Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/drivers/gles3/rasterizer_scene_gles3.cpp
21403 views
1
/**************************************************************************/
2
/* rasterizer_scene_gles3.cpp */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#include "rasterizer_scene_gles3.h"
32
33
#include "drivers/gles3/effects/copy_effects.h"
34
#include "drivers/gles3/effects/feed_effects.h"
35
#include "drivers/gles3/storage/material_storage.h"
36
#include "rasterizer_gles3.h"
37
#include "storage/config.h"
38
#include "storage/mesh_storage.h"
39
#include "storage/particles_storage.h"
40
#include "storage/texture_storage.h"
41
42
#include "core/config/project_settings.h"
43
#include "core/templates/sort_array.h"
44
#include "servers/camera/camera_feed.h"
45
#include "servers/camera/camera_server.h"
46
#include "servers/rendering/rendering_server_default.h"
47
#include "servers/rendering/rendering_server_globals.h"
48
49
#ifdef GLES3_ENABLED
50
51
RasterizerSceneGLES3 *RasterizerSceneGLES3::singleton = nullptr;
52
53
RenderGeometryInstance *RasterizerSceneGLES3::geometry_instance_create(RID p_base) {
54
RS::InstanceType type = RSG::utilities->get_base_type(p_base);
55
ERR_FAIL_COND_V(!((1 << type) & RS::INSTANCE_GEOMETRY_MASK), nullptr);
56
57
GeometryInstanceGLES3 *ginstance = geometry_instance_alloc.alloc();
58
ginstance->data = memnew(GeometryInstanceGLES3::Data);
59
60
ginstance->data->base = p_base;
61
ginstance->data->base_type = type;
62
ginstance->data->dependency_tracker.userdata = ginstance;
63
ginstance->data->dependency_tracker.changed_callback = _geometry_instance_dependency_changed;
64
ginstance->data->dependency_tracker.deleted_callback = _geometry_instance_dependency_deleted;
65
66
ginstance->_mark_dirty();
67
68
return ginstance;
69
}
70
71
uint32_t RasterizerSceneGLES3::geometry_instance_get_pair_mask() {
72
return ((1 << RS::INSTANCE_LIGHT) | (1 << RS::INSTANCE_REFLECTION_PROBE));
73
}
74
75
uint32_t RasterizerSceneGLES3::get_max_lights_total() {
76
return (uint32_t)GLES3::Config::get_singleton()->max_renderable_lights;
77
}
78
79
uint32_t RasterizerSceneGLES3::get_max_lights_per_mesh() {
80
return (uint32_t)GLES3::Config::get_singleton()->max_lights_per_object;
81
}
82
83
void RasterizerSceneGLES3::GeometryInstanceGLES3::clear_light_instances() {
84
paired_omni_light_count = 0;
85
paired_spot_light_count = 0;
86
paired_omni_lights.clear();
87
paired_spot_lights.clear();
88
}
89
90
void RasterizerSceneGLES3::GeometryInstanceGLES3::pair_light_instance(
91
const RID p_light_instance, RS::LightType light_type, uint32_t placement_idx) {
92
if (placement_idx < GLES3::Config::get_singleton()->max_lights_per_object) {
93
switch (light_type) {
94
case RS::LIGHT_OMNI: {
95
if (placement_idx >= paired_omni_light_count) {
96
paired_omni_lights.push_back(p_light_instance);
97
++paired_omni_light_count;
98
} else {
99
paired_omni_lights[placement_idx] = p_light_instance;
100
}
101
} break;
102
case RS::LIGHT_SPOT: {
103
if (placement_idx >= paired_spot_light_count) {
104
paired_spot_lights.push_back(p_light_instance);
105
++paired_spot_light_count;
106
} else {
107
paired_spot_lights[placement_idx] = p_light_instance;
108
}
109
} break;
110
default:
111
break;
112
}
113
}
114
}
115
116
void RasterizerSceneGLES3::GeometryInstanceGLES3::pair_reflection_probe_instances(const RID *p_reflection_probe_instances, uint32_t p_reflection_probe_instance_count) {
117
paired_reflection_probes.clear();
118
119
for (uint32_t i = 0; i < p_reflection_probe_instance_count; i++) {
120
paired_reflection_probes.push_back(p_reflection_probe_instances[i]);
121
}
122
}
123
124
void RasterizerSceneGLES3::geometry_instance_free(RenderGeometryInstance *p_geometry_instance) {
125
GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
126
ERR_FAIL_NULL(ginstance);
127
GeometryInstanceSurface *surf = ginstance->surface_caches;
128
while (surf) {
129
GeometryInstanceSurface *next = surf->next;
130
geometry_instance_surface_alloc.free(surf);
131
surf = next;
132
}
133
memdelete(ginstance->data);
134
geometry_instance_alloc.free(ginstance);
135
}
136
137
void RasterizerSceneGLES3::GeometryInstanceGLES3::_mark_dirty() {
138
if (dirty_list_element.in_list()) {
139
return;
140
}
141
142
//clear surface caches
143
GeometryInstanceSurface *surf = surface_caches;
144
145
while (surf) {
146
GeometryInstanceSurface *next = surf->next;
147
RasterizerSceneGLES3::get_singleton()->geometry_instance_surface_alloc.free(surf);
148
surf = next;
149
}
150
151
surface_caches = nullptr;
152
153
RasterizerSceneGLES3::get_singleton()->geometry_instance_dirty_list.add(&dirty_list_element);
154
}
155
156
void RasterizerSceneGLES3::GeometryInstanceGLES3::set_use_lightmap(RID p_lightmap_instance, const Rect2 &p_lightmap_uv_scale, int p_lightmap_slice_index) {
157
lightmap_instance = p_lightmap_instance;
158
lightmap_uv_scale = p_lightmap_uv_scale;
159
lightmap_slice_index = p_lightmap_slice_index;
160
161
_mark_dirty();
162
}
163
164
void RasterizerSceneGLES3::GeometryInstanceGLES3::set_lightmap_capture(const Color *p_sh9) {
165
if (p_sh9) {
166
if (lightmap_sh == nullptr) {
167
lightmap_sh = memnew(GeometryInstanceLightmapSH);
168
}
169
170
memcpy(lightmap_sh->sh, p_sh9, sizeof(Color) * 9);
171
} else {
172
if (lightmap_sh != nullptr) {
173
memdelete(lightmap_sh);
174
lightmap_sh = nullptr;
175
}
176
}
177
_mark_dirty();
178
}
179
180
void RasterizerSceneGLES3::_update_dirty_geometry_instances() {
181
while (geometry_instance_dirty_list.first()) {
182
_geometry_instance_update(geometry_instance_dirty_list.first()->self());
183
}
184
}
185
186
void RasterizerSceneGLES3::_geometry_instance_dependency_changed(Dependency::DependencyChangedNotification p_notification, DependencyTracker *p_tracker) {
187
switch (p_notification) {
188
case Dependency::DEPENDENCY_CHANGED_MATERIAL:
189
case Dependency::DEPENDENCY_CHANGED_MESH:
190
case Dependency::DEPENDENCY_CHANGED_PARTICLES:
191
case Dependency::DEPENDENCY_CHANGED_MULTIMESH:
192
case Dependency::DEPENDENCY_CHANGED_SKELETON_DATA: {
193
static_cast<RenderGeometryInstance *>(p_tracker->userdata)->_mark_dirty();
194
static_cast<GeometryInstanceGLES3 *>(p_tracker->userdata)->data->dirty_dependencies = true;
195
} break;
196
case Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES: {
197
GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_tracker->userdata);
198
if (ginstance->data->base_type == RS::INSTANCE_MULTIMESH) {
199
ginstance->instance_count = GLES3::MeshStorage::get_singleton()->multimesh_get_instances_to_draw(ginstance->data->base);
200
}
201
} break;
202
default: {
203
//rest of notifications of no interest
204
} break;
205
}
206
}
207
208
void RasterizerSceneGLES3::_geometry_instance_dependency_deleted(const RID &p_dependency, DependencyTracker *p_tracker) {
209
static_cast<RenderGeometryInstance *>(p_tracker->userdata)->_mark_dirty();
210
static_cast<GeometryInstanceGLES3 *>(p_tracker->userdata)->data->dirty_dependencies = true;
211
}
212
213
void RasterizerSceneGLES3::_geometry_instance_add_surface_with_material(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, GLES3::SceneMaterialData *p_material, uint32_t p_material_id, uint32_t p_shader_id, RID p_mesh) {
214
GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton();
215
216
bool has_read_screen_alpha = p_material->shader_data->uses_screen_texture || p_material->shader_data->uses_depth_texture || p_material->shader_data->uses_normal_texture;
217
bool has_base_alpha = ((p_material->shader_data->uses_alpha && !p_material->shader_data->uses_alpha_clip) || has_read_screen_alpha);
218
bool has_blend_alpha = p_material->shader_data->uses_blend_alpha;
219
bool has_alpha = has_base_alpha || has_blend_alpha;
220
221
uint32_t flags = 0;
222
223
if (p_material->shader_data->uses_screen_texture) {
224
flags |= GeometryInstanceSurface::FLAG_USES_SCREEN_TEXTURE;
225
}
226
227
if (p_material->shader_data->uses_depth_texture) {
228
flags |= GeometryInstanceSurface::FLAG_USES_DEPTH_TEXTURE;
229
}
230
231
if (p_material->shader_data->uses_normal_texture) {
232
flags |= GeometryInstanceSurface::FLAG_USES_NORMAL_TEXTURE;
233
}
234
235
if (ginstance->data->cast_double_sided_shadows) {
236
flags |= GeometryInstanceSurface::FLAG_USES_DOUBLE_SIDED_SHADOWS;
237
}
238
239
if (p_material->shader_data->stencil_enabled) {
240
flags |= GeometryInstanceSurface::FLAG_USES_STENCIL;
241
}
242
243
if (has_alpha || has_read_screen_alpha || p_material->shader_data->depth_draw == GLES3::SceneShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test != GLES3::SceneShaderData::DEPTH_TEST_ENABLED) {
244
//material is only meant for alpha pass
245
flags |= GeometryInstanceSurface::FLAG_PASS_ALPHA;
246
if (p_material->shader_data->uses_depth_prepass_alpha && !(p_material->shader_data->depth_draw == GLES3::SceneShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test != GLES3::SceneShaderData::DEPTH_TEST_ENABLED)) {
247
flags |= GeometryInstanceSurface::FLAG_PASS_DEPTH;
248
flags |= GeometryInstanceSurface::FLAG_PASS_SHADOW;
249
}
250
} else {
251
flags |= GeometryInstanceSurface::FLAG_PASS_OPAQUE;
252
flags |= GeometryInstanceSurface::FLAG_PASS_DEPTH;
253
flags |= GeometryInstanceSurface::FLAG_PASS_SHADOW;
254
}
255
256
if (p_material->shader_data->stencil_enabled) {
257
if (p_material->shader_data->stencil_flags & GLES3::SceneShaderData::STENCIL_FLAG_READ) {
258
// Stencil materials which read from the stencil buffer must be in the alpha pass.
259
// This is critical to preserve compatibility once we'll have the compositor.
260
if (!(flags & GeometryInstanceSurface::FLAG_PASS_ALPHA)) {
261
String shader_path = p_material->shader_data->path.is_empty() ? "" : "(" + p_material->shader_data->path + ")";
262
ERR_PRINT_ED(vformat("Attempting to use a shader %s that reads stencil but is not in the alpha queue. Ensure the material uses alpha blending or has depth_draw disabled or depth_test disabled.", shader_path));
263
}
264
}
265
}
266
267
GLES3::SceneMaterialData *material_shadow = nullptr;
268
void *surface_shadow = nullptr;
269
if (!p_material->shader_data->uses_particle_trails && !p_material->shader_data->writes_modelview_or_projection && !p_material->shader_data->uses_vertex && !p_material->shader_data->uses_discard && !p_material->shader_data->uses_depth_prepass_alpha && !p_material->shader_data->uses_alpha_clip && !p_material->shader_data->uses_world_coordinates && !p_material->shader_data->wireframe) {
270
flags |= GeometryInstanceSurface::FLAG_USES_SHARED_SHADOW_MATERIAL;
271
material_shadow = static_cast<GLES3::SceneMaterialData *>(GLES3::MaterialStorage::get_singleton()->material_get_data(scene_globals.default_material, RS::SHADER_SPATIAL));
272
273
RID shadow_mesh = mesh_storage->mesh_get_shadow_mesh(p_mesh);
274
275
if (shadow_mesh.is_valid()) {
276
surface_shadow = mesh_storage->mesh_get_surface(shadow_mesh, p_surface);
277
}
278
279
} else {
280
material_shadow = p_material;
281
}
282
283
GeometryInstanceSurface *sdcache = geometry_instance_surface_alloc.alloc();
284
285
sdcache->flags = flags;
286
287
sdcache->shader = p_material->shader_data;
288
sdcache->material = p_material;
289
sdcache->surface = mesh_storage->mesh_get_surface(p_mesh, p_surface);
290
sdcache->primitive = mesh_storage->mesh_surface_get_primitive(sdcache->surface);
291
sdcache->surface_index = p_surface;
292
293
if (ginstance->data->dirty_dependencies) {
294
RSG::utilities->base_update_dependency(p_mesh, &ginstance->data->dependency_tracker);
295
}
296
297
//shadow
298
sdcache->shader_shadow = material_shadow->shader_data;
299
sdcache->material_shadow = material_shadow;
300
301
sdcache->surface_shadow = surface_shadow ? surface_shadow : sdcache->surface;
302
303
sdcache->owner = ginstance;
304
305
sdcache->next = ginstance->surface_caches;
306
ginstance->surface_caches = sdcache;
307
308
//sortkey
309
310
sdcache->sort.sort_key1 = 0;
311
sdcache->sort.sort_key2 = 0;
312
313
sdcache->sort.surface_index = p_surface;
314
sdcache->sort.material_id_low = p_material_id & 0x0000FFFF;
315
sdcache->sort.material_id_hi = p_material_id >> 16;
316
sdcache->sort.shader_id = p_shader_id;
317
sdcache->sort.geometry_id = p_mesh.get_local_index();
318
sdcache->sort.priority = p_material->priority;
319
320
GLES3::Mesh::Surface *s = reinterpret_cast<GLES3::Mesh::Surface *>(sdcache->surface);
321
if (p_material->shader_data->uses_tangent && !(s->format & RS::ARRAY_FORMAT_TANGENT)) {
322
String shader_path = p_material->shader_data->path.is_empty() ? "" : "(" + p_material->shader_data->path + ")";
323
String mesh_path = mesh_storage->mesh_get_path(p_mesh).is_empty() ? "" : "(" + mesh_storage->mesh_get_path(p_mesh) + ")";
324
WARN_PRINT_ED(vformat("Attempting to use a shader %s that requires tangents with a mesh %s that doesn't contain tangents. Ensure that meshes are imported with the 'ensure_tangents' option. If creating your own meshes, add an `ARRAY_TANGENT` array (when using ArrayMesh) or call `generate_tangents()` (when using SurfaceTool).", shader_path, mesh_path));
325
}
326
}
327
328
void RasterizerSceneGLES3::_geometry_instance_add_surface_with_material_chain(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, GLES3::SceneMaterialData *p_material_data, RID p_mat_src, RID p_mesh) {
329
GLES3::SceneMaterialData *material_data = p_material_data;
330
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
331
332
_geometry_instance_add_surface_with_material(ginstance, p_surface, material_data, p_mat_src.get_local_index(), material_storage->material_get_shader_id(p_mat_src), p_mesh);
333
334
while (material_data->next_pass.is_valid()) {
335
RID next_pass = material_data->next_pass;
336
material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(next_pass, RS::SHADER_SPATIAL));
337
if (!material_data || !material_data->shader_data->valid) {
338
break;
339
}
340
if (ginstance->data->dirty_dependencies) {
341
material_storage->material_update_dependency(next_pass, &ginstance->data->dependency_tracker);
342
}
343
_geometry_instance_add_surface_with_material(ginstance, p_surface, material_data, next_pass.get_local_index(), material_storage->material_get_shader_id(next_pass), p_mesh);
344
}
345
}
346
347
void RasterizerSceneGLES3::_geometry_instance_add_surface(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, RID p_material, RID p_mesh) {
348
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
349
RID m_src;
350
351
m_src = ginstance->data->material_override.is_valid() ? ginstance->data->material_override : p_material;
352
353
GLES3::SceneMaterialData *material_data = nullptr;
354
355
if (m_src.is_valid()) {
356
material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(m_src, RS::SHADER_SPATIAL));
357
if (!material_data || !material_data->shader_data->valid) {
358
material_data = nullptr;
359
}
360
}
361
362
if (material_data) {
363
if (ginstance->data->dirty_dependencies) {
364
material_storage->material_update_dependency(m_src, &ginstance->data->dependency_tracker);
365
}
366
} else {
367
material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(scene_globals.default_material, RS::SHADER_SPATIAL));
368
m_src = scene_globals.default_material;
369
}
370
371
ERR_FAIL_NULL(material_data);
372
373
_geometry_instance_add_surface_with_material_chain(ginstance, p_surface, material_data, m_src, p_mesh);
374
375
if (ginstance->data->material_overlay.is_valid()) {
376
m_src = ginstance->data->material_overlay;
377
378
material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(m_src, RS::SHADER_SPATIAL));
379
if (material_data && material_data->shader_data->valid) {
380
if (ginstance->data->dirty_dependencies) {
381
material_storage->material_update_dependency(m_src, &ginstance->data->dependency_tracker);
382
}
383
384
_geometry_instance_add_surface_with_material_chain(ginstance, p_surface, material_data, m_src, p_mesh);
385
}
386
}
387
}
388
389
void RasterizerSceneGLES3::_geometry_instance_update(RenderGeometryInstance *p_geometry_instance) {
390
GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton();
391
GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton();
392
393
GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance);
394
395
if (ginstance->data->dirty_dependencies) {
396
ginstance->data->dependency_tracker.update_begin();
397
}
398
399
//add geometry for drawing
400
switch (ginstance->data->base_type) {
401
case RS::INSTANCE_MESH: {
402
const RID *materials = nullptr;
403
uint32_t surface_count;
404
RID mesh = ginstance->data->base;
405
406
materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count);
407
if (materials) {
408
//if no materials, no surfaces.
409
const RID *inst_materials = ginstance->data->surface_materials.ptr();
410
uint32_t surf_mat_count = ginstance->data->surface_materials.size();
411
412
for (uint32_t j = 0; j < surface_count; j++) {
413
RID material = (j < surf_mat_count && inst_materials[j].is_valid()) ? inst_materials[j] : materials[j];
414
_geometry_instance_add_surface(ginstance, j, material, mesh);
415
}
416
}
417
418
ginstance->instance_count = -1;
419
420
} break;
421
422
case RS::INSTANCE_MULTIMESH: {
423
RID mesh = mesh_storage->multimesh_get_mesh(ginstance->data->base);
424
if (mesh.is_valid()) {
425
const RID *materials = nullptr;
426
uint32_t surface_count;
427
428
materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count);
429
if (materials) {
430
for (uint32_t j = 0; j < surface_count; j++) {
431
_geometry_instance_add_surface(ginstance, j, materials[j], mesh);
432
}
433
}
434
435
ginstance->instance_count = mesh_storage->multimesh_get_instances_to_draw(ginstance->data->base);
436
}
437
438
} break;
439
case RS::INSTANCE_PARTICLES: {
440
int draw_passes = particles_storage->particles_get_draw_passes(ginstance->data->base);
441
442
for (int j = 0; j < draw_passes; j++) {
443
RID mesh = particles_storage->particles_get_draw_pass_mesh(ginstance->data->base, j);
444
if (!mesh.is_valid()) {
445
continue;
446
}
447
448
const RID *materials = nullptr;
449
uint32_t surface_count;
450
451
materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count);
452
if (materials) {
453
for (uint32_t k = 0; k < surface_count; k++) {
454
_geometry_instance_add_surface(ginstance, k, materials[k], mesh);
455
}
456
}
457
}
458
459
ginstance->instance_count = particles_storage->particles_get_amount(ginstance->data->base);
460
} break;
461
462
default: {
463
}
464
}
465
466
bool store_transform = true;
467
ginstance->base_flags = 0;
468
469
if (ginstance->data->base_type == RS::INSTANCE_MULTIMESH) {
470
ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH;
471
if (mesh_storage->multimesh_get_transform_format(ginstance->data->base) == RS::MULTIMESH_TRANSFORM_2D) {
472
ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D;
473
}
474
if (mesh_storage->multimesh_uses_colors(ginstance->data->base)) {
475
ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR;
476
}
477
if (mesh_storage->multimesh_uses_custom_data(ginstance->data->base)) {
478
ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA;
479
}
480
481
} else if (ginstance->data->base_type == RS::INSTANCE_PARTICLES) {
482
ginstance->base_flags |= INSTANCE_DATA_FLAG_PARTICLES;
483
ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH;
484
485
ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR;
486
ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA;
487
488
if (!particles_storage->particles_is_using_local_coords(ginstance->data->base)) {
489
store_transform = false;
490
}
491
492
} else if (ginstance->data->base_type == RS::INSTANCE_MESH) {
493
if (mesh_storage->skeleton_is_valid(ginstance->data->skeleton)) {
494
if (ginstance->data->dirty_dependencies) {
495
mesh_storage->skeleton_update_dependency(ginstance->data->skeleton, &ginstance->data->dependency_tracker);
496
}
497
}
498
}
499
500
ginstance->store_transform_cache = store_transform;
501
502
if (ginstance->data->dirty_dependencies) {
503
ginstance->data->dependency_tracker.update_end();
504
ginstance->data->dirty_dependencies = false;
505
}
506
507
ginstance->dirty_list_element.remove_from_list();
508
}
509
510
/* SKY API */
511
512
void RasterizerSceneGLES3::_free_sky_data(Sky *p_sky) {
513
if (p_sky->radiance != 0) {
514
GLES3::Utilities::get_singleton()->texture_free_data(p_sky->radiance);
515
p_sky->radiance = 0;
516
GLES3::Utilities::get_singleton()->texture_free_data(p_sky->raw_radiance);
517
p_sky->raw_radiance = 0;
518
glDeleteFramebuffers(1, &p_sky->radiance_framebuffer);
519
p_sky->radiance_framebuffer = 0;
520
}
521
}
522
523
RID RasterizerSceneGLES3::sky_allocate() {
524
return sky_owner.allocate_rid();
525
}
526
527
void RasterizerSceneGLES3::sky_initialize(RID p_rid) {
528
sky_owner.initialize_rid(p_rid);
529
}
530
531
void RasterizerSceneGLES3::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
532
Sky *sky = sky_owner.get_or_null(p_sky);
533
ERR_FAIL_NULL(sky);
534
ERR_FAIL_COND_MSG(p_radiance_size < 32 || p_radiance_size > 2048, "Sky radiance size must be between 32 and 2048");
535
536
if (sky->radiance_size == p_radiance_size) {
537
return; // No need to update
538
}
539
540
sky->radiance_size = p_radiance_size;
541
542
_free_sky_data(sky);
543
_invalidate_sky(sky);
544
}
545
546
void RasterizerSceneGLES3::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
547
Sky *sky = sky_owner.get_or_null(p_sky);
548
ERR_FAIL_NULL(sky);
549
550
if (sky->mode == p_mode) {
551
return;
552
}
553
554
sky->mode = p_mode;
555
_invalidate_sky(sky);
556
}
557
558
void RasterizerSceneGLES3::sky_set_material(RID p_sky, RID p_material) {
559
Sky *sky = sky_owner.get_or_null(p_sky);
560
ERR_FAIL_NULL(sky);
561
562
if (sky->material == p_material) {
563
return;
564
}
565
566
sky->material = p_material;
567
_invalidate_sky(sky);
568
}
569
570
float RasterizerSceneGLES3::sky_get_baked_exposure(RID p_sky) const {
571
Sky *sky = sky_owner.get_or_null(p_sky);
572
ERR_FAIL_NULL_V(sky, 1.0);
573
574
return sky->baked_exposure;
575
}
576
577
void RasterizerSceneGLES3::_invalidate_sky(Sky *p_sky) {
578
if (!p_sky->dirty) {
579
p_sky->dirty = true;
580
p_sky->dirty_list = dirty_sky_list;
581
dirty_sky_list = p_sky;
582
}
583
}
584
585
GLuint _init_radiance_texture(int p_size, int p_mipmaps, String p_name) {
586
GLuint radiance_id = 0;
587
588
glGenTextures(1, &radiance_id);
589
glBindTexture(GL_TEXTURE_CUBE_MAP, radiance_id);
590
#ifdef GL_API_ENABLED
591
if (RasterizerGLES3::is_gles_over_gl()) {
592
//TODO, on low-end compare this to allocating each face of each mip individually
593
// see: https://www.khronos.org/registry/OpenGL-Refpages/es3.0/html/glTexStorage2D.xhtml
594
for (int i = 0; i < 6; i++) {
595
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB10_A2, p_size, p_size, 0, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, nullptr);
596
}
597
598
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
599
}
600
#endif // GL_API_ENABLED
601
#ifdef GLES_API_ENABLED
602
if (!RasterizerGLES3::is_gles_over_gl()) {
603
glTexStorage2D(GL_TEXTURE_CUBE_MAP, p_mipmaps, GL_RGB10_A2, p_size, p_size);
604
}
605
#endif // GLES_API_ENABLED
606
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
607
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
608
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
609
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
610
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0);
611
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, p_mipmaps - 1);
612
613
GLES3::Utilities::get_singleton()->texture_allocated_data(radiance_id, Image::get_image_data_size(p_size, p_size, Image::FORMAT_RGBA8, true), p_name);
614
return radiance_id;
615
}
616
617
void RasterizerSceneGLES3::_update_dirty_skys() {
618
Sky *sky = dirty_sky_list;
619
620
while (sky) {
621
if (sky->radiance == 0) {
622
sky->mipmap_count = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBA8) - 1;
623
// Left uninitialized, will attach a texture at render time
624
glGenFramebuffers(1, &sky->radiance_framebuffer);
625
sky->radiance = _init_radiance_texture(sky->radiance_size, sky->mipmap_count, "Sky radiance texture");
626
sky->raw_radiance = _init_radiance_texture(sky->radiance_size, sky->mipmap_count, "Sky raw radiance texture");
627
}
628
629
sky->reflection_dirty = true;
630
sky->processing_layer = 0;
631
632
Sky *next = sky->dirty_list;
633
sky->dirty_list = nullptr;
634
sky->dirty = false;
635
sky = next;
636
}
637
638
dirty_sky_list = nullptr;
639
}
640
641
void RasterizerSceneGLES3::_setup_sky(const RenderDataGLES3 *p_render_data, const PagedArray<RID> &p_lights, const Projection &p_projection, const Transform3D &p_transform, const Size2i p_screen_size) {
642
GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
643
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
644
ERR_FAIL_COND(p_render_data->environment.is_null());
645
646
GLES3::SkyMaterialData *material = nullptr;
647
Sky *sky = sky_owner.get_or_null(environment_get_sky(p_render_data->environment));
648
649
RID sky_material;
650
651
GLES3::SkyShaderData *shader_data = nullptr;
652
653
if (sky) {
654
sky_material = sky->material;
655
656
if (sky_material.is_valid()) {
657
material = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
658
if (!material || !material->shader_data->valid) {
659
material = nullptr;
660
}
661
}
662
}
663
664
if (!material) {
665
sky_material = sky_globals.default_material;
666
material = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
667
}
668
669
ERR_FAIL_NULL(material);
670
671
shader_data = material->shader_data;
672
673
ERR_FAIL_NULL(shader_data);
674
675
if (sky) {
676
if (shader_data->uses_time && time - sky->prev_time > 0.00001) {
677
sky->prev_time = time;
678
sky->reflection_dirty = true;
679
RenderingServerDefault::redraw_request();
680
}
681
682
if (material != sky->prev_material) {
683
sky->prev_material = material;
684
sky->reflection_dirty = true;
685
}
686
687
if (material->uniform_set_updated) {
688
material->uniform_set_updated = false;
689
sky->reflection_dirty = true;
690
}
691
692
if (!p_transform.origin.is_equal_approx(sky->prev_position) && shader_data->uses_position) {
693
sky->prev_position = p_transform.origin;
694
sky->reflection_dirty = true;
695
}
696
}
697
698
bool sun_scatter_enabled = environment_get_fog_enabled(p_render_data->environment) && environment_get_fog_sun_scatter(p_render_data->environment) > 0.001;
699
glBindBufferBase(GL_UNIFORM_BUFFER, SKY_DIRECTIONAL_LIGHT_UNIFORM_LOCATION, sky_globals.directional_light_buffer);
700
if (shader_data->uses_light || sun_scatter_enabled) {
701
sky_globals.directional_light_count = 0;
702
for (int i = 0; i < (int)p_lights.size(); i++) {
703
GLES3::LightInstance *li = GLES3::LightStorage::get_singleton()->get_light_instance(p_lights[i]);
704
if (!li) {
705
continue;
706
}
707
RID base = li->light;
708
709
ERR_CONTINUE(base.is_null());
710
711
RS::LightType type = light_storage->light_get_type(base);
712
if (type == RS::LIGHT_DIRECTIONAL && light_storage->light_directional_get_sky_mode(base) != RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_ONLY) {
713
DirectionalLightData &sky_light_data = sky_globals.directional_lights[sky_globals.directional_light_count];
714
Transform3D light_transform = li->transform;
715
Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized();
716
717
sky_light_data.direction[0] = world_direction.x;
718
sky_light_data.direction[1] = world_direction.y;
719
sky_light_data.direction[2] = world_direction.z;
720
721
float sign = light_storage->light_is_negative(base) ? -1 : 1;
722
sky_light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY);
723
724
if (is_using_physical_light_units()) {
725
sky_light_data.energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY);
726
}
727
728
if (p_render_data->camera_attributes.is_valid()) {
729
sky_light_data.energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
730
}
731
732
Color srgb_col = light_storage->light_get_color(base);
733
sky_light_data.color[0] = srgb_col.r;
734
sky_light_data.color[1] = srgb_col.g;
735
sky_light_data.color[2] = srgb_col.b;
736
737
sky_light_data.enabled = true;
738
739
float angular_diameter = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
740
sky_light_data.size = Math::deg_to_rad(angular_diameter);
741
sky_globals.directional_light_count++;
742
if (sky_globals.directional_light_count >= sky_globals.max_directional_lights) {
743
break;
744
}
745
}
746
}
747
// Check whether the directional_light_buffer changes
748
bool light_data_dirty = false;
749
750
// Light buffer is dirty if we have fewer or more lights
751
// If we have fewer lights, make sure that old lights are disabled
752
if (sky_globals.directional_light_count != sky_globals.last_frame_directional_light_count) {
753
light_data_dirty = true;
754
for (uint32_t i = sky_globals.directional_light_count; i < sky_globals.max_directional_lights; i++) {
755
sky_globals.directional_lights[i].enabled = false;
756
sky_globals.last_frame_directional_lights[i].enabled = false;
757
}
758
}
759
760
if (!light_data_dirty) {
761
for (uint32_t i = 0; i < sky_globals.directional_light_count; i++) {
762
if (sky_globals.directional_lights[i].direction[0] != sky_globals.last_frame_directional_lights[i].direction[0] ||
763
sky_globals.directional_lights[i].direction[1] != sky_globals.last_frame_directional_lights[i].direction[1] ||
764
sky_globals.directional_lights[i].direction[2] != sky_globals.last_frame_directional_lights[i].direction[2] ||
765
sky_globals.directional_lights[i].energy != sky_globals.last_frame_directional_lights[i].energy ||
766
sky_globals.directional_lights[i].color[0] != sky_globals.last_frame_directional_lights[i].color[0] ||
767
sky_globals.directional_lights[i].color[1] != sky_globals.last_frame_directional_lights[i].color[1] ||
768
sky_globals.directional_lights[i].color[2] != sky_globals.last_frame_directional_lights[i].color[2] ||
769
sky_globals.directional_lights[i].enabled != sky_globals.last_frame_directional_lights[i].enabled ||
770
sky_globals.directional_lights[i].size != sky_globals.last_frame_directional_lights[i].size) {
771
light_data_dirty = true;
772
break;
773
}
774
}
775
}
776
777
if (light_data_dirty) {
778
glBufferData(GL_UNIFORM_BUFFER, sizeof(DirectionalLightData) * sky_globals.max_directional_lights, sky_globals.directional_lights, GL_STREAM_DRAW);
779
glBindBuffer(GL_UNIFORM_BUFFER, 0);
780
781
DirectionalLightData *temp = sky_globals.last_frame_directional_lights;
782
sky_globals.last_frame_directional_lights = sky_globals.directional_lights;
783
sky_globals.directional_lights = temp;
784
sky_globals.last_frame_directional_light_count = sky_globals.directional_light_count;
785
if (sky) {
786
sky->reflection_dirty = true;
787
}
788
}
789
}
790
791
if (p_render_data->view_count > 1) {
792
glBindBufferBase(GL_UNIFORM_BUFFER, SKY_MULTIVIEW_UNIFORM_LOCATION, scene_state.multiview_buffer);
793
glBindBuffer(GL_UNIFORM_BUFFER, 0);
794
}
795
796
if (sky && !sky->radiance) {
797
_invalidate_sky(sky);
798
_update_dirty_skys();
799
}
800
}
801
802
void RasterizerSceneGLES3::_draw_sky(RID p_env, const Projection &p_projection, const Transform3D &p_transform, float p_sky_energy_multiplier, float p_luminance_multiplier, bool p_use_multiview, bool p_flip_y, bool p_apply_color_adjustments_in_post) {
803
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
804
ERR_FAIL_COND(p_env.is_null());
805
806
Sky *sky = sky_owner.get_or_null(environment_get_sky(p_env));
807
808
GLES3::SkyMaterialData *material_data = nullptr;
809
RID sky_material;
810
811
uint64_t spec_constants = p_use_multiview ? SkyShaderGLES3::USE_MULTIVIEW : 0;
812
if (p_flip_y) {
813
spec_constants |= SkyShaderGLES3::USE_INVERTED_Y;
814
}
815
if (!p_apply_color_adjustments_in_post) {
816
spec_constants |= SkyShaderGLES3::APPLY_TONEMAPPING;
817
}
818
819
RS::EnvironmentBG background = environment_get_background(p_env);
820
821
if (sky) {
822
sky_material = sky->material;
823
824
if (sky_material.is_valid()) {
825
material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
826
if (!material_data || !material_data->shader_data->valid) {
827
material_data = nullptr;
828
}
829
}
830
831
if (!material_data) {
832
sky_material = sky_globals.default_material;
833
material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
834
}
835
} else if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) {
836
sky_material = sky_globals.fog_material;
837
material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
838
}
839
840
ERR_FAIL_NULL(material_data);
841
material_data->bind_uniforms();
842
843
GLES3::SkyShaderData *shader_data = material_data->shader_data;
844
845
ERR_FAIL_NULL(shader_data);
846
847
// Camera
848
Projection camera;
849
850
if (environment_get_sky_custom_fov(p_env)) {
851
float near_plane = p_projection.get_z_near();
852
float far_plane = p_projection.get_z_far();
853
float aspect = p_projection.get_aspect();
854
855
camera.set_perspective(environment_get_sky_custom_fov(p_env), aspect, near_plane, far_plane);
856
} else {
857
camera = p_projection;
858
}
859
860
Projection correction;
861
correction.set_depth_correction(false, true, false);
862
camera = correction * camera;
863
864
Basis sky_transform = environment_get_sky_orientation(p_env);
865
sky_transform.invert();
866
sky_transform = sky_transform * p_transform.basis;
867
868
bool success = material_storage->shaders.sky_shader.version_bind_shader(shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
869
if (!success) {
870
return;
871
}
872
873
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::ORIENTATION, sky_transform, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
874
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::PROJECTION, camera.columns[2][0], camera.columns[0][0], camera.columns[2][1], camera.columns[1][1], shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
875
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::POSITION, p_transform.origin, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
876
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::TIME, time, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
877
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::SKY_ENERGY_MULTIPLIER, p_sky_energy_multiplier, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
878
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::LUMINANCE_MULTIPLIER, p_luminance_multiplier, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
879
880
Color fog_color = environment_get_fog_light_color(p_env).srgb_to_linear() * environment_get_fog_light_energy(p_env);
881
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::FOG_ENABLED, environment_get_fog_enabled(p_env), shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
882
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::FOG_AERIAL_PERSPECTIVE, environment_get_fog_aerial_perspective(p_env), shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
883
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::FOG_LIGHT_COLOR, fog_color, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
884
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::FOG_SUN_SCATTER, environment_get_fog_sun_scatter(p_env), shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
885
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::FOG_DENSITY, environment_get_fog_density(p_env), shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
886
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::FOG_SKY_AFFECT, environment_get_fog_sky_affect(p_env), shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
887
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::DIRECTIONAL_LIGHT_COUNT, sky_globals.directional_light_count, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants);
888
889
if (p_use_multiview) {
890
glBindBufferBase(GL_UNIFORM_BUFFER, SKY_MULTIVIEW_UNIFORM_LOCATION, scene_state.multiview_buffer);
891
glBindBuffer(GL_UNIFORM_BUFFER, 0);
892
}
893
894
glBindVertexArray(sky_globals.screen_triangle_array);
895
glDrawArrays(GL_TRIANGLES, 0, 3);
896
}
897
898
void RasterizerSceneGLES3::_update_sky_radiance(RID p_env, const Projection &p_projection, const Transform3D &p_transform, float p_sky_energy_multiplier) {
899
GLES3::CubemapFilter *cubemap_filter = GLES3::CubemapFilter::get_singleton();
900
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
901
ERR_FAIL_COND(p_env.is_null());
902
903
Sky *sky = sky_owner.get_or_null(environment_get_sky(p_env));
904
ERR_FAIL_NULL(sky);
905
906
GLES3::SkyMaterialData *material_data = nullptr;
907
RID sky_material;
908
909
RS::EnvironmentBG background = environment_get_background(p_env);
910
911
if (sky) {
912
ERR_FAIL_NULL(sky);
913
sky_material = sky->material;
914
915
if (sky_material.is_valid()) {
916
material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
917
if (!material_data || !material_data->shader_data->valid) {
918
material_data = nullptr;
919
}
920
}
921
922
if (!material_data) {
923
sky_material = sky_globals.default_material;
924
material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
925
}
926
} else if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) {
927
sky_material = sky_globals.fog_material;
928
material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY));
929
}
930
931
ERR_FAIL_NULL(material_data);
932
material_data->bind_uniforms();
933
934
GLES3::SkyShaderData *shader_data = material_data->shader_data;
935
936
ERR_FAIL_NULL(shader_data);
937
938
bool update_single_frame = sky->mode == RS::SKY_MODE_REALTIME || sky->mode == RS::SKY_MODE_QUALITY;
939
RS::SkyMode sky_mode = sky->mode;
940
941
if (sky_mode == RS::SKY_MODE_AUTOMATIC) {
942
bool sun_scatter_enabled = environment_get_fog_enabled(p_env) && environment_get_fog_sun_scatter(p_env) > 0.001;
943
944
if ((shader_data->uses_time || shader_data->uses_position) && sky->radiance_size == 256) {
945
update_single_frame = true;
946
sky_mode = RS::SKY_MODE_REALTIME;
947
} else if (shader_data->uses_light || sun_scatter_enabled || shader_data->ubo_size > 0) {
948
update_single_frame = false;
949
sky_mode = RS::SKY_MODE_INCREMENTAL;
950
} else {
951
update_single_frame = true;
952
sky_mode = RS::SKY_MODE_QUALITY;
953
}
954
}
955
956
if (sky->processing_layer == 0 && sky_mode == RS::SKY_MODE_INCREMENTAL) {
957
// On the first frame after creating sky, rebuild in single frame
958
update_single_frame = true;
959
sky_mode = RS::SKY_MODE_QUALITY;
960
}
961
962
int max_processing_layer = sky->mipmap_count;
963
964
// Update radiance cubemap
965
if (sky->reflection_dirty && (sky->processing_layer >= max_processing_layer || update_single_frame)) {
966
static const Vector3 view_normals[6] = {
967
Vector3(+1, 0, 0),
968
Vector3(-1, 0, 0),
969
Vector3(0, +1, 0),
970
Vector3(0, -1, 0),
971
Vector3(0, 0, +1),
972
Vector3(0, 0, -1)
973
};
974
static const Vector3 view_up[6] = {
975
Vector3(0, -1, 0),
976
Vector3(0, -1, 0),
977
Vector3(0, 0, +1),
978
Vector3(0, 0, -1),
979
Vector3(0, -1, 0),
980
Vector3(0, -1, 0)
981
};
982
983
Projection cm;
984
cm.set_perspective(90, 1, 0.01, 10.0);
985
Projection correction;
986
correction.set_depth_correction(true, true, false);
987
cm = correction * cm;
988
989
bool success = material_storage->shaders.sky_shader.version_bind_shader(shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
990
if (!success) {
991
return;
992
}
993
994
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::POSITION, p_transform.origin, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
995
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::TIME, time, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
996
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::PROJECTION, cm.columns[2][0], cm.columns[0][0], cm.columns[2][1], cm.columns[1][1], shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
997
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::SKY_ENERGY_MULTIPLIER, p_sky_energy_multiplier, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
998
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::LUMINANCE_MULTIPLIER, 1.0, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
999
1000
glBindVertexArray(sky_globals.screen_triangle_array);
1001
1002
glViewport(0, 0, sky->radiance_size, sky->radiance_size);
1003
glBindFramebuffer(GL_FRAMEBUFFER, sky->radiance_framebuffer);
1004
1005
scene_state.reset_gl_state();
1006
scene_state.set_gl_cull_mode(RS::CULL_MODE_DISABLED);
1007
scene_state.enable_gl_blend(false);
1008
1009
for (int i = 0; i < 6; i++) {
1010
Basis local_view = Basis::looking_at(view_normals[i], view_up[i]);
1011
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::ORIENTATION, local_view, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
1012
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, sky->raw_radiance, 0);
1013
glDrawArrays(GL_TRIANGLES, 0, 3);
1014
}
1015
1016
if (update_single_frame) {
1017
for (int i = 0; i < max_processing_layer; i++) {
1018
cubemap_filter->filter_radiance(sky->raw_radiance, sky->radiance, sky->radiance_framebuffer, sky->radiance_size, sky->mipmap_count, i);
1019
}
1020
} else {
1021
cubemap_filter->filter_radiance(sky->raw_radiance, sky->radiance, sky->radiance_framebuffer, sky->radiance_size, sky->mipmap_count, 0); // Just copy over the first mipmap.
1022
}
1023
sky->processing_layer = 1;
1024
sky->baked_exposure = p_sky_energy_multiplier;
1025
sky->reflection_dirty = false;
1026
} else {
1027
if (sky_mode == RS::SKY_MODE_INCREMENTAL && sky->processing_layer < max_processing_layer) {
1028
scene_state.reset_gl_state();
1029
scene_state.set_gl_cull_mode(RS::CULL_MODE_DISABLED);
1030
scene_state.enable_gl_blend(false);
1031
1032
cubemap_filter->filter_radiance(sky->raw_radiance, sky->radiance, sky->radiance_framebuffer, sky->radiance_size, sky->mipmap_count, sky->processing_layer);
1033
sky->processing_layer++;
1034
}
1035
}
1036
glViewport(0, 0, sky->screen_size.x, sky->screen_size.y);
1037
}
1038
1039
Ref<Image> RasterizerSceneGLES3::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) {
1040
Sky *sky = sky_owner.get_or_null(p_sky);
1041
ERR_FAIL_NULL_V(sky, Ref<Image>());
1042
1043
_update_dirty_skys();
1044
1045
if (sky->radiance == 0) {
1046
return Ref<Image>();
1047
}
1048
1049
GLES3::CopyEffects *copy_effects = GLES3::CopyEffects::get_singleton();
1050
GLES3::Config *config = GLES3::Config::get_singleton();
1051
1052
GLuint rad_tex = 0;
1053
glGenTextures(1, &rad_tex);
1054
glBindTexture(GL_TEXTURE_2D, rad_tex);
1055
if (config->float_texture_supported) {
1056
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, p_size.width, p_size.height, 0, GL_RGBA, GL_FLOAT, nullptr);
1057
GLES3::Utilities::get_singleton()->texture_allocated_data(rad_tex, p_size.width * p_size.height * 16, "Temp sky panorama");
1058
} else {
1059
// Fallback to RGBA8 on devices that don't support rendering to floating point textures. This will look bad, but we have no choice.
1060
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, p_size.width, p_size.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
1061
GLES3::Utilities::get_singleton()->texture_allocated_data(rad_tex, p_size.width * p_size.height * 4, "Temp sky panorama");
1062
}
1063
1064
GLuint rad_fbo = 0;
1065
glGenFramebuffers(1, &rad_fbo);
1066
glBindFramebuffer(GL_FRAMEBUFFER, rad_fbo);
1067
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rad_tex, 0);
1068
glActiveTexture(GL_TEXTURE0);
1069
glBindTexture(GL_TEXTURE_CUBE_MAP, sky->radiance);
1070
glViewport(0, 0, p_size.width, p_size.height);
1071
1072
glClearColor(0.0, 0.0, 0.0, 1.0);
1073
glClear(GL_COLOR_BUFFER_BIT);
1074
1075
copy_effects->copy_cube_to_panorama(p_bake_irradiance ? float(sky->mipmap_count) : 0.0);
1076
1077
glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo);
1078
glDeleteFramebuffers(1, &rad_fbo);
1079
// Create a dummy texture so we can use texture_2d_get.
1080
RID tex_rid = GLES3::TextureStorage::get_singleton()->texture_allocate();
1081
{
1082
GLES3::Texture texture;
1083
texture.width = p_size.width;
1084
texture.height = p_size.height;
1085
texture.alloc_width = p_size.width;
1086
texture.alloc_height = p_size.height;
1087
texture.format = Image::FORMAT_RGBAF;
1088
texture.real_format = Image::FORMAT_RGBAF;
1089
texture.gl_format_cache = GL_RGBA;
1090
texture.gl_type_cache = GL_FLOAT;
1091
texture.type = GLES3::Texture::TYPE_2D;
1092
texture.target = GL_TEXTURE_2D;
1093
texture.active = true;
1094
texture.tex_id = rad_tex;
1095
texture.is_render_target = true; // HACK: Prevent TextureStorage from retaining a cached copy of the texture.
1096
GLES3::TextureStorage::get_singleton()->texture_2d_initialize_from_texture(tex_rid, texture);
1097
}
1098
1099
Ref<Image> img = GLES3::TextureStorage::get_singleton()->texture_2d_get(tex_rid);
1100
GLES3::Utilities::get_singleton()->texture_free_data(rad_tex);
1101
1102
GLES3::Texture &texture = *GLES3::TextureStorage::get_singleton()->get_texture(tex_rid);
1103
texture.is_render_target = false; // HACK: Avoid an error when freeing the texture.
1104
texture.tex_id = 0;
1105
GLES3::TextureStorage::get_singleton()->texture_free(tex_rid);
1106
1107
for (int i = 0; i < p_size.width; i++) {
1108
for (int j = 0; j < p_size.height; j++) {
1109
Color c = img->get_pixel(i, j);
1110
c.r *= p_energy;
1111
c.g *= p_energy;
1112
c.b *= p_energy;
1113
img->set_pixel(i, j, c);
1114
}
1115
}
1116
return img;
1117
}
1118
1119
/* ENVIRONMENT API */
1120
1121
void RasterizerSceneGLES3::environment_glow_set_use_bicubic_upscale(bool p_enable) {
1122
glow_bicubic_upscale = p_enable;
1123
}
1124
1125
void RasterizerSceneGLES3::environment_set_ssr_half_size(bool p_half_size) {
1126
}
1127
1128
void RasterizerSceneGLES3::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) {
1129
}
1130
1131
void RasterizerSceneGLES3::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
1132
ssao_quality = p_quality;
1133
}
1134
1135
void RasterizerSceneGLES3::environment_set_ssil_quality(RS::EnvironmentSSILQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
1136
}
1137
1138
void RasterizerSceneGLES3::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) {
1139
}
1140
1141
void RasterizerSceneGLES3::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) {
1142
}
1143
1144
void RasterizerSceneGLES3::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) {
1145
}
1146
1147
void RasterizerSceneGLES3::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) {
1148
}
1149
1150
void RasterizerSceneGLES3::environment_set_volumetric_fog_filter_active(bool p_enable) {
1151
}
1152
1153
Ref<Image> RasterizerSceneGLES3::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) {
1154
ERR_FAIL_COND_V(p_env.is_null(), Ref<Image>());
1155
1156
RS::EnvironmentBG environment_background = environment_get_background(p_env);
1157
1158
if (environment_background == RS::ENV_BG_CAMERA_FEED || environment_background == RS::ENV_BG_CANVAS || environment_background == RS::ENV_BG_KEEP) {
1159
return Ref<Image>(); // Nothing to bake.
1160
}
1161
1162
RS::EnvironmentAmbientSource ambient_source = environment_get_ambient_source(p_env);
1163
1164
bool use_ambient_light = false;
1165
bool use_cube_map = false;
1166
if (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && (environment_background == RS::ENV_BG_CLEAR_COLOR || environment_background == RS::ENV_BG_COLOR)) {
1167
use_ambient_light = true;
1168
} else {
1169
use_cube_map = (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && environment_background == RS::ENV_BG_SKY) || ambient_source == RS::ENV_AMBIENT_SOURCE_SKY;
1170
use_ambient_light = use_cube_map || ambient_source == RS::ENV_AMBIENT_SOURCE_COLOR;
1171
}
1172
1173
use_cube_map = use_cube_map || (environment_background == RS::ENV_BG_SKY && environment_get_sky(p_env).is_valid());
1174
1175
Color ambient_color;
1176
float ambient_color_sky_mix = 0.0;
1177
if (use_ambient_light) {
1178
ambient_color_sky_mix = environment_get_ambient_sky_contribution(p_env);
1179
const float ambient_energy = environment_get_ambient_light_energy(p_env);
1180
ambient_color = environment_get_ambient_light(p_env);
1181
ambient_color = ambient_color.srgb_to_linear();
1182
ambient_color.r *= ambient_energy;
1183
ambient_color.g *= ambient_energy;
1184
ambient_color.b *= ambient_energy;
1185
}
1186
1187
if (use_cube_map) {
1188
Ref<Image> panorama = sky_bake_panorama(environment_get_sky(p_env), environment_get_bg_energy_multiplier(p_env), p_bake_irradiance, p_size);
1189
if (use_ambient_light) {
1190
for (int x = 0; x < p_size.width; x++) {
1191
for (int y = 0; y < p_size.height; y++) {
1192
panorama->set_pixel(x, y, ambient_color.lerp(panorama->get_pixel(x, y), ambient_color_sky_mix));
1193
}
1194
}
1195
}
1196
return panorama;
1197
} else {
1198
const float bg_energy_multiplier = environment_get_bg_energy_multiplier(p_env);
1199
Color panorama_color = ((environment_background == RS::ENV_BG_CLEAR_COLOR) ? RSG::texture_storage->get_default_clear_color() : environment_get_bg_color(p_env));
1200
panorama_color = panorama_color.srgb_to_linear();
1201
panorama_color.r *= bg_energy_multiplier;
1202
panorama_color.g *= bg_energy_multiplier;
1203
panorama_color.b *= bg_energy_multiplier;
1204
1205
if (use_ambient_light) {
1206
panorama_color = ambient_color.lerp(panorama_color, ambient_color_sky_mix);
1207
}
1208
1209
Ref<Image> panorama = Image::create_empty(p_size.width, p_size.height, false, Image::FORMAT_RGBAF);
1210
panorama->fill(panorama_color);
1211
return panorama;
1212
}
1213
}
1214
1215
void RasterizerSceneGLES3::positional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
1216
scene_state.positional_shadow_quality = p_quality;
1217
}
1218
1219
void RasterizerSceneGLES3::directional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
1220
scene_state.directional_shadow_quality = p_quality;
1221
}
1222
1223
RID RasterizerSceneGLES3::fog_volume_instance_create(RID p_fog_volume) {
1224
return RID();
1225
}
1226
1227
void RasterizerSceneGLES3::fog_volume_instance_set_transform(RID p_fog_volume_instance, const Transform3D &p_transform) {
1228
}
1229
1230
void RasterizerSceneGLES3::fog_volume_instance_set_active(RID p_fog_volume_instance, bool p_active) {
1231
}
1232
1233
RID RasterizerSceneGLES3::fog_volume_instance_get_volume(RID p_fog_volume_instance) const {
1234
return RID();
1235
}
1236
1237
Vector3 RasterizerSceneGLES3::fog_volume_instance_get_position(RID p_fog_volume_instance) const {
1238
return Vector3();
1239
}
1240
1241
RID RasterizerSceneGLES3::voxel_gi_instance_create(RID p_voxel_gi) {
1242
return RID();
1243
}
1244
1245
void RasterizerSceneGLES3::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) {
1246
}
1247
1248
bool RasterizerSceneGLES3::voxel_gi_needs_update(RID p_probe) const {
1249
return false;
1250
}
1251
1252
void RasterizerSceneGLES3::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RenderGeometryInstance *> &p_dynamic_objects) {
1253
}
1254
1255
void RasterizerSceneGLES3::voxel_gi_set_quality(RS::VoxelGIQuality) {
1256
}
1257
1258
_FORCE_INLINE_ static uint32_t _indices_to_primitives(RS::PrimitiveType p_primitive, uint32_t p_indices) {
1259
static const uint32_t divisor[RS::PRIMITIVE_MAX] = { 1, 2, 1, 3, 1 };
1260
static const uint32_t subtractor[RS::PRIMITIVE_MAX] = { 0, 0, 1, 0, 2 };
1261
return (p_indices - subtractor[p_primitive]) / divisor[p_primitive];
1262
}
1263
void RasterizerSceneGLES3::_fill_render_list(RenderListType p_render_list, const RenderDataGLES3 *p_render_data, PassMode p_pass_mode, bool p_append) {
1264
GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton();
1265
GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
1266
1267
if (p_render_list == RENDER_LIST_OPAQUE) {
1268
scene_state.used_screen_texture = false;
1269
scene_state.used_normal_texture = false;
1270
scene_state.used_depth_texture = false;
1271
scene_state.used_opaque_stencil = false;
1272
}
1273
1274
Plane near_plane;
1275
if (p_render_data->cam_orthogonal) {
1276
near_plane = Plane(-p_render_data->cam_transform.basis.get_column(Vector3::AXIS_Z), p_render_data->cam_transform.origin);
1277
near_plane.d += p_render_data->cam_projection.get_z_near();
1278
}
1279
float z_max = p_render_data->cam_projection.get_z_far() - p_render_data->cam_projection.get_z_near();
1280
1281
RenderList *rl = &render_list[p_render_list];
1282
1283
// Parse any updates on our geometry, updates surface caches and such
1284
_update_dirty_geometry_instances();
1285
1286
if (!p_append) {
1287
rl->clear();
1288
if (p_render_list == RENDER_LIST_OPAQUE) {
1289
render_list[RENDER_LIST_ALPHA].clear(); //opaque fills alpha too
1290
}
1291
}
1292
1293
//fill list
1294
1295
for (int i = 0; i < (int)p_render_data->instances->size(); i++) {
1296
GeometryInstanceGLES3 *inst = static_cast<GeometryInstanceGLES3 *>((*p_render_data->instances)[i]);
1297
1298
Vector3 center = inst->transform.origin;
1299
if (p_render_data->cam_orthogonal) {
1300
if (inst->use_aabb_center) {
1301
center = inst->transformed_aabb.get_support(-near_plane.normal);
1302
}
1303
inst->depth = near_plane.distance_to(center) - inst->sorting_offset;
1304
} else {
1305
if (inst->use_aabb_center) {
1306
center = inst->transformed_aabb.position + (inst->transformed_aabb.size * 0.5);
1307
}
1308
inst->depth = p_render_data->cam_transform.origin.distance_to(center) - inst->sorting_offset;
1309
}
1310
uint32_t depth_layer = CLAMP(int(inst->depth * 16 / z_max), 0, 15);
1311
1312
uint32_t flags = inst->base_flags; //fill flags if appropriate
1313
1314
if (inst->non_uniform_scale) {
1315
flags |= INSTANCE_DATA_FLAGS_NON_UNIFORM_SCALE;
1316
}
1317
1318
// Sets the index values for lookup in the shader
1319
// This has to be done after _setup_lights was called this frame
1320
1321
if (p_pass_mode == PASS_MODE_COLOR) {
1322
inst->light_passes.clear();
1323
inst->spot_light_gl_cache.clear();
1324
inst->omni_light_gl_cache.clear();
1325
inst->reflection_probes_local_transform_cache.clear();
1326
inst->reflection_probe_rid_cache.clear();
1327
uint64_t current_frame = RSG::rasterizer->get_frame_number();
1328
1329
if (inst->paired_omni_light_count) {
1330
for (uint32_t j = 0; j < inst->paired_omni_light_count; j++) {
1331
RID light_instance = inst->paired_omni_lights[j];
1332
if (light_storage->light_instance_get_render_pass(light_instance) != current_frame) {
1333
continue;
1334
}
1335
RID light = light_storage->light_instance_get_base_light(light_instance);
1336
int32_t shadow_id = light_storage->light_instance_get_shadow_id(light_instance);
1337
1338
if (light_storage->light_has_shadow(light) && shadow_id >= 0) {
1339
GeometryInstanceGLES3::LightPass pass;
1340
pass.light_id = light_storage->light_instance_get_gl_id(light_instance);
1341
pass.shadow_id = shadow_id;
1342
pass.light_instance_rid = light_instance;
1343
pass.is_omni = true;
1344
inst->light_passes.push_back(pass);
1345
} else {
1346
// Lights without shadow can all go in base pass.
1347
inst->omni_light_gl_cache.push_back((uint32_t)light_storage->light_instance_get_gl_id(light_instance));
1348
}
1349
}
1350
}
1351
1352
if (inst->paired_spot_light_count) {
1353
for (uint32_t j = 0; j < inst->paired_spot_light_count; j++) {
1354
RID light_instance = inst->paired_spot_lights[j];
1355
if (light_storage->light_instance_get_render_pass(light_instance) != current_frame) {
1356
continue;
1357
}
1358
RID light = light_storage->light_instance_get_base_light(light_instance);
1359
int32_t shadow_id = light_storage->light_instance_get_shadow_id(light_instance);
1360
1361
if (light_storage->light_has_shadow(light) && shadow_id >= 0) {
1362
GeometryInstanceGLES3::LightPass pass;
1363
pass.light_id = light_storage->light_instance_get_gl_id(light_instance);
1364
pass.shadow_id = shadow_id;
1365
pass.light_instance_rid = light_instance;
1366
inst->light_passes.push_back(pass);
1367
} else {
1368
// Lights without shadow can all go in base pass.
1369
inst->spot_light_gl_cache.push_back((uint32_t)light_storage->light_instance_get_gl_id(light_instance));
1370
}
1371
}
1372
}
1373
1374
if (p_render_data->reflection_probe.is_null() && inst->paired_reflection_probes.size() > 0) {
1375
// Do not include if we're rendering reflection probes.
1376
// We only support two probes for now and we handle them first come, first serve.
1377
// This should be improved one day, at minimum the list should be sorted by priority.
1378
1379
for (uint32_t pi = 0; pi < inst->paired_reflection_probes.size(); pi++) {
1380
RID probe_instance = inst->paired_reflection_probes[pi];
1381
RID atlas = light_storage->reflection_probe_instance_get_atlas(probe_instance);
1382
RID probe = light_storage->reflection_probe_instance_get_probe(probe_instance);
1383
uint32_t reflection_mask = light_storage->reflection_probe_get_reflection_mask(probe);
1384
if (atlas.is_valid() && (inst->layer_mask & reflection_mask)) {
1385
Transform3D local_matrix = p_render_data->inv_cam_transform * light_storage->reflection_probe_instance_get_transform(probe_instance);
1386
inst->reflection_probes_local_transform_cache.push_back(local_matrix.affine_inverse());
1387
inst->reflection_probe_rid_cache.push_back(probe_instance);
1388
}
1389
}
1390
}
1391
}
1392
1393
inst->flags_cache = flags;
1394
1395
GeometryInstanceSurface *surf = inst->surface_caches;
1396
1397
float lod_distance = 0.0;
1398
1399
if (p_render_data->cam_orthogonal) {
1400
lod_distance = 1.0;
1401
} else {
1402
Vector3 aabb_min = inst->transformed_aabb.position;
1403
Vector3 aabb_max = inst->transformed_aabb.position + inst->transformed_aabb.size;
1404
Vector3 camera_position = p_render_data->main_cam_transform.origin;
1405
Vector3 surface_distance = Vector3(0.0, 0.0, 0.0).max(aabb_min - camera_position).max(camera_position - aabb_max);
1406
1407
lod_distance = surface_distance.length();
1408
}
1409
1410
while (surf) {
1411
// LOD
1412
1413
if (p_render_data->screen_mesh_lod_threshold > 0.0 && mesh_storage->mesh_surface_has_lod(surf->surface)) {
1414
uint32_t indices = 0;
1415
surf->lod_index = mesh_storage->mesh_surface_get_lod(surf->surface, inst->lod_model_scale * inst->lod_bias, lod_distance * p_render_data->lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, indices);
1416
surf->index_count = indices;
1417
1418
if (p_render_data->render_info) {
1419
indices = _indices_to_primitives(surf->primitive, indices);
1420
if (p_render_list == RENDER_LIST_OPAQUE) { //opaque
1421
p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += indices;
1422
} else if (p_render_list == RENDER_LIST_SECONDARY) { //shadow
1423
p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += indices;
1424
}
1425
}
1426
1427
} else {
1428
surf->lod_index = 0;
1429
1430
if (p_render_data->render_info) {
1431
uint32_t to_draw = mesh_storage->mesh_surface_get_vertices_drawn_count(surf->surface);
1432
to_draw = _indices_to_primitives(surf->primitive, to_draw);
1433
to_draw *= inst->instance_count > 0 ? inst->instance_count : 1;
1434
if (p_render_list == RENDER_LIST_OPAQUE) { //opaque
1435
p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += to_draw;
1436
} else if (p_render_list == RENDER_LIST_SECONDARY) { //shadow
1437
p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += to_draw;
1438
}
1439
}
1440
}
1441
1442
// ADD Element
1443
if (p_pass_mode == PASS_MODE_COLOR) {
1444
#ifdef DEBUG_ENABLED
1445
bool force_alpha = unlikely(get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW);
1446
#else
1447
bool force_alpha = false;
1448
#endif
1449
if (!force_alpha && (surf->flags & (GeometryInstanceSurface::FLAG_PASS_DEPTH | GeometryInstanceSurface::FLAG_PASS_OPAQUE))) {
1450
rl->add_element(surf);
1451
}
1452
if (force_alpha || (surf->flags & GeometryInstanceSurface::FLAG_PASS_ALPHA)) {
1453
render_list[RENDER_LIST_ALPHA].add_element(surf);
1454
}
1455
1456
if (surf->flags & GeometryInstanceSurface::FLAG_USES_SCREEN_TEXTURE) {
1457
scene_state.used_screen_texture = true;
1458
}
1459
if (surf->flags & GeometryInstanceSurface::FLAG_USES_NORMAL_TEXTURE) {
1460
scene_state.used_normal_texture = true;
1461
}
1462
if (surf->flags & GeometryInstanceSurface::FLAG_USES_DEPTH_TEXTURE) {
1463
scene_state.used_depth_texture = true;
1464
}
1465
if ((surf->flags & GeometryInstanceSurface::FLAG_USES_STENCIL) && !force_alpha && (surf->flags & (GeometryInstanceSurface::FLAG_PASS_DEPTH | GeometryInstanceSurface::FLAG_PASS_OPAQUE))) {
1466
scene_state.used_opaque_stencil = true;
1467
}
1468
1469
} else if (p_pass_mode == PASS_MODE_SHADOW) {
1470
if (surf->flags & GeometryInstanceSurface::FLAG_PASS_SHADOW) {
1471
rl->add_element(surf);
1472
}
1473
} else if (p_pass_mode == PASS_MODE_MATERIAL) {
1474
if (surf->flags & (GeometryInstanceSurface::FLAG_PASS_DEPTH | GeometryInstanceSurface::FLAG_PASS_OPAQUE | GeometryInstanceSurface::FLAG_PASS_ALPHA)) {
1475
rl->add_element(surf);
1476
}
1477
} else {
1478
if (surf->flags & (GeometryInstanceSurface::FLAG_PASS_DEPTH | GeometryInstanceSurface::FLAG_PASS_OPAQUE)) {
1479
rl->add_element(surf);
1480
}
1481
}
1482
1483
surf->sort.depth_layer = depth_layer;
1484
surf->finished_base_pass = false;
1485
surf->light_pass_index = 0;
1486
1487
surf = surf->next;
1488
}
1489
}
1490
}
1491
1492
void RasterizerSceneGLES3::_update_scene_ubo(GLuint &p_ubo_buffer, GLuint p_index, uint32_t p_size, const void *p_source_data, String p_name) {
1493
if (p_ubo_buffer == 0) {
1494
glGenBuffers(1, &p_ubo_buffer);
1495
glBindBufferBase(GL_UNIFORM_BUFFER, p_index, p_ubo_buffer);
1496
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, p_ubo_buffer, p_size, p_source_data, GL_STREAM_DRAW, p_name);
1497
} else {
1498
glBindBufferBase(GL_UNIFORM_BUFFER, p_index, p_ubo_buffer);
1499
glBufferData(GL_UNIFORM_BUFFER, p_size, p_source_data, GL_STREAM_DRAW);
1500
}
1501
1502
glBindBuffer(GL_UNIFORM_BUFFER, 0);
1503
}
1504
1505
// Needs to be called after _setup_lights so that directional_light_count is accurate.
1506
void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_data, bool p_no_fog, const Size2i &p_screen_size, bool p_flip_y, const Color &p_default_bg_color, bool p_pancake_shadows, float p_shadow_bias) {
1507
Projection correction;
1508
correction.set_depth_correction(p_flip_y, true, false);
1509
Projection projection = correction * p_render_data->cam_projection;
1510
//store camera into ubo
1511
GLES3::MaterialStorage::store_camera(projection, scene_state.data.projection_matrix);
1512
GLES3::MaterialStorage::store_camera(projection.inverse(), scene_state.data.inv_projection_matrix);
1513
GLES3::MaterialStorage::store_transform(p_render_data->cam_transform, scene_state.data.inv_view_matrix);
1514
GLES3::MaterialStorage::store_transform(p_render_data->inv_cam_transform, scene_state.data.view_matrix);
1515
GLES3::MaterialStorage::store_transform(p_render_data->main_cam_transform, scene_state.data.main_cam_inv_view_matrix);
1516
scene_state.data.camera_visible_layers = p_render_data->camera_visible_layers;
1517
1518
if (p_render_data->view_count > 1) {
1519
for (uint32_t v = 0; v < p_render_data->view_count; v++) {
1520
projection = correction * p_render_data->view_projection[v];
1521
GLES3::MaterialStorage::store_camera(projection, scene_state.multiview_data.projection_matrix_view[v]);
1522
GLES3::MaterialStorage::store_camera(projection.inverse(), scene_state.multiview_data.inv_projection_matrix_view[v]);
1523
1524
scene_state.multiview_data.eye_offset[v][0] = p_render_data->view_eye_offset[v].x;
1525
scene_state.multiview_data.eye_offset[v][1] = p_render_data->view_eye_offset[v].y;
1526
scene_state.multiview_data.eye_offset[v][2] = p_render_data->view_eye_offset[v].z;
1527
scene_state.multiview_data.eye_offset[v][3] = 0.0;
1528
}
1529
}
1530
1531
// Only render the lights without shadows in the base pass.
1532
scene_state.data.directional_light_count = p_render_data->directional_light_count - p_render_data->directional_shadow_count;
1533
1534
// Lights with shadows still need to be applied to fog sun scatter.
1535
scene_state.data.directional_shadow_count = p_render_data->directional_shadow_count;
1536
1537
scene_state.data.z_far = p_render_data->z_far;
1538
scene_state.data.z_near = p_render_data->z_near;
1539
1540
scene_state.data.viewport_size[0] = p_screen_size.x;
1541
scene_state.data.viewport_size[1] = p_screen_size.y;
1542
1543
Size2 screen_pixel_size = Vector2(1.0, 1.0) / Size2(p_screen_size);
1544
scene_state.data.screen_pixel_size[0] = screen_pixel_size.x;
1545
scene_state.data.screen_pixel_size[1] = screen_pixel_size.y;
1546
1547
scene_state.data.luminance_multiplier = p_render_data->luminance_multiplier;
1548
1549
scene_state.data.shadow_bias = p_shadow_bias;
1550
scene_state.data.pancake_shadows = p_pancake_shadows;
1551
1552
//time global variables
1553
scene_state.data.time = time;
1554
1555
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
1556
scene_state.data.use_ambient_light = true;
1557
scene_state.data.ambient_light_color_energy[0] = 1;
1558
scene_state.data.ambient_light_color_energy[1] = 1;
1559
scene_state.data.ambient_light_color_energy[2] = 1;
1560
scene_state.data.ambient_light_color_energy[3] = 1.0;
1561
scene_state.data.use_ambient_cubemap = false;
1562
scene_state.data.use_reflection_cubemap = false;
1563
} else if (is_environment(p_render_data->environment)) {
1564
RS::EnvironmentBG env_bg = environment_get_background(p_render_data->environment);
1565
RS::EnvironmentAmbientSource ambient_src = environment_get_ambient_source(p_render_data->environment);
1566
1567
float bg_energy_multiplier = environment_get_bg_energy_multiplier(p_render_data->environment);
1568
1569
scene_state.data.ambient_light_color_energy[3] = bg_energy_multiplier;
1570
1571
scene_state.data.ambient_color_sky_mix = environment_get_ambient_sky_contribution(p_render_data->environment);
1572
1573
//ambient
1574
if (ambient_src == RS::ENV_AMBIENT_SOURCE_BG && (env_bg == RS::ENV_BG_CLEAR_COLOR || env_bg == RS::ENV_BG_COLOR)) {
1575
Color color = env_bg == RS::ENV_BG_CLEAR_COLOR ? p_default_bg_color : environment_get_bg_color(p_render_data->environment);
1576
color = color.srgb_to_linear();
1577
1578
scene_state.data.ambient_light_color_energy[0] = color.r * bg_energy_multiplier;
1579
scene_state.data.ambient_light_color_energy[1] = color.g * bg_energy_multiplier;
1580
scene_state.data.ambient_light_color_energy[2] = color.b * bg_energy_multiplier;
1581
scene_state.data.use_ambient_light = true;
1582
scene_state.data.use_ambient_cubemap = false;
1583
} else {
1584
float energy = environment_get_ambient_light_energy(p_render_data->environment);
1585
Color color = environment_get_ambient_light(p_render_data->environment);
1586
color = color.srgb_to_linear();
1587
scene_state.data.ambient_light_color_energy[0] = color.r * energy;
1588
scene_state.data.ambient_light_color_energy[1] = color.g * energy;
1589
scene_state.data.ambient_light_color_energy[2] = color.b * energy;
1590
1591
Basis sky_transform = environment_get_sky_orientation(p_render_data->environment);
1592
sky_transform = sky_transform.inverse() * p_render_data->cam_transform.basis;
1593
GLES3::MaterialStorage::store_transform_3x3(sky_transform, scene_state.data.radiance_inverse_xform);
1594
scene_state.data.use_ambient_cubemap = (ambient_src == RS::ENV_AMBIENT_SOURCE_BG && env_bg == RS::ENV_BG_SKY) || ambient_src == RS::ENV_AMBIENT_SOURCE_SKY;
1595
scene_state.data.use_ambient_light = scene_state.data.use_ambient_cubemap || ambient_src == RS::ENV_AMBIENT_SOURCE_COLOR;
1596
}
1597
1598
//specular
1599
RS::EnvironmentReflectionSource ref_src = environment_get_reflection_source(p_render_data->environment);
1600
if ((ref_src == RS::ENV_REFLECTION_SOURCE_BG && env_bg == RS::ENV_BG_SKY) || ref_src == RS::ENV_REFLECTION_SOURCE_SKY) {
1601
scene_state.data.use_reflection_cubemap = true;
1602
} else {
1603
scene_state.data.use_reflection_cubemap = false;
1604
}
1605
1606
scene_state.data.fog_enabled = environment_get_fog_enabled(p_render_data->environment);
1607
scene_state.data.fog_mode = environment_get_fog_mode(p_render_data->environment);
1608
scene_state.data.fog_density = environment_get_fog_density(p_render_data->environment);
1609
scene_state.data.fog_height = environment_get_fog_height(p_render_data->environment);
1610
scene_state.data.fog_depth_curve = environment_get_fog_depth_curve(p_render_data->environment);
1611
scene_state.data.fog_depth_end = environment_get_fog_depth_end(p_render_data->environment) > 0.0 ? environment_get_fog_depth_end(p_render_data->environment) : scene_state.data.z_far;
1612
scene_state.data.fog_depth_begin = MIN(environment_get_fog_depth_begin(p_render_data->environment), scene_state.data.fog_depth_end - 0.001);
1613
scene_state.data.fog_height_density = environment_get_fog_height_density(p_render_data->environment);
1614
scene_state.data.fog_aerial_perspective = environment_get_fog_aerial_perspective(p_render_data->environment);
1615
1616
Color fog_color = environment_get_fog_light_color(p_render_data->environment).srgb_to_linear();
1617
float fog_energy = environment_get_fog_light_energy(p_render_data->environment);
1618
1619
scene_state.data.fog_light_color[0] = fog_color.r * fog_energy;
1620
scene_state.data.fog_light_color[1] = fog_color.g * fog_energy;
1621
scene_state.data.fog_light_color[2] = fog_color.b * fog_energy;
1622
1623
scene_state.data.fog_sun_scatter = environment_get_fog_sun_scatter(p_render_data->environment);
1624
1625
} else {
1626
}
1627
1628
if (p_render_data->camera_attributes.is_valid()) {
1629
scene_state.data.emissive_exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
1630
scene_state.data.IBL_exposure_normalization = 1.0;
1631
if (is_environment(p_render_data->environment)) {
1632
RID sky_rid = environment_get_sky(p_render_data->environment);
1633
if (sky_rid.is_valid()) {
1634
float current_exposure = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes) * environment_get_bg_intensity(p_render_data->environment);
1635
scene_state.data.IBL_exposure_normalization = current_exposure / MAX(0.001, sky_get_baked_exposure(sky_rid));
1636
}
1637
}
1638
} else if (scene_state.data.emissive_exposure_normalization > 0.0) {
1639
// This branch is triggered when using render_material().
1640
// Emissive is set outside the function, so don't set it.
1641
// IBL isn't used don't set it.
1642
} else {
1643
scene_state.data.emissive_exposure_normalization = 1.0;
1644
scene_state.data.IBL_exposure_normalization = 1.0;
1645
}
1646
1647
_update_scene_ubo(scene_state.ubo_buffer, SCENE_DATA_UNIFORM_LOCATION, sizeof(SceneState::UBO), &scene_state.data, "Scene state UBO");
1648
if (p_render_data->view_count > 1) {
1649
_update_scene_ubo(scene_state.multiview_buffer, SCENE_MULTIVIEW_UNIFORM_LOCATION, sizeof(SceneState::MultiviewUBO), &scene_state.multiview_data, "Multiview UBO");
1650
}
1651
1652
if (scene_state.prev_data_state != 0) {
1653
void *source_data = scene_state.prev_data_state == 1 ? &scene_state.data : &scene_state.prev_data;
1654
_update_scene_ubo(scene_state.prev_ubo_buffer, SCENE_PREV_DATA_UNIFORM_LOCATION, sizeof(SceneState::UBO), source_data, "Previous scene state UBO");
1655
1656
if (p_render_data->view_count > 1) {
1657
source_data = scene_state.prev_data_state == 1 ? &scene_state.multiview_data : &scene_state.prev_multiview_data;
1658
_update_scene_ubo(scene_state.prev_multiview_buffer, SCENE_PREV_MULTIVIEW_UNIFORM_LOCATION, sizeof(SceneState::MultiviewUBO), source_data, "Previous multiview UBO");
1659
}
1660
}
1661
}
1662
1663
// Puts lights into Uniform Buffers. Needs to be called before _fill_list as this caches the index of each light in the Uniform Buffer
1664
void RasterizerSceneGLES3::_setup_lights(const RenderDataGLES3 *p_render_data, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_omni_light_count, uint32_t &r_spot_light_count, uint32_t &r_directional_shadow_count) {
1665
GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
1666
GLES3::Config *config = GLES3::Config::get_singleton();
1667
1668
const Transform3D inverse_transform = p_render_data->inv_cam_transform;
1669
1670
const PagedArray<RID> &lights = *p_render_data->lights;
1671
1672
r_directional_light_count = 0;
1673
r_omni_light_count = 0;
1674
r_spot_light_count = 0;
1675
r_directional_shadow_count = 0;
1676
1677
int num_lights = lights.size();
1678
1679
for (int i = 0; i < num_lights; i++) {
1680
GLES3::LightInstance *li = GLES3::LightStorage::get_singleton()->get_light_instance(lights[i]);
1681
if (!li) {
1682
continue;
1683
}
1684
RID base = li->light;
1685
1686
ERR_CONTINUE(base.is_null());
1687
1688
RS::LightType type = light_storage->light_get_type(base);
1689
switch (type) {
1690
case RS::LIGHT_DIRECTIONAL: {
1691
if (r_directional_light_count >= RendererSceneRender::MAX_DIRECTIONAL_LIGHTS || light_storage->light_directional_get_sky_mode(base) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) {
1692
continue;
1693
}
1694
1695
// If a DirectionalLight has shadows, we will add it to the end of the array and work in.
1696
bool has_shadow = light_storage->light_has_shadow(base);
1697
1698
int index = r_directional_light_count - r_directional_shadow_count;
1699
1700
if (has_shadow) {
1701
// Lights with shadow are incremented from the end of the array.
1702
index = MAX_DIRECTIONAL_LIGHTS - 1 - r_directional_shadow_count;
1703
}
1704
DirectionalLightData &light_data = scene_state.directional_lights[index];
1705
1706
Transform3D light_transform = li->transform;
1707
1708
Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized();
1709
1710
light_data.direction[0] = direction.x;
1711
light_data.direction[1] = direction.y;
1712
light_data.direction[2] = direction.z;
1713
1714
light_data.bake_mode = light_storage->light_get_bake_mode(base);
1715
1716
float sign = light_storage->light_is_negative(base) ? -1 : 1;
1717
1718
light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY);
1719
1720
if (is_using_physical_light_units()) {
1721
light_data.energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY);
1722
} else {
1723
light_data.energy *= Math::PI;
1724
}
1725
1726
if (p_render_data->camera_attributes.is_valid()) {
1727
light_data.energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
1728
}
1729
1730
Color linear_col = light_storage->light_get_color(base).srgb_to_linear();
1731
light_data.color[0] = linear_col.r;
1732
light_data.color[1] = linear_col.g;
1733
light_data.color[2] = linear_col.b;
1734
1735
float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
1736
light_data.size = 1.0 - Math::cos(Math::deg_to_rad(size)); //angle to cosine offset
1737
1738
light_data.specular = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
1739
1740
light_data.mask = light_storage->light_get_cull_mask(base);
1741
1742
light_data.shadow_opacity = (p_using_shadows && light_storage->light_has_shadow(base))
1743
? light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY)
1744
: 0.0;
1745
1746
if (has_shadow) {
1747
DirectionalShadowData &shadow_data = scene_state.directional_shadows[MAX_DIRECTIONAL_LIGHTS - 1 - r_directional_shadow_count];
1748
1749
RS::LightDirectionalShadowMode shadow_mode = light_storage->light_directional_get_shadow_mode(base);
1750
1751
int limit = shadow_mode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (shadow_mode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3);
1752
1753
shadow_data.shadow_atlas_pixel_size = 1.0 / light_storage->directional_shadow_get_size();
1754
1755
shadow_data.blend_splits = uint32_t((shadow_mode != RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL) && light_storage->light_directional_get_blend_splits(base));
1756
for (int j = 0; j < 4; j++) {
1757
Rect2 atlas_rect = li->shadow_transform[j].atlas_rect;
1758
Projection correction;
1759
correction.set_depth_correction(false, true, false);
1760
Projection matrix = correction * li->shadow_transform[j].camera;
1761
float split = li->shadow_transform[MIN(limit, j)].split;
1762
1763
Projection bias;
1764
bias.set_light_bias();
1765
Projection rectm;
1766
rectm.set_light_atlas_rect(atlas_rect);
1767
1768
Transform3D modelview = (inverse_transform * li->shadow_transform[j].transform).inverse();
1769
1770
shadow_data.direction[0] = light_data.direction[0];
1771
shadow_data.direction[1] = light_data.direction[1];
1772
shadow_data.direction[2] = light_data.direction[2];
1773
1774
Projection shadow_mtx = rectm * bias * matrix * modelview;
1775
shadow_data.shadow_split_offsets[j] = split;
1776
shadow_data.shadow_normal_bias[j] = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * li->shadow_transform[j].shadow_texel_size;
1777
GLES3::MaterialStorage::store_camera(shadow_mtx, shadow_data.shadow_matrices[j]);
1778
}
1779
float fade_start = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
1780
shadow_data.fade_from = -shadow_data.shadow_split_offsets[3] * MIN(fade_start, 0.999);
1781
shadow_data.fade_to = -shadow_data.shadow_split_offsets[3];
1782
1783
r_directional_shadow_count++;
1784
}
1785
1786
r_directional_light_count++;
1787
} break;
1788
case RS::LIGHT_OMNI: {
1789
if (r_omni_light_count >= (uint32_t)config->max_renderable_lights) {
1790
continue;
1791
}
1792
1793
const real_t distance = p_render_data->cam_transform.origin.distance_to(li->transform.origin);
1794
1795
if (light_storage->light_is_distance_fade_enabled(li->light)) {
1796
const float fade_begin = light_storage->light_get_distance_fade_begin(li->light);
1797
const float fade_length = light_storage->light_get_distance_fade_length(li->light);
1798
1799
if (distance > fade_begin) {
1800
if (distance > fade_begin + fade_length) {
1801
// Out of range, don't draw this light to improve performance.
1802
continue;
1803
}
1804
}
1805
}
1806
1807
scene_state.omni_light_sort[r_omni_light_count].instance = li;
1808
scene_state.omni_light_sort[r_omni_light_count].depth = distance;
1809
r_omni_light_count++;
1810
} break;
1811
case RS::LIGHT_SPOT: {
1812
if (r_spot_light_count >= (uint32_t)config->max_renderable_lights) {
1813
continue;
1814
}
1815
1816
const real_t distance = p_render_data->cam_transform.origin.distance_to(li->transform.origin);
1817
1818
if (light_storage->light_is_distance_fade_enabled(li->light)) {
1819
const float fade_begin = light_storage->light_get_distance_fade_begin(li->light);
1820
const float fade_length = light_storage->light_get_distance_fade_length(li->light);
1821
1822
if (distance > fade_begin) {
1823
if (distance > fade_begin + fade_length) {
1824
// Out of range, don't draw this light to improve performance.
1825
continue;
1826
}
1827
}
1828
}
1829
1830
scene_state.spot_light_sort[r_spot_light_count].instance = li;
1831
scene_state.spot_light_sort[r_spot_light_count].depth = distance;
1832
r_spot_light_count++;
1833
} break;
1834
}
1835
1836
li->last_pass = RSG::rasterizer->get_frame_number();
1837
}
1838
1839
if (r_omni_light_count) {
1840
SortArray<InstanceSort<GLES3::LightInstance>> sorter;
1841
sorter.sort(scene_state.omni_light_sort, r_omni_light_count);
1842
}
1843
1844
if (r_spot_light_count) {
1845
SortArray<InstanceSort<GLES3::LightInstance>> sorter;
1846
sorter.sort(scene_state.spot_light_sort, r_spot_light_count);
1847
}
1848
1849
int num_positional_shadows = 0;
1850
1851
for (uint32_t i = 0; i < (r_omni_light_count + r_spot_light_count); i++) {
1852
uint32_t index = (i < r_omni_light_count) ? i : i - (r_omni_light_count);
1853
LightData &light_data = (i < r_omni_light_count) ? scene_state.omni_lights[index] : scene_state.spot_lights[index];
1854
RS::LightType type = (i < r_omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT;
1855
GLES3::LightInstance *li = (i < r_omni_light_count) ? scene_state.omni_light_sort[index].instance : scene_state.spot_light_sort[index].instance;
1856
real_t distance = (i < r_omni_light_count) ? scene_state.omni_light_sort[index].depth : scene_state.spot_light_sort[index].depth;
1857
RID base = li->light;
1858
1859
li->gl_id = index;
1860
1861
Transform3D light_transform = li->transform;
1862
Vector3 pos = inverse_transform.xform(light_transform.origin);
1863
1864
light_data.position[0] = pos.x;
1865
light_data.position[1] = pos.y;
1866
light_data.position[2] = pos.z;
1867
1868
light_data.bake_mode = light_storage->light_get_bake_mode(base);
1869
1870
float radius = MAX(0.001, light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE));
1871
light_data.inv_radius = 1.0 / radius;
1872
1873
Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized();
1874
1875
light_data.direction[0] = direction.x;
1876
light_data.direction[1] = direction.y;
1877
light_data.direction[2] = direction.z;
1878
1879
float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
1880
1881
light_data.size = size;
1882
1883
float sign = light_storage->light_is_negative(base) ? -1 : 1;
1884
Color linear_col = light_storage->light_get_color(base).srgb_to_linear();
1885
1886
// Reuse fade begin, fade length and distance for shadow LOD determination later.
1887
float fade_begin = 0.0;
1888
float fade_shadow = 0.0;
1889
float fade_length = 0.0;
1890
1891
float fade = 1.0;
1892
float shadow_opacity_fade = 1.0;
1893
1894
if (light_storage->light_is_distance_fade_enabled(base)) {
1895
fade_begin = light_storage->light_get_distance_fade_begin(base);
1896
fade_shadow = light_storage->light_get_distance_fade_shadow(base);
1897
fade_length = light_storage->light_get_distance_fade_length(base);
1898
1899
if (distance > fade_begin) {
1900
// Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player.
1901
fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length);
1902
}
1903
if (distance > fade_shadow) {
1904
shadow_opacity_fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_shadow) / fade_length);
1905
}
1906
}
1907
1908
float energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * fade;
1909
1910
if (is_using_physical_light_units()) {
1911
energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY);
1912
1913
// Convert from Luminous Power to Luminous Intensity
1914
if (type == RS::LIGHT_OMNI) {
1915
energy *= 1.0 / (Math::PI * 4.0);
1916
} else {
1917
// Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle.
1918
// We make this assumption to keep them easy to control.
1919
energy *= 1.0 / Math::PI;
1920
}
1921
} else {
1922
energy *= Math::PI;
1923
}
1924
1925
if (p_render_data->camera_attributes.is_valid()) {
1926
energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
1927
}
1928
1929
light_data.color[0] = linear_col.r * energy;
1930
light_data.color[1] = linear_col.g * energy;
1931
light_data.color[2] = linear_col.b * energy;
1932
1933
light_data.attenuation = light_storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION);
1934
1935
light_data.inv_spot_attenuation = 1.0f / light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
1936
1937
float spot_angle = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
1938
light_data.cos_spot_angle = Math::cos(Math::deg_to_rad(spot_angle));
1939
1940
light_data.specular_amount = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0;
1941
1942
// Setup shadows
1943
const bool needs_shadow =
1944
p_using_shadows &&
1945
light_storage->owns_shadow_atlas(p_render_data->shadow_atlas) &&
1946
light_storage->shadow_atlas_owns_light_instance(p_render_data->shadow_atlas, li->self) &&
1947
light_storage->light_has_shadow(base);
1948
1949
bool in_shadow_range = true;
1950
if (needs_shadow && light_storage->light_is_distance_fade_enabled(base)) {
1951
if (distance > fade_shadow + fade_length) {
1952
// Out of range, don't draw shadows to improve performance.
1953
in_shadow_range = false;
1954
}
1955
}
1956
1957
// Fill in the shadow information.
1958
if (needs_shadow && in_shadow_range) {
1959
if (num_positional_shadows >= config->max_renderable_lights) {
1960
continue;
1961
}
1962
ShadowData &shadow_data = scene_state.positional_shadows[num_positional_shadows];
1963
li->shadow_id = num_positional_shadows;
1964
num_positional_shadows++;
1965
1966
light_data.shadow_opacity = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY) * shadow_opacity_fade;
1967
1968
float shadow_texel_size = light_storage->light_instance_get_shadow_texel_size(li->self, p_render_data->shadow_atlas);
1969
shadow_data.shadow_atlas_pixel_size = shadow_texel_size;
1970
shadow_data.shadow_normal_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 10.0;
1971
1972
shadow_data.light_position[0] = light_data.position[0];
1973
shadow_data.light_position[1] = light_data.position[1];
1974
shadow_data.light_position[2] = light_data.position[2];
1975
1976
if (type == RS::LIGHT_OMNI) {
1977
Transform3D proj = (inverse_transform * light_transform).inverse();
1978
1979
GLES3::MaterialStorage::store_transform(proj, shadow_data.shadow_matrix);
1980
1981
} else if (type == RS::LIGHT_SPOT) {
1982
Transform3D modelview = (inverse_transform * light_transform).inverse();
1983
Projection bias;
1984
bias.set_light_bias();
1985
1986
Projection correction;
1987
correction.set_depth_correction(false, true, false);
1988
Projection cm = correction * li->shadow_transform[0].camera;
1989
Projection shadow_mtx = bias * cm * modelview;
1990
GLES3::MaterialStorage::store_camera(shadow_mtx, shadow_data.shadow_matrix);
1991
}
1992
}
1993
}
1994
1995
// TODO, to avoid stalls, should rotate between 3 buffers based on frame index.
1996
// TODO, consider mapping the buffer as in 2D
1997
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_OMNILIGHT_UNIFORM_LOCATION, scene_state.omni_light_buffer);
1998
if (r_omni_light_count) {
1999
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightData) * r_omni_light_count, scene_state.omni_lights);
2000
}
2001
2002
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_SPOTLIGHT_UNIFORM_LOCATION, scene_state.spot_light_buffer);
2003
if (r_spot_light_count) {
2004
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightData) * r_spot_light_count, scene_state.spot_lights);
2005
}
2006
2007
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DIRECTIONAL_LIGHT_UNIFORM_LOCATION, scene_state.directional_light_buffer);
2008
if (r_directional_light_count) {
2009
glBufferData(GL_UNIFORM_BUFFER, sizeof(DirectionalLightData) * MAX_DIRECTIONAL_LIGHTS, scene_state.directional_lights, GL_STREAM_DRAW);
2010
}
2011
2012
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_POSITIONAL_SHADOW_UNIFORM_LOCATION, scene_state.positional_shadow_buffer);
2013
if (num_positional_shadows) {
2014
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(ShadowData) * num_positional_shadows, scene_state.positional_shadows);
2015
}
2016
2017
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DIRECTIONAL_SHADOW_UNIFORM_LOCATION, scene_state.directional_shadow_buffer);
2018
if (r_directional_shadow_count) {
2019
glBufferData(GL_UNIFORM_BUFFER, sizeof(DirectionalShadowData) * MAX_DIRECTIONAL_LIGHTS, scene_state.directional_shadows, GL_STREAM_DRAW);
2020
}
2021
glBindBuffer(GL_UNIFORM_BUFFER, 0);
2022
}
2023
2024
// Render shadows
2025
void RasterizerSceneGLES3::_render_shadows(const RenderDataGLES3 *p_render_data, const Size2i &p_viewport_size) {
2026
GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
2027
2028
LocalVector<int> cube_shadows;
2029
LocalVector<int> shadows;
2030
LocalVector<int> directional_shadows;
2031
2032
float lod_distance_multiplier = p_render_data->cam_projection.get_lod_multiplier();
2033
2034
// Put lights into buckets for omni (cube shadows), directional, and spot.
2035
{
2036
for (int i = 0; i < p_render_data->render_shadow_count; i++) {
2037
RID li = p_render_data->render_shadows[i].light;
2038
RID base = light_storage->light_instance_get_base_light(li);
2039
2040
if (light_storage->light_get_type(base) == RS::LIGHT_DIRECTIONAL) {
2041
directional_shadows.push_back(i);
2042
} else if (light_storage->light_get_type(base) == RS::LIGHT_OMNI && light_storage->light_omni_get_shadow_mode(base) == RS::LIGHT_OMNI_SHADOW_CUBE) {
2043
cube_shadows.push_back(i);
2044
} else {
2045
shadows.push_back(i);
2046
}
2047
}
2048
if (directional_shadows.size()) {
2049
light_storage->update_directional_shadow_atlas();
2050
}
2051
}
2052
2053
bool render_shadows = directional_shadows.size() || shadows.size() || cube_shadows.size();
2054
2055
if (render_shadows) {
2056
RENDER_TIMESTAMP("Render Shadows");
2057
2058
// Render cubemap shadows.
2059
for (const int &index : cube_shadows) {
2060
_render_shadow_pass(p_render_data->render_shadows[index].light, p_render_data->shadow_atlas, p_render_data->render_shadows[index].pass, p_render_data->render_shadows[index].instances, lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, p_render_data->render_info, p_viewport_size, p_render_data->cam_transform);
2061
}
2062
// Render directional shadows.
2063
for (uint32_t i = 0; i < directional_shadows.size(); i++) {
2064
_render_shadow_pass(p_render_data->render_shadows[directional_shadows[i]].light, p_render_data->shadow_atlas, p_render_data->render_shadows[directional_shadows[i]].pass, p_render_data->render_shadows[directional_shadows[i]].instances, lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, p_render_data->render_info, p_viewport_size, p_render_data->cam_transform);
2065
}
2066
// Render positional shadows (Spotlight and Omnilight with dual-paraboloid).
2067
for (uint32_t i = 0; i < shadows.size(); i++) {
2068
_render_shadow_pass(p_render_data->render_shadows[shadows[i]].light, p_render_data->shadow_atlas, p_render_data->render_shadows[shadows[i]].pass, p_render_data->render_shadows[shadows[i]].instances, lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, p_render_data->render_info, p_viewport_size, p_render_data->cam_transform);
2069
}
2070
}
2071
}
2072
2073
void RasterizerSceneGLES3::_render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray<RenderGeometryInstance *> &p_instances, float p_lod_distance_multiplier, float p_screen_mesh_lod_threshold, RenderingMethod::RenderInfo *p_render_info, const Size2i &p_viewport_size, const Transform3D &p_main_cam_transform) {
2074
GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
2075
2076
ERR_FAIL_COND(!light_storage->owns_light_instance(p_light));
2077
2078
RID base = light_storage->light_instance_get_base_light(p_light);
2079
2080
float zfar = 0.0;
2081
bool use_pancake = false;
2082
float shadow_bias = 0.0;
2083
bool reverse_cull = false;
2084
bool needs_clear = false;
2085
2086
Projection light_projection;
2087
Transform3D light_transform;
2088
GLuint shadow_fb = 0;
2089
Rect2i atlas_rect;
2090
2091
if (light_storage->light_get_type(base) == RS::LIGHT_DIRECTIONAL) {
2092
// Set pssm stuff.
2093
uint64_t last_scene_shadow_pass = light_storage->light_instance_get_shadow_pass(p_light);
2094
if (last_scene_shadow_pass != get_scene_pass()) {
2095
light_storage->light_instance_set_directional_rect(p_light, light_storage->get_directional_shadow_rect());
2096
light_storage->directional_shadow_increase_current_light();
2097
light_storage->light_instance_set_shadow_pass(p_light, get_scene_pass());
2098
}
2099
2100
atlas_rect = light_storage->light_instance_get_directional_rect(p_light);
2101
2102
if (light_storage->light_directional_get_shadow_mode(base) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
2103
atlas_rect.size.width /= 2;
2104
atlas_rect.size.height /= 2;
2105
2106
if (p_pass == 1) {
2107
atlas_rect.position.x += atlas_rect.size.width;
2108
} else if (p_pass == 2) {
2109
atlas_rect.position.y += atlas_rect.size.height;
2110
} else if (p_pass == 3) {
2111
atlas_rect.position += atlas_rect.size;
2112
}
2113
} else if (light_storage->light_directional_get_shadow_mode(base) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
2114
atlas_rect.size.height /= 2;
2115
2116
if (p_pass == 0) {
2117
} else {
2118
atlas_rect.position.y += atlas_rect.size.height;
2119
}
2120
}
2121
2122
use_pancake = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0;
2123
light_projection = light_storage->light_instance_get_shadow_camera(p_light, p_pass);
2124
light_transform = light_storage->light_instance_get_shadow_transform(p_light, p_pass);
2125
2126
float directional_shadow_size = light_storage->directional_shadow_get_size();
2127
Rect2 atlas_rect_norm = atlas_rect;
2128
atlas_rect_norm.position /= directional_shadow_size;
2129
atlas_rect_norm.size /= directional_shadow_size;
2130
light_storage->light_instance_set_directional_shadow_atlas_rect(p_light, p_pass, atlas_rect_norm);
2131
2132
zfar = RSG::light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE);
2133
shadow_fb = light_storage->direction_shadow_get_fb();
2134
reverse_cull = !light_storage->light_get_reverse_cull_face_mode(base);
2135
2136
float bias_scale = light_storage->light_instance_get_shadow_bias_scale(p_light, p_pass);
2137
shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 100.0 * bias_scale;
2138
2139
} else {
2140
// Set from shadow atlas.
2141
2142
ERR_FAIL_COND(!light_storage->owns_shadow_atlas(p_shadow_atlas));
2143
ERR_FAIL_COND(!light_storage->shadow_atlas_owns_light_instance(p_shadow_atlas, p_light));
2144
2145
uint32_t key = light_storage->shadow_atlas_get_light_instance_key(p_shadow_atlas, p_light);
2146
2147
uint32_t quadrant = (key >> GLES3::LightStorage::QUADRANT_SHIFT) & 0x3;
2148
uint32_t shadow = key & GLES3::LightStorage::SHADOW_INDEX_MASK;
2149
2150
ERR_FAIL_INDEX((int)shadow, light_storage->shadow_atlas_get_quadrant_shadows_length(p_shadow_atlas, quadrant));
2151
2152
int shadow_size = light_storage->shadow_atlas_get_quadrant_shadow_size(p_shadow_atlas, quadrant);
2153
2154
shadow_fb = light_storage->shadow_atlas_get_quadrant_shadow_fb(p_shadow_atlas, quadrant, shadow);
2155
2156
zfar = light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE);
2157
reverse_cull = !light_storage->light_get_reverse_cull_face_mode(base);
2158
2159
if (light_storage->light_get_type(base) == RS::LIGHT_OMNI) {
2160
if (light_storage->light_omni_get_shadow_mode(base) == RS::LIGHT_OMNI_SHADOW_CUBE) {
2161
GLuint shadow_texture = light_storage->shadow_atlas_get_quadrant_shadow_texture(p_shadow_atlas, quadrant, shadow);
2162
glBindFramebuffer(GL_FRAMEBUFFER, shadow_fb);
2163
2164
static GLenum cube_map_faces[6] = {
2165
GL_TEXTURE_CUBE_MAP_POSITIVE_X,
2166
GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
2167
// Flipped order for Y to match what the RD renderer expects
2168
// (and thus what is given to us by the Rendering Server).
2169
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
2170
GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
2171
GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
2172
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
2173
};
2174
2175
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, cube_map_faces[p_pass], shadow_texture, 0);
2176
2177
light_projection = light_storage->light_instance_get_shadow_camera(p_light, p_pass);
2178
light_transform = light_storage->light_instance_get_shadow_transform(p_light, p_pass);
2179
shadow_size = shadow_size / 2;
2180
} else {
2181
ERR_FAIL_MSG("Dual paraboloid shadow mode not supported in the Compatibility renderer. Please use CubeMap shadow mode instead.");
2182
}
2183
2184
shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS);
2185
2186
} else if (light_storage->light_get_type(base) == RS::LIGHT_SPOT) {
2187
light_projection = light_storage->light_instance_get_shadow_camera(p_light, 0);
2188
light_transform = light_storage->light_instance_get_shadow_transform(p_light, 0);
2189
2190
shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 10.0;
2191
// Prebake range into bias so we can scale based on distance easily.
2192
shadow_bias *= light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE);
2193
}
2194
atlas_rect.size.x = shadow_size;
2195
atlas_rect.size.y = shadow_size;
2196
2197
needs_clear = true;
2198
}
2199
2200
RenderDataGLES3 render_data;
2201
render_data.cam_projection = light_projection;
2202
render_data.cam_transform = light_transform;
2203
render_data.inv_cam_transform = light_transform.affine_inverse();
2204
render_data.z_far = zfar; // Only used by OmniLights.
2205
render_data.z_near = 0.0;
2206
render_data.lod_distance_multiplier = p_lod_distance_multiplier;
2207
render_data.main_cam_transform = p_main_cam_transform;
2208
2209
render_data.instances = &p_instances;
2210
render_data.render_info = p_render_info;
2211
2212
_setup_environment(&render_data, true, p_viewport_size, false, Color(), use_pancake, shadow_bias);
2213
2214
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) {
2215
render_data.screen_mesh_lod_threshold = 0.0;
2216
} else {
2217
render_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold;
2218
}
2219
2220
_fill_render_list(RENDER_LIST_SECONDARY, &render_data, PASS_MODE_SHADOW);
2221
render_list[RENDER_LIST_SECONDARY].sort_by_key();
2222
2223
glBindFramebuffer(GL_FRAMEBUFFER, shadow_fb);
2224
glViewport(atlas_rect.position.x, atlas_rect.position.y, atlas_rect.size.x, atlas_rect.size.y);
2225
2226
GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_shader_parameters_get_uniform_buffer();
2227
2228
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_GLOBALS_UNIFORM_LOCATION, global_buffer);
2229
glBindBuffer(GL_UNIFORM_BUFFER, 0);
2230
2231
scene_state.reset_gl_state();
2232
scene_state.enable_gl_depth_test(true);
2233
scene_state.enable_gl_depth_draw(true);
2234
scene_state.set_gl_depth_func(GL_GREATER);
2235
2236
glColorMask(0, 0, 0, 0);
2237
glDrawBuffers(0, nullptr);
2238
RasterizerGLES3::clear_depth(0.0);
2239
if (needs_clear) {
2240
glClear(GL_DEPTH_BUFFER_BIT);
2241
}
2242
2243
uint64_t spec_constant_base_flags = SceneShaderGLES3::DISABLE_LIGHTMAP |
2244
SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL |
2245
SceneShaderGLES3::DISABLE_LIGHT_OMNI |
2246
SceneShaderGLES3::DISABLE_LIGHT_SPOT |
2247
SceneShaderGLES3::DISABLE_FOG |
2248
SceneShaderGLES3::RENDER_SHADOWS;
2249
2250
if (light_storage->light_get_type(base) == RS::LIGHT_OMNI) {
2251
spec_constant_base_flags |= SceneShaderGLES3::RENDER_SHADOWS_LINEAR;
2252
}
2253
2254
RenderListParameters render_list_params(render_list[RENDER_LIST_SECONDARY].elements.ptr(), render_list[RENDER_LIST_SECONDARY].elements.size(), reverse_cull, spec_constant_base_flags, false);
2255
2256
_render_list_template<PASS_MODE_SHADOW>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_SECONDARY].elements.size());
2257
2258
glColorMask(1, 1, 1, 1);
2259
scene_state.enable_gl_depth_test(false);
2260
scene_state.enable_gl_depth_draw(true);
2261
glDisable(GL_CULL_FACE);
2262
scene_state.cull_mode = RS::CULL_MODE_DISABLED;
2263
glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo);
2264
}
2265
2266
void RasterizerSceneGLES3::render_scene(const Ref<RenderSceneBuffers> &p_render_buffers, const CameraData *p_camera_data, const CameraData *p_prev_camera_data, const PagedArray<RenderGeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_voxel_gi_instances, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, const PagedArray<RID> &p_fog_volumes, RID p_environment, RID p_camera_attributes, RID p_compositor, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RenderingMethod::RenderInfo *r_render_info) {
2267
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
2268
GLES3::Config *config = GLES3::Config::get_singleton();
2269
RENDER_TIMESTAMP("Setup 3D Scene");
2270
2271
bool apply_color_adjustments_in_post = false;
2272
bool is_reflection_probe = p_reflection_probe.is_valid();
2273
2274
Ref<RenderSceneBuffersGLES3> rb = p_render_buffers;
2275
ERR_FAIL_COND(rb.is_null());
2276
2277
if (rb->get_scaling_3d_mode() != RS::VIEWPORT_SCALING_3D_MODE_OFF) {
2278
// If we're scaling, we apply tonemapping etc. in post, so disable it during rendering
2279
apply_color_adjustments_in_post = true;
2280
}
2281
2282
GLES3::RenderTarget *rt = nullptr; // No render target for reflection probe
2283
if (!is_reflection_probe) {
2284
rt = texture_storage->get_render_target(rb->render_target);
2285
ERR_FAIL_NULL(rt);
2286
}
2287
2288
bool glow_enabled = false;
2289
if (p_environment.is_valid()) {
2290
glow_enabled = environment_get_glow_enabled(p_environment);
2291
if (glow_enabled) {
2292
// If glow is enabled, we apply tonemapping etc. in post, so disable it during rendering
2293
apply_color_adjustments_in_post = true;
2294
}
2295
}
2296
2297
bool ssao_enabled = false;
2298
if (p_environment.is_valid()) {
2299
ssao_enabled = environment_get_ssao_enabled(p_environment);
2300
if (ssao_enabled) {
2301
// If SSAO is enabled, we apply tonemapping etc. in post, so disable it during rendering
2302
apply_color_adjustments_in_post = true;
2303
}
2304
}
2305
2306
// Assign render data
2307
// Use the format from rendererRD
2308
RenderDataGLES3 render_data;
2309
{
2310
render_data.render_buffers = rb;
2311
2312
if (rt) {
2313
render_data.transparent_bg = rt->is_transparent;
2314
render_data.render_region = rt->render_region;
2315
}
2316
2317
// Our first camera is used by default
2318
render_data.cam_transform = p_camera_data->main_transform;
2319
render_data.inv_cam_transform = render_data.cam_transform.affine_inverse();
2320
render_data.cam_projection = p_camera_data->main_projection;
2321
render_data.cam_orthogonal = p_camera_data->is_orthogonal;
2322
render_data.cam_frustum = p_camera_data->is_frustum;
2323
render_data.camera_visible_layers = p_camera_data->visible_layers;
2324
render_data.main_cam_transform = p_camera_data->main_transform;
2325
2326
render_data.view_count = p_camera_data->view_count;
2327
for (uint32_t v = 0; v < p_camera_data->view_count; v++) {
2328
render_data.view_eye_offset[v] = p_camera_data->view_offset[v].origin;
2329
render_data.view_projection[v] = p_camera_data->view_projection[v];
2330
}
2331
2332
render_data.z_near = p_camera_data->main_projection.get_z_near();
2333
render_data.z_far = p_camera_data->main_projection.get_z_far();
2334
2335
render_data.instances = &p_instances;
2336
render_data.lights = &p_lights;
2337
render_data.reflection_probes = &p_reflection_probes;
2338
render_data.environment = p_environment;
2339
render_data.camera_attributes = p_camera_attributes;
2340
render_data.shadow_atlas = p_shadow_atlas;
2341
render_data.reflection_probe = p_reflection_probe;
2342
render_data.reflection_probe_pass = p_reflection_probe_pass;
2343
2344
// this should be the same for all cameras..
2345
render_data.lod_distance_multiplier = p_camera_data->main_projection.get_lod_multiplier();
2346
2347
if (rt != nullptr && rt->color_type == GL_UNSIGNED_INT_2_10_10_10_REV && glow_enabled) {
2348
// As our output is in sRGB and we're using 10bit color space, we can fake a little HDR to do glow...
2349
render_data.luminance_multiplier = 0.25;
2350
} else {
2351
render_data.luminance_multiplier = 1.0;
2352
}
2353
2354
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) {
2355
render_data.screen_mesh_lod_threshold = 0.0;
2356
} else {
2357
render_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold;
2358
}
2359
render_data.render_info = r_render_info;
2360
render_data.render_shadows = p_render_shadows;
2361
render_data.render_shadow_count = p_render_shadow_count;
2362
}
2363
2364
PagedArray<RID> empty;
2365
2366
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
2367
render_data.lights = &empty;
2368
render_data.reflection_probes = &empty;
2369
}
2370
2371
bool reverse_cull = render_data.cam_transform.basis.determinant() < 0;
2372
2373
///////////
2374
// Fill Light lists here
2375
//////////
2376
2377
GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_shader_parameters_get_uniform_buffer();
2378
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_GLOBALS_UNIFORM_LOCATION, global_buffer);
2379
2380
Color clear_color;
2381
if (!is_reflection_probe && rb->render_target.is_valid()) {
2382
clear_color = texture_storage->render_target_get_clear_request_color(rb->render_target);
2383
} else {
2384
clear_color = texture_storage->get_default_clear_color();
2385
}
2386
2387
bool fb_cleared = false;
2388
2389
Size2i screen_size = rb->internal_size;
2390
2391
bool use_wireframe = get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_WIREFRAME;
2392
2393
SceneState::TonemapUBO tonemap_ubo;
2394
if (render_data.environment.is_valid()) {
2395
bool use_bcs = environment_get_adjustments_enabled(render_data.environment);
2396
if (use_bcs) {
2397
apply_color_adjustments_in_post = true;
2398
}
2399
2400
tonemap_ubo.exposure = environment_get_exposure(render_data.environment);
2401
tonemap_ubo.tonemapper = int32_t(environment_get_tone_mapper(render_data.environment));
2402
RendererEnvironmentStorage::TonemapParameters params = environment_get_tonemap_parameters(render_data.environment, false);
2403
tonemap_ubo.tonemapper_params[0] = params.tonemapper_params[0];
2404
tonemap_ubo.tonemapper_params[1] = params.tonemapper_params[1];
2405
tonemap_ubo.tonemapper_params[2] = params.tonemapper_params[2];
2406
tonemap_ubo.tonemapper_params[3] = params.tonemapper_params[3];
2407
tonemap_ubo.brightness = environment_get_adjustments_brightness(render_data.environment);
2408
tonemap_ubo.contrast = environment_get_adjustments_contrast(render_data.environment);
2409
tonemap_ubo.saturation = environment_get_adjustments_saturation(render_data.environment);
2410
}
2411
2412
if (scene_state.tonemap_buffer == 0) {
2413
// Only create if using 3D
2414
glGenBuffers(1, &scene_state.tonemap_buffer);
2415
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_TONEMAP_UNIFORM_LOCATION, scene_state.tonemap_buffer);
2416
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.tonemap_buffer, sizeof(SceneState::TonemapUBO), &tonemap_ubo, GL_STREAM_DRAW, "Tonemap UBO");
2417
} else {
2418
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_TONEMAP_UNIFORM_LOCATION, scene_state.tonemap_buffer);
2419
glBufferData(GL_UNIFORM_BUFFER, sizeof(SceneState::TonemapUBO), &tonemap_ubo, GL_STREAM_DRAW);
2420
}
2421
2422
glBindBuffer(GL_UNIFORM_BUFFER, 0);
2423
2424
scene_state.data.emissive_exposure_normalization = -1.0; // Use default exposure normalization.
2425
2426
bool enough_vertex_attribs_for_motion_vectors = GLES3::Config::get_singleton()->max_vertex_attribs >= 22;
2427
if (rt && rt->overridden.velocity_fbo != 0 && enough_vertex_attribs_for_motion_vectors) {
2428
// First frame we render motion vectors? Use our current data!
2429
if (scene_state.prev_data_state == 0) {
2430
scene_state.prev_data_state = 1;
2431
}
2432
} else {
2433
// Not using motion vectors? We don't need to load our data.
2434
scene_state.prev_data_state = 0;
2435
}
2436
2437
bool flip_y = !is_reflection_probe;
2438
2439
if (rt && rt->overridden.color.is_valid()) {
2440
// If we've overridden the render target's color texture, then don't render upside down.
2441
// We're probably rendering directly to an XR device.
2442
flip_y = false;
2443
}
2444
if (!flip_y) {
2445
// If we're rendering right-side up, then we need to change the winding order.
2446
glFrontFace(GL_CW);
2447
}
2448
_render_shadows(&render_data, screen_size);
2449
2450
_setup_lights(&render_data, true, render_data.directional_light_count, render_data.omni_light_count, render_data.spot_light_count, render_data.directional_shadow_count);
2451
_setup_environment(&render_data, is_reflection_probe, screen_size, flip_y, clear_color, false);
2452
2453
_fill_render_list(RENDER_LIST_OPAQUE, &render_data, PASS_MODE_COLOR);
2454
render_list[RENDER_LIST_OPAQUE].sort_by_key();
2455
render_list[RENDER_LIST_ALPHA].sort_by_reverse_depth_and_priority();
2456
2457
bool draw_sky = false;
2458
bool draw_sky_fog_only = false;
2459
bool keep_color = false;
2460
bool draw_canvas = false;
2461
bool draw_feed = false;
2462
float sky_energy_multiplier = 1.0;
2463
int camera_feed_id = -1;
2464
2465
if (unlikely(get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW)) {
2466
clear_color = Color(0, 0, 0, 1); //in overdraw mode, BG should always be black
2467
} else if (render_data.environment.is_valid()) {
2468
RS::EnvironmentBG bg_mode = environment_get_background(render_data.environment);
2469
float bg_energy_multiplier = environment_get_bg_energy_multiplier(render_data.environment);
2470
bg_energy_multiplier *= environment_get_bg_intensity(render_data.environment);
2471
RS::EnvironmentReflectionSource reflection_source = environment_get_reflection_source(render_data.environment);
2472
RS::EnvironmentAmbientSource ambient_source = environment_get_ambient_source(render_data.environment);
2473
2474
if (render_data.camera_attributes.is_valid()) {
2475
bg_energy_multiplier *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(render_data.camera_attributes);
2476
}
2477
2478
switch (bg_mode) {
2479
case RS::ENV_BG_CLEAR_COLOR: {
2480
clear_color.r *= bg_energy_multiplier;
2481
clear_color.g *= bg_energy_multiplier;
2482
clear_color.b *= bg_energy_multiplier;
2483
if (!render_data.transparent_bg && environment_get_fog_enabled(render_data.environment)) {
2484
draw_sky_fog_only = true;
2485
GLES3::MaterialStorage::get_singleton()->material_set_param(sky_globals.fog_material, "clear_color", Variant(clear_color));
2486
}
2487
} break;
2488
case RS::ENV_BG_COLOR: {
2489
clear_color = environment_get_bg_color(render_data.environment);
2490
clear_color.r *= bg_energy_multiplier;
2491
clear_color.g *= bg_energy_multiplier;
2492
clear_color.b *= bg_energy_multiplier;
2493
if (!render_data.transparent_bg && environment_get_fog_enabled(render_data.environment)) {
2494
draw_sky_fog_only = true;
2495
GLES3::MaterialStorage::get_singleton()->material_set_param(sky_globals.fog_material, "clear_color", Variant(clear_color));
2496
}
2497
} break;
2498
case RS::ENV_BG_SKY: {
2499
draw_sky = !render_data.transparent_bg;
2500
} break;
2501
case RS::ENV_BG_CANVAS: {
2502
draw_canvas = true;
2503
} break;
2504
case RS::ENV_BG_KEEP: {
2505
keep_color = true;
2506
} break;
2507
case RS::ENV_BG_CAMERA_FEED: {
2508
camera_feed_id = environment_get_camera_feed_id(render_data.environment);
2509
draw_feed = true;
2510
keep_color = true;
2511
} break;
2512
default: {
2513
}
2514
}
2515
2516
bool sky_reflections = reflection_source == RS::ENV_REFLECTION_SOURCE_SKY;
2517
sky_reflections |= reflection_source == RS::ENV_REFLECTION_SOURCE_BG && bg_mode == RS::ENV_BG_SKY;
2518
bool sky_ambient = ambient_source == RS::ENV_AMBIENT_SOURCE_SKY;
2519
sky_ambient |= ambient_source == RS::ENV_AMBIENT_SOURCE_BG && bg_mode == RS::ENV_BG_SKY;
2520
2521
// setup sky if used for ambient, reflections, or background
2522
if (draw_sky || draw_sky_fog_only || sky_reflections || sky_ambient) {
2523
RENDER_TIMESTAMP("Setup Sky");
2524
Projection projection = render_data.cam_projection;
2525
if (is_reflection_probe) {
2526
Projection correction;
2527
correction.set_depth_correction(true, true, false);
2528
projection = correction * render_data.cam_projection;
2529
}
2530
2531
sky_energy_multiplier *= bg_energy_multiplier;
2532
2533
_setup_sky(&render_data, *render_data.lights, projection, render_data.cam_transform, screen_size);
2534
2535
if (environment_get_sky(render_data.environment).is_valid()) {
2536
if (sky_reflections || sky_ambient) {
2537
_update_sky_radiance(render_data.environment, projection, render_data.cam_transform, sky_energy_multiplier);
2538
}
2539
} else {
2540
// do not try to draw sky if invalid
2541
draw_sky = false;
2542
}
2543
}
2544
}
2545
2546
scene_state.reset_gl_state();
2547
2548
GLuint motion_vectors_fbo = rt ? rt->overridden.velocity_fbo : 0;
2549
if (motion_vectors_fbo != 0 && enough_vertex_attribs_for_motion_vectors) {
2550
RENDER_TIMESTAMP("Motion Vectors Pass");
2551
glBindFramebuffer(GL_FRAMEBUFFER, motion_vectors_fbo);
2552
2553
Size2i motion_vectors_target_size = rt->velocity_target_size;
2554
glViewport(0, 0, motion_vectors_target_size.x, motion_vectors_target_size.y);
2555
2556
scene_state.enable_gl_depth_test(true);
2557
scene_state.enable_gl_depth_draw(true);
2558
scene_state.enable_gl_blend(false);
2559
glDepthFunc(GL_GEQUAL);
2560
scene_state.enable_gl_scissor_test(false);
2561
2562
glColorMask(1, 1, 1, 1);
2563
RasterizerGLES3::clear_depth(0.0);
2564
glClearColor(0.0, 0.0, 0.0, 0.0);
2565
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
2566
GLuint db = GL_COLOR_ATTACHMENT0;
2567
glDrawBuffers(1, &db);
2568
2569
uint64_t spec_constant = SceneShaderGLES3::DISABLE_FOG | SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL |
2570
SceneShaderGLES3::DISABLE_LIGHTMAP | SceneShaderGLES3::DISABLE_LIGHT_OMNI |
2571
SceneShaderGLES3::DISABLE_LIGHT_SPOT;
2572
2573
RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, spec_constant, use_wireframe);
2574
_render_list_template<PASS_MODE_MOTION_VECTORS>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_OPAQUE].elements.size());
2575
2576
// Copy our current scene data to our previous scene data for use in the next frame.
2577
scene_state.prev_data = scene_state.data;
2578
scene_state.prev_multiview_data = scene_state.multiview_data;
2579
scene_state.prev_data_state = 2;
2580
}
2581
2582
GLuint fbo = 0;
2583
if (is_reflection_probe && GLES3::LightStorage::get_singleton()->reflection_probe_has_atlas_index(render_data.reflection_probe)) {
2584
fbo = GLES3::LightStorage::get_singleton()->reflection_probe_instance_get_framebuffer(render_data.reflection_probe, render_data.reflection_probe_pass);
2585
} else {
2586
rb->set_apply_color_adjustments_in_post(apply_color_adjustments_in_post);
2587
fbo = rb->get_render_fbo();
2588
}
2589
2590
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
2591
glViewport(0, 0, rb->internal_size.x, rb->internal_size.y);
2592
2593
// If SSAO is enabled, we definitely need the depth buffer.
2594
if (ssao_enabled) {
2595
scene_state.used_depth_texture = true;
2596
}
2597
2598
// Do depth prepass if it's explicitly enabled
2599
bool use_depth_prepass = config->use_depth_prepass;
2600
2601
// Forcibly enable depth prepass if opaque stencil writes are used.
2602
use_depth_prepass = use_depth_prepass || scene_state.used_opaque_stencil;
2603
2604
// Don't do depth prepass we are rendering overdraw
2605
use_depth_prepass = use_depth_prepass && get_debug_draw_mode() != RS::VIEWPORT_DEBUG_DRAW_OVERDRAW;
2606
2607
if (use_depth_prepass) {
2608
RENDER_TIMESTAMP("Depth Prepass");
2609
//pre z pass
2610
2611
if (render_data.render_region != Rect2i()) {
2612
glViewport(render_data.render_region.position.x, render_data.render_region.position.y, render_data.render_region.size.width, render_data.render_region.size.height);
2613
}
2614
2615
scene_state.enable_gl_depth_test(true);
2616
scene_state.enable_gl_depth_draw(true);
2617
scene_state.enable_gl_blend(false);
2618
scene_state.set_gl_depth_func(GL_GEQUAL);
2619
scene_state.enable_gl_scissor_test(false);
2620
scene_state.enable_gl_stencil_test(false);
2621
2622
glColorMask(0, 0, 0, 0);
2623
RasterizerGLES3::clear_depth(0.0);
2624
RasterizerGLES3::clear_stencil(0);
2625
glClear(GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
2626
// Some desktop GL implementations fall apart when using Multiview with GL_NONE.
2627
GLuint db = p_camera_data->view_count > 1 ? GL_COLOR_ATTACHMENT0 : GL_NONE;
2628
glDrawBuffers(1, &db);
2629
2630
uint64_t spec_constant = SceneShaderGLES3::DISABLE_FOG | SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL |
2631
SceneShaderGLES3::DISABLE_LIGHTMAP | SceneShaderGLES3::DISABLE_LIGHT_OMNI |
2632
SceneShaderGLES3::DISABLE_LIGHT_SPOT;
2633
2634
RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, spec_constant, use_wireframe);
2635
_render_list_template<PASS_MODE_DEPTH>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_OPAQUE].elements.size());
2636
2637
glColorMask(1, 1, 1, 1);
2638
2639
fb_cleared = true;
2640
scene_state.used_depth_prepass = true;
2641
} else {
2642
scene_state.used_depth_prepass = false;
2643
}
2644
2645
glBlendEquation(GL_FUNC_ADD);
2646
if (render_data.transparent_bg) {
2647
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
2648
scene_state.enable_gl_blend(true);
2649
} else {
2650
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE);
2651
scene_state.enable_gl_blend(false);
2652
}
2653
scene_state.current_blend_mode = GLES3::SceneShaderData::BLEND_MODE_MIX;
2654
2655
scene_state.enable_gl_scissor_test(false);
2656
scene_state.enable_gl_depth_test(true);
2657
scene_state.enable_gl_depth_draw(true);
2658
scene_state.set_gl_depth_func(GL_GEQUAL);
2659
2660
{
2661
GLuint db = GL_COLOR_ATTACHMENT0;
2662
glDrawBuffers(1, &db);
2663
}
2664
2665
scene_state.enable_gl_stencil_test(false);
2666
2667
if (!fb_cleared) {
2668
RasterizerGLES3::clear_depth(0.0);
2669
RasterizerGLES3::clear_stencil(0);
2670
glClear(GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
2671
}
2672
2673
// Need to clear framebuffer unless:
2674
// a) We explicitly request not to (i.e. ENV_BG_KEEP).
2675
// b) We are rendering to a non-intermediate framebuffer with ENV_BG_CANVAS (shared between 2D and 3D).
2676
if (!keep_color && (!draw_canvas || fbo != rt->fbo)) {
2677
clear_color.a = render_data.transparent_bg ? 0.0f : 1.0f;
2678
glClearBufferfv(GL_COLOR, 0, clear_color.components);
2679
}
2680
if ((keep_color || draw_canvas) && fbo != rt->fbo) {
2681
// Need to copy our current contents to our intermediate/MSAA buffer
2682
GLES3::CopyEffects *copy_effects = GLES3::CopyEffects::get_singleton();
2683
2684
scene_state.enable_gl_depth_test(false);
2685
scene_state.enable_gl_depth_draw(false);
2686
2687
glActiveTexture(GL_TEXTURE0);
2688
glBindTexture(rt->view_count > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D, rt->color);
2689
2690
copy_effects->copy_screen(render_data.luminance_multiplier);
2691
2692
scene_state.enable_gl_depth_test(true);
2693
scene_state.enable_gl_depth_draw(true);
2694
}
2695
2696
RENDER_TIMESTAMP("Render Opaque Pass");
2697
uint64_t spec_constant_base_flags = 0;
2698
2699
if (render_data.render_region != Rect2i()) {
2700
glViewport(render_data.render_region.position.x, render_data.render_region.position.y, render_data.render_region.size.width, render_data.render_region.size.height);
2701
}
2702
2703
{
2704
// Specialization Constants that apply for entire rendering pass.
2705
if (render_data.directional_light_count == 0) {
2706
spec_constant_base_flags |= SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL;
2707
}
2708
2709
if (render_data.environment.is_null() || (render_data.environment.is_valid() && !environment_get_fog_enabled(render_data.environment))) {
2710
spec_constant_base_flags |= SceneShaderGLES3::DISABLE_FOG;
2711
}
2712
2713
if (render_data.environment.is_valid() && environment_get_fog_mode(render_data.environment) == RS::EnvironmentFogMode::ENV_FOG_MODE_DEPTH) {
2714
spec_constant_base_flags |= SceneShaderGLES3::USE_DEPTH_FOG;
2715
}
2716
2717
if (!apply_color_adjustments_in_post) {
2718
spec_constant_base_flags |= SceneShaderGLES3::APPLY_TONEMAPPING;
2719
}
2720
}
2721
2722
if (draw_feed && camera_feed_id > -1) {
2723
RENDER_TIMESTAMP("Render Camera feed");
2724
2725
scene_state.enable_gl_depth_draw(false);
2726
scene_state.enable_gl_depth_test(false);
2727
scene_state.enable_gl_blend(false);
2728
scene_state.set_gl_cull_mode(RS::CULL_MODE_BACK);
2729
2730
Ref<CameraFeed> feed = CameraServer::get_singleton()->get_feed_by_id(camera_feed_id);
2731
2732
if (feed.is_valid()) {
2733
RID camera_YCBCR = feed->get_texture(CameraServer::FEED_YCBCR_IMAGE);
2734
GLES3::TextureStorage::get_singleton()->texture_bind(camera_YCBCR, 0);
2735
2736
GLES3::FeedEffects *feed_effects = GLES3::FeedEffects::get_singleton();
2737
feed_effects->draw();
2738
}
2739
scene_state.enable_gl_depth_draw(true);
2740
scene_state.enable_gl_depth_test(true);
2741
scene_state.enable_gl_blend(true);
2742
}
2743
2744
// Render Opaque Objects.
2745
RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, spec_constant_base_flags, use_wireframe);
2746
2747
_render_list_template<PASS_MODE_COLOR>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_OPAQUE].elements.size());
2748
2749
scene_state.enable_gl_depth_draw(false);
2750
scene_state.enable_gl_stencil_test(false);
2751
2752
if (draw_sky || draw_sky_fog_only) {
2753
RENDER_TIMESTAMP("Render Sky");
2754
2755
scene_state.enable_gl_depth_test(true);
2756
scene_state.set_gl_depth_func(GL_GEQUAL);
2757
scene_state.enable_gl_blend(false);
2758
scene_state.set_gl_cull_mode(RS::CULL_MODE_BACK);
2759
2760
Transform3D transform = render_data.cam_transform;
2761
Projection projection = render_data.cam_projection;
2762
if (is_reflection_probe) {
2763
Projection correction;
2764
correction.columns[1][1] = -1.0;
2765
projection = correction * render_data.cam_projection;
2766
} else if (render_data.cam_frustum) {
2767
// Sky is drawn upside down, the frustum offset doesn't know the image is upside down so needs a flip.
2768
projection[2].y = -projection[2].y;
2769
}
2770
2771
_draw_sky(render_data.environment, projection, transform, sky_energy_multiplier, render_data.luminance_multiplier, p_camera_data->view_count > 1, flip_y, apply_color_adjustments_in_post);
2772
}
2773
2774
if (scene_state.used_screen_texture || scene_state.used_depth_texture) {
2775
rb->check_backbuffer(scene_state.used_screen_texture, scene_state.used_depth_texture);
2776
Size2i size = rb->get_internal_size();
2777
GLuint backbuffer_fbo = rb->get_backbuffer_fbo();
2778
GLuint backbuffer = rb->get_backbuffer();
2779
GLuint backbuffer_depth = rb->get_backbuffer_depth();
2780
2781
if (backbuffer_fbo != 0) {
2782
glBindFramebuffer(GL_READ_FRAMEBUFFER, fbo);
2783
glReadBuffer(GL_COLOR_ATTACHMENT0);
2784
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, backbuffer_fbo);
2785
if (scene_state.used_screen_texture) {
2786
glBlitFramebuffer(0, 0, size.x, size.y,
2787
0, 0, size.x, size.y,
2788
GL_COLOR_BUFFER_BIT, GL_NEAREST);
2789
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 6);
2790
glBindTexture(GL_TEXTURE_2D, backbuffer);
2791
}
2792
if (scene_state.used_depth_texture) {
2793
glBlitFramebuffer(0, 0, size.x, size.y,
2794
0, 0, size.x, size.y,
2795
GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT, GL_NEAREST);
2796
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 7);
2797
glBindTexture(GL_TEXTURE_2D, backbuffer_depth);
2798
}
2799
}
2800
2801
// Bound framebuffer may have changed, so change it back
2802
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
2803
}
2804
2805
RENDER_TIMESTAMP("Render 3D Transparent Pass");
2806
scene_state.enable_gl_blend(true);
2807
2808
//Render transparent pass
2809
RenderListParameters render_list_params_alpha(render_list[RENDER_LIST_ALPHA].elements.ptr(), render_list[RENDER_LIST_ALPHA].elements.size(), reverse_cull, spec_constant_base_flags, use_wireframe);
2810
2811
_render_list_template<PASS_MODE_COLOR_TRANSPARENT>(&render_list_params_alpha, &render_data, 0, render_list[RENDER_LIST_ALPHA].elements.size(), true);
2812
2813
scene_state.enable_gl_stencil_test(false);
2814
2815
if (!flip_y) {
2816
// Restore the default winding order.
2817
glFrontFace(GL_CCW);
2818
}
2819
2820
if (!is_reflection_probe && rb.is_valid()) {
2821
_render_buffers_debug_draw(rb, p_shadow_atlas, fbo);
2822
}
2823
2824
// Reset stuff that may trip up the next process.
2825
scene_state.reset_gl_state();
2826
glUseProgram(0);
2827
2828
if (!is_reflection_probe) {
2829
_render_post_processing(&render_data);
2830
2831
texture_storage->render_target_disable_clear_request(rb->render_target);
2832
}
2833
2834
glActiveTexture(GL_TEXTURE0);
2835
}
2836
2837
void RasterizerSceneGLES3::_render_post_processing(const RenderDataGLES3 *p_render_data) {
2838
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
2839
GLES3::Glow *glow = GLES3::Glow::get_singleton();
2840
GLES3::PostEffects *post_effects = GLES3::PostEffects::get_singleton();
2841
2842
Ref<RenderSceneBuffersGLES3> rb = p_render_data->render_buffers;
2843
ERR_FAIL_COND(rb.is_null());
2844
2845
RID render_target = rb->get_render_target();
2846
Size2i internal_size = rb->get_internal_size();
2847
Size2i target_size = rb->get_target_size();
2848
uint32_t view_count = rb->get_view_count();
2849
2850
// bool msaa2d_needs_resolve = texture_storage->render_target_get_msaa(render_target) != RS::VIEWPORT_MSAA_DISABLED && !GLES3::Config::get_singleton()->rt_msaa_supported;
2851
bool msaa3d_needs_resolve = rb->get_msaa_needs_resolve();
2852
GLuint fbo_msaa_3d = rb->get_msaa3d_fbo();
2853
GLuint fbo_int = rb->get_internal_fbo();
2854
GLuint fbo_rt = texture_storage->render_target_get_fbo(render_target); // TODO if MSAA 2D is enabled and we're not using rt_msaa, get 2D render target here.
2855
2856
// Check if we have glow enabled and if so, check if our buffers were allocated
2857
bool glow_enabled = false;
2858
float glow_intensity = 1.0;
2859
float glow_bloom = 0.0;
2860
float glow_hdr_bleed_threshold = 1.0;
2861
float glow_hdr_bleed_scale = 2.0;
2862
float glow_hdr_luminance_cap = 12.0;
2863
float srgb_white = 1.0;
2864
if (p_render_data->environment.is_valid()) {
2865
glow_enabled = environment_get_glow_enabled(p_render_data->environment);
2866
glow_intensity = environment_get_glow_intensity(p_render_data->environment);
2867
glow_bloom = environment_get_glow_bloom(p_render_data->environment);
2868
glow_hdr_bleed_threshold = environment_get_glow_hdr_bleed_threshold(p_render_data->environment);
2869
glow_hdr_bleed_scale = environment_get_glow_hdr_bleed_scale(p_render_data->environment);
2870
glow_hdr_luminance_cap = environment_get_glow_hdr_luminance_cap(p_render_data->environment);
2871
srgb_white = environment_get_white(p_render_data->environment, false);
2872
}
2873
2874
if (glow_enabled) {
2875
// Only glow requires srgb_white to be calculated.
2876
srgb_white = 1.055 * Math::pow(srgb_white, 1.0f / 2.4f) - 0.055;
2877
2878
rb->check_glow_buffers();
2879
}
2880
2881
// Check if we want and can have SSAO.
2882
bool ssao_enabled = false;
2883
float ssao_strength = 4.0;
2884
float ssao_radius = 0.5;
2885
if (p_render_data->environment.is_valid()) {
2886
ssao_enabled = environment_get_ssao_enabled(p_render_data->environment);
2887
// This SSAO is not implemented the same way, but uses the intensity and radius
2888
// in a similar way. The parameters are scaled so the SSAO defaults look ok.
2889
ssao_strength = environment_get_ssao_intensity(p_render_data->environment) * 2.0;
2890
ssao_radius = environment_get_ssao_radius(p_render_data->environment) * 0.5;
2891
}
2892
2893
uint64_t bcs_spec_constants = 0;
2894
if (p_render_data->environment.is_valid()) {
2895
bool use_bcs = environment_get_adjustments_enabled(p_render_data->environment);
2896
RID color_correction_texture = environment_get_color_correction(p_render_data->environment);
2897
if (use_bcs) {
2898
bcs_spec_constants |= PostShaderGLES3::USE_BCS;
2899
2900
if (color_correction_texture.is_valid()) {
2901
bcs_spec_constants |= PostShaderGLES3::USE_COLOR_CORRECTION;
2902
2903
bool use_1d_lut = environment_get_use_1d_color_correction(p_render_data->environment);
2904
GLenum texture_target = GL_TEXTURE_3D;
2905
if (use_1d_lut) {
2906
bcs_spec_constants |= PostShaderGLES3::USE_1D_LUT;
2907
texture_target = GL_TEXTURE_2D;
2908
}
2909
2910
glActiveTexture(GL_TEXTURE2);
2911
glBindTexture(texture_target, texture_storage->texture_get_texid(color_correction_texture));
2912
glTexParameteri(texture_target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2913
glTexParameteri(texture_target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2914
glTexParameteri(texture_target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2915
glTexParameteri(texture_target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2916
glTexParameteri(texture_target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
2917
}
2918
}
2919
}
2920
2921
if (view_count == 1) {
2922
// Resolve if needed.
2923
if (fbo_msaa_3d != 0 && msaa3d_needs_resolve) {
2924
// We can use blit to copy things over
2925
glBindFramebuffer(GL_READ_FRAMEBUFFER, fbo_msaa_3d);
2926
2927
if (fbo_int != 0) {
2928
// We can't combine resolve and scaling, so resolve into our internal buffer
2929
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo_int);
2930
} else {
2931
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo_rt);
2932
}
2933
glBlitFramebuffer(0, 0, internal_size.x, internal_size.y, 0, 0, internal_size.x, internal_size.y, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST);
2934
}
2935
2936
// Rendered to intermediate buffer, must copy to our render target
2937
if (fbo_int != 0) {
2938
// Apply glow/bloom if requested? then populate our glow buffers
2939
GLuint color = fbo_int != 0 ? rb->get_internal_color() : texture_storage->render_target_get_color(render_target);
2940
2941
// We need to pass this in for SSAO.
2942
GLuint depth_buffer = fbo_int != 0 ? rb->get_internal_depth() : texture_storage->render_target_get_depth(render_target);
2943
2944
const GLES3::Glow::GLOWLEVEL *glow_buffers = nullptr;
2945
if (glow_enabled) {
2946
glow_buffers = rb->get_glow_buffers();
2947
2948
glow->set_luminance_multiplier(p_render_data->luminance_multiplier);
2949
2950
glow->set_intensity(glow_intensity);
2951
glow->set_glow_bloom(glow_bloom);
2952
glow->set_glow_hdr_bleed_threshold(glow_hdr_bleed_threshold);
2953
glow->set_glow_hdr_bleed_scale(glow_hdr_bleed_scale);
2954
glow->set_glow_hdr_luminance_cap(glow_hdr_luminance_cap);
2955
2956
glow->process_glow(color, internal_size, glow_buffers);
2957
}
2958
2959
// Copy color buffer
2960
post_effects->post_copy(fbo_rt, target_size, color,
2961
depth_buffer, ssao_enabled, ssao_quality, ssao_strength, ssao_radius,
2962
internal_size, p_render_data->luminance_multiplier, glow_buffers, glow_intensity,
2963
srgb_white, 0, false, bcs_spec_constants);
2964
2965
// Copy depth buffer
2966
glBindFramebuffer(GL_READ_FRAMEBUFFER, fbo_int);
2967
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo_rt);
2968
glBlitFramebuffer(0, 0, internal_size.x, internal_size.y, 0, 0, target_size.x, target_size.y, GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT, GL_NEAREST);
2969
}
2970
2971
glBindFramebuffer(GL_FRAMEBUFFER, fbo_rt);
2972
} else if ((fbo_msaa_3d != 0 && msaa3d_needs_resolve) || (fbo_int != 0)) {
2973
// TODO investigate if it's smarter to cache these FBOs
2974
GLuint fbos[3]; // read, write and post
2975
glGenFramebuffers(3, fbos);
2976
2977
// Resolve if needed.
2978
if (fbo_msaa_3d != 0 && msaa3d_needs_resolve) {
2979
GLuint read_color = rb->get_msaa3d_color();
2980
GLuint read_depth = rb->get_msaa3d_depth();
2981
GLuint write_color = 0;
2982
GLuint write_depth = 0;
2983
2984
if (fbo_int != 0) {
2985
write_color = rb->get_internal_color();
2986
write_depth = rb->get_internal_depth();
2987
} else {
2988
write_color = texture_storage->render_target_get_color(render_target);
2989
write_depth = texture_storage->render_target_get_depth(render_target);
2990
}
2991
2992
glBindFramebuffer(GL_READ_FRAMEBUFFER, fbos[0]);
2993
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbos[1]);
2994
2995
for (uint32_t v = 0; v < view_count; v++) {
2996
glFramebufferTextureLayer(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, read_color, 0, v);
2997
glFramebufferTextureLayer(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, read_depth, 0, v);
2998
glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, write_color, 0, v);
2999
glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, write_depth, 0, v);
3000
glBlitFramebuffer(0, 0, internal_size.x, internal_size.y, 0, 0, internal_size.x, internal_size.y, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT, GL_NEAREST);
3001
}
3002
}
3003
3004
// Rendered to intermediate buffer, must copy to our render target
3005
if (fbo_int != 0) {
3006
// Apply glow/bloom if requested? then populate our glow buffers
3007
const GLES3::Glow::GLOWLEVEL *glow_buffers = nullptr;
3008
GLuint source_color = fbo_int != 0 ? rb->get_internal_color() : texture_storage->render_target_get_color(render_target);
3009
3010
// Moved this up so SSAO could use it too.
3011
GLuint read_depth = rb->get_internal_depth();
3012
3013
if (glow_enabled) {
3014
glow_buffers = rb->get_glow_buffers();
3015
3016
glow->set_luminance_multiplier(p_render_data->luminance_multiplier);
3017
3018
glow->set_intensity(glow_intensity);
3019
glow->set_glow_bloom(glow_bloom);
3020
glow->set_glow_hdr_bleed_threshold(glow_hdr_bleed_threshold);
3021
glow->set_glow_hdr_bleed_scale(glow_hdr_bleed_scale);
3022
glow->set_glow_hdr_luminance_cap(glow_hdr_luminance_cap);
3023
}
3024
3025
GLuint write_color = texture_storage->render_target_get_color(render_target);
3026
3027
for (uint32_t v = 0; v < view_count; v++) {
3028
if (glow_enabled) {
3029
glow->process_glow(source_color, internal_size, glow_buffers, v, true);
3030
}
3031
3032
glBindFramebuffer(GL_FRAMEBUFFER, fbos[2]);
3033
glFramebufferTextureLayer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, write_color, 0, v);
3034
post_effects->post_copy(fbos[2], target_size, source_color,
3035
read_depth, ssao_enabled, ssao_quality, ssao_strength, ssao_radius,
3036
internal_size, p_render_data->luminance_multiplier, glow_buffers, glow_intensity,
3037
srgb_white, v, true, bcs_spec_constants);
3038
}
3039
3040
// Copy depth
3041
GLuint write_depth = texture_storage->render_target_get_depth(render_target);
3042
3043
glBindFramebuffer(GL_READ_FRAMEBUFFER, fbos[0]);
3044
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbos[1]);
3045
3046
for (uint32_t v = 0; v < view_count; v++) {
3047
glFramebufferTextureLayer(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, read_depth, 0, v);
3048
glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, write_depth, 0, v);
3049
3050
glBlitFramebuffer(0, 0, internal_size.x, internal_size.y, 0, 0, target_size.x, target_size.y, GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT, GL_NEAREST);
3051
}
3052
}
3053
3054
glBindFramebuffer(GL_FRAMEBUFFER, fbo_rt);
3055
glDeleteFramebuffers(3, fbos);
3056
}
3057
3058
glActiveTexture(GL_TEXTURE2);
3059
glBindTexture(GL_TEXTURE_2D, 0);
3060
}
3061
3062
template <PassMode p_pass_mode>
3063
void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params, const RenderDataGLES3 *p_render_data, uint32_t p_from_element, uint32_t p_to_element, bool p_alpha_pass) {
3064
GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton();
3065
GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton();
3066
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
3067
3068
GLuint prev_vertex_array_gl = 0;
3069
GLuint prev_index_array_gl = 0;
3070
3071
GLES3::SceneMaterialData *prev_material_data = nullptr;
3072
GLES3::SceneShaderData *prev_shader = nullptr;
3073
GeometryInstanceGLES3 *prev_inst = nullptr;
3074
SceneShaderGLES3::ShaderVariant prev_variant = SceneShaderGLES3::ShaderVariant::MODE_COLOR;
3075
SceneShaderGLES3::ShaderVariant shader_variant = SceneShaderGLES3::MODE_COLOR; // Assigned to silence wrong -Wmaybe-initialized
3076
uint64_t prev_spec_constants = 0;
3077
3078
// Specializations constants used by all instances in the scene.
3079
uint64_t base_spec_constants = p_params->spec_constant_base_flags;
3080
3081
if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
3082
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
3083
GLES3::Config *config = GLES3::Config::get_singleton();
3084
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 2);
3085
GLuint texture_to_bind = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_CUBEMAP_BLACK))->tex_id;
3086
if (p_render_data->environment.is_valid()) {
3087
Sky *sky = sky_owner.get_or_null(environment_get_sky(p_render_data->environment));
3088
if (sky && sky->radiance != 0) {
3089
texture_to_bind = sky->radiance;
3090
base_spec_constants |= SceneShaderGLES3::USE_RADIANCE_MAP;
3091
}
3092
glBindTexture(GL_TEXTURE_CUBE_MAP, texture_to_bind);
3093
}
3094
3095
} else if constexpr (p_pass_mode == PASS_MODE_DEPTH || p_pass_mode == PASS_MODE_SHADOW) {
3096
shader_variant = SceneShaderGLES3::MODE_DEPTH;
3097
} else if constexpr (p_pass_mode == PASS_MODE_MOTION_VECTORS) {
3098
base_spec_constants |= SceneShaderGLES3::RENDER_MOTION_VECTORS;
3099
}
3100
3101
if (p_render_data->view_count > 1) {
3102
base_spec_constants |= SceneShaderGLES3::USE_MULTIVIEW;
3103
}
3104
3105
bool should_request_redraw = false;
3106
if constexpr (p_pass_mode != PASS_MODE_DEPTH && p_pass_mode != PASS_MODE_MOTION_VECTORS) {
3107
// Don't count elements during depth pre-pass or motion vector pass to match the RD renderers.
3108
if (p_render_data->render_info) {
3109
p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME] += p_to_element - p_from_element;
3110
}
3111
}
3112
3113
for (uint32_t i = p_from_element; i < p_to_element; i++) {
3114
GeometryInstanceSurface *surf = p_params->elements[i];
3115
GeometryInstanceGLES3 *inst = surf->owner;
3116
3117
if (p_pass_mode == PASS_MODE_COLOR && !(surf->flags & GeometryInstanceSurface::FLAG_PASS_OPAQUE)) {
3118
continue; // Objects with "Depth-prepass" transparency are included in both render lists, but should only be rendered in the transparent pass
3119
}
3120
3121
if (inst->instance_count == 0) {
3122
continue;
3123
}
3124
3125
GLES3::SceneShaderData *shader;
3126
GLES3::SceneMaterialData *material_data;
3127
void *mesh_surface;
3128
3129
if constexpr (p_pass_mode == PASS_MODE_SHADOW) {
3130
shader = surf->shader_shadow;
3131
material_data = surf->material_shadow;
3132
mesh_surface = surf->surface_shadow;
3133
} else {
3134
if (unlikely(get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW)) {
3135
material_data = overdraw_material_data_ptr;
3136
shader = material_data->shader_data;
3137
} else if (unlikely(get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_LIGHTING)) {
3138
material_data = default_material_data_ptr;
3139
shader = material_data->shader_data;
3140
} else {
3141
shader = surf->shader;
3142
material_data = surf->material;
3143
}
3144
mesh_surface = surf->surface;
3145
}
3146
3147
if (!mesh_surface) {
3148
continue;
3149
}
3150
3151
//request a redraw if one of the shaders uses TIME
3152
if (shader->uses_time) {
3153
should_request_redraw = true;
3154
}
3155
3156
if constexpr (p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
3157
scene_state.enable_gl_depth_test(shader->depth_test != GLES3::SceneShaderData::DEPTH_TEST_DISABLED);
3158
}
3159
3160
if (shader->depth_test == GLES3::SceneShaderData::DEPTH_TEST_ENABLED_INVERTED) {
3161
scene_state.set_gl_depth_func(GL_LESS);
3162
} else {
3163
scene_state.set_gl_depth_func(GL_GEQUAL);
3164
}
3165
3166
if constexpr (p_pass_mode != PASS_MODE_SHADOW) {
3167
if (shader->depth_draw == GLES3::SceneShaderData::DEPTH_DRAW_OPAQUE) {
3168
scene_state.enable_gl_depth_draw((p_pass_mode == PASS_MODE_COLOR && !GLES3::Config::get_singleton()->use_depth_prepass) || p_pass_mode == PASS_MODE_DEPTH || p_pass_mode == PASS_MODE_MOTION_VECTORS);
3169
} else {
3170
scene_state.enable_gl_depth_draw(shader->depth_draw == GLES3::SceneShaderData::DEPTH_DRAW_ALWAYS);
3171
}
3172
}
3173
3174
bool uses_additive_lighting = (inst->light_passes.size() + p_render_data->directional_shadow_count) > 0;
3175
uses_additive_lighting = uses_additive_lighting && !shader->unshaded;
3176
3177
// TODOS
3178
/*
3179
* Still a bug when atlas space is limited. Somehow need to evict light when it doesn't have a spot on the atlas, current check isn't enough
3180
* Disable depth draw
3181
*/
3182
3183
for (int32_t pass = 0; pass < MAX(1, int32_t(inst->light_passes.size() + p_render_data->directional_shadow_count)); pass++) {
3184
if constexpr (p_pass_mode == PASS_MODE_DEPTH || p_pass_mode == PASS_MODE_SHADOW || p_pass_mode == PASS_MODE_MOTION_VECTORS) {
3185
if (pass > 0) {
3186
// Don't render shadow passes when doing depth, shadow, or motion vector pass.
3187
break;
3188
}
3189
}
3190
3191
// Stencil.
3192
if (p_pass_mode != PASS_MODE_DEPTH && shader->stencil_enabled) {
3193
static const GLenum stencil_compare_table[GLES3::SceneShaderData::STENCIL_COMPARE_MAX] = {
3194
GL_LESS,
3195
GL_EQUAL,
3196
GL_LEQUAL,
3197
GL_GREATER,
3198
GL_NOTEQUAL,
3199
GL_GEQUAL,
3200
GL_ALWAYS,
3201
};
3202
3203
GLenum stencil_compare = stencil_compare_table[shader->stencil_compare];
3204
GLuint stencil_compare_mask = 0;
3205
GLuint stencil_write_mask = 0;
3206
GLenum stencil_op_dpfail = GL_KEEP;
3207
GLenum stencil_op_dppass = GL_KEEP;
3208
3209
if (shader->stencil_flags & GLES3::SceneShaderData::STENCIL_FLAG_READ) {
3210
stencil_compare_mask = 255;
3211
}
3212
3213
if (shader->stencil_flags & GLES3::SceneShaderData::STENCIL_FLAG_WRITE) {
3214
stencil_op_dppass = GL_REPLACE;
3215
stencil_write_mask = 255;
3216
}
3217
3218
if (shader->stencil_flags & GLES3::SceneShaderData::STENCIL_FLAG_WRITE_DEPTH_FAIL) {
3219
stencil_op_dpfail = GL_REPLACE;
3220
stencil_write_mask = 255;
3221
}
3222
3223
scene_state.enable_gl_stencil_test(true);
3224
scene_state.set_gl_stencil_func(stencil_compare, shader->stencil_reference, stencil_compare_mask);
3225
scene_state.set_gl_stencil_write_mask(stencil_write_mask);
3226
scene_state.set_gl_stencil_op(GL_KEEP, stencil_op_dpfail, stencil_op_dppass);
3227
} else {
3228
scene_state.enable_gl_stencil_test(false);
3229
}
3230
3231
if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
3232
if (!uses_additive_lighting && pass == 1) {
3233
// Don't render additive passes if not using additive lighting.
3234
break;
3235
}
3236
if (uses_additive_lighting && pass == 1 && !p_render_data->transparent_bg) {
3237
// Enable blending if in opaque pass and not already enabled.
3238
scene_state.enable_gl_blend(true);
3239
}
3240
if (pass < int32_t(inst->light_passes.size())) {
3241
RID light_instance_rid = inst->light_passes[pass].light_instance_rid;
3242
if (!GLES3::LightStorage::get_singleton()->light_instance_has_shadow_atlas(light_instance_rid, p_render_data->shadow_atlas)) {
3243
// Shadow wasn't able to get a spot on the atlas. So skip it.
3244
continue;
3245
}
3246
} else if (pass > 0) {
3247
uint32_t shadow_id = MAX_DIRECTIONAL_LIGHTS - 1 - (pass - int32_t(inst->light_passes.size()));
3248
if (inst->lightmap_instance.is_valid() && scene_state.directional_lights[shadow_id].bake_mode == RenderingServer::LIGHT_BAKE_STATIC) {
3249
// Skip shadows for static lights on meshes with a lightmap.
3250
continue;
3251
}
3252
}
3253
}
3254
3255
if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
3256
GLES3::SceneShaderData::BlendMode desired_blend_mode;
3257
if (pass > 0) {
3258
desired_blend_mode = GLES3::SceneShaderData::BLEND_MODE_ADD;
3259
} else {
3260
desired_blend_mode = shader->blend_mode;
3261
}
3262
3263
if (desired_blend_mode != scene_state.current_blend_mode) {
3264
switch (desired_blend_mode) {
3265
case GLES3::SceneShaderData::BLEND_MODE_MIX: {
3266
glBlendEquation(GL_FUNC_ADD);
3267
if (p_render_data->transparent_bg) {
3268
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
3269
} else {
3270
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE);
3271
}
3272
3273
} break;
3274
case GLES3::SceneShaderData::BLEND_MODE_ADD: {
3275
glBlendEquation(GL_FUNC_ADD);
3276
glBlendFunc(p_pass_mode == PASS_MODE_COLOR_TRANSPARENT ? GL_SRC_ALPHA : GL_ONE, GL_ONE);
3277
3278
} break;
3279
case GLES3::SceneShaderData::BLEND_MODE_SUB: {
3280
glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
3281
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
3282
3283
} break;
3284
case GLES3::SceneShaderData::BLEND_MODE_MUL: {
3285
glBlendEquation(GL_FUNC_ADD);
3286
if (p_render_data->transparent_bg) {
3287
glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO);
3288
} else {
3289
glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE);
3290
}
3291
3292
} break;
3293
case GLES3::SceneShaderData::BLEND_MODE_PREMULT_ALPHA: {
3294
glBlendEquation(GL_FUNC_ADD);
3295
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
3296
3297
} break;
3298
case GLES3::SceneShaderData::BLEND_MODE_ALPHA_TO_COVERAGE: {
3299
// Do nothing for now.
3300
} break;
3301
}
3302
scene_state.current_blend_mode = desired_blend_mode;
3303
}
3304
}
3305
3306
// Find cull variant.
3307
RS::CullMode cull_mode = shader->cull_mode;
3308
3309
if (p_pass_mode == PASS_MODE_MATERIAL || (p_pass_mode == PASS_MODE_SHADOW && (surf->flags & GeometryInstanceSurface::FLAG_USES_DOUBLE_SIDED_SHADOWS))) {
3310
cull_mode = RS::CULL_MODE_DISABLED;
3311
} else {
3312
bool mirror = inst->mirror;
3313
if (p_params->reverse_cull) {
3314
mirror = !mirror;
3315
}
3316
if (cull_mode == RS::CULL_MODE_FRONT && mirror) {
3317
cull_mode = RS::CULL_MODE_BACK;
3318
} else if (cull_mode == RS::CULL_MODE_BACK && mirror) {
3319
cull_mode = RS::CULL_MODE_FRONT;
3320
}
3321
}
3322
3323
scene_state.set_gl_cull_mode(cull_mode);
3324
3325
RS::PrimitiveType primitive = surf->primitive;
3326
if (shader->uses_point_size) {
3327
primitive = RS::PRIMITIVE_POINTS;
3328
}
3329
static const GLenum prim[5] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP };
3330
GLenum primitive_gl = prim[int(primitive)];
3331
3332
GLuint vertex_array_gl = 0;
3333
GLuint index_array_gl = 0;
3334
uint64_t vertex_input_mask = shader->vertex_input_mask;
3335
if (inst->lightmap_instance.is_valid() || p_pass_mode == PASS_MODE_MATERIAL) {
3336
vertex_input_mask |= 1 << RS::ARRAY_TEX_UV2;
3337
}
3338
3339
// Skeleton and blend shapes.
3340
if (surf->owner->mesh_instance.is_valid()) {
3341
mesh_storage->mesh_instance_surface_get_vertex_arrays_and_format(surf->owner->mesh_instance, surf->surface_index, vertex_input_mask, p_pass_mode == PASS_MODE_MOTION_VECTORS, vertex_array_gl);
3342
} else {
3343
mesh_storage->mesh_surface_get_vertex_arrays_and_format(mesh_surface, vertex_input_mask, p_pass_mode == PASS_MODE_MOTION_VECTORS, vertex_array_gl);
3344
}
3345
3346
index_array_gl = mesh_storage->mesh_surface_get_index_buffer(mesh_surface, surf->lod_index);
3347
3348
if (prev_vertex_array_gl != vertex_array_gl) {
3349
if (vertex_array_gl != 0) {
3350
glBindVertexArray(vertex_array_gl);
3351
}
3352
prev_vertex_array_gl = vertex_array_gl;
3353
3354
// Invalidate the previous index array
3355
prev_index_array_gl = 0;
3356
}
3357
3358
bool use_wireframe = false;
3359
if (p_params->force_wireframe || shader->wireframe) {
3360
GLuint wireframe_index_array_gl = mesh_storage->mesh_surface_get_index_buffer_wireframe(mesh_surface);
3361
if (wireframe_index_array_gl) {
3362
index_array_gl = wireframe_index_array_gl;
3363
use_wireframe = true;
3364
}
3365
}
3366
3367
bool use_index_buffer = index_array_gl != 0;
3368
if (prev_index_array_gl != index_array_gl) {
3369
if (index_array_gl != 0) {
3370
// Bind index each time so we can use LODs
3371
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_array_gl);
3372
}
3373
prev_index_array_gl = index_array_gl;
3374
}
3375
3376
Transform3D world_transform;
3377
if (inst->store_transform_cache) {
3378
world_transform = inst->transform;
3379
}
3380
3381
if (prev_material_data != material_data) {
3382
material_data->bind_uniforms();
3383
prev_material_data = material_data;
3384
}
3385
3386
SceneShaderGLES3::ShaderVariant instance_variant = shader_variant;
3387
3388
if (inst->instance_count > 0) {
3389
// Will need to use instancing to draw (either MultiMesh or Particles).
3390
instance_variant = SceneShaderGLES3::ShaderVariant(1 + int(instance_variant));
3391
}
3392
3393
uint64_t spec_constants = base_spec_constants;
3394
3395
// Set up spec constants for lighting.
3396
if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
3397
// Only check during color passes as light shader code is compiled out during depth-only pass anyway.
3398
3399
if (pass == 0) {
3400
spec_constants |= SceneShaderGLES3::BASE_PASS;
3401
3402
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
3403
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_OMNI;
3404
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_SPOT;
3405
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL;
3406
spec_constants |= SceneShaderGLES3::DISABLE_LIGHTMAP;
3407
} else {
3408
if (inst->omni_light_gl_cache.is_empty()) {
3409
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_OMNI;
3410
}
3411
3412
if (inst->spot_light_gl_cache.is_empty()) {
3413
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_SPOT;
3414
}
3415
3416
if (p_render_data->directional_light_count == p_render_data->directional_shadow_count) {
3417
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL;
3418
}
3419
3420
if (inst->reflection_probe_rid_cache.is_empty()) {
3421
// We don't have any probes.
3422
spec_constants |= SceneShaderGLES3::DISABLE_REFLECTION_PROBE;
3423
} else if (inst->reflection_probe_rid_cache.size() > 1) {
3424
// We have a second probe.
3425
spec_constants |= SceneShaderGLES3::SECOND_REFLECTION_PROBE;
3426
}
3427
3428
if (inst->lightmap_instance.is_valid()) {
3429
spec_constants |= SceneShaderGLES3::USE_LIGHTMAP;
3430
3431
GLES3::LightmapInstance *li = GLES3::LightStorage::get_singleton()->get_lightmap_instance(inst->lightmap_instance);
3432
GLES3::Lightmap *lm = GLES3::LightStorage::get_singleton()->get_lightmap(li->lightmap);
3433
3434
if (lm->uses_spherical_harmonics) {
3435
spec_constants |= SceneShaderGLES3::USE_SH_LIGHTMAP;
3436
}
3437
3438
if (lightmap_bicubic_upscale) {
3439
spec_constants |= SceneShaderGLES3::LIGHTMAP_BICUBIC_FILTER;
3440
}
3441
} else if (inst->lightmap_sh) {
3442
spec_constants |= SceneShaderGLES3::USE_LIGHTMAP_CAPTURE;
3443
} else {
3444
spec_constants |= SceneShaderGLES3::DISABLE_LIGHTMAP;
3445
}
3446
3447
if (p_render_data->directional_light_count > 0 && is_environment(p_render_data->environment) && environment_get_fog_sun_scatter(p_render_data->environment) > 0.001) {
3448
spec_constants |= SceneShaderGLES3::USE_SUN_SCATTER;
3449
}
3450
}
3451
} else {
3452
// Only base pass uses the radiance map.
3453
spec_constants &= ~SceneShaderGLES3::USE_RADIANCE_MAP;
3454
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_OMNI;
3455
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_SPOT;
3456
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL;
3457
spec_constants |= SceneShaderGLES3::DISABLE_REFLECTION_PROBE;
3458
3459
bool disable_lightmaps = true;
3460
3461
// Additive directional passes may use shadowmasks, so enable lightmaps for them.
3462
if (pass >= int32_t(inst->light_passes.size()) && inst->lightmap_instance.is_valid()) {
3463
GLES3::LightmapInstance *li = GLES3::LightStorage::get_singleton()->get_lightmap_instance(inst->lightmap_instance);
3464
GLES3::Lightmap *lm = GLES3::LightStorage::get_singleton()->get_lightmap(li->lightmap);
3465
3466
if (lm->shadowmask_mode != RS::SHADOWMASK_MODE_NONE) {
3467
spec_constants |= SceneShaderGLES3::USE_LIGHTMAP;
3468
disable_lightmaps = false;
3469
3470
if (lightmap_bicubic_upscale) {
3471
spec_constants |= SceneShaderGLES3::LIGHTMAP_BICUBIC_FILTER;
3472
}
3473
}
3474
}
3475
3476
if (disable_lightmaps) {
3477
spec_constants |= SceneShaderGLES3::DISABLE_LIGHTMAP;
3478
}
3479
}
3480
3481
if (uses_additive_lighting) {
3482
spec_constants |= SceneShaderGLES3::USE_ADDITIVE_LIGHTING;
3483
3484
if (pass < int32_t(inst->light_passes.size())) {
3485
// Rendering positional lights.
3486
if (inst->light_passes[pass].is_omni) {
3487
spec_constants |= SceneShaderGLES3::ADDITIVE_OMNI;
3488
} else {
3489
spec_constants |= SceneShaderGLES3::ADDITIVE_SPOT;
3490
}
3491
3492
if (scene_state.positional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_HIGH) {
3493
spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_13;
3494
} else if (scene_state.positional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_LOW) {
3495
spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_5;
3496
}
3497
} else {
3498
// Render directional lights.
3499
3500
uint32_t shadow_id = MAX_DIRECTIONAL_LIGHTS - 1 - (pass - int32_t(inst->light_passes.size()));
3501
if (!(scene_state.directional_lights[shadow_id].mask & inst->layer_mask)) {
3502
// Disable additive lighting when masks are not overlapping.
3503
spec_constants &= ~SceneShaderGLES3::USE_ADDITIVE_LIGHTING;
3504
}
3505
if (pass == 0 && inst->lightmap_instance.is_valid() && scene_state.directional_lights[shadow_id].bake_mode == RenderingServer::LIGHT_BAKE_STATIC) {
3506
// Disable additive lighting with a static light and a lightmap.
3507
spec_constants &= ~SceneShaderGLES3::USE_ADDITIVE_LIGHTING;
3508
}
3509
if (scene_state.directional_shadows[shadow_id].shadow_split_offsets[0] == scene_state.directional_shadows[shadow_id].shadow_split_offsets[1]) {
3510
// Orthogonal, do nothing.
3511
} else if (scene_state.directional_shadows[shadow_id].shadow_split_offsets[1] == scene_state.directional_shadows[shadow_id].shadow_split_offsets[2]) {
3512
spec_constants |= SceneShaderGLES3::LIGHT_USE_PSSM2;
3513
} else {
3514
spec_constants |= SceneShaderGLES3::LIGHT_USE_PSSM4;
3515
}
3516
3517
if (scene_state.directional_shadows[shadow_id].blend_splits) {
3518
spec_constants |= SceneShaderGLES3::LIGHT_USE_PSSM_BLEND;
3519
}
3520
3521
if (scene_state.directional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_HIGH) {
3522
spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_13;
3523
} else if (scene_state.directional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_LOW) {
3524
spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_5;
3525
}
3526
}
3527
}
3528
}
3529
3530
if (prev_shader != shader || prev_variant != instance_variant || spec_constants != prev_spec_constants) {
3531
bool success = material_storage->shaders.scene_shader.version_bind_shader(shader->version, instance_variant, spec_constants);
3532
if (!success) {
3533
break;
3534
}
3535
3536
float opaque_prepass_threshold = 0.0;
3537
if constexpr (p_pass_mode == PASS_MODE_DEPTH || p_pass_mode == PASS_MODE_MOTION_VECTORS) {
3538
opaque_prepass_threshold = 0.99;
3539
} else if constexpr (p_pass_mode == PASS_MODE_SHADOW) {
3540
opaque_prepass_threshold = 0.1;
3541
}
3542
3543
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OPAQUE_PREPASS_THRESHOLD, opaque_prepass_threshold, shader->version, instance_variant, spec_constants);
3544
}
3545
3546
// Pass in lighting uniforms.
3547
if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
3548
GLES3::Config *config = GLES3::Config::get_singleton();
3549
// Pass light and shadow index and bind shadow texture.
3550
if (uses_additive_lighting) {
3551
if (pass < int32_t(inst->light_passes.size())) {
3552
int32_t shadow_id = inst->light_passes[pass].shadow_id;
3553
if (shadow_id >= 0) {
3554
uint32_t light_id = inst->light_passes[pass].light_id;
3555
bool is_omni = inst->light_passes[pass].is_omni;
3556
SceneShaderGLES3::Uniforms uniform_name = is_omni ? SceneShaderGLES3::OMNI_LIGHT_INDEX : SceneShaderGLES3::SPOT_LIGHT_INDEX;
3557
material_storage->shaders.scene_shader.version_set_uniform(uniform_name, uint32_t(light_id), shader->version, instance_variant, spec_constants);
3558
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::POSITIONAL_SHADOW_INDEX, uint32_t(shadow_id), shader->version, instance_variant, spec_constants);
3559
3560
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 3);
3561
RID light_instance_rid = inst->light_passes[pass].light_instance_rid;
3562
3563
GLuint tex = GLES3::LightStorage::get_singleton()->light_instance_get_shadow_texture(light_instance_rid, p_render_data->shadow_atlas);
3564
if (is_omni) {
3565
glBindTexture(GL_TEXTURE_CUBE_MAP, tex);
3566
} else {
3567
glBindTexture(GL_TEXTURE_2D, tex);
3568
}
3569
}
3570
} else {
3571
uint32_t shadow_id = MAX_DIRECTIONAL_LIGHTS - 1 - (pass - int32_t(inst->light_passes.size()));
3572
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::DIRECTIONAL_SHADOW_INDEX, shadow_id, shader->version, instance_variant, spec_constants);
3573
3574
GLuint tex = GLES3::LightStorage::get_singleton()->directional_shadow_get_texture();
3575
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 3);
3576
glBindTexture(GL_TEXTURE_2D, tex);
3577
3578
if (inst->lightmap_instance.is_valid()) {
3579
// Use shadowmasks for directional light passes.
3580
GLES3::LightmapInstance *li = GLES3::LightStorage::get_singleton()->get_lightmap_instance(inst->lightmap_instance);
3581
GLES3::Lightmap *lm = GLES3::LightStorage::get_singleton()->get_lightmap(li->lightmap);
3582
3583
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LIGHTMAP_SLICE, inst->lightmap_slice_index, shader->version, instance_variant, spec_constants);
3584
3585
Vector4 uv_scale(inst->lightmap_uv_scale.position.x, inst->lightmap_uv_scale.position.y, inst->lightmap_uv_scale.size.x, inst->lightmap_uv_scale.size.y);
3586
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LIGHTMAP_UV_SCALE, uv_scale, shader->version, instance_variant, spec_constants);
3587
3588
if (lightmap_bicubic_upscale) {
3589
Vector2 light_texture_size(lm->light_texture_size.x, lm->light_texture_size.y);
3590
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LIGHTMAP_TEXTURE_SIZE, light_texture_size, shader->version, instance_variant, spec_constants);
3591
}
3592
3593
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LIGHTMAP_SHADOWMASK_MODE, (uint32_t)lm->shadowmask_mode, shader->version, instance_variant, spec_constants);
3594
3595
if (lm->shadow_texture.is_valid()) {
3596
tex = GLES3::TextureStorage::get_singleton()->texture_get_texid(lm->shadow_texture);
3597
} else {
3598
tex = GLES3::TextureStorage::get_singleton()->texture_get_texid(GLES3::TextureStorage::get_singleton()->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_2D_ARRAY_WHITE));
3599
}
3600
3601
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 5);
3602
glBindTexture(GL_TEXTURE_2D_ARRAY, tex);
3603
}
3604
}
3605
}
3606
3607
// Pass light count and array of light indices for base pass.
3608
if ((prev_inst != inst || prev_shader != shader || prev_variant != instance_variant || prev_spec_constants != spec_constants) && pass == 0) {
3609
// Rebind the light indices.
3610
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OMNI_LIGHT_COUNT, inst->omni_light_gl_cache.size(), shader->version, instance_variant, spec_constants);
3611
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::SPOT_LIGHT_COUNT, inst->spot_light_gl_cache.size(), shader->version, instance_variant, spec_constants);
3612
3613
if (inst->omni_light_gl_cache.size()) {
3614
glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::OMNI_LIGHT_INDICES, shader->version, instance_variant, spec_constants), inst->omni_light_gl_cache.size(), inst->omni_light_gl_cache.ptr());
3615
}
3616
3617
if (inst->spot_light_gl_cache.size()) {
3618
glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::SPOT_LIGHT_INDICES, shader->version, instance_variant, spec_constants), inst->spot_light_gl_cache.size(), inst->spot_light_gl_cache.ptr());
3619
}
3620
3621
if (inst->lightmap_instance.is_valid()) {
3622
GLES3::LightmapInstance *li = GLES3::LightStorage::get_singleton()->get_lightmap_instance(inst->lightmap_instance);
3623
GLES3::Lightmap *lm = GLES3::LightStorage::get_singleton()->get_lightmap(li->lightmap);
3624
3625
GLuint tex = GLES3::TextureStorage::get_singleton()->texture_get_texid(lm->light_texture);
3626
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 4);
3627
glBindTexture(GL_TEXTURE_2D_ARRAY, tex);
3628
3629
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LIGHTMAP_SLICE, inst->lightmap_slice_index, shader->version, instance_variant, spec_constants);
3630
3631
Vector4 uv_scale(inst->lightmap_uv_scale.position.x, inst->lightmap_uv_scale.position.y, inst->lightmap_uv_scale.size.x, inst->lightmap_uv_scale.size.y);
3632
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LIGHTMAP_UV_SCALE, uv_scale, shader->version, instance_variant, spec_constants);
3633
3634
if (lightmap_bicubic_upscale) {
3635
Vector2 light_texture_size(lm->light_texture_size.x, lm->light_texture_size.y);
3636
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LIGHTMAP_TEXTURE_SIZE, light_texture_size, shader->version, instance_variant, spec_constants);
3637
}
3638
3639
float exposure_normalization = 1.0;
3640
if (p_render_data->camera_attributes.is_valid()) {
3641
float enf = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
3642
exposure_normalization = enf / lm->baked_exposure;
3643
}
3644
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LIGHTMAP_EXPOSURE_NORMALIZATION, exposure_normalization, shader->version, instance_variant, spec_constants);
3645
3646
if (lm->uses_spherical_harmonics) {
3647
Basis to_lm = li->transform.basis.inverse() * p_render_data->cam_transform.basis;
3648
to_lm = to_lm.inverse().transposed();
3649
GLfloat matrix[9] = {
3650
(GLfloat)to_lm.rows[0][0],
3651
(GLfloat)to_lm.rows[1][0],
3652
(GLfloat)to_lm.rows[2][0],
3653
(GLfloat)to_lm.rows[0][1],
3654
(GLfloat)to_lm.rows[1][1],
3655
(GLfloat)to_lm.rows[2][1],
3656
(GLfloat)to_lm.rows[0][2],
3657
(GLfloat)to_lm.rows[1][2],
3658
(GLfloat)to_lm.rows[2][2],
3659
};
3660
glUniformMatrix3fv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::LIGHTMAP_NORMAL_XFORM, shader->version, instance_variant, spec_constants), 1, GL_FALSE, matrix);
3661
}
3662
3663
} else if (inst->lightmap_sh) {
3664
glUniform4fv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::LIGHTMAP_CAPTURES, shader->version, instance_variant, spec_constants), 9, reinterpret_cast<const GLfloat *>(inst->lightmap_sh->sh));
3665
}
3666
prev_inst = inst;
3667
}
3668
}
3669
3670
prev_shader = shader;
3671
prev_variant = instance_variant;
3672
prev_spec_constants = spec_constants;
3673
3674
// Pass in reflection probe data
3675
if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
3676
if (pass == 0 && inst->reflection_probe_rid_cache.size() > 0) {
3677
GLES3::Config *config = GLES3::Config::get_singleton();
3678
GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
3679
3680
// Setup first probe.
3681
{
3682
RID probe_rid = light_storage->reflection_probe_instance_get_probe(inst->reflection_probe_rid_cache[0]);
3683
GLES3::ReflectionProbe *probe = light_storage->get_reflection_probe(probe_rid);
3684
3685
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE1_USE_BOX_PROJECT, probe->box_projection, shader->version, instance_variant, spec_constants);
3686
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE1_BOX_EXTENTS, probe->size * 0.5, shader->version, instance_variant, spec_constants);
3687
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE1_BOX_OFFSET, probe->origin_offset, shader->version, instance_variant, spec_constants);
3688
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE1_EXTERIOR, !probe->interior, shader->version, instance_variant, spec_constants);
3689
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE1_INTENSITY, probe->intensity, shader->version, instance_variant, spec_constants);
3690
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE1_AMBIENT_MODE, int(probe->ambient_mode), shader->version, instance_variant, spec_constants);
3691
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE1_AMBIENT_COLOR, probe->ambient_color * probe->ambient_color_energy, shader->version, instance_variant, spec_constants);
3692
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE1_LOCAL_MATRIX, inst->reflection_probes_local_transform_cache[0], shader->version, instance_variant, spec_constants);
3693
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE1_BLEND_DISTANCE, probe->blend_distance, shader->version, instance_variant, spec_constants);
3694
3695
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 8);
3696
glBindTexture(GL_TEXTURE_CUBE_MAP, light_storage->reflection_probe_instance_get_texture(inst->reflection_probe_rid_cache[0]));
3697
}
3698
3699
if (inst->reflection_probe_rid_cache.size() > 1) {
3700
// Setup second probe.
3701
RID probe_rid = light_storage->reflection_probe_instance_get_probe(inst->reflection_probe_rid_cache[1]);
3702
GLES3::ReflectionProbe *probe = light_storage->get_reflection_probe(probe_rid);
3703
3704
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE2_USE_BOX_PROJECT, probe->box_projection, shader->version, instance_variant, spec_constants);
3705
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE2_BOX_EXTENTS, probe->size * 0.5, shader->version, instance_variant, spec_constants);
3706
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE2_BOX_OFFSET, probe->origin_offset, shader->version, instance_variant, spec_constants);
3707
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE2_EXTERIOR, !probe->interior, shader->version, instance_variant, spec_constants);
3708
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE2_INTENSITY, probe->intensity, shader->version, instance_variant, spec_constants);
3709
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE2_AMBIENT_MODE, int(probe->ambient_mode), shader->version, instance_variant, spec_constants);
3710
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE2_AMBIENT_COLOR, probe->ambient_color * probe->ambient_color_energy, shader->version, instance_variant, spec_constants);
3711
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE2_LOCAL_MATRIX, inst->reflection_probes_local_transform_cache[1], shader->version, instance_variant, spec_constants);
3712
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE2_BLEND_DISTANCE, probe->blend_distance, shader->version, instance_variant, spec_constants);
3713
3714
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 9);
3715
glBindTexture(GL_TEXTURE_CUBE_MAP, light_storage->reflection_probe_instance_get_texture(inst->reflection_probe_rid_cache[1]));
3716
3717
spec_constants |= SceneShaderGLES3::SECOND_REFLECTION_PROBE;
3718
}
3719
}
3720
}
3721
3722
if constexpr (p_pass_mode == PASS_MODE_MOTION_VECTORS) {
3723
if (unlikely(!inst->is_prev_transform_stored)) {
3724
inst->prev_transform = world_transform;
3725
inst->is_prev_transform_stored = true;
3726
}
3727
3728
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::PREV_WORLD_TRANSFORM, inst->prev_transform, shader->version, instance_variant, spec_constants);
3729
inst->prev_transform = world_transform;
3730
}
3731
3732
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, world_transform, shader->version, instance_variant, spec_constants);
3733
{
3734
GLES3::Mesh::Surface *s = reinterpret_cast<GLES3::Mesh::Surface *>(surf->surface);
3735
if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
3736
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::COMPRESSED_AABB_POSITION, s->aabb.position, shader->version, instance_variant, spec_constants);
3737
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::COMPRESSED_AABB_SIZE, s->aabb.size, shader->version, instance_variant, spec_constants);
3738
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::UV_SCALE, s->uv_scale, shader->version, instance_variant, spec_constants);
3739
} else {
3740
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::COMPRESSED_AABB_POSITION, Vector3(0.0, 0.0, 0.0), shader->version, instance_variant, spec_constants);
3741
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::COMPRESSED_AABB_SIZE, Vector3(1.0, 1.0, 1.0), shader->version, instance_variant, spec_constants);
3742
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::UV_SCALE, Vector4(0.0, 0.0, 0.0, 0.0), shader->version, instance_variant, spec_constants);
3743
}
3744
}
3745
3746
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::MODEL_FLAGS, inst->flags_cache, shader->version, instance_variant, spec_constants);
3747
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::INSTANCE_OFFSET, uint32_t(inst->shader_uniforms_offset), shader->version, instance_variant, spec_constants);
3748
3749
if (p_pass_mode == PASS_MODE_MATERIAL) {
3750
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::UV_OFFSET, p_params->uv_offset, shader->version, instance_variant, spec_constants);
3751
} else if (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
3752
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LAYER_MASK, inst->layer_mask, shader->version, instance_variant, spec_constants);
3753
}
3754
3755
// Can be index count or vertex count
3756
uint32_t count = 0;
3757
if (surf->lod_index > 0) {
3758
count = surf->index_count;
3759
} else {
3760
count = mesh_storage->mesh_surface_get_vertices_drawn_count(mesh_surface);
3761
}
3762
3763
if (use_wireframe) {
3764
// In this case we are using index count, and we need double the indices for the wireframe mesh.
3765
count = count * 2;
3766
}
3767
3768
if constexpr (p_pass_mode != PASS_MODE_DEPTH && p_pass_mode != PASS_MODE_MOTION_VECTORS) {
3769
// Don't count draw calls during depth pre-pass or motion vector pass to match the RD renderers.
3770
if (p_render_data->render_info) {
3771
p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++;
3772
}
3773
}
3774
3775
if (inst->instance_count > 0) {
3776
// Using MultiMesh or Particles.
3777
// Bind instance buffers.
3778
3779
GLuint instance_buffer = 0;
3780
uint32_t stride = 0;
3781
if (inst->flags_cache & INSTANCE_DATA_FLAG_PARTICLES) {
3782
instance_buffer = particles_storage->particles_get_gl_buffer(inst->data->base);
3783
stride = 16; // 12 bytes for instance transform and 4 bytes for packed color and custom.
3784
} else {
3785
instance_buffer = mesh_storage->multimesh_get_gl_buffer(inst->data->base);
3786
stride = mesh_storage->multimesh_get_stride(inst->data->base);
3787
}
3788
3789
if (instance_buffer == 0) {
3790
// Instance buffer not initialized yet. Skip rendering for now.
3791
break;
3792
}
3793
3794
bool uses_format_2d = inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D;
3795
bool has_color_or_custom_data = (inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR) || (inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA);
3796
// Current data multimesh vertex attrib data begins at index 12.
3797
mesh_storage->multimesh_vertex_attrib_setup(instance_buffer, stride, uses_format_2d, has_color_or_custom_data, 12);
3798
3799
if (p_pass_mode == PASS_MODE_MOTION_VECTORS) {
3800
GLuint prev_instance_buffer = 0;
3801
if (inst->flags_cache & INSTANCE_DATA_FLAG_PARTICLES) {
3802
prev_instance_buffer = particles_storage->particles_get_prev_gl_buffer(inst->data->base);
3803
} else {
3804
prev_instance_buffer = mesh_storage->multimesh_get_prev_gl_buffer(inst->data->base);
3805
}
3806
3807
if (prev_instance_buffer == 0) {
3808
break;
3809
}
3810
3811
GLuint secondary_instance_buffer = 0;
3812
if (inst->flags_cache & INSTANCE_DATA_FLAG_PARTICLES) {
3813
if (particles_storage->particles_get_last_change(inst->data->base) == RSG::rasterizer->get_frame_number()) {
3814
secondary_instance_buffer = prev_instance_buffer;
3815
} else {
3816
secondary_instance_buffer = instance_buffer;
3817
}
3818
} else {
3819
if (mesh_storage->multimesh_get_last_change(inst->data->base) == RSG::rasterizer->get_frame_number()) {
3820
secondary_instance_buffer = prev_instance_buffer;
3821
} else {
3822
secondary_instance_buffer = instance_buffer;
3823
}
3824
}
3825
3826
// Previous data multimesh vertex attrib data begins at index 18.
3827
mesh_storage->multimesh_vertex_attrib_setup(secondary_instance_buffer, stride, uses_format_2d, has_color_or_custom_data, 18);
3828
}
3829
3830
if (use_wireframe) {
3831
glDrawElementsInstanced(GL_LINES, count, GL_UNSIGNED_INT, nullptr, inst->instance_count);
3832
} else {
3833
if (use_index_buffer) {
3834
glDrawElementsInstanced(primitive_gl, count, mesh_storage->mesh_surface_get_index_type(mesh_surface), nullptr, inst->instance_count);
3835
} else {
3836
glDrawArraysInstanced(primitive_gl, 0, count, inst->instance_count);
3837
}
3838
}
3839
} else {
3840
// Using regular Mesh.
3841
if (use_wireframe) {
3842
glDrawElements(GL_LINES, count, GL_UNSIGNED_INT, nullptr);
3843
} else {
3844
if (use_index_buffer) {
3845
glDrawElements(primitive_gl, count, mesh_storage->mesh_surface_get_index_type(mesh_surface), nullptr);
3846
} else {
3847
glDrawArrays(primitive_gl, 0, count);
3848
}
3849
}
3850
}
3851
3852
if (inst->instance_count > 0) {
3853
glDisableVertexAttribArray(12);
3854
glDisableVertexAttribArray(13);
3855
glDisableVertexAttribArray(14);
3856
glDisableVertexAttribArray(15);
3857
}
3858
}
3859
if constexpr (p_pass_mode == PASS_MODE_COLOR) {
3860
if (uses_additive_lighting && !p_render_data->transparent_bg) {
3861
// Disable additive blending if enabled for additive lights.
3862
scene_state.enable_gl_blend(false);
3863
}
3864
}
3865
}
3866
3867
// Make the actual redraw request
3868
if (should_request_redraw) {
3869
RenderingServerDefault::redraw_request();
3870
}
3871
}
3872
3873
void RasterizerSceneGLES3::render_material(const Transform3D &p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, const PagedArray<RenderGeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) {
3874
}
3875
3876
void RasterizerSceneGLES3::render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray<RenderGeometryInstance *> &p_instances) {
3877
GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton();
3878
3879
ERR_FAIL_COND(!particles_storage->particles_collision_is_heightfield(p_collider));
3880
Vector3 extents = particles_storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale();
3881
Projection cm;
3882
cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0);
3883
3884
Vector3 cam_pos = p_transform.origin;
3885
cam_pos.y += extents.y;
3886
3887
Transform3D cam_xform;
3888
cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_column(Vector3::AXIS_Y), -p_transform.basis.get_column(Vector3::AXIS_Z).normalized());
3889
3890
GLuint fb = particles_storage->particles_collision_get_heightfield_framebuffer(p_collider);
3891
Size2i fb_size = particles_storage->particles_collision_get_heightfield_size(p_collider);
3892
3893
RENDER_TIMESTAMP("Setup GPUParticlesCollisionHeightField3D");
3894
3895
RenderDataGLES3 render_data;
3896
3897
render_data.cam_projection = cm;
3898
render_data.cam_transform = cam_xform;
3899
render_data.view_projection[0] = cm;
3900
render_data.inv_cam_transform = render_data.cam_transform.affine_inverse();
3901
render_data.cam_orthogonal = true;
3902
render_data.z_near = 0.0;
3903
render_data.z_far = cm.get_z_far();
3904
render_data.main_cam_transform = cam_xform;
3905
3906
render_data.instances = &p_instances;
3907
3908
_setup_environment(&render_data, true, Vector2(fb_size), true, Color(), false);
3909
3910
PassMode pass_mode = PASS_MODE_SHADOW;
3911
3912
_fill_render_list(RENDER_LIST_SECONDARY, &render_data, pass_mode);
3913
render_list[RENDER_LIST_SECONDARY].sort_by_key();
3914
3915
RENDER_TIMESTAMP("Render Collider Heightfield");
3916
3917
glBindFramebuffer(GL_FRAMEBUFFER, fb);
3918
glViewport(0, 0, fb_size.width, fb_size.height);
3919
3920
GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_shader_parameters_get_uniform_buffer();
3921
3922
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_GLOBALS_UNIFORM_LOCATION, global_buffer);
3923
glBindBuffer(GL_UNIFORM_BUFFER, 0);
3924
3925
scene_state.reset_gl_state();
3926
scene_state.enable_gl_depth_test(true);
3927
scene_state.enable_gl_depth_draw(true);
3928
scene_state.set_gl_depth_func(GL_GREATER);
3929
3930
glDrawBuffers(0, nullptr);
3931
3932
glColorMask(0, 0, 0, 0);
3933
RasterizerGLES3::clear_depth(0.0);
3934
3935
glClear(GL_DEPTH_BUFFER_BIT);
3936
3937
RenderListParameters render_list_params(render_list[RENDER_LIST_SECONDARY].elements.ptr(), render_list[RENDER_LIST_SECONDARY].elements.size(), false, 31, false);
3938
3939
_render_list_template<PASS_MODE_SHADOW>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_SECONDARY].elements.size());
3940
3941
glColorMask(1, 1, 1, 1);
3942
glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo);
3943
}
3944
3945
void RasterizerSceneGLES3::_render_uv2(const PagedArray<RenderGeometryInstance *> &p_instances, GLuint p_framebuffer, const Rect2i &p_region) {
3946
RENDER_TIMESTAMP("Setup Rendering UV2");
3947
3948
RenderDataGLES3 render_data;
3949
render_data.instances = &p_instances;
3950
3951
scene_state.data.emissive_exposure_normalization = -1.0; // Use default exposure normalization.
3952
3953
_setup_environment(&render_data, true, Vector2(1, 1), true, Color(), false);
3954
3955
PassMode pass_mode = PASS_MODE_MATERIAL;
3956
3957
_fill_render_list(RENDER_LIST_SECONDARY, &render_data, pass_mode);
3958
render_list[RENDER_LIST_SECONDARY].sort_by_key();
3959
3960
RENDER_TIMESTAMP("Render 3D Material");
3961
3962
{
3963
glBindFramebuffer(GL_FRAMEBUFFER, p_framebuffer);
3964
glViewport(p_region.position.x, p_region.position.y, p_region.size.x, p_region.size.y);
3965
3966
GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_shader_parameters_get_uniform_buffer();
3967
3968
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_GLOBALS_UNIFORM_LOCATION, global_buffer);
3969
glBindBuffer(GL_UNIFORM_BUFFER, 0);
3970
3971
scene_state.reset_gl_state();
3972
scene_state.enable_gl_depth_test(true);
3973
scene_state.enable_gl_depth_draw(true);
3974
scene_state.set_gl_depth_func(GL_GREATER);
3975
3976
constexpr GLenum draw_buffers[]{
3977
GL_COLOR_ATTACHMENT0,
3978
GL_COLOR_ATTACHMENT1,
3979
GL_COLOR_ATTACHMENT2,
3980
GL_COLOR_ATTACHMENT3
3981
};
3982
glDrawBuffers(std_size(draw_buffers), draw_buffers);
3983
3984
glClearColor(0.0, 0.0, 0.0, 0.0);
3985
RasterizerGLES3::clear_depth(0.0);
3986
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
3987
3988
uint64_t base_spec_constant = 0;
3989
base_spec_constant |= SceneShaderGLES3::RENDER_MATERIAL;
3990
base_spec_constant |= SceneShaderGLES3::DISABLE_FOG;
3991
base_spec_constant |= SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL;
3992
base_spec_constant |= SceneShaderGLES3::DISABLE_LIGHT_OMNI;
3993
base_spec_constant |= SceneShaderGLES3::DISABLE_LIGHT_SPOT;
3994
base_spec_constant |= SceneShaderGLES3::DISABLE_LIGHTMAP;
3995
3996
RenderListParameters render_list_params(render_list[RENDER_LIST_SECONDARY].elements.ptr(), render_list[RENDER_LIST_SECONDARY].elements.size(), false, base_spec_constant, true, Vector2(0, 0));
3997
3998
const int uv_offset_count = 9;
3999
static const Vector2 uv_offsets[uv_offset_count] = {
4000
Vector2(-1, 1),
4001
Vector2(1, 1),
4002
Vector2(1, -1),
4003
Vector2(-1, -1),
4004
Vector2(-1, 0),
4005
Vector2(1, 0),
4006
Vector2(0, -1),
4007
Vector2(0, 1),
4008
Vector2(0, 0),
4009
};
4010
4011
for (int i = 0; i < uv_offset_count; i++) {
4012
Vector2 ofs = uv_offsets[i];
4013
ofs.x /= p_region.size.width;
4014
ofs.y /= p_region.size.height;
4015
render_list_params.uv_offset = ofs;
4016
_render_list_template<PASS_MODE_MATERIAL>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_SECONDARY].elements.size());
4017
}
4018
4019
render_list_params.uv_offset = Vector2(0, 0);
4020
render_list_params.force_wireframe = false;
4021
_render_list_template<PASS_MODE_MATERIAL>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_SECONDARY].elements.size());
4022
4023
GLuint db = GL_COLOR_ATTACHMENT0;
4024
glDrawBuffers(1, &db);
4025
glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo);
4026
}
4027
}
4028
4029
void RasterizerSceneGLES3::set_time(double p_time, double p_step) {
4030
time = p_time;
4031
time_step = p_step;
4032
}
4033
4034
void RasterizerSceneGLES3::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {
4035
debug_draw = p_debug_draw;
4036
}
4037
4038
Ref<RenderSceneBuffers> RasterizerSceneGLES3::render_buffers_create() {
4039
Ref<RenderSceneBuffersGLES3> rb;
4040
rb.instantiate();
4041
return rb;
4042
}
4043
4044
void RasterizerSceneGLES3::_render_buffers_debug_draw(Ref<RenderSceneBuffersGLES3> p_render_buffers, RID p_shadow_atlas, GLuint p_fbo) {
4045
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
4046
GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
4047
GLES3::CopyEffects *copy_effects = GLES3::CopyEffects::get_singleton();
4048
4049
ERR_FAIL_COND(p_render_buffers.is_null());
4050
4051
RID render_target = p_render_buffers->render_target;
4052
GLES3::RenderTarget *rt = texture_storage->get_render_target(render_target);
4053
ERR_FAIL_NULL(rt);
4054
4055
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) {
4056
if (p_shadow_atlas.is_valid()) {
4057
// Get or create debug textures to display shadow maps as an atlas.
4058
GLuint shadow_atlas_texture = light_storage->shadow_atlas_get_debug_texture(p_shadow_atlas);
4059
GLuint shadow_atlas_fb = light_storage->shadow_atlas_get_debug_fb(p_shadow_atlas);
4060
4061
uint32_t shadow_atlas_size = light_storage->shadow_atlas_get_size(p_shadow_atlas);
4062
uint32_t quadrant_size = shadow_atlas_size >> 1;
4063
4064
glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas_fb);
4065
glViewport(0, 0, shadow_atlas_size, shadow_atlas_size);
4066
glActiveTexture(GL_TEXTURE0);
4067
scene_state.enable_gl_depth_draw(true);
4068
scene_state.set_gl_depth_func(GL_ALWAYS);
4069
scene_state.set_gl_cull_mode(RS::CULL_MODE_DISABLED);
4070
4071
// Loop through quadrants and copy shadows over.
4072
for (int quadrant = 0; quadrant < 4; quadrant++) {
4073
uint32_t subdivision = light_storage->shadow_atlas_get_quadrant_subdivision(p_shadow_atlas, quadrant);
4074
if (subdivision == 0) {
4075
continue;
4076
}
4077
4078
Rect2i atlas_rect;
4079
Rect2 atlas_uv_rect;
4080
4081
uint32_t shadow_size = (quadrant_size / subdivision);
4082
float size = float(shadow_size) / float(shadow_atlas_size);
4083
4084
uint32_t length = light_storage->shadow_atlas_get_quadrant_shadows_allocated(p_shadow_atlas, quadrant);
4085
for (uint32_t shadow_idx = 0; shadow_idx < length; shadow_idx++) {
4086
bool is_omni = light_storage->shadow_atlas_get_quadrant_shadow_is_omni(p_shadow_atlas, quadrant, shadow_idx);
4087
4088
// Calculate shadow's position in the debug atlas.
4089
atlas_rect.position.x = (quadrant & 1) * quadrant_size;
4090
atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
4091
4092
atlas_rect.position.x += (shadow_idx % subdivision) * shadow_size;
4093
atlas_rect.position.y += (shadow_idx / subdivision) * shadow_size;
4094
4095
atlas_uv_rect.position = Vector2(atlas_rect.position) / float(shadow_atlas_size);
4096
4097
atlas_uv_rect.size = Vector2(size, size);
4098
4099
GLuint shadow_tex = light_storage->shadow_atlas_get_quadrant_shadow_texture(p_shadow_atlas, quadrant, shadow_idx);
4100
// Copy from shadowmap to debug atlas.
4101
if (is_omni) {
4102
glBindTexture(GL_TEXTURE_CUBE_MAP, shadow_tex);
4103
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_MODE, GL_NONE);
4104
4105
copy_effects->copy_cube_to_rect(atlas_uv_rect);
4106
4107
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
4108
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_FUNC, GL_GREATER);
4109
} else {
4110
glBindTexture(GL_TEXTURE_2D, shadow_tex);
4111
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
4112
4113
copy_effects->copy_to_rect(atlas_uv_rect);
4114
4115
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
4116
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_GREATER);
4117
}
4118
}
4119
}
4120
4121
// Set back to FBO
4122
glBindFramebuffer(GL_FRAMEBUFFER, p_fbo);
4123
Size2i size = p_render_buffers->get_internal_size();
4124
glViewport(0, 0, size.width, size.height);
4125
glBindTexture(GL_TEXTURE_2D, shadow_atlas_texture);
4126
4127
copy_effects->copy_to_rect(Rect2(Vector2(), Vector2(0.5, 0.5)));
4128
glBindTexture(GL_TEXTURE_2D, 0);
4129
glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo);
4130
}
4131
}
4132
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) {
4133
if (light_storage->directional_shadow_get_texture() != 0) {
4134
GLuint shadow_atlas_texture = light_storage->directional_shadow_get_texture();
4135
glActiveTexture(GL_TEXTURE0);
4136
glBindTexture(GL_TEXTURE_2D, shadow_atlas_texture);
4137
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
4138
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_R, GL_RED);
4139
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_G, GL_RED);
4140
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_B, GL_RED);
4141
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_A, GL_ONE);
4142
4143
scene_state.enable_gl_depth_test(false);
4144
scene_state.enable_gl_depth_draw(false);
4145
4146
copy_effects->copy_to_rect(Rect2(Vector2(), Vector2(0.5, 0.5)));
4147
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_R, GL_RED);
4148
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_G, GL_GREEN);
4149
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_B, GL_BLUE);
4150
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_A, GL_ALPHA);
4151
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
4152
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_GREATER);
4153
glBindTexture(GL_TEXTURE_2D, 0);
4154
}
4155
}
4156
}
4157
4158
void RasterizerSceneGLES3::gi_set_use_half_resolution(bool p_enable) {
4159
}
4160
4161
void RasterizerSceneGLES3::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_curve) {
4162
}
4163
4164
bool RasterizerSceneGLES3::screen_space_roughness_limiter_is_active() const {
4165
return false;
4166
}
4167
4168
void RasterizerSceneGLES3::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) {
4169
}
4170
4171
void RasterizerSceneGLES3::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) {
4172
}
4173
4174
TypedArray<Image> RasterizerSceneGLES3::bake_render_uv2(RID p_base, const TypedArray<RID> &p_material_overrides, const Size2i &p_image_size) {
4175
GLES3::Config *config = GLES3::Config::get_singleton();
4176
ERR_FAIL_COND_V_MSG(p_image_size.width <= 0, TypedArray<Image>(), "Image width must be greater than 0.");
4177
ERR_FAIL_COND_V_MSG(p_image_size.height <= 0, TypedArray<Image>(), "Image height must be greater than 0.");
4178
4179
GLuint albedo_alpha_tex = 0;
4180
GLuint normal_tex = 0;
4181
GLuint orm_tex = 0;
4182
GLuint emission_tex = 0;
4183
GLuint depth_tex = 0;
4184
glGenTextures(1, &albedo_alpha_tex);
4185
glGenTextures(1, &normal_tex);
4186
glGenTextures(1, &orm_tex);
4187
glGenTextures(1, &emission_tex);
4188
glGenTextures(1, &depth_tex);
4189
4190
glBindTexture(GL_TEXTURE_2D, albedo_alpha_tex);
4191
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, p_image_size.width, p_image_size.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
4192
GLES3::Utilities::get_singleton()->texture_allocated_data(albedo_alpha_tex, p_image_size.width * p_image_size.height * 4, "Lightmap albedo texture");
4193
4194
glBindTexture(GL_TEXTURE_2D, normal_tex);
4195
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, p_image_size.width, p_image_size.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
4196
GLES3::Utilities::get_singleton()->texture_allocated_data(normal_tex, p_image_size.width * p_image_size.height * 4, "Lightmap normal texture");
4197
4198
glBindTexture(GL_TEXTURE_2D, orm_tex);
4199
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, p_image_size.width, p_image_size.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
4200
GLES3::Utilities::get_singleton()->texture_allocated_data(orm_tex, p_image_size.width * p_image_size.height * 4, "Lightmap ORM texture");
4201
4202
// Consider rendering to RGBA8 encoded as RGBE, then manually convert to RGBAH on CPU.
4203
glBindTexture(GL_TEXTURE_2D, emission_tex);
4204
if (config->float_texture_supported) {
4205
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, p_image_size.width, p_image_size.height, 0, GL_RGBA, GL_FLOAT, nullptr);
4206
GLES3::Utilities::get_singleton()->texture_allocated_data(emission_tex, p_image_size.width * p_image_size.height * 16, "Lightmap emission texture");
4207
} else {
4208
// Fallback to RGBA8 on devices that don't support rendering to floating point textures. This will look bad, but we have no choice.
4209
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, p_image_size.width, p_image_size.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
4210
GLES3::Utilities::get_singleton()->texture_allocated_data(emission_tex, p_image_size.width * p_image_size.height * 4, "Lightmap emission texture");
4211
}
4212
4213
glBindTexture(GL_TEXTURE_2D, depth_tex);
4214
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, p_image_size.width, p_image_size.height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr);
4215
GLES3::Utilities::get_singleton()->texture_allocated_data(depth_tex, p_image_size.width * p_image_size.height * 3, "Lightmap depth texture");
4216
4217
GLuint fbo = 0;
4218
glGenFramebuffers(1, &fbo);
4219
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
4220
4221
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, albedo_alpha_tex, 0);
4222
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, GL_TEXTURE_2D, normal_tex, 0);
4223
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT2, GL_TEXTURE_2D, orm_tex, 0);
4224
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT3, GL_TEXTURE_2D, emission_tex, 0);
4225
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth_tex, 0);
4226
4227
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
4228
if (status != GL_FRAMEBUFFER_COMPLETE) {
4229
glDeleteFramebuffers(1, &fbo);
4230
GLES3::Utilities::get_singleton()->texture_free_data(albedo_alpha_tex);
4231
GLES3::Utilities::get_singleton()->texture_free_data(normal_tex);
4232
GLES3::Utilities::get_singleton()->texture_free_data(orm_tex);
4233
GLES3::Utilities::get_singleton()->texture_free_data(emission_tex);
4234
GLES3::Utilities::get_singleton()->texture_free_data(depth_tex);
4235
4236
WARN_PRINT("Could not create render target, status: " + GLES3::TextureStorage::get_singleton()->get_framebuffer_error(status));
4237
return TypedArray<Image>();
4238
}
4239
4240
RenderGeometryInstance *gi_inst = geometry_instance_create(p_base);
4241
ERR_FAIL_NULL_V(gi_inst, TypedArray<Image>());
4242
4243
uint32_t sc = RSG::mesh_storage->mesh_get_surface_count(p_base);
4244
Vector<RID> materials;
4245
materials.resize(sc);
4246
4247
for (uint32_t i = 0; i < sc; i++) {
4248
if (i < (uint32_t)p_material_overrides.size()) {
4249
materials.write[i] = p_material_overrides[i];
4250
}
4251
}
4252
4253
gi_inst->set_surface_materials(materials);
4254
4255
if (cull_argument.size() == 0) {
4256
cull_argument.push_back(nullptr);
4257
}
4258
cull_argument[0] = gi_inst;
4259
_render_uv2(cull_argument, fbo, Rect2i(0, 0, p_image_size.width, p_image_size.height));
4260
4261
geometry_instance_free(gi_inst);
4262
4263
TypedArray<Image> ret;
4264
4265
// Create a dummy texture so we can use texture_2d_get.
4266
RID tex_rid = GLES3::TextureStorage::get_singleton()->texture_allocate();
4267
GLES3::Texture texture;
4268
texture.width = p_image_size.width;
4269
texture.height = p_image_size.height;
4270
texture.alloc_width = p_image_size.width;
4271
texture.alloc_height = p_image_size.height;
4272
texture.format = Image::FORMAT_RGBA8;
4273
texture.real_format = Image::FORMAT_RGBA8;
4274
texture.gl_format_cache = GL_RGBA;
4275
texture.gl_type_cache = GL_UNSIGNED_BYTE;
4276
texture.type = GLES3::Texture::TYPE_2D;
4277
texture.target = GL_TEXTURE_2D;
4278
texture.active = true;
4279
texture.is_render_target = true; // Enable this so the texture isn't cached in the editor.
4280
4281
GLES3::TextureStorage::get_singleton()->texture_2d_initialize_from_texture(tex_rid, texture);
4282
GLES3::Texture *tex = GLES3::TextureStorage::get_singleton()->get_texture(tex_rid);
4283
4284
{
4285
tex->tex_id = albedo_alpha_tex;
4286
Ref<Image> img = GLES3::TextureStorage::get_singleton()->texture_2d_get(tex_rid);
4287
GLES3::Utilities::get_singleton()->texture_free_data(albedo_alpha_tex);
4288
ret.push_back(img);
4289
}
4290
4291
{
4292
tex->tex_id = normal_tex;
4293
Ref<Image> img = GLES3::TextureStorage::get_singleton()->texture_2d_get(tex_rid);
4294
GLES3::Utilities::get_singleton()->texture_free_data(normal_tex);
4295
ret.push_back(img);
4296
}
4297
4298
{
4299
tex->tex_id = orm_tex;
4300
Ref<Image> img = GLES3::TextureStorage::get_singleton()->texture_2d_get(tex_rid);
4301
GLES3::Utilities::get_singleton()->texture_free_data(orm_tex);
4302
ret.push_back(img);
4303
}
4304
4305
{
4306
tex->tex_id = emission_tex;
4307
if (config->float_texture_supported) {
4308
tex->format = Image::FORMAT_RGBAH;
4309
tex->real_format = Image::FORMAT_RGBAH;
4310
tex->gl_type_cache = GL_HALF_FLOAT;
4311
}
4312
Ref<Image> img = GLES3::TextureStorage::get_singleton()->texture_2d_get(tex_rid);
4313
GLES3::Utilities::get_singleton()->texture_free_data(emission_tex);
4314
ret.push_back(img);
4315
}
4316
4317
tex->is_render_target = false;
4318
tex->tex_id = 0;
4319
GLES3::TextureStorage::get_singleton()->texture_free(tex_rid);
4320
4321
GLES3::Utilities::get_singleton()->texture_free_data(depth_tex);
4322
glDeleteFramebuffers(1, &fbo);
4323
return ret;
4324
}
4325
4326
bool RasterizerSceneGLES3::free(RID p_rid) {
4327
if (is_environment(p_rid)) {
4328
environment_free(p_rid);
4329
} else if (sky_owner.owns(p_rid)) {
4330
Sky *sky = sky_owner.get_or_null(p_rid);
4331
ERR_FAIL_NULL_V(sky, false);
4332
_free_sky_data(sky);
4333
sky_owner.free(p_rid);
4334
} else if (GLES3::LightStorage::get_singleton()->owns_light_instance(p_rid)) {
4335
GLES3::LightStorage::get_singleton()->light_instance_free(p_rid);
4336
} else if (RSG::camera_attributes->owns_camera_attributes(p_rid)) {
4337
//not much to delete, just free it
4338
RSG::camera_attributes->camera_attributes_free(p_rid);
4339
} else if (is_compositor(p_rid)) {
4340
compositor_free(p_rid);
4341
} else if (is_compositor_effect(p_rid)) {
4342
compositor_effect_free(p_rid);
4343
} else {
4344
return false;
4345
}
4346
return true;
4347
}
4348
4349
void RasterizerSceneGLES3::update() {
4350
_update_dirty_skys();
4351
}
4352
4353
void RasterizerSceneGLES3::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) {
4354
}
4355
4356
void RasterizerSceneGLES3::decals_set_filter(RS::DecalFilter p_filter) {
4357
}
4358
4359
void RasterizerSceneGLES3::light_projectors_set_filter(RS::LightProjectorFilter p_filter) {
4360
}
4361
4362
void RasterizerSceneGLES3::lightmaps_set_bicubic_filter(bool p_enable) {
4363
lightmap_bicubic_upscale = p_enable;
4364
}
4365
4366
void RasterizerSceneGLES3::material_set_use_debanding(bool p_enable) {
4367
// Material debanding not yet implemented.
4368
}
4369
4370
RasterizerSceneGLES3::RasterizerSceneGLES3() {
4371
singleton = this;
4372
4373
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
4374
GLES3::Config *config = GLES3::Config::get_singleton();
4375
4376
cull_argument.set_page_pool(&cull_argument_pool);
4377
4378
// Quality settings.
4379
use_physical_light_units = GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units");
4380
4381
positional_soft_shadow_filter_set_quality((RS::ShadowQuality)(int)GLOBAL_GET("rendering/lights_and_shadows/positional_shadow/soft_shadow_filter_quality"));
4382
directional_soft_shadow_filter_set_quality((RS::ShadowQuality)(int)GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/soft_shadow_filter_quality"));
4383
lightmaps_set_bicubic_filter(GLOBAL_GET("rendering/lightmapping/lightmap_gi/use_bicubic_filter"));
4384
4385
{
4386
// Setup Lights
4387
4388
config->max_renderable_lights = MIN(config->max_renderable_lights, config->max_uniform_buffer_size / (int)sizeof(RasterizerSceneGLES3::LightData));
4389
config->max_lights_per_object = MIN(config->max_lights_per_object, config->max_renderable_lights);
4390
4391
uint32_t light_buffer_size = config->max_renderable_lights * sizeof(LightData);
4392
scene_state.omni_lights = memnew_arr(LightData, config->max_renderable_lights);
4393
scene_state.omni_light_sort = memnew_arr(InstanceSort<GLES3::LightInstance>, config->max_renderable_lights);
4394
glGenBuffers(1, &scene_state.omni_light_buffer);
4395
glBindBuffer(GL_UNIFORM_BUFFER, scene_state.omni_light_buffer);
4396
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.omni_light_buffer, light_buffer_size, nullptr, GL_STREAM_DRAW, "OmniLight UBO");
4397
4398
scene_state.spot_lights = memnew_arr(LightData, config->max_renderable_lights);
4399
scene_state.spot_light_sort = memnew_arr(InstanceSort<GLES3::LightInstance>, config->max_renderable_lights);
4400
glGenBuffers(1, &scene_state.spot_light_buffer);
4401
glBindBuffer(GL_UNIFORM_BUFFER, scene_state.spot_light_buffer);
4402
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.spot_light_buffer, light_buffer_size, nullptr, GL_STREAM_DRAW, "SpotLight UBO");
4403
4404
uint32_t directional_light_buffer_size = MAX_DIRECTIONAL_LIGHTS * sizeof(DirectionalLightData);
4405
scene_state.directional_lights = memnew_arr(DirectionalLightData, MAX_DIRECTIONAL_LIGHTS);
4406
glGenBuffers(1, &scene_state.directional_light_buffer);
4407
glBindBuffer(GL_UNIFORM_BUFFER, scene_state.directional_light_buffer);
4408
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.directional_light_buffer, directional_light_buffer_size, nullptr, GL_STREAM_DRAW, "DirectionalLight UBO");
4409
4410
uint32_t shadow_buffer_size = config->max_renderable_lights * sizeof(ShadowData) * 2;
4411
scene_state.positional_shadows = memnew_arr(ShadowData, config->max_renderable_lights * 2);
4412
glGenBuffers(1, &scene_state.positional_shadow_buffer);
4413
glBindBuffer(GL_UNIFORM_BUFFER, scene_state.positional_shadow_buffer);
4414
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.positional_shadow_buffer, shadow_buffer_size, nullptr, GL_STREAM_DRAW, "Positional Shadow UBO");
4415
4416
uint32_t directional_shadow_buffer_size = MAX_DIRECTIONAL_LIGHTS * sizeof(DirectionalShadowData);
4417
scene_state.directional_shadows = memnew_arr(DirectionalShadowData, MAX_DIRECTIONAL_LIGHTS);
4418
glGenBuffers(1, &scene_state.directional_shadow_buffer);
4419
glBindBuffer(GL_UNIFORM_BUFFER, scene_state.directional_shadow_buffer);
4420
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.directional_shadow_buffer, directional_shadow_buffer_size, nullptr, GL_STREAM_DRAW, "Directional Shadow UBO");
4421
4422
glBindBuffer(GL_UNIFORM_BUFFER, 0);
4423
}
4424
4425
{
4426
sky_globals.max_directional_lights = 4;
4427
uint32_t directional_light_buffer_size = sky_globals.max_directional_lights * sizeof(DirectionalLightData);
4428
sky_globals.directional_lights = memnew_arr(DirectionalLightData, sky_globals.max_directional_lights);
4429
sky_globals.last_frame_directional_lights = memnew_arr(DirectionalLightData, sky_globals.max_directional_lights);
4430
sky_globals.last_frame_directional_light_count = sky_globals.max_directional_lights + 1;
4431
glGenBuffers(1, &sky_globals.directional_light_buffer);
4432
glBindBuffer(GL_UNIFORM_BUFFER, sky_globals.directional_light_buffer);
4433
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, sky_globals.directional_light_buffer, directional_light_buffer_size, nullptr, GL_STREAM_DRAW, "Sky DirectionalLight UBO");
4434
4435
glBindBuffer(GL_UNIFORM_BUFFER, 0);
4436
}
4437
4438
{
4439
String global_defines;
4440
global_defines += "#define MAX_GLOBAL_SHADER_UNIFORMS 256\n"; // TODO: this is arbitrary for now
4441
global_defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(config->max_renderable_lights) + "\n";
4442
global_defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(MAX_DIRECTIONAL_LIGHTS) + "\n";
4443
global_defines += "\n#define MAX_FORWARD_LIGHTS " + itos(config->max_lights_per_object) + "u\n";
4444
global_defines += "\n#define MAX_ROUGHNESS_LOD " + itos(sky_globals.roughness_layers - 1) + ".0\n";
4445
if (config->force_vertex_shading) {
4446
global_defines += "\n#define USE_VERTEX_LIGHTING\n";
4447
}
4448
if (!config->specular_occlusion) {
4449
global_defines += "\n#define SPECULAR_OCCLUSION_DISABLED\n";
4450
}
4451
material_storage->shaders.scene_shader.initialize(global_defines);
4452
scene_globals.shader_default_version = material_storage->shaders.scene_shader.version_create();
4453
material_storage->shaders.scene_shader.version_bind_shader(scene_globals.shader_default_version, SceneShaderGLES3::MODE_COLOR);
4454
}
4455
4456
{
4457
//default material and shader
4458
scene_globals.default_shader = material_storage->shader_allocate();
4459
material_storage->shader_initialize(scene_globals.default_shader);
4460
material_storage->shader_set_code(scene_globals.default_shader, R"(
4461
// Default 3D material shader (Compatibility).
4462
4463
shader_type spatial;
4464
4465
void vertex() {
4466
ROUGHNESS = 0.8;
4467
}
4468
4469
void fragment() {
4470
ALBEDO = vec3(0.6);
4471
ROUGHNESS = 0.8;
4472
METALLIC = 0.2;
4473
}
4474
)");
4475
scene_globals.default_material = material_storage->material_allocate();
4476
material_storage->material_initialize(scene_globals.default_material);
4477
material_storage->material_set_shader(scene_globals.default_material, scene_globals.default_shader);
4478
default_material_data_ptr = static_cast<GLES3::SceneMaterialData *>(GLES3::MaterialStorage::get_singleton()->material_get_data(scene_globals.default_material, RS::SHADER_SPATIAL));
4479
}
4480
4481
{
4482
// Overdraw material and shader.
4483
scene_globals.overdraw_shader = material_storage->shader_allocate();
4484
material_storage->shader_initialize(scene_globals.overdraw_shader);
4485
material_storage->shader_set_code(scene_globals.overdraw_shader, R"(
4486
// 3D editor Overdraw debug draw mode shader (Compatibility).
4487
4488
shader_type spatial;
4489
4490
render_mode blend_add, unshaded, fog_disabled;
4491
4492
void fragment() {
4493
ALBEDO = vec3(0.4, 0.8, 0.8);
4494
ALPHA = 0.2;
4495
}
4496
)");
4497
scene_globals.overdraw_material = material_storage->material_allocate();
4498
material_storage->material_initialize(scene_globals.overdraw_material);
4499
material_storage->material_set_shader(scene_globals.overdraw_material, scene_globals.overdraw_shader);
4500
overdraw_material_data_ptr = static_cast<GLES3::SceneMaterialData *>(GLES3::MaterialStorage::get_singleton()->material_get_data(scene_globals.overdraw_material, RS::SHADER_SPATIAL));
4501
}
4502
4503
{
4504
// Initialize Sky stuff
4505
sky_globals.roughness_layers = GLOBAL_GET("rendering/reflections/sky_reflections/roughness_layers");
4506
4507
String global_defines;
4508
global_defines += "#define MAX_GLOBAL_SHADER_UNIFORMS 256\n"; // TODO: this is arbitrary for now
4509
global_defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_globals.max_directional_lights) + "\n";
4510
material_storage->shaders.sky_shader.initialize(global_defines);
4511
sky_globals.shader_default_version = material_storage->shaders.sky_shader.version_create();
4512
}
4513
4514
{
4515
sky_globals.default_shader = material_storage->shader_allocate();
4516
4517
material_storage->shader_initialize(sky_globals.default_shader);
4518
4519
material_storage->shader_set_code(sky_globals.default_shader, R"(
4520
// Default sky shader.
4521
4522
shader_type sky;
4523
4524
void sky() {
4525
COLOR = vec3(0.0);
4526
}
4527
)");
4528
sky_globals.default_material = material_storage->material_allocate();
4529
material_storage->material_initialize(sky_globals.default_material);
4530
4531
material_storage->material_set_shader(sky_globals.default_material, sky_globals.default_shader);
4532
}
4533
{
4534
sky_globals.fog_shader = material_storage->shader_allocate();
4535
material_storage->shader_initialize(sky_globals.fog_shader);
4536
4537
material_storage->shader_set_code(sky_globals.fog_shader, R"(
4538
// Default clear color sky shader.
4539
4540
shader_type sky;
4541
4542
uniform vec4 clear_color;
4543
4544
void sky() {
4545
COLOR = clear_color.rgb;
4546
}
4547
)");
4548
sky_globals.fog_material = material_storage->material_allocate();
4549
material_storage->material_initialize(sky_globals.fog_material);
4550
4551
material_storage->material_set_shader(sky_globals.fog_material, sky_globals.fog_shader);
4552
}
4553
4554
{
4555
glGenVertexArrays(1, &sky_globals.screen_triangle_array);
4556
glBindVertexArray(sky_globals.screen_triangle_array);
4557
glGenBuffers(1, &sky_globals.screen_triangle);
4558
glBindBuffer(GL_ARRAY_BUFFER, sky_globals.screen_triangle);
4559
4560
const float qv[6] = {
4561
-1.0f,
4562
-1.0f,
4563
3.0f,
4564
-1.0f,
4565
-1.0f,
4566
3.0f,
4567
};
4568
4569
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, sky_globals.screen_triangle, sizeof(float) * 6, qv, GL_STATIC_DRAW, "Screen triangle vertex buffer");
4570
4571
glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 2, nullptr);
4572
glEnableVertexAttribArray(RS::ARRAY_VERTEX);
4573
glBindVertexArray(0);
4574
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
4575
}
4576
4577
#ifdef GL_API_ENABLED
4578
if (RasterizerGLES3::is_gles_over_gl()) {
4579
glEnable(_EXT_TEXTURE_CUBE_MAP_SEAMLESS);
4580
}
4581
#endif // GL_API_ENABLED
4582
4583
// MultiMesh may read from color when color is disabled, so make sure that the color defaults to white instead of black;
4584
glVertexAttrib4f(RS::ARRAY_COLOR, 1.0, 1.0, 1.0, 1.0);
4585
}
4586
4587
RasterizerSceneGLES3::~RasterizerSceneGLES3() {
4588
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.directional_light_buffer);
4589
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.omni_light_buffer);
4590
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.spot_light_buffer);
4591
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.positional_shadow_buffer);
4592
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.directional_shadow_buffer);
4593
memdelete_arr(scene_state.directional_lights);
4594
memdelete_arr(scene_state.omni_lights);
4595
memdelete_arr(scene_state.spot_lights);
4596
memdelete_arr(scene_state.omni_light_sort);
4597
memdelete_arr(scene_state.spot_light_sort);
4598
memdelete_arr(scene_state.positional_shadows);
4599
memdelete_arr(scene_state.directional_shadows);
4600
4601
// Scene Shader
4602
GLES3::MaterialStorage::get_singleton()->shaders.scene_shader.version_free(scene_globals.shader_default_version);
4603
RSG::material_storage->material_free(scene_globals.default_material);
4604
RSG::material_storage->shader_free(scene_globals.default_shader);
4605
4606
// Overdraw Shader
4607
RSG::material_storage->material_free(scene_globals.overdraw_material);
4608
RSG::material_storage->shader_free(scene_globals.overdraw_shader);
4609
4610
// Sky Shader
4611
GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_free(sky_globals.shader_default_version);
4612
RSG::material_storage->material_free(sky_globals.default_material);
4613
RSG::material_storage->shader_free(sky_globals.default_shader);
4614
RSG::material_storage->material_free(sky_globals.fog_material);
4615
RSG::material_storage->shader_free(sky_globals.fog_shader);
4616
GLES3::Utilities::get_singleton()->buffer_free_data(sky_globals.screen_triangle);
4617
glDeleteVertexArrays(1, &sky_globals.screen_triangle_array);
4618
GLES3::Utilities::get_singleton()->buffer_free_data(sky_globals.directional_light_buffer);
4619
memdelete_arr(sky_globals.directional_lights);
4620
memdelete_arr(sky_globals.last_frame_directional_lights);
4621
4622
// UBOs
4623
if (scene_state.ubo_buffer != 0) {
4624
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.ubo_buffer);
4625
}
4626
4627
if (scene_state.prev_ubo_buffer != 0) {
4628
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.prev_ubo_buffer);
4629
}
4630
4631
if (scene_state.multiview_buffer != 0) {
4632
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.multiview_buffer);
4633
}
4634
4635
if (scene_state.prev_multiview_buffer != 0) {
4636
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.prev_multiview_buffer);
4637
}
4638
4639
if (scene_state.tonemap_buffer != 0) {
4640
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.tonemap_buffer);
4641
}
4642
4643
singleton = nullptr;
4644
}
4645
4646
#endif // GLES3_ENABLED
4647
4648