#pragma once
#include "core/error/error_macros.h"
#include "core/os/memory.h"
#include "core/templates/sort_array.h"
#include "core/templates/vector.h"
#include <initializer_list>
#include <type_traits>
template <typename T, typename U = uint32_t, bool force_trivial = false, bool tight = false>
class LocalVector {
static_assert(!force_trivial, "force_trivial is no longer supported. Use resize_uninitialized instead.");
private:
U count = 0;
U capacity = 0;
T *data = nullptr;
template <bool p_init>
void _resize(U p_size) {
if (p_size < count) {
if constexpr (!std::is_trivially_destructible_v<T>) {
for (U i = p_size; i < count; i++) {
data[i].~T();
}
}
count = p_size;
} else if (p_size > count) {
reserve(p_size);
if constexpr (p_init) {
memnew_arr_placement(data + count, p_size - count);
} else {
static_assert(std::is_trivially_destructible_v<T>, "T must be trivially destructible to resize uninitialized");
}
count = p_size;
}
}
public:
_FORCE_INLINE_ T *ptr() { return data; }
_FORCE_INLINE_ const T *ptr() const { return data; }
_FORCE_INLINE_ U size() const { return count; }
_FORCE_INLINE_ Span<T> span() const { return Span(data, count); }
_FORCE_INLINE_ operator Span<T>() const { return span(); }
_FORCE_INLINE_ void push_back(T p_elem) {
if (unlikely(count == capacity)) {
reserve(count + 1);
}
memnew_placement(&data[count++], T(std::move(p_elem)));
}
void remove_at(U p_index) {
ERR_FAIL_UNSIGNED_INDEX(p_index, count);
count--;
for (U i = p_index; i < count; i++) {
data[i] = std::move(data[i + 1]);
}
data[count].~T();
}
void remove_at_unordered(U p_index) {
ERR_FAIL_INDEX(p_index, count);
count--;
if (count > p_index) {
data[p_index] = std::move(data[count]);
}
data[count].~T();
}
_FORCE_INLINE_ bool erase(const T &p_val) {
int64_t idx = find(p_val);
if (idx >= 0) {
remove_at(idx);
return true;
}
return false;
}
bool erase_unordered(const T &p_val) {
int64_t idx = find(p_val);
if (idx >= 0) {
remove_at_unordered(idx);
return true;
}
return false;
}
U erase_multiple_unordered(const T &p_val) {
U from = 0;
U occurrences = 0;
while (true) {
int64_t idx = find(p_val, from);
if (idx == -1) {
break;
}
remove_at_unordered(idx);
from = idx;
occurrences++;
}
return occurrences;
}
void reverse() {
for (U i = 0; i < count / 2; i++) {
SWAP(data[i], data[count - i - 1]);
}
}
#ifndef DISABLE_DEPRECATED
[[deprecated("Use reverse() instead")]] void invert() { reverse(); }
#endif
_FORCE_INLINE_ void clear() { resize(0); }
_FORCE_INLINE_ void reset() {
clear();
if (data) {
memfree(data);
data = nullptr;
capacity = 0;
}
}
_FORCE_INLINE_ bool is_empty() const { return count == 0; }
_FORCE_INLINE_ U get_capacity() const { return capacity; }
void reserve(U p_size) {
ERR_FAIL_COND_MSG(p_size < size(), "reserve() called with a capacity smaller than the current size. This is likely a mistake.");
if (p_size > capacity) {
if (tight) {
capacity = p_size;
} else {
capacity = MAX((U)2, capacity + ((1 + capacity) >> 1));
if (p_size > capacity) {
capacity = p_size;
}
}
data = (T *)memrealloc(data, capacity * sizeof(T));
CRASH_COND_MSG(!data, "Out of memory");
}
}
void resize(U p_size) {
_resize<!std::is_trivially_constructible_v<T>>(p_size);
}
_FORCE_INLINE_ void resize_initialized(U p_size) { _resize<true>(p_size); }
_FORCE_INLINE_ void resize_uninitialized(U p_size) { _resize<false>(p_size); }
_FORCE_INLINE_ const T &operator[](U p_index) const {
CRASH_BAD_UNSIGNED_INDEX(p_index, count);
return data[p_index];
}
_FORCE_INLINE_ T &operator[](U p_index) {
CRASH_BAD_UNSIGNED_INDEX(p_index, count);
return data[p_index];
}
struct Iterator {
_FORCE_INLINE_ T &operator*() const {
return *elem_ptr;
}
_FORCE_INLINE_ T *operator->() const { return elem_ptr; }
_FORCE_INLINE_ Iterator &operator++() {
elem_ptr++;
return *this;
}
_FORCE_INLINE_ Iterator &operator--() {
elem_ptr--;
return *this;
}
_FORCE_INLINE_ bool operator==(const Iterator &b) const { return elem_ptr == b.elem_ptr; }
_FORCE_INLINE_ bool operator!=(const Iterator &b) const { return elem_ptr != b.elem_ptr; }
Iterator(T *p_ptr) { elem_ptr = p_ptr; }
Iterator() {}
Iterator(const Iterator &p_it) { elem_ptr = p_it.elem_ptr; }
private:
T *elem_ptr = nullptr;
};
struct ConstIterator {
_FORCE_INLINE_ const T &operator*() const {
return *elem_ptr;
}
_FORCE_INLINE_ const T *operator->() const { return elem_ptr; }
_FORCE_INLINE_ ConstIterator &operator++() {
elem_ptr++;
return *this;
}
_FORCE_INLINE_ ConstIterator &operator--() {
elem_ptr--;
return *this;
}
_FORCE_INLINE_ bool operator==(const ConstIterator &b) const { return elem_ptr == b.elem_ptr; }
_FORCE_INLINE_ bool operator!=(const ConstIterator &b) const { return elem_ptr != b.elem_ptr; }
ConstIterator(const T *p_ptr) { elem_ptr = p_ptr; }
ConstIterator() {}
ConstIterator(const ConstIterator &p_it) { elem_ptr = p_it.elem_ptr; }
private:
const T *elem_ptr = nullptr;
};
_FORCE_INLINE_ Iterator begin() {
return Iterator(data);
}
_FORCE_INLINE_ Iterator end() {
return Iterator(data + size());
}
_FORCE_INLINE_ ConstIterator begin() const {
return ConstIterator(ptr());
}
_FORCE_INLINE_ ConstIterator end() const {
return ConstIterator(ptr() + size());
}
void insert(U p_pos, T p_val) {
ERR_FAIL_UNSIGNED_INDEX(p_pos, count + 1);
if (p_pos == count) {
push_back(std::move(p_val));
} else {
resize(count + 1);
for (U i = count - 1; i > p_pos; i--) {
data[i] = std::move(data[i - 1]);
}
data[p_pos] = std::move(p_val);
}
}
int64_t find(const T &p_val, int64_t p_from = 0) const {
if (p_from < 0) {
p_from = size() + p_from;
}
if (p_from < 0 || p_from >= size()) {
return -1;
}
return span().find(p_val, p_from);
}
bool has(const T &p_val) const {
return find(p_val) != -1;
}
template <typename C>
void sort_custom() {
U len = count;
if (len == 0) {
return;
}
SortArray<T, C> sorter;
sorter.sort(data, len);
}
void sort() {
sort_custom<Comparator<T>>();
}
void ordered_insert(T p_val) {
U i;
for (i = 0; i < count; i++) {
if (p_val < data[i]) {
break;
}
}
insert(i, p_val);
}
operator Vector<T>() const {
Vector<T> ret;
ret.resize(count);
T *w = ret.ptrw();
if (w) {
if constexpr (std::is_trivially_copyable_v<T>) {
memcpy(w, data, sizeof(T) * count);
} else {
for (U i = 0; i < count; i++) {
w[i] = data[i];
}
}
}
return ret;
}
Vector<uint8_t> to_byte_array() const {
Vector<uint8_t> ret;
ret.resize(count * sizeof(T));
uint8_t *w = ret.ptrw();
if (w) {
memcpy(w, data, sizeof(T) * count);
}
return ret;
}
_FORCE_INLINE_ LocalVector() {}
_FORCE_INLINE_ LocalVector(std::initializer_list<T> p_init) {
reserve(p_init.size());
for (const T &element : p_init) {
push_back(element);
}
}
_FORCE_INLINE_ LocalVector(const LocalVector &p_from) {
resize(p_from.size());
for (U i = 0; i < p_from.count; i++) {
data[i] = p_from.data[i];
}
}
_FORCE_INLINE_ LocalVector(LocalVector &&p_from) {
data = p_from.data;
count = p_from.count;
capacity = p_from.capacity;
p_from.data = nullptr;
p_from.count = 0;
p_from.capacity = 0;
}
inline void operator=(const LocalVector &p_from) {
resize(p_from.size());
for (U i = 0; i < p_from.count; i++) {
data[i] = p_from.data[i];
}
}
inline void operator=(const Vector<T> &p_from) {
resize(p_from.size());
for (U i = 0; i < count; i++) {
data[i] = p_from[i];
}
}
inline void operator=(LocalVector &&p_from) {
if (unlikely(this == &p_from)) {
return;
}
reset();
data = p_from.data;
count = p_from.count;
capacity = p_from.capacity;
p_from.data = nullptr;
p_from.count = 0;
p_from.capacity = 0;
}
inline void operator=(Vector<T> &&p_from) {
resize(p_from.size());
for (U i = 0; i < count; i++) {
data[i] = std::move(p_from[i]);
}
}
_FORCE_INLINE_ ~LocalVector() {
if (data) {
reset();
}
}
};
template <typename T, typename U = uint32_t>
using TightLocalVector = LocalVector<T, U, false, true>;
template <typename T, typename U, bool force_trivial, bool tight>
struct is_zero_constructible<LocalVector<T, U, force_trivial, tight>> : std::true_type {};