_group);
729
task_mutex.unlock();
730
if (!groupp) {
731
ERR_FAIL_MSG("Invalid Group ID.");
732
}
733
734
{
735
Group *group = *groupp;
736
737
if (this == singleton) {
738
_unlock_unlockable_mutexes();
739
}
740
group->done_semaphore.wait();
741
if (this == singleton) {
742
_lock_unlockable_mutexes();
743
}
744
745
uint32_t max_users = group->tasks_used + 1; // Add 1 because the thread waiting for it is also user. Read before to avoid another thread freeing task after increment.
746
uint32_t finished_users = group->finished.increment(); // fetch happens before inc, so increment later.
747
748
if (finished_users == max_users) {
749
// All tasks using this group are gone (finished before the group), so clear the group too.
750
MutexLock task_lock(task_mutex);
751
group_allocator.free(group);
752
}
753
}
754
755
MutexLock task_lock(task_mutex); // This mutex is needed when Physics 2D and/or 3D is selected to run on a separate thread.
756
groups.erase(p_group);
757
#endif
758
}
759
760
int WorkerThreadPool::get_thread_index() const {
761
Thread::ID tid = Thread::get_caller_id();
762
return thread_ids.has(tid) ? thread_ids[tid] : -1;
763
}
764
765
WorkerThreadPool::TaskID WorkerThreadPool::get_caller_task_id() const {
766
int th_index = get_thread_index();
767
if (th_index != -1 && threads[th_index].current_task) {
768
return threads[th_index].current_task->self;
769
} else {
770
return INVALID_TASK_ID;
771
}
772
}
773
774
WorkerThreadPool::GroupID WorkerThreadPool::get_caller_group_id() const {
775
int th_index = get_thread_index();
776
if (th_index != -1 && threads[th_index].current_task && threads[th_index].current_task->group) {
777
return threads[th_index].current_task->group->self;
778
} else {
779
return INVALID_TASK_ID;
780
}
781
}
782
783
#ifdef THREADS_ENABLED
784
uint32_t WorkerThreadPool::_thread_enter_unlock_allowance_zone(THREADING_NAMESPACE::unique_lock<THREADING_NAMESPACE::mutex> &p_ulock) {
785
for (uint32_t i = 0; i < MAX_UNLOCKABLE_LOCKS; i++) {
786
DEV_ASSERT((bool)unlockable_locks[i].ulock == (bool)unlockable_locks[i].rc);
787
if (unlockable_locks[i].ulock == &p_ulock) {
788
// Already registered in the current thread.
789
unlockable_locks[i].rc++;
790
return i;
791
} else if (!unlockable_locks[i].ulock) {
792
unlockable_locks[i].ulock = &p_ulock;
793
unlockable_locks[i].rc = 1;
794
return i;
795
}
796
}
797
ERR_FAIL_V_MSG(UINT32_MAX, "No more unlockable lock slots available. Engine bug.");
798
}
799
800
void WorkerThreadPool::thread_exit_unlock_allowance_zone(uint32_t p_zone_id) {
801
DEV_ASSERT(unlockable_locks[p_zone_id].ulock && unlockable_locks[p_zone_id].rc);
802
unlockable_locks[p_zone_id].rc--;
803
if (unlockable_locks[p_zone_id].rc == 0) {
804
unlockable_locks[p_zone_id].ulock = nullptr;
805
}
806
}
807
#endif
808
809
void WorkerThreadPool::init(int p_thread_count, float p_low_priority_task_ratio) {
810
ERR_FAIL_COND(threads.size() > 0);
811
812
runlevel = RUNLEVEL_NORMAL;
813
814
if (p_thread_count < 0) {
815
p_thread_count = OS::get_singleton()->get_default_thread_pool_size();
816
}
817
818
max_low_priority_threads = CLAMP(p_thread_count * p_low_priority_task_ratio, 1, p_thread_count - 1);
819
820
print_verbose(vformat("WorkerThreadPool: %d threads, %d max low-priority.", p_thread_count, max_low_priority_threads));
821
822
#ifdef THREADS_ENABLED
823
// Reserve 5 threads in case we need separate threads for 1) 2D physics 2) 3D physics 3) rendering 4) GPU texture compression, 5) all other tasks.
824
// We cannot safely increase the Vector size at runtime, so reserve enough up front, but only launch those needed.
825
threads.reserve(5);
826
#endif
827
threads.resize(p_thread_count);
828
829
for (uint32_t i = 0; i < threads.size(); i++) {
830
threads[i].index = i;
831
threads[i].pool = this;
832
threads[i].thread.start(&WorkerThreadPool::_thread_function, &threads[i]);
833
thread_ids.insert(threads[i].thread.get_id(), i);
834
}
835
}
836
837
void WorkerThreadPool::exit_languages_threads() {
838
if (threads.is_empty()) {
839
return;
840
}
841
842
MutexLock lock(task_mutex);
843
844
// Wait until all threads are idle.
845
_switch_runlevel(RUNLEVEL_PRE_EXIT_LANGUAGES);
846
while (runlevel_data.pre_exit_languages.num_idle_threads != threads.size()) {
847
control_cond_var.wait(lock);
848
}
849
850
// Wait until all threads have detached from scripting languages.
851
_switch_runlevel(RUNLEVEL_EXIT_LANGUAGES);
852
while (runlevel_data.exit_languages.num_exited_threads != threads.size()) {
853
control_cond_var.wait(lock);
854
}
855
}
856
857
void WorkerThreadPool::finish() {
858
if (threads.is_empty()) {
859
return;
860
}
861
862
{
863
MutexLock lock(task_mutex);
864
SelfList<Task> *E = low_priority_task_queue.first();
865
while (E) {
866
print_error("Task waiting was never re-claimed: " + E->self()->description);
867
E = E->next();
868
}
869
870
_switch_runlevel(RUNLEVEL_EXIT);
871
}
872
873
for (ThreadData &data : threads) {
874
data.thread.wait_to_finish();
875
}
876
877
{
878
MutexLock lock(task_mutex);
879
for (KeyValue<TaskID, Task *> &E : tasks) {
880
task_allocator.free(E.value);
881
}
882
}
883
884
threads.clear();
885
}
886
887
void WorkerThreadPool::_bind_methods() {
888
ClassDB::bind_method(D_METHOD("add_task", "action", "high_priority", "description"), &WorkerThreadPool::add_task_bind, DEFVAL(false), DEFVAL(String()));
889
ClassDB::bind_method(D_METHOD("is_task_completed", "task_id"), &WorkerThreadPool::is_task_completed);
890
ClassDB::bind_method(D_METHOD("wait_for_task_completion", "task_id"), &WorkerThreadPool::wait_for_task_completion);
891
ClassDB::bind_method(D_METHOD("get_caller_task_id"), &WorkerThreadPool::get_caller_task_id);
892
893
ClassDB::bind_method(D_METHOD("add_group_task", "action", "elements", "tasks_needed", "high_priority", "description"), &WorkerThreadPool::add_group_task, DEFVAL(-1), DEFVAL(false), DEFVAL(String()));
894
ClassDB::bind_method(D_METHOD("is_group_task_completed", "group_id"), &WorkerThreadPool::is_group_task_completed);
895
ClassDB::bind_method(D_METHOD("get_group_processed_element_count", "group_id"), &WorkerThreadPool::get_group_processed_element_count);
896
ClassDB::bind_method(D_METHOD("wait_for_group_task_completion", "group_id"), &WorkerThreadPool::wait_for_group_task_completion);
897
ClassDB::bind_method(D_METHOD("get_caller_group_id"), &WorkerThreadPool::get_caller_group_id);
898
}
899
900
WorkerThreadPool *WorkerThreadPool::get_named_pool(const StringName &p_name) {
901
WorkerThreadPool **pool_ptr = named_pools.getptr(p_name);
902
if (pool_ptr) {
903
return *pool_ptr;
904
} else {
905
WorkerThreadPool *pool = memnew(WorkerThreadPool(false));
906
pool->init();
907
named_pools[p_name] = pool;
908
return pool;
909
}
910
}
911
912
WorkerThreadPool::WorkerThreadPool(bool p_singleton) {
913
if (p_singleton) {
914
singleton = this;
915
}
916
}
917
918
WorkerThreadPool::~WorkerThreadPool() {
919
finish();
920
921
if (this == singleton) {
922
singleton = nullptr;
923
for (KeyValue<StringName, WorkerThreadPool *> &E : named_pools) {
924
E.value->finish();
925
memdelete(E.value);
926
}
927
named_pools.clear();
928
}
929
}
930
931