Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/drivers/gles3/storage/mesh_storage.cpp
10000 views
1
/**************************************************************************/
2
/* mesh_storage.cpp */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#ifdef GLES3_ENABLED
32
33
#include "mesh_storage.h"
34
#include "config.h"
35
#include "texture_storage.h"
36
#include "utilities.h"
37
38
using namespace GLES3;
39
40
MeshStorage *MeshStorage::singleton = nullptr;
41
42
MeshStorage *MeshStorage::get_singleton() {
43
return singleton;
44
}
45
46
MeshStorage::MeshStorage() {
47
singleton = this;
48
49
{
50
skeleton_shader.shader.initialize();
51
skeleton_shader.shader_version = skeleton_shader.shader.version_create();
52
}
53
}
54
55
MeshStorage::~MeshStorage() {
56
singleton = nullptr;
57
skeleton_shader.shader.version_free(skeleton_shader.shader_version);
58
}
59
60
/* MESH API */
61
62
RID MeshStorage::mesh_allocate() {
63
return mesh_owner.allocate_rid();
64
}
65
66
void MeshStorage::mesh_initialize(RID p_rid) {
67
mesh_owner.initialize_rid(p_rid, Mesh());
68
}
69
70
void MeshStorage::mesh_free(RID p_rid) {
71
mesh_clear(p_rid);
72
mesh_set_shadow_mesh(p_rid, RID());
73
Mesh *mesh = mesh_owner.get_or_null(p_rid);
74
ERR_FAIL_NULL(mesh);
75
76
mesh->dependency.deleted_notify(p_rid);
77
if (mesh->instances.size()) {
78
ERR_PRINT("deleting mesh with active instances");
79
}
80
if (mesh->shadow_owners.size()) {
81
for (Mesh *E : mesh->shadow_owners) {
82
Mesh *shadow_owner = E;
83
shadow_owner->shadow_mesh = RID();
84
shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
85
}
86
}
87
mesh_owner.free(p_rid);
88
}
89
90
void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
91
ERR_FAIL_COND(p_blend_shape_count < 0);
92
93
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
94
ERR_FAIL_NULL(mesh);
95
96
ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
97
mesh->blend_shape_count = p_blend_shape_count;
98
}
99
100
bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
101
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
102
ERR_FAIL_NULL_V(mesh, false);
103
104
return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
105
}
106
107
void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
108
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
109
ERR_FAIL_NULL(mesh);
110
111
ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
112
113
#ifdef DEBUG_ENABLED
114
//do a validation, to catch errors first
115
{
116
uint32_t stride = 0;
117
uint32_t attrib_stride = 0;
118
uint32_t skin_stride = 0;
119
120
for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
121
if ((p_surface.format & (1ULL << i))) {
122
switch (i) {
123
case RS::ARRAY_VERTEX: {
124
if ((p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) || (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
125
stride += sizeof(float) * 2;
126
} else {
127
stride += sizeof(float) * 3;
128
}
129
} break;
130
case RS::ARRAY_NORMAL: {
131
stride += sizeof(uint16_t) * 2;
132
133
} break;
134
case RS::ARRAY_TANGENT: {
135
if (!(p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
136
stride += sizeof(uint16_t) * 2;
137
}
138
} break;
139
case RS::ARRAY_COLOR: {
140
attrib_stride += sizeof(uint32_t);
141
} break;
142
case RS::ARRAY_TEX_UV: {
143
if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
144
attrib_stride += sizeof(uint16_t) * 2;
145
} else {
146
attrib_stride += sizeof(float) * 2;
147
}
148
} break;
149
case RS::ARRAY_TEX_UV2: {
150
if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
151
attrib_stride += sizeof(uint16_t) * 2;
152
} else {
153
attrib_stride += sizeof(float) * 2;
154
}
155
} break;
156
case RS::ARRAY_CUSTOM0:
157
case RS::ARRAY_CUSTOM1:
158
case RS::ARRAY_CUSTOM2:
159
case RS::ARRAY_CUSTOM3: {
160
int idx = i - RS::ARRAY_CUSTOM0;
161
uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
162
uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
163
uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
164
attrib_stride += fmtsize[fmt];
165
166
} break;
167
case RS::ARRAY_WEIGHTS:
168
case RS::ARRAY_BONES: {
169
//uses a separate array
170
bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
171
skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
172
} break;
173
}
174
}
175
}
176
177
int expected_size = stride * p_surface.vertex_count;
178
ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
179
180
int bs_expected_size = expected_size * mesh->blend_shape_count;
181
182
ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
183
184
int expected_attrib_size = attrib_stride * p_surface.vertex_count;
185
ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
186
187
if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
188
expected_size = skin_stride * p_surface.vertex_count;
189
ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
190
}
191
}
192
193
#endif
194
195
uint64_t surface_version = p_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
196
RS::SurfaceData new_surface = p_surface;
197
#ifdef DISABLE_DEPRECATED
198
199
ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION, "Surface version provided (" + itos(int(surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT)) + ") does not match current version (" + itos(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) + ")");
200
201
#else
202
203
if (surface_version != uint64_t(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION)) {
204
RS::get_singleton()->fix_surface_compatibility(new_surface);
205
surface_version = new_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
206
ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION,
207
vformat("Surface version provided (%d) does not match current version (%d).",
208
(surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK,
209
(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK));
210
}
211
#endif
212
213
Mesh::Surface *s = memnew(Mesh::Surface);
214
215
s->format = new_surface.format;
216
s->primitive = new_surface.primitive;
217
218
if (new_surface.vertex_data.size()) {
219
glGenBuffers(1, &s->vertex_buffer);
220
glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer);
221
// If we have an uncompressed surface that contains normals, but not tangents, we need to differentiate the array
222
// from a compressed array in the shader. To do so, we allow the normal to read 4 components out of the buffer
223
// But only give it 2 components per normal. So essentially, each vertex reads the next normal in normal.zw.
224
// This allows us to avoid adding a shader permutation, and avoid passing dummy tangents. Since the stride is kept small
225
// this should still be a net win for bandwidth.
226
// If we do this, then the last normal will read past the end of the array. So we need to pad the array with dummy data.
227
if (!(new_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (new_surface.format & RS::ARRAY_FORMAT_NORMAL) && !(new_surface.format & RS::ARRAY_FORMAT_TANGENT)) {
228
// Unfortunately, we need to copy the buffer, which is fine as doing a resize triggers a CoW anyway.
229
Vector<uint8_t> new_vertex_data;
230
new_vertex_data.resize_initialized(new_surface.vertex_data.size() + sizeof(uint16_t) * 2);
231
memcpy(new_vertex_data.ptrw(), new_surface.vertex_data.ptr(), new_surface.vertex_data.size());
232
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->vertex_buffer, new_vertex_data.size(), new_vertex_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh vertex buffer");
233
s->vertex_buffer_size = new_vertex_data.size();
234
} else {
235
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->vertex_buffer, new_surface.vertex_data.size(), new_surface.vertex_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh vertex buffer");
236
s->vertex_buffer_size = new_surface.vertex_data.size();
237
}
238
}
239
240
if (new_surface.attribute_data.size()) {
241
glGenBuffers(1, &s->attribute_buffer);
242
glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer);
243
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->attribute_buffer, new_surface.attribute_data.size(), new_surface.attribute_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh attribute buffer");
244
s->attribute_buffer_size = new_surface.attribute_data.size();
245
}
246
247
if (new_surface.skin_data.size()) {
248
glGenBuffers(1, &s->skin_buffer);
249
glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer);
250
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->skin_buffer, new_surface.skin_data.size(), new_surface.skin_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh skin buffer");
251
s->skin_buffer_size = new_surface.skin_data.size();
252
}
253
254
glBindBuffer(GL_ARRAY_BUFFER, 0);
255
256
s->vertex_count = new_surface.vertex_count;
257
258
if (new_surface.format & RS::ARRAY_FORMAT_BONES) {
259
mesh->has_bone_weights = true;
260
}
261
262
if (new_surface.index_count) {
263
bool is_index_16 = new_surface.vertex_count <= 65536 && new_surface.vertex_count > 0;
264
glGenBuffers(1, &s->index_buffer);
265
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_buffer);
266
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, s->index_buffer, new_surface.index_data.size(), new_surface.index_data.ptr(), GL_STATIC_DRAW, "Mesh index buffer");
267
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
268
s->index_count = new_surface.index_count;
269
s->index_buffer_size = new_surface.index_data.size();
270
271
if (new_surface.lods.size()) {
272
s->lods = memnew_arr(Mesh::Surface::LOD, new_surface.lods.size());
273
s->lod_count = new_surface.lods.size();
274
275
for (int i = 0; i < new_surface.lods.size(); i++) {
276
glGenBuffers(1, &s->lods[i].index_buffer);
277
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->lods[i].index_buffer);
278
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, s->lods[i].index_buffer, new_surface.lods[i].index_data.size(), new_surface.lods[i].index_data.ptr(), GL_STATIC_DRAW, "Mesh index buffer LOD[" + itos(i) + "]");
279
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
280
s->lods[i].edge_length = new_surface.lods[i].edge_length;
281
s->lods[i].index_count = new_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
282
s->lods[i].index_buffer_size = new_surface.lods[i].index_data.size();
283
}
284
}
285
}
286
287
ERR_FAIL_COND_MSG(!new_surface.index_count && !new_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
288
289
if (GLES3::Config::get_singleton()->generate_wireframes && s->primitive == RS::PRIMITIVE_TRIANGLES) {
290
// Generate wireframes. This is mostly used by the editor.
291
s->wireframe = memnew(Mesh::Surface::Wireframe);
292
Vector<uint32_t> wf_indices;
293
uint32_t &wf_index_count = s->wireframe->index_count;
294
uint32_t *wr = nullptr;
295
296
if (new_surface.format & RS::ARRAY_FORMAT_INDEX) {
297
wf_index_count = s->index_count * 2;
298
wf_indices.resize(wf_index_count);
299
300
Vector<uint8_t> ir = new_surface.index_data;
301
wr = wf_indices.ptrw();
302
303
if (new_surface.vertex_count <= 65536) {
304
// Read 16 bit indices.
305
const uint16_t *src_idx = (const uint16_t *)ir.ptr();
306
for (uint32_t i = 0; i + 5 < wf_index_count; i += 6) {
307
// We use GL_LINES instead of GL_TRIANGLES for drawing these primitives later,
308
// so we need double the indices for each triangle.
309
wr[i + 0] = src_idx[i / 2];
310
wr[i + 1] = src_idx[i / 2 + 1];
311
wr[i + 2] = src_idx[i / 2 + 1];
312
wr[i + 3] = src_idx[i / 2 + 2];
313
wr[i + 4] = src_idx[i / 2 + 2];
314
wr[i + 5] = src_idx[i / 2];
315
}
316
317
} else {
318
// Read 32 bit indices.
319
const uint32_t *src_idx = (const uint32_t *)ir.ptr();
320
for (uint32_t i = 0; i + 5 < wf_index_count; i += 6) {
321
wr[i + 0] = src_idx[i / 2];
322
wr[i + 1] = src_idx[i / 2 + 1];
323
wr[i + 2] = src_idx[i / 2 + 1];
324
wr[i + 3] = src_idx[i / 2 + 2];
325
wr[i + 4] = src_idx[i / 2 + 2];
326
wr[i + 5] = src_idx[i / 2];
327
}
328
}
329
} else {
330
// Not using indices.
331
wf_index_count = s->vertex_count * 2;
332
wf_indices.resize(wf_index_count);
333
wr = wf_indices.ptrw();
334
335
for (uint32_t i = 0; i + 5 < wf_index_count; i += 6) {
336
wr[i + 0] = i / 2;
337
wr[i + 1] = i / 2 + 1;
338
wr[i + 2] = i / 2 + 1;
339
wr[i + 3] = i / 2 + 2;
340
wr[i + 4] = i / 2 + 2;
341
wr[i + 5] = i / 2;
342
}
343
}
344
345
s->wireframe->index_buffer_size = wf_index_count * sizeof(uint32_t);
346
glGenBuffers(1, &s->wireframe->index_buffer);
347
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->wireframe->index_buffer);
348
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, s->wireframe->index_buffer, s->wireframe->index_buffer_size, wr, GL_STATIC_DRAW, "Mesh wireframe index buffer");
349
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); // unbind
350
}
351
352
s->aabb = new_surface.aabb;
353
s->bone_aabbs = new_surface.bone_aabbs; //only really useful for returning them.
354
s->mesh_to_skeleton_xform = p_surface.mesh_to_skeleton_xform;
355
356
s->uv_scale = new_surface.uv_scale;
357
358
if (new_surface.skin_data.size() || mesh->blend_shape_count > 0) {
359
// Size must match the size of the vertex array.
360
int size = new_surface.vertex_data.size();
361
int vertex_size = 0;
362
int position_stride = 0;
363
int normal_tangent_stride = 0;
364
int normal_offset = 0;
365
int tangent_offset = 0;
366
if ((new_surface.format & (1ULL << RS::ARRAY_VERTEX))) {
367
if (new_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
368
vertex_size = 2;
369
position_stride = sizeof(float) * vertex_size;
370
} else {
371
if (new_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
372
vertex_size = 4;
373
position_stride = sizeof(uint16_t) * vertex_size;
374
} else {
375
vertex_size = 3;
376
position_stride = sizeof(float) * vertex_size;
377
}
378
}
379
}
380
if ((new_surface.format & (1ULL << RS::ARRAY_NORMAL))) {
381
normal_offset = position_stride * s->vertex_count;
382
normal_tangent_stride += sizeof(uint16_t) * 2;
383
}
384
if ((new_surface.format & (1ULL << RS::ARRAY_TANGENT))) {
385
tangent_offset = normal_offset + normal_tangent_stride;
386
normal_tangent_stride += sizeof(uint16_t) * 2;
387
}
388
389
if (mesh->blend_shape_count > 0) {
390
// Blend shapes are passed as one large array, for OpenGL, we need to split each of them into their own buffer
391
s->blend_shapes = memnew_arr(Mesh::Surface::BlendShape, mesh->blend_shape_count);
392
393
for (uint32_t i = 0; i < mesh->blend_shape_count; i++) {
394
glGenVertexArrays(1, &s->blend_shapes[i].vertex_array);
395
glBindVertexArray(s->blend_shapes[i].vertex_array);
396
glGenBuffers(1, &s->blend_shapes[i].vertex_buffer);
397
glBindBuffer(GL_ARRAY_BUFFER, s->blend_shapes[i].vertex_buffer);
398
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->blend_shapes[i].vertex_buffer, size, new_surface.blend_shape_data.ptr() + i * size, (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh blend shape buffer");
399
400
if ((new_surface.format & (1ULL << RS::ARRAY_VERTEX))) {
401
glEnableVertexAttribArray(RS::ARRAY_VERTEX + 3);
402
glVertexAttribPointer(RS::ARRAY_VERTEX + 3, vertex_size, GL_FLOAT, GL_FALSE, position_stride, CAST_INT_TO_UCHAR_PTR(0));
403
}
404
if ((new_surface.format & (1ULL << RS::ARRAY_NORMAL))) {
405
// Normal and tangent are packed into the same attribute.
406
glEnableVertexAttribArray(RS::ARRAY_NORMAL + 3);
407
glVertexAttribPointer(RS::ARRAY_NORMAL + 3, 2, GL_UNSIGNED_SHORT, GL_TRUE, normal_tangent_stride, CAST_INT_TO_UCHAR_PTR(normal_offset));
408
}
409
if ((p_surface.format & (1ULL << RS::ARRAY_TANGENT))) {
410
glEnableVertexAttribArray(RS::ARRAY_TANGENT + 3);
411
glVertexAttribPointer(RS::ARRAY_TANGENT + 3, 2, GL_UNSIGNED_SHORT, GL_TRUE, normal_tangent_stride, CAST_INT_TO_UCHAR_PTR(tangent_offset));
412
}
413
}
414
glBindVertexArray(0);
415
glBindBuffer(GL_ARRAY_BUFFER, 0);
416
}
417
418
glBindVertexArray(0);
419
glBindBuffer(GL_ARRAY_BUFFER, 0);
420
}
421
422
if (mesh->surface_count == 0) {
423
mesh->aabb = new_surface.aabb;
424
} else {
425
mesh->aabb.merge_with(new_surface.aabb);
426
}
427
mesh->skeleton_aabb_version = 0;
428
429
s->material = new_surface.material;
430
431
mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
432
mesh->surfaces[mesh->surface_count] = s;
433
mesh->surface_count++;
434
435
for (MeshInstance *mi : mesh->instances) {
436
_mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
437
}
438
439
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
440
441
for (Mesh *E : mesh->shadow_owners) {
442
Mesh *shadow_owner = E;
443
shadow_owner->shadow_mesh = RID();
444
shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
445
}
446
447
mesh->material_cache.clear();
448
}
449
450
void MeshStorage::_mesh_surface_clear(Mesh *mesh, int p_surface) {
451
Mesh::Surface &s = *mesh->surfaces[p_surface];
452
453
if (s.vertex_buffer != 0) {
454
GLES3::Utilities::get_singleton()->buffer_free_data(s.vertex_buffer);
455
s.vertex_buffer = 0;
456
}
457
458
if (s.version_count != 0) {
459
for (uint32_t j = 0; j < s.version_count; j++) {
460
glDeleteVertexArrays(1, &s.versions[j].vertex_array);
461
s.versions[j].vertex_array = 0;
462
}
463
}
464
465
if (s.attribute_buffer != 0) {
466
GLES3::Utilities::get_singleton()->buffer_free_data(s.attribute_buffer);
467
s.attribute_buffer = 0;
468
}
469
470
if (s.skin_buffer != 0) {
471
GLES3::Utilities::get_singleton()->buffer_free_data(s.skin_buffer);
472
s.skin_buffer = 0;
473
}
474
475
if (s.index_buffer != 0) {
476
GLES3::Utilities::get_singleton()->buffer_free_data(s.index_buffer);
477
s.index_buffer = 0;
478
}
479
480
if (s.versions) {
481
memfree(s.versions); // reallocs, so free with memfree.
482
}
483
484
if (s.wireframe) {
485
GLES3::Utilities::get_singleton()->buffer_free_data(s.wireframe->index_buffer);
486
memdelete(s.wireframe);
487
}
488
489
if (s.lod_count) {
490
for (uint32_t j = 0; j < s.lod_count; j++) {
491
if (s.lods[j].index_buffer != 0) {
492
GLES3::Utilities::get_singleton()->buffer_free_data(s.lods[j].index_buffer);
493
s.lods[j].index_buffer = 0;
494
}
495
}
496
memdelete_arr(s.lods);
497
}
498
499
if (mesh->blend_shape_count) {
500
for (uint32_t j = 0; j < mesh->blend_shape_count; j++) {
501
if (s.blend_shapes[j].vertex_buffer != 0) {
502
GLES3::Utilities::get_singleton()->buffer_free_data(s.blend_shapes[j].vertex_buffer);
503
s.blend_shapes[j].vertex_buffer = 0;
504
}
505
if (s.blend_shapes[j].vertex_array != 0) {
506
glDeleteVertexArrays(1, &s.blend_shapes[j].vertex_array);
507
s.blend_shapes[j].vertex_array = 0;
508
}
509
}
510
memdelete_arr(s.blend_shapes);
511
}
512
513
memdelete(mesh->surfaces[p_surface]);
514
}
515
516
int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
517
const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
518
ERR_FAIL_NULL_V(mesh, -1);
519
return mesh->blend_shape_count;
520
}
521
522
void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
523
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
524
ERR_FAIL_NULL(mesh);
525
ERR_FAIL_INDEX((int)p_mode, 2);
526
527
mesh->blend_shape_mode = p_mode;
528
}
529
530
RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
531
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
532
ERR_FAIL_NULL_V(mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
533
return mesh->blend_shape_mode;
534
}
535
536
void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
537
ERR_FAIL_COND(p_data.is_empty());
538
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
539
ERR_FAIL_NULL(mesh);
540
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
541
542
uint64_t data_size = p_data.size();
543
ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->vertex_buffer_size);
544
const uint8_t *r = p_data.ptr();
545
546
glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->vertex_buffer);
547
glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
548
glBindBuffer(GL_ARRAY_BUFFER, 0);
549
}
550
551
void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
552
ERR_FAIL_COND(p_data.is_empty());
553
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
554
ERR_FAIL_NULL(mesh);
555
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
556
557
uint64_t data_size = p_data.size();
558
ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->attribute_buffer_size);
559
const uint8_t *r = p_data.ptr();
560
561
glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->attribute_buffer);
562
glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
563
glBindBuffer(GL_ARRAY_BUFFER, 0);
564
}
565
566
void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
567
ERR_FAIL_COND(p_data.is_empty());
568
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
569
ERR_FAIL_NULL(mesh);
570
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
571
572
uint64_t data_size = p_data.size();
573
ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->skin_buffer_size);
574
const uint8_t *r = p_data.ptr();
575
576
glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->skin_buffer);
577
glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
578
glBindBuffer(GL_ARRAY_BUFFER, 0);
579
}
580
581
void MeshStorage::mesh_surface_update_index_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
582
ERR_FAIL_COND(p_data.is_empty());
583
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
584
ERR_FAIL_NULL(mesh);
585
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
586
587
uint64_t data_size = p_data.size();
588
ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->index_buffer_size);
589
const uint8_t *r = p_data.ptr();
590
591
glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->index_buffer);
592
glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
593
glBindBuffer(GL_ARRAY_BUFFER, 0);
594
}
595
596
void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
597
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
598
ERR_FAIL_NULL(mesh);
599
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
600
mesh->surfaces[p_surface]->material = p_material;
601
602
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
603
mesh->material_cache.clear();
604
}
605
606
RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
607
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
608
ERR_FAIL_NULL_V(mesh, RID());
609
ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
610
611
return mesh->surfaces[p_surface]->material;
612
}
613
614
RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
615
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
616
ERR_FAIL_NULL_V(mesh, RS::SurfaceData());
617
ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
618
619
Mesh::Surface &s = *mesh->surfaces[p_surface];
620
621
RS::SurfaceData sd;
622
sd.format = s.format;
623
if (s.vertex_buffer != 0) {
624
sd.vertex_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.vertex_buffer, s.vertex_buffer_size);
625
626
// When using an uncompressed buffer with normals, but without tangents, we have to trim the padding.
627
if (!(s.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (s.format & RS::ARRAY_FORMAT_NORMAL) && !(s.format & RS::ARRAY_FORMAT_TANGENT)) {
628
sd.vertex_data.resize(sd.vertex_data.size() - sizeof(uint16_t) * 2);
629
}
630
}
631
632
if (s.attribute_buffer != 0) {
633
sd.attribute_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.attribute_buffer, s.attribute_buffer_size);
634
}
635
636
if (s.skin_buffer != 0) {
637
sd.skin_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.skin_buffer, s.skin_buffer_size);
638
}
639
640
sd.vertex_count = s.vertex_count;
641
sd.index_count = s.index_count;
642
sd.primitive = s.primitive;
643
644
if (sd.index_count) {
645
sd.index_data = Utilities::buffer_get_data(GL_ELEMENT_ARRAY_BUFFER, s.index_buffer, s.index_buffer_size);
646
}
647
648
sd.aabb = s.aabb;
649
for (uint32_t i = 0; i < s.lod_count; i++) {
650
RS::SurfaceData::LOD lod;
651
lod.edge_length = s.lods[i].edge_length;
652
lod.index_data = Utilities::buffer_get_data(GL_ELEMENT_ARRAY_BUFFER, s.lods[i].index_buffer, s.lods[i].index_buffer_size);
653
sd.lods.push_back(lod);
654
}
655
656
sd.bone_aabbs = s.bone_aabbs;
657
sd.mesh_to_skeleton_xform = s.mesh_to_skeleton_xform;
658
659
if (mesh->blend_shape_count) {
660
sd.blend_shape_data = Vector<uint8_t>();
661
for (uint32_t i = 0; i < mesh->blend_shape_count; i++) {
662
sd.blend_shape_data.append_array(Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.blend_shapes[i].vertex_buffer, s.vertex_buffer_size));
663
}
664
}
665
666
sd.uv_scale = s.uv_scale;
667
668
return sd;
669
}
670
671
int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
672
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
673
ERR_FAIL_NULL_V(mesh, 0);
674
return mesh->surface_count;
675
}
676
677
void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
678
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
679
ERR_FAIL_NULL(mesh);
680
mesh->custom_aabb = p_aabb;
681
682
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
683
}
684
685
AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
686
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
687
ERR_FAIL_NULL_V(mesh, AABB());
688
return mesh->custom_aabb;
689
}
690
691
AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
692
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
693
ERR_FAIL_NULL_V(mesh, AABB());
694
695
if (mesh->custom_aabb != AABB()) {
696
return mesh->custom_aabb;
697
}
698
699
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
700
701
if (!skeleton || skeleton->size == 0 || mesh->skeleton_aabb_version == skeleton->version) {
702
return mesh->aabb;
703
}
704
705
// Calculate AABB based on Skeleton
706
707
AABB aabb;
708
709
for (uint32_t i = 0; i < mesh->surface_count; i++) {
710
AABB laabb;
711
const Mesh::Surface &surface = *mesh->surfaces[i];
712
if ((surface.format & RS::ARRAY_FORMAT_BONES) && surface.bone_aabbs.size()) {
713
int bs = surface.bone_aabbs.size();
714
const AABB *skbones = surface.bone_aabbs.ptr();
715
716
int sbs = skeleton->size;
717
ERR_CONTINUE(bs > sbs);
718
const float *baseptr = skeleton->data.ptr();
719
720
bool found_bone_aabb = false;
721
722
if (skeleton->use_2d) {
723
for (int j = 0; j < bs; j++) {
724
if (skbones[j].size == Vector3(-1, -1, -1)) {
725
continue; //bone is unused
726
}
727
728
const float *dataptr = baseptr + j * 8;
729
730
Transform3D mtx;
731
732
mtx.basis.rows[0][0] = dataptr[0];
733
mtx.basis.rows[0][1] = dataptr[1];
734
mtx.origin.x = dataptr[3];
735
736
mtx.basis.rows[1][0] = dataptr[4];
737
mtx.basis.rows[1][1] = dataptr[5];
738
mtx.origin.y = dataptr[7];
739
740
// Transform bounds to skeleton's space before applying animation data.
741
AABB baabb = surface.mesh_to_skeleton_xform.xform(skbones[j]);
742
baabb = mtx.xform(baabb);
743
744
if (!found_bone_aabb) {
745
laabb = baabb;
746
found_bone_aabb = true;
747
} else {
748
laabb.merge_with(baabb);
749
}
750
}
751
} else {
752
for (int j = 0; j < bs; j++) {
753
if (skbones[j].size == Vector3(-1, -1, -1)) {
754
continue; //bone is unused
755
}
756
757
const float *dataptr = baseptr + j * 12;
758
759
Transform3D mtx;
760
761
mtx.basis.rows[0][0] = dataptr[0];
762
mtx.basis.rows[0][1] = dataptr[1];
763
mtx.basis.rows[0][2] = dataptr[2];
764
mtx.origin.x = dataptr[3];
765
mtx.basis.rows[1][0] = dataptr[4];
766
mtx.basis.rows[1][1] = dataptr[5];
767
mtx.basis.rows[1][2] = dataptr[6];
768
mtx.origin.y = dataptr[7];
769
mtx.basis.rows[2][0] = dataptr[8];
770
mtx.basis.rows[2][1] = dataptr[9];
771
mtx.basis.rows[2][2] = dataptr[10];
772
mtx.origin.z = dataptr[11];
773
774
// Transform bounds to skeleton's space before applying animation data.
775
AABB baabb = surface.mesh_to_skeleton_xform.xform(skbones[j]);
776
baabb = mtx.xform(baabb);
777
778
if (!found_bone_aabb) {
779
laabb = baabb;
780
found_bone_aabb = true;
781
} else {
782
laabb.merge_with(baabb);
783
}
784
}
785
}
786
787
if (found_bone_aabb) {
788
// Transform skeleton bounds back to mesh's space if any animated AABB applied.
789
laabb = surface.mesh_to_skeleton_xform.affine_inverse().xform(laabb);
790
}
791
792
if (laabb.size == Vector3()) {
793
laabb = surface.aabb;
794
}
795
} else {
796
laabb = surface.aabb;
797
}
798
799
if (i == 0) {
800
aabb = laabb;
801
} else {
802
aabb.merge_with(laabb);
803
}
804
}
805
806
mesh->aabb = aabb;
807
mesh->skeleton_aabb_version = skeleton->version;
808
return aabb;
809
}
810
811
void MeshStorage::mesh_set_path(RID p_mesh, const String &p_path) {
812
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
813
ERR_FAIL_NULL(mesh);
814
815
mesh->path = p_path;
816
}
817
818
String MeshStorage::mesh_get_path(RID p_mesh) const {
819
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
820
ERR_FAIL_NULL_V(mesh, String());
821
822
return mesh->path;
823
}
824
825
void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
826
ERR_FAIL_COND_MSG(p_mesh == p_shadow_mesh, "Cannot set a mesh as its own shadow mesh.");
827
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
828
ERR_FAIL_NULL(mesh);
829
830
Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
831
if (shadow_mesh) {
832
shadow_mesh->shadow_owners.erase(mesh);
833
}
834
mesh->shadow_mesh = p_shadow_mesh;
835
836
shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
837
838
if (shadow_mesh) {
839
shadow_mesh->shadow_owners.insert(mesh);
840
}
841
842
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
843
}
844
845
void MeshStorage::mesh_clear(RID p_mesh) {
846
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
847
ERR_FAIL_NULL(mesh);
848
849
// Clear instance data before mesh data.
850
for (MeshInstance *mi : mesh->instances) {
851
_mesh_instance_clear(mi);
852
}
853
854
for (uint32_t i = 0; i < mesh->surface_count; i++) {
855
_mesh_surface_clear(mesh, i);
856
}
857
if (mesh->surfaces) {
858
memfree(mesh->surfaces);
859
}
860
861
mesh->surfaces = nullptr;
862
mesh->surface_count = 0;
863
mesh->material_cache.clear();
864
mesh->has_bone_weights = false;
865
mesh->aabb = AABB();
866
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
867
868
for (Mesh *E : mesh->shadow_owners) {
869
Mesh *shadow_owner = E;
870
shadow_owner->shadow_mesh = RID();
871
shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
872
}
873
}
874
875
void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint64_t p_input_mask, MeshInstance::Surface *mis) {
876
Mesh::Surface::Attrib attribs[RS::ARRAY_MAX];
877
878
int position_stride = 0; // Vertex position only.
879
int normal_tangent_stride = 0;
880
int attributes_stride = 0;
881
int skin_stride = 0;
882
883
for (int i = 0; i < RS::ARRAY_INDEX; i++) {
884
attribs[i].enabled = false;
885
attribs[i].integer = false;
886
if (!(s->format & (1ULL << i))) {
887
continue;
888
}
889
890
if ((p_input_mask & (1ULL << i))) {
891
// Only enable if it matches input mask.
892
// Iterate over all anyway, so we can calculate stride.
893
attribs[i].enabled = true;
894
}
895
896
switch (i) {
897
case RS::ARRAY_VERTEX: {
898
attribs[i].offset = 0;
899
attribs[i].type = GL_FLOAT;
900
attribs[i].normalized = GL_FALSE;
901
if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
902
attribs[i].size = 2;
903
position_stride = attribs[i].size * sizeof(float);
904
} else {
905
if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
906
attribs[i].size = 4;
907
position_stride = attribs[i].size * sizeof(uint16_t);
908
attribs[i].type = GL_UNSIGNED_SHORT;
909
attribs[i].normalized = GL_TRUE;
910
} else {
911
attribs[i].size = 3;
912
position_stride = attribs[i].size * sizeof(float);
913
}
914
}
915
} break;
916
case RS::ARRAY_NORMAL: {
917
if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
918
attribs[i].size = 2;
919
normal_tangent_stride += 2 * attribs[i].size;
920
} else {
921
attribs[i].size = 4;
922
// A small trick here: if we are uncompressed and we have normals, but no tangents. We need
923
// the shader to think there are 4 components to "axis_tangent_attrib". So we give a size of 4,
924
// but a stride based on only having 2 elements.
925
if (!(s->format & RS::ARRAY_FORMAT_TANGENT)) {
926
normal_tangent_stride += (mis ? sizeof(float) : sizeof(uint16_t)) * 2;
927
} else {
928
normal_tangent_stride += (mis ? sizeof(float) : sizeof(uint16_t)) * 4;
929
}
930
}
931
932
if (mis) {
933
// Transform feedback has interleave all or no attributes. It can't mix interleaving.
934
attribs[i].offset = position_stride;
935
normal_tangent_stride += position_stride;
936
position_stride = normal_tangent_stride;
937
} else {
938
attribs[i].offset = position_stride * s->vertex_count;
939
}
940
attribs[i].type = (mis ? GL_FLOAT : GL_UNSIGNED_SHORT);
941
attribs[i].normalized = GL_TRUE;
942
} break;
943
case RS::ARRAY_TANGENT: {
944
// We never use the tangent attribute. It is always packed in ARRAY_NORMAL, or ARRAY_VERTEX.
945
attribs[i].enabled = false;
946
attribs[i].integer = false;
947
} break;
948
case RS::ARRAY_COLOR: {
949
attribs[i].offset = attributes_stride;
950
attribs[i].size = 4;
951
attribs[i].type = GL_UNSIGNED_BYTE;
952
attributes_stride += 4;
953
attribs[i].normalized = GL_TRUE;
954
} break;
955
case RS::ARRAY_TEX_UV: {
956
attribs[i].offset = attributes_stride;
957
attribs[i].size = 2;
958
if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
959
attribs[i].type = GL_UNSIGNED_SHORT;
960
attributes_stride += 2 * sizeof(uint16_t);
961
attribs[i].normalized = GL_TRUE;
962
} else {
963
attribs[i].type = GL_FLOAT;
964
attributes_stride += 2 * sizeof(float);
965
attribs[i].normalized = GL_FALSE;
966
}
967
} break;
968
case RS::ARRAY_TEX_UV2: {
969
attribs[i].offset = attributes_stride;
970
attribs[i].size = 2;
971
if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
972
attribs[i].type = GL_UNSIGNED_SHORT;
973
attributes_stride += 2 * sizeof(uint16_t);
974
attribs[i].normalized = GL_TRUE;
975
} else {
976
attribs[i].type = GL_FLOAT;
977
attributes_stride += 2 * sizeof(float);
978
attribs[i].normalized = GL_FALSE;
979
}
980
} break;
981
case RS::ARRAY_CUSTOM0:
982
case RS::ARRAY_CUSTOM1:
983
case RS::ARRAY_CUSTOM2:
984
case RS::ARRAY_CUSTOM3: {
985
attribs[i].offset = attributes_stride;
986
987
int idx = i - RS::ARRAY_CUSTOM0;
988
uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
989
uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
990
uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
991
GLenum gl_type[RS::ARRAY_CUSTOM_MAX] = { GL_UNSIGNED_BYTE, GL_BYTE, GL_HALF_FLOAT, GL_HALF_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT };
992
GLboolean norm[RS::ARRAY_CUSTOM_MAX] = { GL_TRUE, GL_TRUE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE };
993
attribs[i].type = gl_type[fmt];
994
attributes_stride += fmtsize[fmt];
995
attribs[i].size = fmtsize[fmt] / sizeof(float);
996
attribs[i].normalized = norm[fmt];
997
} break;
998
case RS::ARRAY_BONES: {
999
attribs[i].offset = skin_stride;
1000
attribs[i].size = 4;
1001
attribs[i].type = GL_UNSIGNED_SHORT;
1002
skin_stride += 4 * sizeof(uint16_t);
1003
attribs[i].normalized = GL_FALSE;
1004
attribs[i].integer = true;
1005
} break;
1006
case RS::ARRAY_WEIGHTS: {
1007
attribs[i].offset = skin_stride;
1008
attribs[i].size = 4;
1009
attribs[i].type = GL_UNSIGNED_SHORT;
1010
skin_stride += 4 * sizeof(uint16_t);
1011
attribs[i].normalized = GL_TRUE;
1012
} break;
1013
}
1014
}
1015
1016
glGenVertexArrays(1, &v.vertex_array);
1017
glBindVertexArray(v.vertex_array);
1018
1019
for (int i = 0; i < RS::ARRAY_INDEX; i++) {
1020
if (!attribs[i].enabled) {
1021
glDisableVertexAttribArray(i);
1022
continue;
1023
}
1024
if (i <= RS::ARRAY_TANGENT) {
1025
attribs[i].stride = (i == RS::ARRAY_VERTEX) ? position_stride : normal_tangent_stride;
1026
if (mis) {
1027
glBindBuffer(GL_ARRAY_BUFFER, mis->vertex_buffer);
1028
} else {
1029
glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer);
1030
}
1031
} else if (i <= RS::ARRAY_CUSTOM3) {
1032
attribs[i].stride = attributes_stride;
1033
glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer);
1034
} else {
1035
attribs[i].stride = skin_stride;
1036
glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer);
1037
}
1038
1039
if (attribs[i].integer) {
1040
glVertexAttribIPointer(i, attribs[i].size, attribs[i].type, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
1041
} else {
1042
glVertexAttribPointer(i, attribs[i].size, attribs[i].type, attribs[i].normalized, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
1043
}
1044
glEnableVertexAttribArray(i);
1045
}
1046
1047
// Do not bind index here as we want to switch between index buffers for LOD
1048
1049
glBindVertexArray(0);
1050
glBindBuffer(GL_ARRAY_BUFFER, 0);
1051
1052
v.input_mask = p_input_mask;
1053
}
1054
1055
void MeshStorage::mesh_surface_remove(RID p_mesh, int p_surface) {
1056
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
1057
ERR_FAIL_NULL(mesh);
1058
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
1059
1060
// Clear instance data before mesh data.
1061
for (MeshInstance *mi : mesh->instances) {
1062
_mesh_instance_remove_surface(mi, p_surface);
1063
}
1064
1065
_mesh_surface_clear(mesh, p_surface);
1066
1067
if ((uint32_t)p_surface < mesh->surface_count - 1) {
1068
memmove(mesh->surfaces + p_surface, mesh->surfaces + p_surface + 1, sizeof(Mesh::Surface *) * (mesh->surface_count - (p_surface + 1)));
1069
}
1070
mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count - 1));
1071
--mesh->surface_count;
1072
1073
mesh->material_cache.clear();
1074
1075
mesh->skeleton_aabb_version = 0;
1076
1077
if (mesh->has_bone_weights) {
1078
mesh->has_bone_weights = false;
1079
for (uint32_t i = 0; i < mesh->surface_count; i++) {
1080
if (mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) {
1081
mesh->has_bone_weights = true;
1082
break;
1083
}
1084
}
1085
}
1086
1087
if (mesh->surface_count == 0) {
1088
mesh->aabb = AABB();
1089
} else {
1090
mesh->aabb = mesh->surfaces[0]->aabb;
1091
for (uint32_t i = 1; i < mesh->surface_count; i++) {
1092
mesh->aabb.merge_with(mesh->surfaces[i]->aabb);
1093
}
1094
}
1095
1096
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
1097
1098
for (Mesh *E : mesh->shadow_owners) {
1099
Mesh *shadow_owner = E;
1100
shadow_owner->shadow_mesh = RID();
1101
shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
1102
}
1103
}
1104
1105
/* MESH INSTANCE API */
1106
1107
RID MeshStorage::mesh_instance_create(RID p_base) {
1108
Mesh *mesh = mesh_owner.get_or_null(p_base);
1109
ERR_FAIL_NULL_V(mesh, RID());
1110
1111
RID rid = mesh_instance_owner.make_rid();
1112
MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
1113
1114
mi->mesh = mesh;
1115
1116
for (uint32_t i = 0; i < mesh->surface_count; i++) {
1117
_mesh_instance_add_surface(mi, mesh, i);
1118
}
1119
1120
mi->I = mesh->instances.push_back(mi);
1121
1122
mi->dirty = true;
1123
1124
return rid;
1125
}
1126
1127
void MeshStorage::mesh_instance_free(RID p_rid) {
1128
MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
1129
_mesh_instance_clear(mi);
1130
mi->mesh->instances.erase(mi->I);
1131
mi->I = nullptr;
1132
1133
mesh_instance_owner.free(p_rid);
1134
}
1135
1136
void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
1137
MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
1138
if (mi->skeleton == p_skeleton) {
1139
return;
1140
}
1141
mi->skeleton = p_skeleton;
1142
mi->skeleton_version = 0;
1143
mi->dirty = true;
1144
}
1145
1146
void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
1147
MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
1148
ERR_FAIL_NULL(mi);
1149
ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
1150
mi->blend_weights[p_shape] = p_weight;
1151
mi->dirty = true;
1152
}
1153
1154
void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
1155
while (mi->surfaces.size()) {
1156
_mesh_instance_remove_surface(mi, mi->surfaces.size() - 1);
1157
}
1158
mi->dirty = false;
1159
}
1160
1161
void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
1162
if (mesh->blend_shape_count > 0) {
1163
mi->blend_weights.resize(mesh->blend_shape_count);
1164
for (uint32_t i = 0; i < mi->blend_weights.size(); i++) {
1165
mi->blend_weights[i] = 0.0;
1166
}
1167
}
1168
1169
MeshInstance::Surface s;
1170
if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
1171
// Cache surface properties
1172
s.format_cache = mesh->surfaces[p_surface]->format;
1173
if ((s.format_cache & (1ULL << RS::ARRAY_VERTEX))) {
1174
if (s.format_cache & RS::ARRAY_FLAG_USE_2D_VERTICES) {
1175
s.vertex_size_cache = 2;
1176
} else {
1177
s.vertex_size_cache = 3;
1178
}
1179
s.vertex_stride_cache = sizeof(float) * s.vertex_size_cache;
1180
}
1181
if ((s.format_cache & (1ULL << RS::ARRAY_NORMAL))) {
1182
s.vertex_normal_offset_cache = s.vertex_stride_cache;
1183
s.vertex_stride_cache += sizeof(uint32_t) * 2;
1184
}
1185
if ((s.format_cache & (1ULL << RS::ARRAY_TANGENT))) {
1186
s.vertex_tangent_offset_cache = s.vertex_stride_cache;
1187
s.vertex_stride_cache += sizeof(uint32_t) * 2;
1188
}
1189
1190
int buffer_size = s.vertex_stride_cache * mesh->surfaces[p_surface]->vertex_count;
1191
1192
// Buffer to be used for rendering. Final output of skeleton and blend shapes.
1193
glGenBuffers(1, &s.vertex_buffer);
1194
glBindBuffer(GL_ARRAY_BUFFER, s.vertex_buffer);
1195
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s.vertex_buffer, buffer_size, nullptr, GL_DYNAMIC_DRAW, "MeshInstance vertex buffer");
1196
if (mesh->blend_shape_count > 0) {
1197
// Ping-Pong buffers for processing blendshapes.
1198
glGenBuffers(2, s.vertex_buffers);
1199
for (uint32_t i = 0; i < 2; i++) {
1200
glBindBuffer(GL_ARRAY_BUFFER, s.vertex_buffers[i]);
1201
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s.vertex_buffers[i], buffer_size, nullptr, GL_DYNAMIC_DRAW, "MeshInstance process buffer[" + itos(i) + "]");
1202
}
1203
}
1204
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
1205
}
1206
1207
mi->surfaces.push_back(s);
1208
mi->dirty = true;
1209
}
1210
1211
void MeshStorage::_mesh_instance_remove_surface(MeshInstance *mi, int p_surface) {
1212
MeshInstance::Surface &surface = mi->surfaces[p_surface];
1213
1214
if (surface.version_count != 0) {
1215
for (uint32_t j = 0; j < surface.version_count; j++) {
1216
glDeleteVertexArrays(1, &surface.versions[j].vertex_array);
1217
surface.versions[j].vertex_array = 0;
1218
}
1219
memfree(surface.versions);
1220
}
1221
1222
if (surface.vertex_buffers[0] != 0) {
1223
GLES3::Utilities::get_singleton()->buffer_free_data(surface.vertex_buffers[0]);
1224
GLES3::Utilities::get_singleton()->buffer_free_data(surface.vertex_buffers[1]);
1225
surface.vertex_buffers[0] = 0;
1226
surface.vertex_buffers[1] = 0;
1227
}
1228
1229
if (surface.vertex_buffer != 0) {
1230
GLES3::Utilities::get_singleton()->buffer_free_data(surface.vertex_buffer);
1231
surface.vertex_buffer = 0;
1232
}
1233
1234
mi->surfaces.remove_at(p_surface);
1235
1236
if (mi->surfaces.is_empty()) {
1237
mi->blend_weights.clear();
1238
mi->weights_dirty = false;
1239
mi->skeleton_version = 0;
1240
}
1241
mi->dirty = true;
1242
}
1243
1244
void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
1245
MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
1246
1247
bool needs_update = mi->dirty;
1248
1249
if (mi->array_update_list.in_list()) {
1250
return;
1251
}
1252
1253
if (!needs_update && mi->skeleton.is_valid()) {
1254
Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
1255
if (sk && sk->version != mi->skeleton_version) {
1256
needs_update = true;
1257
}
1258
}
1259
1260
if (needs_update) {
1261
dirty_mesh_instance_arrays.add(&mi->array_update_list);
1262
}
1263
}
1264
1265
void MeshStorage::mesh_instance_set_canvas_item_transform(RID p_mesh_instance, const Transform2D &p_transform) {
1266
MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
1267
mi->canvas_item_transform_2d = p_transform;
1268
}
1269
1270
void MeshStorage::_blend_shape_bind_mesh_instance_buffer(MeshInstance *p_mi, uint32_t p_surface) {
1271
glBindBuffer(GL_ARRAY_BUFFER, p_mi->surfaces[p_surface].vertex_buffers[0]);
1272
1273
if ((p_mi->surfaces[p_surface].format_cache & (1ULL << RS::ARRAY_VERTEX))) {
1274
glEnableVertexAttribArray(RS::ARRAY_VERTEX);
1275
glVertexAttribPointer(RS::ARRAY_VERTEX, p_mi->surfaces[p_surface].vertex_size_cache, GL_FLOAT, GL_FALSE, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(0));
1276
} else {
1277
glDisableVertexAttribArray(RS::ARRAY_VERTEX);
1278
}
1279
if ((p_mi->surfaces[p_surface].format_cache & (1ULL << RS::ARRAY_NORMAL))) {
1280
glEnableVertexAttribArray(RS::ARRAY_NORMAL);
1281
glVertexAttribIPointer(RS::ARRAY_NORMAL, 2, GL_UNSIGNED_INT, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(p_mi->surfaces[p_surface].vertex_normal_offset_cache));
1282
} else {
1283
glDisableVertexAttribArray(RS::ARRAY_NORMAL);
1284
}
1285
if ((p_mi->surfaces[p_surface].format_cache & (1ULL << RS::ARRAY_TANGENT))) {
1286
glEnableVertexAttribArray(RS::ARRAY_TANGENT);
1287
glVertexAttribIPointer(RS::ARRAY_TANGENT, 2, GL_UNSIGNED_INT, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(p_mi->surfaces[p_surface].vertex_tangent_offset_cache));
1288
} else {
1289
glDisableVertexAttribArray(RS::ARRAY_TANGENT);
1290
}
1291
}
1292
1293
void MeshStorage::_compute_skeleton(MeshInstance *p_mi, Skeleton *p_sk, uint32_t p_surface) {
1294
// Add in the bones and weights.
1295
glBindBuffer(GL_ARRAY_BUFFER, p_mi->mesh->surfaces[p_surface]->skin_buffer);
1296
1297
bool use_8_weights = p_mi->surfaces[p_surface].format_cache & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
1298
int skin_stride = sizeof(int16_t) * (use_8_weights ? 16 : 8);
1299
glEnableVertexAttribArray(RS::ARRAY_BONES);
1300
glVertexAttribIPointer(RS::ARRAY_BONES, 4, GL_UNSIGNED_SHORT, skin_stride, CAST_INT_TO_UCHAR_PTR(0));
1301
if (use_8_weights) {
1302
glEnableVertexAttribArray(11);
1303
glVertexAttribIPointer(11, 4, GL_UNSIGNED_SHORT, skin_stride, CAST_INT_TO_UCHAR_PTR(4 * sizeof(uint16_t)));
1304
glEnableVertexAttribArray(12);
1305
glVertexAttribPointer(12, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(8 * sizeof(uint16_t)));
1306
glEnableVertexAttribArray(13);
1307
glVertexAttribPointer(13, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(12 * sizeof(uint16_t)));
1308
} else {
1309
glEnableVertexAttribArray(RS::ARRAY_WEIGHTS);
1310
glVertexAttribPointer(RS::ARRAY_WEIGHTS, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(4 * sizeof(uint16_t)));
1311
}
1312
1313
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, p_mi->surfaces[p_surface].vertex_buffer);
1314
glActiveTexture(GL_TEXTURE0);
1315
glBindTexture(GL_TEXTURE_2D, p_sk->transforms_texture);
1316
1317
glBeginTransformFeedback(GL_POINTS);
1318
glDrawArrays(GL_POINTS, 0, p_mi->mesh->surfaces[p_surface]->vertex_count);
1319
glEndTransformFeedback();
1320
1321
glDisableVertexAttribArray(RS::ARRAY_BONES);
1322
glDisableVertexAttribArray(RS::ARRAY_WEIGHTS);
1323
glDisableVertexAttribArray(RS::ARRAY_BONES + 2);
1324
glDisableVertexAttribArray(RS::ARRAY_WEIGHTS + 2);
1325
glBindVertexArray(0);
1326
glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, 0);
1327
}
1328
1329
void MeshStorage::update_mesh_instances() {
1330
if (dirty_mesh_instance_arrays.first() == nullptr) {
1331
return; //nothing to do
1332
}
1333
1334
glEnable(GL_RASTERIZER_DISCARD);
1335
glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo);
1336
// Process skeletons and blend shapes using transform feedback
1337
while (dirty_mesh_instance_arrays.first()) {
1338
MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
1339
1340
Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
1341
1342
// Precompute base weight if using blend shapes.
1343
float base_weight = 1.0;
1344
if (mi->surfaces.size() && mi->mesh->blend_shape_count && mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED) {
1345
for (uint32_t i = 0; i < mi->mesh->blend_shape_count; i++) {
1346
base_weight -= mi->blend_weights[i];
1347
}
1348
}
1349
1350
for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
1351
if (mi->surfaces[i].vertex_buffer == 0) {
1352
continue;
1353
}
1354
1355
bool array_is_2d = mi->surfaces[i].format_cache & RS::ARRAY_FLAG_USE_2D_VERTICES;
1356
bool can_use_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->surfaces[i].format_cache & RS::ARRAY_FORMAT_BONES);
1357
bool use_8_weights = mi->surfaces[i].format_cache & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
1358
1359
// Always process blend shapes first.
1360
if (mi->mesh->blend_shape_count) {
1361
SkeletonShaderGLES3::ShaderVariant variant = SkeletonShaderGLES3::MODE_BASE_PASS;
1362
uint64_t specialization = 0;
1363
specialization |= array_is_2d ? SkeletonShaderGLES3::MODE_2D : 0;
1364
specialization |= SkeletonShaderGLES3::USE_BLEND_SHAPES;
1365
if (!array_is_2d) {
1366
if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_NORMAL))) {
1367
specialization |= SkeletonShaderGLES3::USE_NORMAL;
1368
}
1369
if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_TANGENT))) {
1370
specialization |= SkeletonShaderGLES3::USE_TANGENT;
1371
}
1372
}
1373
1374
bool success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
1375
if (!success) {
1376
continue;
1377
}
1378
1379
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, base_weight, skeleton_shader.shader_version, variant, specialization);
1380
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization);
1381
1382
glBindBuffer(GL_ARRAY_BUFFER, 0);
1383
GLuint vertex_array_gl = 0;
1384
uint64_t mask = RS::ARRAY_FORMAT_VERTEX | RS::ARRAY_FORMAT_NORMAL | RS::ARRAY_FORMAT_VERTEX;
1385
uint64_t format = mi->mesh->surfaces[i]->format & mask; // Format should only have vertex, normal, tangent (as necessary).
1386
mesh_surface_get_vertex_arrays_and_format(mi->mesh->surfaces[i], format, vertex_array_gl);
1387
glBindVertexArray(vertex_array_gl);
1388
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffers[0]);
1389
glBeginTransformFeedback(GL_POINTS);
1390
glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count);
1391
glEndTransformFeedback();
1392
1393
variant = SkeletonShaderGLES3::MODE_BLEND_PASS;
1394
success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
1395
if (!success) {
1396
continue;
1397
}
1398
1399
//Do the last blend shape separately, as it can be combined with the skeleton pass.
1400
for (uint32_t bs = 0; bs < mi->mesh->blend_shape_count - 1; bs++) {
1401
float weight = mi->blend_weights[bs];
1402
1403
if (Math::is_zero_approx(weight)) {
1404
//not bother with this one
1405
continue;
1406
}
1407
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, weight, skeleton_shader.shader_version, variant, specialization);
1408
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization);
1409
1410
glBindVertexArray(mi->mesh->surfaces[i]->blend_shapes[bs].vertex_array);
1411
_blend_shape_bind_mesh_instance_buffer(mi, i);
1412
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffers[1]);
1413
1414
glBeginTransformFeedback(GL_POINTS);
1415
glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count);
1416
glEndTransformFeedback();
1417
1418
SWAP(mi->surfaces[i].vertex_buffers[0], mi->surfaces[i].vertex_buffers[1]);
1419
}
1420
uint32_t bs = mi->mesh->blend_shape_count - 1;
1421
1422
float weight = mi->blend_weights[bs];
1423
1424
glBindVertexArray(mi->mesh->surfaces[i]->blend_shapes[bs].vertex_array);
1425
_blend_shape_bind_mesh_instance_buffer(mi, i);
1426
1427
specialization |= can_use_skeleton ? SkeletonShaderGLES3::USE_SKELETON : 0;
1428
specialization |= (can_use_skeleton && use_8_weights) ? SkeletonShaderGLES3::USE_EIGHT_WEIGHTS : 0;
1429
specialization |= SkeletonShaderGLES3::FINAL_PASS;
1430
success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
1431
if (!success) {
1432
continue;
1433
}
1434
1435
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, weight, skeleton_shader.shader_version, variant, specialization);
1436
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization);
1437
1438
if (can_use_skeleton) {
1439
Transform2D transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
1440
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_X, transform[0], skeleton_shader.shader_version, variant, specialization);
1441
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_Y, transform[1], skeleton_shader.shader_version, variant, specialization);
1442
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_OFFSET, transform[2], skeleton_shader.shader_version, variant, specialization);
1443
1444
Transform2D inverse_transform = transform.affine_inverse();
1445
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_X, inverse_transform[0], skeleton_shader.shader_version, variant, specialization);
1446
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_Y, inverse_transform[1], skeleton_shader.shader_version, variant, specialization);
1447
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_OFFSET, inverse_transform[2], skeleton_shader.shader_version, variant, specialization);
1448
1449
// Do last blendshape in the same pass as the Skeleton.
1450
_compute_skeleton(mi, sk, i);
1451
can_use_skeleton = false;
1452
} else {
1453
// Do last blendshape by itself and prepare vertex data for use by the renderer.
1454
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffer);
1455
1456
glBeginTransformFeedback(GL_POINTS);
1457
glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count);
1458
glEndTransformFeedback();
1459
}
1460
1461
glBindVertexArray(0);
1462
glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, 0);
1463
}
1464
1465
// This branch should only execute when Skeleton is run by itself.
1466
if (can_use_skeleton) {
1467
SkeletonShaderGLES3::ShaderVariant variant = SkeletonShaderGLES3::MODE_BASE_PASS;
1468
uint64_t specialization = 0;
1469
specialization |= array_is_2d ? SkeletonShaderGLES3::MODE_2D : 0;
1470
specialization |= SkeletonShaderGLES3::USE_SKELETON;
1471
specialization |= SkeletonShaderGLES3::FINAL_PASS;
1472
specialization |= use_8_weights ? SkeletonShaderGLES3::USE_EIGHT_WEIGHTS : 0;
1473
if (!array_is_2d) {
1474
if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_NORMAL))) {
1475
specialization |= SkeletonShaderGLES3::USE_NORMAL;
1476
}
1477
if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_TANGENT))) {
1478
specialization |= SkeletonShaderGLES3::USE_TANGENT;
1479
}
1480
}
1481
1482
bool success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
1483
if (!success) {
1484
continue;
1485
}
1486
1487
Transform2D transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
1488
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_X, transform[0], skeleton_shader.shader_version, variant, specialization);
1489
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_Y, transform[1], skeleton_shader.shader_version, variant, specialization);
1490
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_OFFSET, transform[2], skeleton_shader.shader_version, variant, specialization);
1491
1492
Transform2D inverse_transform = transform.affine_inverse();
1493
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_X, inverse_transform[0], skeleton_shader.shader_version, variant, specialization);
1494
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_Y, inverse_transform[1], skeleton_shader.shader_version, variant, specialization);
1495
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_OFFSET, inverse_transform[2], skeleton_shader.shader_version, variant, specialization);
1496
1497
GLuint vertex_array_gl = 0;
1498
uint64_t mask = RS::ARRAY_FORMAT_VERTEX | RS::ARRAY_FORMAT_NORMAL | RS::ARRAY_FORMAT_VERTEX;
1499
uint64_t format = mi->mesh->surfaces[i]->format & mask; // Format should only have vertex, normal, tangent (as necessary).
1500
mesh_surface_get_vertex_arrays_and_format(mi->mesh->surfaces[i], format, vertex_array_gl);
1501
glBindVertexArray(vertex_array_gl);
1502
_compute_skeleton(mi, sk, i);
1503
}
1504
}
1505
mi->dirty = false;
1506
if (sk) {
1507
mi->skeleton_version = sk->version;
1508
}
1509
dirty_mesh_instance_arrays.remove(&mi->array_update_list);
1510
}
1511
glDisable(GL_RASTERIZER_DISCARD);
1512
glBindBuffer(GL_ARRAY_BUFFER, 0);
1513
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, 0);
1514
}
1515
1516
/* MULTIMESH API */
1517
1518
RID MeshStorage::_multimesh_allocate() {
1519
return multimesh_owner.allocate_rid();
1520
}
1521
1522
void MeshStorage::_multimesh_initialize(RID p_rid) {
1523
multimesh_owner.initialize_rid(p_rid, MultiMesh());
1524
}
1525
1526
void MeshStorage::_multimesh_free(RID p_rid) {
1527
// Remove from interpolator.
1528
_interpolation_data.notify_free_multimesh(p_rid);
1529
_update_dirty_multimeshes();
1530
multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
1531
MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
1532
multimesh->dependency.deleted_notify(p_rid);
1533
multimesh_owner.free(p_rid);
1534
}
1535
1536
void MeshStorage::_multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data, bool p_use_indirect) {
1537
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1538
ERR_FAIL_NULL(multimesh);
1539
1540
if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
1541
return;
1542
}
1543
1544
if (multimesh->buffer) {
1545
GLES3::Utilities::get_singleton()->buffer_free_data(multimesh->buffer);
1546
multimesh->buffer = 0;
1547
}
1548
1549
if (multimesh->data_cache_dirty_regions) {
1550
memdelete_arr(multimesh->data_cache_dirty_regions);
1551
multimesh->data_cache_dirty_regions = nullptr;
1552
multimesh->data_cache_used_dirty_regions = 0;
1553
}
1554
1555
// If we have either color or custom data, reserve space for both to make data handling logic simpler.
1556
// This way we can always treat them both as a single, compressed uvec4.
1557
int color_and_custom_strides = (p_use_colors || p_use_custom_data) ? 2 : 0;
1558
1559
multimesh->instances = p_instances;
1560
multimesh->xform_format = p_transform_format;
1561
multimesh->uses_colors = p_use_colors;
1562
multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
1563
multimesh->uses_custom_data = p_use_custom_data;
1564
multimesh->custom_data_offset_cache = multimesh->color_offset_cache + color_and_custom_strides;
1565
multimesh->stride_cache = multimesh->custom_data_offset_cache + color_and_custom_strides;
1566
multimesh->buffer_set = false;
1567
1568
multimesh->data_cache = Vector<float>();
1569
multimesh->aabb = AABB();
1570
multimesh->aabb_dirty = false;
1571
multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
1572
1573
if (multimesh->instances) {
1574
glGenBuffers(1, &multimesh->buffer);
1575
glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
1576
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float), nullptr, GL_STATIC_DRAW, "MultiMesh buffer");
1577
glBindBuffer(GL_ARRAY_BUFFER, 0);
1578
}
1579
1580
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
1581
}
1582
1583
int MeshStorage::_multimesh_get_instance_count(RID p_multimesh) const {
1584
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1585
ERR_FAIL_NULL_V(multimesh, 0);
1586
return multimesh->instances;
1587
}
1588
1589
void MeshStorage::_multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
1590
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1591
ERR_FAIL_NULL(multimesh);
1592
if (multimesh->mesh == p_mesh || p_mesh.is_null()) {
1593
return;
1594
}
1595
multimesh->mesh = p_mesh;
1596
1597
if (multimesh->instances == 0) {
1598
return;
1599
}
1600
1601
if (multimesh->data_cache.size()) {
1602
//we have a data cache, just mark it dirty
1603
_multimesh_mark_all_dirty(multimesh, false, true);
1604
} else if (multimesh->instances) {
1605
// Need to re-create AABB. Unfortunately, calling this has a penalty.
1606
if (multimesh->buffer_set) {
1607
Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float));
1608
const uint8_t *r = buffer.ptr();
1609
const float *data = (const float *)r;
1610
_multimesh_re_create_aabb(multimesh, data, multimesh->instances);
1611
}
1612
}
1613
1614
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
1615
}
1616
1617
#define MULTIMESH_DIRTY_REGION_SIZE 512
1618
1619
void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
1620
if (multimesh->data_cache.size() > 0 || multimesh->instances == 0) {
1621
return; //already local
1622
}
1623
ERR_FAIL_COND(multimesh->data_cache.size() > 0);
1624
// this means that the user wants to load/save individual elements,
1625
// for this, the data must reside on CPU, so just copy it there.
1626
multimesh->data_cache.resize(multimesh->instances * multimesh->stride_cache);
1627
{
1628
float *w = multimesh->data_cache.ptrw();
1629
1630
if (multimesh->buffer_set) {
1631
Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float));
1632
1633
{
1634
const uint8_t *r = buffer.ptr();
1635
memcpy(w, r, buffer.size());
1636
}
1637
} else {
1638
memset(w, 0, (size_t)multimesh->instances * multimesh->stride_cache * sizeof(float));
1639
}
1640
}
1641
uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
1642
multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
1643
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
1644
multimesh->data_cache_dirty_regions[i] = false;
1645
}
1646
multimesh->data_cache_used_dirty_regions = 0;
1647
}
1648
1649
void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
1650
uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
1651
#ifdef DEBUG_ENABLED
1652
uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
1653
ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
1654
#endif
1655
if (!multimesh->data_cache_dirty_regions[region_index]) {
1656
multimesh->data_cache_dirty_regions[region_index] = true;
1657
multimesh->data_cache_used_dirty_regions++;
1658
}
1659
1660
if (p_aabb) {
1661
multimesh->aabb_dirty = true;
1662
}
1663
1664
if (!multimesh->dirty) {
1665
multimesh->dirty_list = multimesh_dirty_list;
1666
multimesh_dirty_list = multimesh;
1667
multimesh->dirty = true;
1668
}
1669
}
1670
1671
void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
1672
if (p_data) {
1673
uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
1674
1675
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
1676
if (!multimesh->data_cache_dirty_regions[i]) {
1677
multimesh->data_cache_dirty_regions[i] = true;
1678
multimesh->data_cache_used_dirty_regions++;
1679
}
1680
}
1681
}
1682
1683
if (p_aabb) {
1684
multimesh->aabb_dirty = true;
1685
}
1686
1687
if (!multimesh->dirty) {
1688
multimesh->dirty_list = multimesh_dirty_list;
1689
multimesh_dirty_list = multimesh;
1690
multimesh->dirty = true;
1691
}
1692
}
1693
1694
void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
1695
ERR_FAIL_COND(multimesh->mesh.is_null());
1696
if (multimesh->custom_aabb != AABB()) {
1697
return;
1698
}
1699
AABB aabb;
1700
AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
1701
for (int i = 0; i < p_instances; i++) {
1702
const float *data = p_data + multimesh->stride_cache * i;
1703
Transform3D t;
1704
1705
if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
1706
t.basis.rows[0][0] = data[0];
1707
t.basis.rows[0][1] = data[1];
1708
t.basis.rows[0][2] = data[2];
1709
t.origin.x = data[3];
1710
t.basis.rows[1][0] = data[4];
1711
t.basis.rows[1][1] = data[5];
1712
t.basis.rows[1][2] = data[6];
1713
t.origin.y = data[7];
1714
t.basis.rows[2][0] = data[8];
1715
t.basis.rows[2][1] = data[9];
1716
t.basis.rows[2][2] = data[10];
1717
t.origin.z = data[11];
1718
1719
} else {
1720
t.basis.rows[0][0] = data[0];
1721
t.basis.rows[0][1] = data[1];
1722
t.origin.x = data[3];
1723
1724
t.basis.rows[1][0] = data[4];
1725
t.basis.rows[1][1] = data[5];
1726
t.origin.y = data[7];
1727
}
1728
1729
if (i == 0) {
1730
aabb = t.xform(mesh_aabb);
1731
} else {
1732
aabb.merge_with(t.xform(mesh_aabb));
1733
}
1734
}
1735
1736
multimesh->aabb = aabb;
1737
}
1738
1739
void MeshStorage::_multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
1740
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1741
ERR_FAIL_NULL(multimesh);
1742
ERR_FAIL_INDEX(p_index, multimesh->instances);
1743
ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
1744
1745
_multimesh_make_local(multimesh);
1746
1747
{
1748
float *w = multimesh->data_cache.ptrw();
1749
1750
float *dataptr = w + p_index * multimesh->stride_cache;
1751
1752
dataptr[0] = p_transform.basis.rows[0][0];
1753
dataptr[1] = p_transform.basis.rows[0][1];
1754
dataptr[2] = p_transform.basis.rows[0][2];
1755
dataptr[3] = p_transform.origin.x;
1756
dataptr[4] = p_transform.basis.rows[1][0];
1757
dataptr[5] = p_transform.basis.rows[1][1];
1758
dataptr[6] = p_transform.basis.rows[1][2];
1759
dataptr[7] = p_transform.origin.y;
1760
dataptr[8] = p_transform.basis.rows[2][0];
1761
dataptr[9] = p_transform.basis.rows[2][1];
1762
dataptr[10] = p_transform.basis.rows[2][2];
1763
dataptr[11] = p_transform.origin.z;
1764
}
1765
1766
_multimesh_mark_dirty(multimesh, p_index, true);
1767
}
1768
1769
void MeshStorage::_multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
1770
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1771
ERR_FAIL_NULL(multimesh);
1772
ERR_FAIL_INDEX(p_index, multimesh->instances);
1773
ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
1774
1775
_multimesh_make_local(multimesh);
1776
1777
{
1778
float *w = multimesh->data_cache.ptrw();
1779
1780
float *dataptr = w + p_index * multimesh->stride_cache;
1781
1782
dataptr[0] = p_transform.columns[0][0];
1783
dataptr[1] = p_transform.columns[1][0];
1784
dataptr[2] = 0;
1785
dataptr[3] = p_transform.columns[2][0];
1786
dataptr[4] = p_transform.columns[0][1];
1787
dataptr[5] = p_transform.columns[1][1];
1788
dataptr[6] = 0;
1789
dataptr[7] = p_transform.columns[2][1];
1790
}
1791
1792
_multimesh_mark_dirty(multimesh, p_index, true);
1793
}
1794
1795
void MeshStorage::_multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
1796
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1797
ERR_FAIL_NULL(multimesh);
1798
ERR_FAIL_INDEX(p_index, multimesh->instances);
1799
ERR_FAIL_COND(!multimesh->uses_colors);
1800
1801
_multimesh_make_local(multimesh);
1802
1803
{
1804
// Colors are packed into 2 floats.
1805
float *w = multimesh->data_cache.ptrw();
1806
1807
float *dataptr = w + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
1808
uint16_t val[4] = { Math::make_half_float(p_color.r), Math::make_half_float(p_color.g), Math::make_half_float(p_color.b), Math::make_half_float(p_color.a) };
1809
memcpy(dataptr, val, 2 * 4);
1810
}
1811
1812
_multimesh_mark_dirty(multimesh, p_index, false);
1813
}
1814
1815
void MeshStorage::_multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
1816
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1817
ERR_FAIL_NULL(multimesh);
1818
ERR_FAIL_INDEX(p_index, multimesh->instances);
1819
ERR_FAIL_COND(!multimesh->uses_custom_data);
1820
1821
_multimesh_make_local(multimesh);
1822
1823
{
1824
float *w = multimesh->data_cache.ptrw();
1825
1826
float *dataptr = w + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
1827
uint16_t val[4] = { Math::make_half_float(p_color.r), Math::make_half_float(p_color.g), Math::make_half_float(p_color.b), Math::make_half_float(p_color.a) };
1828
memcpy(dataptr, val, 2 * 4);
1829
}
1830
1831
_multimesh_mark_dirty(multimesh, p_index, false);
1832
}
1833
1834
RID MeshStorage::_multimesh_get_mesh(RID p_multimesh) const {
1835
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1836
ERR_FAIL_NULL_V(multimesh, RID());
1837
1838
return multimesh->mesh;
1839
}
1840
1841
void MeshStorage::_multimesh_set_custom_aabb(RID p_multimesh, const AABB &p_aabb) {
1842
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1843
ERR_FAIL_NULL(multimesh);
1844
multimesh->custom_aabb = p_aabb;
1845
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
1846
}
1847
1848
AABB MeshStorage::_multimesh_get_custom_aabb(RID p_multimesh) const {
1849
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1850
ERR_FAIL_NULL_V(multimesh, AABB());
1851
return multimesh->custom_aabb;
1852
}
1853
1854
AABB MeshStorage::_multimesh_get_aabb(RID p_multimesh) {
1855
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1856
ERR_FAIL_NULL_V(multimesh, AABB());
1857
if (multimesh->custom_aabb != AABB()) {
1858
return multimesh->custom_aabb;
1859
}
1860
if (multimesh->aabb_dirty) {
1861
_update_dirty_multimeshes();
1862
}
1863
return multimesh->aabb;
1864
}
1865
1866
Transform3D MeshStorage::_multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
1867
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1868
ERR_FAIL_NULL_V(multimesh, Transform3D());
1869
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
1870
ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
1871
1872
_multimesh_make_local(multimesh);
1873
1874
Transform3D t;
1875
{
1876
const float *r = multimesh->data_cache.ptr();
1877
1878
const float *dataptr = r + p_index * multimesh->stride_cache;
1879
1880
t.basis.rows[0][0] = dataptr[0];
1881
t.basis.rows[0][1] = dataptr[1];
1882
t.basis.rows[0][2] = dataptr[2];
1883
t.origin.x = dataptr[3];
1884
t.basis.rows[1][0] = dataptr[4];
1885
t.basis.rows[1][1] = dataptr[5];
1886
t.basis.rows[1][2] = dataptr[6];
1887
t.origin.y = dataptr[7];
1888
t.basis.rows[2][0] = dataptr[8];
1889
t.basis.rows[2][1] = dataptr[9];
1890
t.basis.rows[2][2] = dataptr[10];
1891
t.origin.z = dataptr[11];
1892
}
1893
1894
return t;
1895
}
1896
1897
Transform2D MeshStorage::_multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
1898
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1899
ERR_FAIL_NULL_V(multimesh, Transform2D());
1900
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
1901
ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
1902
1903
_multimesh_make_local(multimesh);
1904
1905
Transform2D t;
1906
{
1907
const float *r = multimesh->data_cache.ptr();
1908
1909
const float *dataptr = r + p_index * multimesh->stride_cache;
1910
1911
t.columns[0][0] = dataptr[0];
1912
t.columns[1][0] = dataptr[1];
1913
t.columns[2][0] = dataptr[3];
1914
t.columns[0][1] = dataptr[4];
1915
t.columns[1][1] = dataptr[5];
1916
t.columns[2][1] = dataptr[7];
1917
}
1918
1919
return t;
1920
}
1921
1922
Color MeshStorage::_multimesh_instance_get_color(RID p_multimesh, int p_index) const {
1923
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1924
ERR_FAIL_NULL_V(multimesh, Color());
1925
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
1926
ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
1927
1928
_multimesh_make_local(multimesh);
1929
1930
Color c;
1931
{
1932
const float *r = multimesh->data_cache.ptr();
1933
1934
const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
1935
uint16_t raw_data[4];
1936
memcpy(raw_data, dataptr, 2 * 4);
1937
c.r = Math::half_to_float(raw_data[0]);
1938
c.g = Math::half_to_float(raw_data[1]);
1939
c.b = Math::half_to_float(raw_data[2]);
1940
c.a = Math::half_to_float(raw_data[3]);
1941
}
1942
1943
return c;
1944
}
1945
1946
Color MeshStorage::_multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
1947
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1948
ERR_FAIL_NULL_V(multimesh, Color());
1949
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
1950
ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
1951
1952
_multimesh_make_local(multimesh);
1953
1954
Color c;
1955
{
1956
const float *r = multimesh->data_cache.ptr();
1957
1958
const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
1959
uint16_t raw_data[4];
1960
memcpy(raw_data, dataptr, 2 * 4);
1961
c.r = Math::half_to_float(raw_data[0]);
1962
c.g = Math::half_to_float(raw_data[1]);
1963
c.b = Math::half_to_float(raw_data[2]);
1964
c.a = Math::half_to_float(raw_data[3]);
1965
}
1966
1967
return c;
1968
}
1969
1970
void MeshStorage::_multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
1971
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1972
ERR_FAIL_NULL(multimesh);
1973
1974
if (multimesh->uses_colors || multimesh->uses_custom_data) {
1975
// Color and custom need to be packed so copy buffer to data_cache and pack.
1976
1977
_multimesh_make_local(multimesh);
1978
1979
uint32_t old_stride = multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
1980
old_stride += multimesh->uses_colors ? 4 : 0;
1981
old_stride += multimesh->uses_custom_data ? 4 : 0;
1982
ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)old_stride));
1983
1984
multimesh->data_cache = p_buffer;
1985
1986
float *w = multimesh->data_cache.ptrw();
1987
1988
for (int i = 0; i < multimesh->instances; i++) {
1989
{
1990
float *dataptr = w + i * old_stride;
1991
float *newptr = w + i * multimesh->stride_cache;
1992
float vals[8] = { dataptr[0], dataptr[1], dataptr[2], dataptr[3], dataptr[4], dataptr[5], dataptr[6], dataptr[7] };
1993
memcpy(newptr, vals, 8 * 4);
1994
}
1995
1996
if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
1997
float *dataptr = w + i * old_stride + 8;
1998
float *newptr = w + i * multimesh->stride_cache + 8;
1999
float vals[8] = { dataptr[0], dataptr[1], dataptr[2], dataptr[3] };
2000
memcpy(newptr, vals, 4 * 4);
2001
}
2002
2003
if (multimesh->uses_colors) {
2004
float *dataptr = w + i * old_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12);
2005
float *newptr = w + i * multimesh->stride_cache + multimesh->color_offset_cache;
2006
uint16_t val[4] = { Math::make_half_float(dataptr[0]), Math::make_half_float(dataptr[1]), Math::make_half_float(dataptr[2]), Math::make_half_float(dataptr[3]) };
2007
memcpy(newptr, val, 2 * 4);
2008
}
2009
if (multimesh->uses_custom_data) {
2010
float *dataptr = w + i * old_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12) + (multimesh->uses_colors ? 4 : 0);
2011
float *newptr = w + i * multimesh->stride_cache + multimesh->custom_data_offset_cache;
2012
uint16_t val[4] = { Math::make_half_float(dataptr[0]), Math::make_half_float(dataptr[1]), Math::make_half_float(dataptr[2]), Math::make_half_float(dataptr[3]) };
2013
memcpy(newptr, val, 2 * 4);
2014
}
2015
}
2016
2017
multimesh->data_cache.resize(multimesh->instances * (int)multimesh->stride_cache);
2018
const float *r = multimesh->data_cache.ptr();
2019
glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
2020
glBufferData(GL_ARRAY_BUFFER, multimesh->data_cache.size() * sizeof(float), r, GL_STATIC_DRAW);
2021
glBindBuffer(GL_ARRAY_BUFFER, 0);
2022
2023
} else {
2024
// If we have a data cache, just update it.
2025
if (multimesh->data_cache.size()) {
2026
multimesh->data_cache = p_buffer;
2027
}
2028
2029
// Only Transform is being used, so we can upload directly.
2030
ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
2031
const float *r = p_buffer.ptr();
2032
glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
2033
glBufferData(GL_ARRAY_BUFFER, p_buffer.size() * sizeof(float), r, GL_STATIC_DRAW);
2034
glBindBuffer(GL_ARRAY_BUFFER, 0);
2035
}
2036
2037
multimesh->buffer_set = true;
2038
2039
if (multimesh->data_cache.size() || multimesh->uses_colors || multimesh->uses_custom_data) {
2040
// Clear dirty since nothing will be dirty anymore.
2041
uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
2042
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
2043
multimesh->data_cache_dirty_regions[i] = false;
2044
}
2045
multimesh->data_cache_used_dirty_regions = 0;
2046
2047
_multimesh_mark_all_dirty(multimesh, false, true); //update AABB
2048
} else if (multimesh->mesh.is_valid()) {
2049
//if we have a mesh set, we need to re-generate the AABB from the new data
2050
const float *data = p_buffer.ptr();
2051
2052
if (multimesh->custom_aabb == AABB()) {
2053
_multimesh_re_create_aabb(multimesh, data, multimesh->instances);
2054
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
2055
}
2056
}
2057
}
2058
2059
RID MeshStorage::_multimesh_get_command_buffer_rd_rid(RID p_multimesh) const {
2060
ERR_FAIL_V_MSG(RID(), "GLES3 does not implement indirect multimeshes.");
2061
}
2062
2063
RID MeshStorage::_multimesh_get_buffer_rd_rid(RID p_multimesh) const {
2064
ERR_FAIL_V_MSG(RID(), "GLES3 does not contain a Rid for the multimesh buffer.");
2065
}
2066
2067
Vector<float> MeshStorage::_multimesh_get_buffer(RID p_multimesh) const {
2068
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
2069
ERR_FAIL_NULL_V(multimesh, Vector<float>());
2070
Vector<float> ret;
2071
if (multimesh->buffer == 0 || multimesh->instances == 0) {
2072
return Vector<float>();
2073
} else if (multimesh->data_cache.size()) {
2074
ret = multimesh->data_cache;
2075
} else {
2076
// Buffer not cached, so fetch from GPU memory. This can be a stalling operation, avoid whenever possible.
2077
2078
Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float));
2079
ret.resize(multimesh->instances * multimesh->stride_cache);
2080
{
2081
float *w = ret.ptrw();
2082
const uint8_t *r = buffer.ptr();
2083
memcpy(w, r, buffer.size());
2084
}
2085
}
2086
if (multimesh->uses_colors || multimesh->uses_custom_data) {
2087
// Need to decompress buffer.
2088
uint32_t new_stride = multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
2089
new_stride += multimesh->uses_colors ? 4 : 0;
2090
new_stride += multimesh->uses_custom_data ? 4 : 0;
2091
2092
Vector<float> decompressed;
2093
decompressed.resize(multimesh->instances * (int)new_stride);
2094
float *w = decompressed.ptrw();
2095
const float *r = ret.ptr();
2096
2097
for (int i = 0; i < multimesh->instances; i++) {
2098
{
2099
float *newptr = w + i * new_stride;
2100
const float *oldptr = r + i * multimesh->stride_cache;
2101
float vals[8] = { oldptr[0], oldptr[1], oldptr[2], oldptr[3], oldptr[4], oldptr[5], oldptr[6], oldptr[7] };
2102
memcpy(newptr, vals, 8 * 4);
2103
}
2104
2105
if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
2106
float *newptr = w + i * new_stride + 8;
2107
const float *oldptr = r + i * multimesh->stride_cache + 8;
2108
float vals[8] = { oldptr[0], oldptr[1], oldptr[2], oldptr[3] };
2109
memcpy(newptr, vals, 4 * 4);
2110
}
2111
2112
if (multimesh->uses_colors) {
2113
float *newptr = w + i * new_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12);
2114
const float *oldptr = r + i * multimesh->stride_cache + multimesh->color_offset_cache;
2115
uint16_t raw_data[4];
2116
memcpy(raw_data, oldptr, 2 * 4);
2117
newptr[0] = Math::half_to_float(raw_data[0]);
2118
newptr[1] = Math::half_to_float(raw_data[1]);
2119
newptr[2] = Math::half_to_float(raw_data[2]);
2120
newptr[3] = Math::half_to_float(raw_data[3]);
2121
}
2122
if (multimesh->uses_custom_data) {
2123
float *newptr = w + i * new_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12) + (multimesh->uses_colors ? 4 : 0);
2124
const float *oldptr = r + i * multimesh->stride_cache + multimesh->custom_data_offset_cache;
2125
uint16_t raw_data[4];
2126
memcpy(raw_data, oldptr, 2 * 4);
2127
newptr[0] = Math::half_to_float(raw_data[0]);
2128
newptr[1] = Math::half_to_float(raw_data[1]);
2129
newptr[2] = Math::half_to_float(raw_data[2]);
2130
newptr[3] = Math::half_to_float(raw_data[3]);
2131
}
2132
}
2133
return decompressed;
2134
} else {
2135
return ret;
2136
}
2137
}
2138
2139
void MeshStorage::_multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
2140
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
2141
ERR_FAIL_NULL(multimesh);
2142
ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
2143
if (multimesh->visible_instances == p_visible) {
2144
return;
2145
}
2146
2147
if (multimesh->data_cache.size()) {
2148
// There is a data cache, but we may need to update some sections.
2149
_multimesh_mark_all_dirty(multimesh, false, true);
2150
int start = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
2151
for (int i = start; i < p_visible; i++) {
2152
_multimesh_mark_dirty(multimesh, i, true);
2153
}
2154
}
2155
2156
multimesh->visible_instances = p_visible;
2157
2158
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
2159
}
2160
2161
int MeshStorage::_multimesh_get_visible_instances(RID p_multimesh) const {
2162
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
2163
ERR_FAIL_NULL_V(multimesh, 0);
2164
return multimesh->visible_instances;
2165
}
2166
2167
MeshStorage::MultiMeshInterpolator *MeshStorage::_multimesh_get_interpolator(RID p_multimesh) const {
2168
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
2169
ERR_FAIL_NULL_V_MSG(multimesh, nullptr, "Multimesh not found: " + itos(p_multimesh.get_id()));
2170
2171
return &multimesh->interpolator;
2172
}
2173
2174
void MeshStorage::_update_dirty_multimeshes() {
2175
while (multimesh_dirty_list) {
2176
MultiMesh *multimesh = multimesh_dirty_list;
2177
2178
if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
2179
const float *data = multimesh->data_cache.ptr();
2180
2181
uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
2182
2183
if (multimesh->data_cache_used_dirty_regions) {
2184
uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, (int)MULTIMESH_DIRTY_REGION_SIZE);
2185
uint32_t visible_region_count = visible_instances == 0 ? 0 : Math::division_round_up(visible_instances, (uint32_t)MULTIMESH_DIRTY_REGION_SIZE);
2186
2187
GLint region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
2188
2189
if (multimesh->data_cache_used_dirty_regions > 32 || multimesh->data_cache_used_dirty_regions > visible_region_count / 2) {
2190
// If there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
2191
glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
2192
glBufferSubData(GL_ARRAY_BUFFER, 0, MIN(visible_region_count * region_size, multimesh->instances * multimesh->stride_cache * sizeof(float)), data);
2193
glBindBuffer(GL_ARRAY_BUFFER, 0);
2194
} else {
2195
// Not that many regions? update them all
2196
// TODO: profile the performance cost on low end
2197
glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
2198
for (uint32_t i = 0; i < visible_region_count; i++) {
2199
if (multimesh->data_cache_dirty_regions[i]) {
2200
GLint offset = i * region_size;
2201
GLint size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
2202
uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
2203
glBufferSubData(GL_ARRAY_BUFFER, offset, MIN(region_size, size - offset), &data[region_start_index]);
2204
}
2205
}
2206
glBindBuffer(GL_ARRAY_BUFFER, 0);
2207
}
2208
2209
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
2210
multimesh->data_cache_dirty_regions[i] = false;
2211
}
2212
2213
multimesh->data_cache_used_dirty_regions = 0;
2214
}
2215
2216
if (multimesh->aabb_dirty && multimesh->mesh.is_valid()) {
2217
multimesh->aabb_dirty = false;
2218
if (multimesh->custom_aabb == AABB()) {
2219
_multimesh_re_create_aabb(multimesh, data, visible_instances);
2220
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
2221
}
2222
}
2223
}
2224
2225
multimesh_dirty_list = multimesh->dirty_list;
2226
2227
multimesh->dirty_list = nullptr;
2228
multimesh->dirty = false;
2229
}
2230
2231
multimesh_dirty_list = nullptr;
2232
}
2233
2234
/* SKELETON API */
2235
2236
RID MeshStorage::skeleton_allocate() {
2237
return skeleton_owner.allocate_rid();
2238
}
2239
2240
void MeshStorage::skeleton_initialize(RID p_rid) {
2241
skeleton_owner.initialize_rid(p_rid, Skeleton());
2242
}
2243
2244
void MeshStorage::skeleton_free(RID p_rid) {
2245
_update_dirty_skeletons();
2246
skeleton_allocate_data(p_rid, 0);
2247
Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
2248
skeleton->dependency.deleted_notify(p_rid);
2249
skeleton_owner.free(p_rid);
2250
}
2251
2252
void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
2253
if (!skeleton->dirty) {
2254
skeleton->dirty = true;
2255
skeleton->dirty_list = skeleton_dirty_list;
2256
skeleton_dirty_list = skeleton;
2257
}
2258
}
2259
2260
void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
2261
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2262
ERR_FAIL_NULL(skeleton);
2263
ERR_FAIL_COND(p_bones < 0);
2264
2265
if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
2266
return;
2267
}
2268
2269
skeleton->size = p_bones;
2270
skeleton->use_2d = p_2d_skeleton;
2271
skeleton->height = (p_bones * (p_2d_skeleton ? 2 : 3)) / 256;
2272
if ((p_bones * (p_2d_skeleton ? 2 : 3)) % 256) {
2273
skeleton->height++;
2274
}
2275
2276
if (skeleton->transforms_texture != 0) {
2277
GLES3::Utilities::get_singleton()->texture_free_data(skeleton->transforms_texture);
2278
skeleton->transforms_texture = 0;
2279
skeleton->data.clear();
2280
}
2281
2282
if (skeleton->size) {
2283
skeleton->data.resize(256 * skeleton->height * 4);
2284
glGenTextures(1, &skeleton->transforms_texture);
2285
glBindTexture(GL_TEXTURE_2D, skeleton->transforms_texture);
2286
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, skeleton->height, 0, GL_RGBA, GL_FLOAT, nullptr);
2287
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
2288
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
2289
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2290
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2291
glBindTexture(GL_TEXTURE_2D, 0);
2292
GLES3::Utilities::get_singleton()->texture_allocated_data(skeleton->transforms_texture, skeleton->data.size() * sizeof(float), "Skeleton transforms texture");
2293
2294
memset(skeleton->data.ptr(), 0, skeleton->data.size() * sizeof(float));
2295
2296
_skeleton_make_dirty(skeleton);
2297
}
2298
2299
skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
2300
}
2301
2302
void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
2303
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2304
2305
ERR_FAIL_NULL(skeleton);
2306
ERR_FAIL_COND(!skeleton->use_2d);
2307
2308
skeleton->base_transform_2d = p_base_transform;
2309
}
2310
2311
int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
2312
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2313
ERR_FAIL_NULL_V(skeleton, 0);
2314
2315
return skeleton->size;
2316
}
2317
2318
void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
2319
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2320
2321
ERR_FAIL_NULL(skeleton);
2322
ERR_FAIL_INDEX(p_bone, skeleton->size);
2323
ERR_FAIL_COND(skeleton->use_2d);
2324
2325
float *dataptr = skeleton->data.ptr() + p_bone * 12;
2326
2327
dataptr[0] = p_transform.basis.rows[0][0];
2328
dataptr[1] = p_transform.basis.rows[0][1];
2329
dataptr[2] = p_transform.basis.rows[0][2];
2330
dataptr[3] = p_transform.origin.x;
2331
dataptr[4] = p_transform.basis.rows[1][0];
2332
dataptr[5] = p_transform.basis.rows[1][1];
2333
dataptr[6] = p_transform.basis.rows[1][2];
2334
dataptr[7] = p_transform.origin.y;
2335
dataptr[8] = p_transform.basis.rows[2][0];
2336
dataptr[9] = p_transform.basis.rows[2][1];
2337
dataptr[10] = p_transform.basis.rows[2][2];
2338
dataptr[11] = p_transform.origin.z;
2339
2340
_skeleton_make_dirty(skeleton);
2341
}
2342
2343
Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
2344
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2345
2346
ERR_FAIL_NULL_V(skeleton, Transform3D());
2347
ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
2348
ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
2349
2350
const float *dataptr = skeleton->data.ptr() + p_bone * 12;
2351
2352
Transform3D t;
2353
2354
t.basis.rows[0][0] = dataptr[0];
2355
t.basis.rows[0][1] = dataptr[1];
2356
t.basis.rows[0][2] = dataptr[2];
2357
t.origin.x = dataptr[3];
2358
t.basis.rows[1][0] = dataptr[4];
2359
t.basis.rows[1][1] = dataptr[5];
2360
t.basis.rows[1][2] = dataptr[6];
2361
t.origin.y = dataptr[7];
2362
t.basis.rows[2][0] = dataptr[8];
2363
t.basis.rows[2][1] = dataptr[9];
2364
t.basis.rows[2][2] = dataptr[10];
2365
t.origin.z = dataptr[11];
2366
2367
return t;
2368
}
2369
2370
void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
2371
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2372
2373
ERR_FAIL_NULL(skeleton);
2374
ERR_FAIL_INDEX(p_bone, skeleton->size);
2375
ERR_FAIL_COND(!skeleton->use_2d);
2376
2377
float *dataptr = skeleton->data.ptr() + p_bone * 8;
2378
2379
dataptr[0] = p_transform.columns[0][0];
2380
dataptr[1] = p_transform.columns[1][0];
2381
dataptr[2] = 0;
2382
dataptr[3] = p_transform.columns[2][0];
2383
dataptr[4] = p_transform.columns[0][1];
2384
dataptr[5] = p_transform.columns[1][1];
2385
dataptr[6] = 0;
2386
dataptr[7] = p_transform.columns[2][1];
2387
2388
_skeleton_make_dirty(skeleton);
2389
}
2390
2391
Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
2392
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2393
2394
ERR_FAIL_NULL_V(skeleton, Transform2D());
2395
ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
2396
ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
2397
2398
const float *dataptr = skeleton->data.ptr() + p_bone * 8;
2399
2400
Transform2D t;
2401
t.columns[0][0] = dataptr[0];
2402
t.columns[1][0] = dataptr[1];
2403
t.columns[2][0] = dataptr[3];
2404
t.columns[0][1] = dataptr[4];
2405
t.columns[1][1] = dataptr[5];
2406
t.columns[2][1] = dataptr[7];
2407
2408
return t;
2409
}
2410
2411
void MeshStorage::_update_dirty_skeletons() {
2412
while (skeleton_dirty_list) {
2413
Skeleton *skeleton = skeleton_dirty_list;
2414
2415
if (skeleton->size) {
2416
glBindTexture(GL_TEXTURE_2D, skeleton->transforms_texture);
2417
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, skeleton->height, 0, GL_RGBA, GL_FLOAT, skeleton->data.ptr());
2418
glBindTexture(GL_TEXTURE_2D, 0);
2419
}
2420
2421
skeleton_dirty_list = skeleton->dirty_list;
2422
2423
skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
2424
2425
skeleton->version++;
2426
2427
skeleton->dirty = false;
2428
skeleton->dirty_list = nullptr;
2429
}
2430
2431
skeleton_dirty_list = nullptr;
2432
}
2433
2434
void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
2435
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2436
ERR_FAIL_NULL(skeleton);
2437
2438
p_instance->update_dependency(&skeleton->dependency);
2439
}
2440
2441
#endif // GLES3_ENABLED
2442
2443