Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/drivers/gles3/storage/mesh_storage.cpp
20784 views
1
/**************************************************************************/
2
/* mesh_storage.cpp */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#ifdef GLES3_ENABLED
32
33
#include "mesh_storage.h"
34
#include "config.h"
35
#include "texture_storage.h"
36
#include "utilities.h"
37
38
using namespace GLES3;
39
40
MeshStorage *MeshStorage::singleton = nullptr;
41
42
MeshStorage *MeshStorage::get_singleton() {
43
return singleton;
44
}
45
46
MeshStorage::MeshStorage() {
47
singleton = this;
48
49
{
50
skeleton_shader.shader.initialize();
51
skeleton_shader.shader_version = skeleton_shader.shader.version_create();
52
}
53
}
54
55
MeshStorage::~MeshStorage() {
56
singleton = nullptr;
57
skeleton_shader.shader.version_free(skeleton_shader.shader_version);
58
}
59
60
/* MESH API */
61
62
RID MeshStorage::mesh_allocate() {
63
return mesh_owner.allocate_rid();
64
}
65
66
void MeshStorage::mesh_initialize(RID p_rid) {
67
mesh_owner.initialize_rid(p_rid, Mesh());
68
}
69
70
void MeshStorage::mesh_free(RID p_rid) {
71
mesh_clear(p_rid);
72
mesh_set_shadow_mesh(p_rid, RID());
73
Mesh *mesh = mesh_owner.get_or_null(p_rid);
74
ERR_FAIL_NULL(mesh);
75
76
mesh->dependency.deleted_notify(p_rid);
77
if (mesh->instances.size()) {
78
ERR_PRINT("deleting mesh with active instances");
79
}
80
if (mesh->shadow_owners.size()) {
81
for (Mesh *E : mesh->shadow_owners) {
82
Mesh *shadow_owner = E;
83
shadow_owner->shadow_mesh = RID();
84
shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
85
}
86
}
87
mesh_owner.free(p_rid);
88
}
89
90
void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
91
ERR_FAIL_COND(p_blend_shape_count < 0);
92
93
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
94
ERR_FAIL_NULL(mesh);
95
96
ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
97
mesh->blend_shape_count = p_blend_shape_count;
98
}
99
100
bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
101
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
102
ERR_FAIL_NULL_V(mesh, false);
103
104
return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
105
}
106
107
void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
108
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
109
ERR_FAIL_NULL(mesh);
110
111
ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
112
113
#ifdef DEBUG_ENABLED
114
//do a validation, to catch errors first
115
{
116
uint32_t stride = 0;
117
uint32_t attrib_stride = 0;
118
uint32_t skin_stride = 0;
119
120
for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
121
if ((p_surface.format & (1ULL << i))) {
122
switch (i) {
123
case RS::ARRAY_VERTEX: {
124
if ((p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) || (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
125
stride += sizeof(float) * 2;
126
} else {
127
stride += sizeof(float) * 3;
128
}
129
} break;
130
case RS::ARRAY_NORMAL: {
131
stride += sizeof(uint16_t) * 2;
132
133
} break;
134
case RS::ARRAY_TANGENT: {
135
if (!(p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
136
stride += sizeof(uint16_t) * 2;
137
}
138
} break;
139
case RS::ARRAY_COLOR: {
140
attrib_stride += sizeof(uint32_t);
141
} break;
142
case RS::ARRAY_TEX_UV: {
143
if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
144
attrib_stride += sizeof(uint16_t) * 2;
145
} else {
146
attrib_stride += sizeof(float) * 2;
147
}
148
} break;
149
case RS::ARRAY_TEX_UV2: {
150
if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
151
attrib_stride += sizeof(uint16_t) * 2;
152
} else {
153
attrib_stride += sizeof(float) * 2;
154
}
155
} break;
156
case RS::ARRAY_CUSTOM0:
157
case RS::ARRAY_CUSTOM1:
158
case RS::ARRAY_CUSTOM2:
159
case RS::ARRAY_CUSTOM3: {
160
int idx = i - RS::ARRAY_CUSTOM0;
161
uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
162
uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
163
uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
164
attrib_stride += fmtsize[fmt];
165
166
} break;
167
case RS::ARRAY_WEIGHTS:
168
case RS::ARRAY_BONES: {
169
//uses a separate array
170
bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
171
skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
172
} break;
173
}
174
}
175
}
176
177
int expected_size = stride * p_surface.vertex_count;
178
ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
179
180
int bs_expected_size = expected_size * mesh->blend_shape_count;
181
182
ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
183
184
int expected_attrib_size = attrib_stride * p_surface.vertex_count;
185
ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
186
187
if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
188
expected_size = skin_stride * p_surface.vertex_count;
189
ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
190
}
191
}
192
193
#endif
194
195
uint64_t surface_version = p_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
196
RS::SurfaceData new_surface = p_surface;
197
#ifdef DISABLE_DEPRECATED
198
199
ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION, "Surface version provided (" + itos(int(surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT)) + ") does not match current version (" + itos(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) + ")");
200
201
#else
202
203
if (surface_version != uint64_t(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION)) {
204
RS::get_singleton()->fix_surface_compatibility(new_surface);
205
surface_version = new_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
206
ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION,
207
vformat("Surface version provided (%d) does not match current version (%d).",
208
(surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK,
209
(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK));
210
}
211
#endif
212
213
Mesh::Surface *s = memnew(Mesh::Surface);
214
215
s->format = new_surface.format;
216
s->primitive = new_surface.primitive;
217
218
if (new_surface.vertex_data.size()) {
219
glGenBuffers(1, &s->vertex_buffer);
220
glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer);
221
// If we have an uncompressed surface that contains normals, but not tangents, we need to differentiate the array
222
// from a compressed array in the shader. To do so, we allow the normal to read 4 components out of the buffer
223
// But only give it 2 components per normal. So essentially, each vertex reads the next normal in normal.zw.
224
// This allows us to avoid adding a shader permutation, and avoid passing dummy tangents. Since the stride is kept small
225
// this should still be a net win for bandwidth.
226
// If we do this, then the last normal will read past the end of the array. So we need to pad the array with dummy data.
227
if (!(new_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (new_surface.format & RS::ARRAY_FORMAT_NORMAL) && !(new_surface.format & RS::ARRAY_FORMAT_TANGENT)) {
228
// Unfortunately, we need to copy the buffer, which is fine as doing a resize triggers a CoW anyway.
229
Vector<uint8_t> new_vertex_data;
230
new_vertex_data.resize_initialized(new_surface.vertex_data.size() + sizeof(uint16_t) * 2);
231
memcpy(new_vertex_data.ptrw(), new_surface.vertex_data.ptr(), new_surface.vertex_data.size());
232
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->vertex_buffer, new_vertex_data.size(), new_vertex_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh vertex buffer");
233
s->vertex_buffer_size = new_vertex_data.size();
234
} else {
235
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->vertex_buffer, new_surface.vertex_data.size(), new_surface.vertex_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh vertex buffer");
236
s->vertex_buffer_size = new_surface.vertex_data.size();
237
}
238
}
239
240
if (new_surface.attribute_data.size()) {
241
glGenBuffers(1, &s->attribute_buffer);
242
glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer);
243
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->attribute_buffer, new_surface.attribute_data.size(), new_surface.attribute_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh attribute buffer");
244
s->attribute_buffer_size = new_surface.attribute_data.size();
245
}
246
247
if (new_surface.skin_data.size()) {
248
glGenBuffers(1, &s->skin_buffer);
249
glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer);
250
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->skin_buffer, new_surface.skin_data.size(), new_surface.skin_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh skin buffer");
251
s->skin_buffer_size = new_surface.skin_data.size();
252
}
253
254
glBindBuffer(GL_ARRAY_BUFFER, 0);
255
256
s->vertex_count = new_surface.vertex_count;
257
258
if (new_surface.format & RS::ARRAY_FORMAT_BONES) {
259
mesh->has_bone_weights = true;
260
}
261
262
if (new_surface.index_count) {
263
bool is_index_16 = new_surface.vertex_count <= 65536 && new_surface.vertex_count > 0;
264
glGenBuffers(1, &s->index_buffer);
265
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_buffer);
266
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, s->index_buffer, new_surface.index_data.size(), new_surface.index_data.ptr(), GL_STATIC_DRAW, "Mesh index buffer");
267
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
268
s->index_count = new_surface.index_count;
269
s->index_buffer_size = new_surface.index_data.size();
270
271
if (new_surface.lods.size()) {
272
s->lods = memnew_arr(Mesh::Surface::LOD, new_surface.lods.size());
273
s->lod_count = new_surface.lods.size();
274
275
for (int i = 0; i < new_surface.lods.size(); i++) {
276
glGenBuffers(1, &s->lods[i].index_buffer);
277
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->lods[i].index_buffer);
278
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, s->lods[i].index_buffer, new_surface.lods[i].index_data.size(), new_surface.lods[i].index_data.ptr(), GL_STATIC_DRAW, "Mesh index buffer LOD[" + itos(i) + "]");
279
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
280
s->lods[i].edge_length = new_surface.lods[i].edge_length;
281
s->lods[i].index_count = new_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
282
s->lods[i].index_buffer_size = new_surface.lods[i].index_data.size();
283
}
284
}
285
}
286
287
ERR_FAIL_COND_MSG(!new_surface.index_count && !new_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
288
289
if (GLES3::Config::get_singleton()->generate_wireframes && s->primitive == RS::PRIMITIVE_TRIANGLES) {
290
// Generate wireframes. This is mostly used by the editor.
291
s->wireframe = memnew(Mesh::Surface::Wireframe);
292
Vector<uint32_t> wf_indices;
293
uint32_t &wf_index_count = s->wireframe->index_count;
294
uint32_t *wr = nullptr;
295
296
if (new_surface.format & RS::ARRAY_FORMAT_INDEX) {
297
wf_index_count = s->index_count * 2;
298
wf_indices.resize(wf_index_count);
299
300
Vector<uint8_t> ir = new_surface.index_data;
301
wr = wf_indices.ptrw();
302
303
if (new_surface.vertex_count <= 65536) {
304
// Read 16 bit indices.
305
const uint16_t *src_idx = (const uint16_t *)ir.ptr();
306
for (uint32_t i = 0; i + 5 < wf_index_count; i += 6) {
307
// We use GL_LINES instead of GL_TRIANGLES for drawing these primitives later,
308
// so we need double the indices for each triangle.
309
wr[i + 0] = src_idx[i / 2];
310
wr[i + 1] = src_idx[i / 2 + 1];
311
wr[i + 2] = src_idx[i / 2 + 1];
312
wr[i + 3] = src_idx[i / 2 + 2];
313
wr[i + 4] = src_idx[i / 2 + 2];
314
wr[i + 5] = src_idx[i / 2];
315
}
316
317
} else {
318
// Read 32 bit indices.
319
const uint32_t *src_idx = (const uint32_t *)ir.ptr();
320
for (uint32_t i = 0; i + 5 < wf_index_count; i += 6) {
321
wr[i + 0] = src_idx[i / 2];
322
wr[i + 1] = src_idx[i / 2 + 1];
323
wr[i + 2] = src_idx[i / 2 + 1];
324
wr[i + 3] = src_idx[i / 2 + 2];
325
wr[i + 4] = src_idx[i / 2 + 2];
326
wr[i + 5] = src_idx[i / 2];
327
}
328
}
329
} else {
330
// Not using indices.
331
wf_index_count = s->vertex_count * 2;
332
wf_indices.resize(wf_index_count);
333
wr = wf_indices.ptrw();
334
335
for (uint32_t i = 0; i + 5 < wf_index_count; i += 6) {
336
wr[i + 0] = i / 2;
337
wr[i + 1] = i / 2 + 1;
338
wr[i + 2] = i / 2 + 1;
339
wr[i + 3] = i / 2 + 2;
340
wr[i + 4] = i / 2 + 2;
341
wr[i + 5] = i / 2;
342
}
343
}
344
345
s->wireframe->index_buffer_size = wf_index_count * sizeof(uint32_t);
346
glGenBuffers(1, &s->wireframe->index_buffer);
347
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->wireframe->index_buffer);
348
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, s->wireframe->index_buffer, s->wireframe->index_buffer_size, wr, GL_STATIC_DRAW, "Mesh wireframe index buffer");
349
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); // unbind
350
}
351
352
s->aabb = new_surface.aabb;
353
s->bone_aabbs = new_surface.bone_aabbs; //only really useful for returning them.
354
s->mesh_to_skeleton_xform = p_surface.mesh_to_skeleton_xform;
355
356
s->uv_scale = new_surface.uv_scale;
357
358
if (new_surface.skin_data.size() || mesh->blend_shape_count > 0) {
359
// Size must match the size of the vertex array.
360
int size = new_surface.vertex_data.size();
361
int vertex_size = 0;
362
int position_stride = 0;
363
int normal_tangent_stride = 0;
364
int normal_offset = 0;
365
int tangent_offset = 0;
366
if ((new_surface.format & (1ULL << RS::ARRAY_VERTEX))) {
367
if (new_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
368
vertex_size = 2;
369
position_stride = sizeof(float) * vertex_size;
370
} else {
371
if (new_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
372
vertex_size = 4;
373
position_stride = sizeof(uint16_t) * vertex_size;
374
} else {
375
vertex_size = 3;
376
position_stride = sizeof(float) * vertex_size;
377
}
378
}
379
}
380
if ((new_surface.format & (1ULL << RS::ARRAY_NORMAL))) {
381
normal_offset = position_stride * s->vertex_count;
382
normal_tangent_stride += sizeof(uint16_t) * 2;
383
}
384
if ((new_surface.format & (1ULL << RS::ARRAY_TANGENT))) {
385
tangent_offset = normal_offset + normal_tangent_stride;
386
normal_tangent_stride += sizeof(uint16_t) * 2;
387
}
388
389
if (mesh->blend_shape_count > 0) {
390
// Blend shapes are passed as one large array, for OpenGL, we need to split each of them into their own buffer
391
s->blend_shapes = memnew_arr(Mesh::Surface::BlendShape, mesh->blend_shape_count);
392
393
for (uint32_t i = 0; i < mesh->blend_shape_count; i++) {
394
glGenVertexArrays(1, &s->blend_shapes[i].vertex_array);
395
glBindVertexArray(s->blend_shapes[i].vertex_array);
396
glGenBuffers(1, &s->blend_shapes[i].vertex_buffer);
397
glBindBuffer(GL_ARRAY_BUFFER, s->blend_shapes[i].vertex_buffer);
398
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->blend_shapes[i].vertex_buffer, size, new_surface.blend_shape_data.ptr() + i * size, (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh blend shape buffer");
399
400
if ((new_surface.format & (1ULL << RS::ARRAY_VERTEX))) {
401
glEnableVertexAttribArray(RS::ARRAY_VERTEX + 3);
402
glVertexAttribPointer(RS::ARRAY_VERTEX + 3, vertex_size, GL_FLOAT, GL_FALSE, position_stride, CAST_INT_TO_UCHAR_PTR(0));
403
}
404
if ((new_surface.format & (1ULL << RS::ARRAY_NORMAL))) {
405
// Normal and tangent are packed into the same attribute.
406
glEnableVertexAttribArray(RS::ARRAY_NORMAL + 3);
407
glVertexAttribPointer(RS::ARRAY_NORMAL + 3, 2, GL_UNSIGNED_SHORT, GL_TRUE, normal_tangent_stride, CAST_INT_TO_UCHAR_PTR(normal_offset));
408
}
409
if ((p_surface.format & (1ULL << RS::ARRAY_TANGENT))) {
410
glEnableVertexAttribArray(RS::ARRAY_TANGENT + 3);
411
glVertexAttribPointer(RS::ARRAY_TANGENT + 3, 2, GL_UNSIGNED_SHORT, GL_TRUE, normal_tangent_stride, CAST_INT_TO_UCHAR_PTR(tangent_offset));
412
}
413
}
414
glBindVertexArray(0);
415
glBindBuffer(GL_ARRAY_BUFFER, 0);
416
}
417
418
glBindVertexArray(0);
419
glBindBuffer(GL_ARRAY_BUFFER, 0);
420
}
421
422
if (mesh->surface_count == 0) {
423
mesh->aabb = new_surface.aabb;
424
} else {
425
mesh->aabb.merge_with(new_surface.aabb);
426
}
427
mesh->skeleton_aabb_version = 0;
428
429
s->material = new_surface.material;
430
431
mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
432
mesh->surfaces[mesh->surface_count] = s;
433
mesh->surface_count++;
434
435
for (MeshInstance *mi : mesh->instances) {
436
_mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
437
}
438
439
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
440
441
for (Mesh *E : mesh->shadow_owners) {
442
Mesh *shadow_owner = E;
443
shadow_owner->shadow_mesh = RID();
444
shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
445
}
446
447
mesh->material_cache.clear();
448
}
449
450
void MeshStorage::_mesh_surface_clear(Mesh *mesh, int p_surface) {
451
Mesh::Surface &s = *mesh->surfaces[p_surface];
452
453
if (s.vertex_buffer != 0) {
454
GLES3::Utilities::get_singleton()->buffer_free_data(s.vertex_buffer);
455
s.vertex_buffer = 0;
456
}
457
458
if (s.version_count != 0) {
459
for (uint32_t j = 0; j < s.version_count; j++) {
460
glDeleteVertexArrays(1, &s.versions[j].vertex_array);
461
s.versions[j].vertex_array = 0;
462
}
463
}
464
465
if (s.attribute_buffer != 0) {
466
GLES3::Utilities::get_singleton()->buffer_free_data(s.attribute_buffer);
467
s.attribute_buffer = 0;
468
}
469
470
if (s.skin_buffer != 0) {
471
GLES3::Utilities::get_singleton()->buffer_free_data(s.skin_buffer);
472
s.skin_buffer = 0;
473
}
474
475
if (s.index_buffer != 0) {
476
GLES3::Utilities::get_singleton()->buffer_free_data(s.index_buffer);
477
s.index_buffer = 0;
478
}
479
480
if (s.versions) {
481
memfree(s.versions); // reallocs, so free with memfree.
482
}
483
484
if (s.wireframe) {
485
GLES3::Utilities::get_singleton()->buffer_free_data(s.wireframe->index_buffer);
486
memdelete(s.wireframe);
487
}
488
489
if (s.lod_count) {
490
for (uint32_t j = 0; j < s.lod_count; j++) {
491
if (s.lods[j].index_buffer != 0) {
492
GLES3::Utilities::get_singleton()->buffer_free_data(s.lods[j].index_buffer);
493
s.lods[j].index_buffer = 0;
494
}
495
}
496
memdelete_arr(s.lods);
497
}
498
499
if (mesh->blend_shape_count) {
500
for (uint32_t j = 0; j < mesh->blend_shape_count; j++) {
501
if (s.blend_shapes[j].vertex_buffer != 0) {
502
GLES3::Utilities::get_singleton()->buffer_free_data(s.blend_shapes[j].vertex_buffer);
503
s.blend_shapes[j].vertex_buffer = 0;
504
}
505
if (s.blend_shapes[j].vertex_array != 0) {
506
glDeleteVertexArrays(1, &s.blend_shapes[j].vertex_array);
507
s.blend_shapes[j].vertex_array = 0;
508
}
509
}
510
memdelete_arr(s.blend_shapes);
511
}
512
513
memdelete(mesh->surfaces[p_surface]);
514
}
515
516
int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
517
const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
518
ERR_FAIL_NULL_V(mesh, -1);
519
return mesh->blend_shape_count;
520
}
521
522
void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
523
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
524
ERR_FAIL_NULL(mesh);
525
ERR_FAIL_INDEX((int)p_mode, 2);
526
527
mesh->blend_shape_mode = p_mode;
528
}
529
530
RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
531
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
532
ERR_FAIL_NULL_V(mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
533
return mesh->blend_shape_mode;
534
}
535
536
void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
537
ERR_FAIL_COND(p_data.is_empty());
538
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
539
ERR_FAIL_NULL(mesh);
540
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
541
542
uint64_t data_size = p_data.size();
543
ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->vertex_buffer_size);
544
const uint8_t *r = p_data.ptr();
545
546
glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->vertex_buffer);
547
glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
548
glBindBuffer(GL_ARRAY_BUFFER, 0);
549
}
550
551
void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
552
ERR_FAIL_COND(p_data.is_empty());
553
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
554
ERR_FAIL_NULL(mesh);
555
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
556
557
uint64_t data_size = p_data.size();
558
ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->attribute_buffer_size);
559
const uint8_t *r = p_data.ptr();
560
561
glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->attribute_buffer);
562
glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
563
glBindBuffer(GL_ARRAY_BUFFER, 0);
564
}
565
566
void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
567
ERR_FAIL_COND(p_data.is_empty());
568
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
569
ERR_FAIL_NULL(mesh);
570
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
571
572
uint64_t data_size = p_data.size();
573
ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->skin_buffer_size);
574
const uint8_t *r = p_data.ptr();
575
576
glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->skin_buffer);
577
glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
578
glBindBuffer(GL_ARRAY_BUFFER, 0);
579
}
580
581
void MeshStorage::mesh_surface_update_index_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
582
ERR_FAIL_COND(p_data.is_empty());
583
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
584
ERR_FAIL_NULL(mesh);
585
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
586
587
uint64_t data_size = p_data.size();
588
ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->index_buffer_size);
589
const uint8_t *r = p_data.ptr();
590
591
glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->index_buffer);
592
glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
593
glBindBuffer(GL_ARRAY_BUFFER, 0);
594
}
595
596
void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
597
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
598
ERR_FAIL_NULL(mesh);
599
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
600
mesh->surfaces[p_surface]->material = p_material;
601
602
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
603
mesh->material_cache.clear();
604
}
605
606
RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
607
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
608
ERR_FAIL_NULL_V(mesh, RID());
609
ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
610
611
return mesh->surfaces[p_surface]->material;
612
}
613
614
RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
615
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
616
ERR_FAIL_NULL_V(mesh, RS::SurfaceData());
617
ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
618
619
Mesh::Surface &s = *mesh->surfaces[p_surface];
620
621
RS::SurfaceData sd;
622
sd.format = s.format;
623
if (s.vertex_buffer != 0) {
624
sd.vertex_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.vertex_buffer, s.vertex_buffer_size);
625
626
// When using an uncompressed buffer with normals, but without tangents, we have to trim the padding.
627
if (!(s.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (s.format & RS::ARRAY_FORMAT_NORMAL) && !(s.format & RS::ARRAY_FORMAT_TANGENT)) {
628
sd.vertex_data.resize(sd.vertex_data.size() - sizeof(uint16_t) * 2);
629
}
630
}
631
632
if (s.attribute_buffer != 0) {
633
sd.attribute_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.attribute_buffer, s.attribute_buffer_size);
634
}
635
636
if (s.skin_buffer != 0) {
637
sd.skin_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.skin_buffer, s.skin_buffer_size);
638
}
639
640
sd.vertex_count = s.vertex_count;
641
sd.index_count = s.index_count;
642
sd.primitive = s.primitive;
643
644
if (sd.index_count) {
645
sd.index_data = Utilities::buffer_get_data(GL_ELEMENT_ARRAY_BUFFER, s.index_buffer, s.index_buffer_size);
646
}
647
648
sd.aabb = s.aabb;
649
for (uint32_t i = 0; i < s.lod_count; i++) {
650
RS::SurfaceData::LOD lod;
651
lod.edge_length = s.lods[i].edge_length;
652
lod.index_data = Utilities::buffer_get_data(GL_ELEMENT_ARRAY_BUFFER, s.lods[i].index_buffer, s.lods[i].index_buffer_size);
653
sd.lods.push_back(lod);
654
}
655
656
sd.bone_aabbs = s.bone_aabbs;
657
sd.mesh_to_skeleton_xform = s.mesh_to_skeleton_xform;
658
659
if (mesh->blend_shape_count) {
660
sd.blend_shape_data = Vector<uint8_t>();
661
for (uint32_t i = 0; i < mesh->blend_shape_count; i++) {
662
sd.blend_shape_data.append_array(Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.blend_shapes[i].vertex_buffer, s.vertex_buffer_size));
663
}
664
}
665
666
sd.uv_scale = s.uv_scale;
667
668
return sd;
669
}
670
671
int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
672
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
673
ERR_FAIL_NULL_V(mesh, 0);
674
return mesh->surface_count;
675
}
676
677
void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
678
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
679
ERR_FAIL_NULL(mesh);
680
mesh->custom_aabb = p_aabb;
681
682
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
683
}
684
685
AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
686
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
687
ERR_FAIL_NULL_V(mesh, AABB());
688
return mesh->custom_aabb;
689
}
690
691
AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
692
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
693
ERR_FAIL_NULL_V(mesh, AABB());
694
695
if (mesh->custom_aabb != AABB()) {
696
return mesh->custom_aabb;
697
}
698
699
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
700
701
if (!skeleton || skeleton->size == 0 || mesh->skeleton_aabb_version == skeleton->version) {
702
return mesh->aabb;
703
}
704
705
// Calculate AABB based on Skeleton
706
707
AABB aabb;
708
709
for (uint32_t i = 0; i < mesh->surface_count; i++) {
710
AABB laabb;
711
const Mesh::Surface &surface = *mesh->surfaces[i];
712
if ((surface.format & RS::ARRAY_FORMAT_BONES) && surface.bone_aabbs.size()) {
713
int bs = surface.bone_aabbs.size();
714
const AABB *skbones = surface.bone_aabbs.ptr();
715
716
int sbs = skeleton->size;
717
ERR_CONTINUE(bs > sbs);
718
const float *baseptr = skeleton->data.ptr();
719
720
bool found_bone_aabb = false;
721
722
if (skeleton->use_2d) {
723
for (int j = 0; j < bs; j++) {
724
if (skbones[j].size == Vector3(-1, -1, -1)) {
725
continue; //bone is unused
726
}
727
728
const float *dataptr = baseptr + j * 8;
729
730
Transform3D mtx;
731
732
mtx.basis.rows[0][0] = dataptr[0];
733
mtx.basis.rows[0][1] = dataptr[1];
734
mtx.origin.x = dataptr[3];
735
736
mtx.basis.rows[1][0] = dataptr[4];
737
mtx.basis.rows[1][1] = dataptr[5];
738
mtx.origin.y = dataptr[7];
739
740
// Transform bounds to skeleton's space before applying animation data.
741
AABB baabb = surface.mesh_to_skeleton_xform.xform(skbones[j]);
742
baabb = mtx.xform(baabb);
743
744
if (!found_bone_aabb) {
745
laabb = baabb;
746
found_bone_aabb = true;
747
} else {
748
laabb.merge_with(baabb);
749
}
750
}
751
} else {
752
for (int j = 0; j < bs; j++) {
753
if (skbones[j].size == Vector3(-1, -1, -1)) {
754
continue; //bone is unused
755
}
756
757
const float *dataptr = baseptr + j * 12;
758
759
Transform3D mtx;
760
761
mtx.basis.rows[0][0] = dataptr[0];
762
mtx.basis.rows[0][1] = dataptr[1];
763
mtx.basis.rows[0][2] = dataptr[2];
764
mtx.origin.x = dataptr[3];
765
mtx.basis.rows[1][0] = dataptr[4];
766
mtx.basis.rows[1][1] = dataptr[5];
767
mtx.basis.rows[1][2] = dataptr[6];
768
mtx.origin.y = dataptr[7];
769
mtx.basis.rows[2][0] = dataptr[8];
770
mtx.basis.rows[2][1] = dataptr[9];
771
mtx.basis.rows[2][2] = dataptr[10];
772
mtx.origin.z = dataptr[11];
773
774
// Transform bounds to skeleton's space before applying animation data.
775
AABB baabb = surface.mesh_to_skeleton_xform.xform(skbones[j]);
776
baabb = mtx.xform(baabb);
777
778
if (!found_bone_aabb) {
779
laabb = baabb;
780
found_bone_aabb = true;
781
} else {
782
laabb.merge_with(baabb);
783
}
784
}
785
}
786
787
if (found_bone_aabb) {
788
// Transform skeleton bounds back to mesh's space if any animated AABB applied.
789
laabb = surface.mesh_to_skeleton_xform.affine_inverse().xform(laabb);
790
}
791
792
if (laabb.size == Vector3()) {
793
laabb = surface.aabb;
794
}
795
} else {
796
laabb = surface.aabb;
797
}
798
799
if (i == 0) {
800
aabb = laabb;
801
} else {
802
aabb.merge_with(laabb);
803
}
804
}
805
806
mesh->aabb = aabb;
807
mesh->skeleton_aabb_version = skeleton->version;
808
return aabb;
809
}
810
811
void MeshStorage::mesh_set_path(RID p_mesh, const String &p_path) {
812
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
813
ERR_FAIL_NULL(mesh);
814
815
mesh->path = p_path;
816
}
817
818
String MeshStorage::mesh_get_path(RID p_mesh) const {
819
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
820
ERR_FAIL_NULL_V(mesh, String());
821
822
return mesh->path;
823
}
824
825
void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
826
ERR_FAIL_COND_MSG(p_mesh == p_shadow_mesh, "Cannot set a mesh as its own shadow mesh.");
827
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
828
ERR_FAIL_NULL(mesh);
829
830
Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
831
if (shadow_mesh) {
832
shadow_mesh->shadow_owners.erase(mesh);
833
}
834
mesh->shadow_mesh = p_shadow_mesh;
835
836
shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
837
838
if (shadow_mesh) {
839
shadow_mesh->shadow_owners.insert(mesh);
840
}
841
842
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
843
}
844
845
void MeshStorage::mesh_clear(RID p_mesh) {
846
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
847
ERR_FAIL_NULL(mesh);
848
849
// Clear instance data before mesh data.
850
for (MeshInstance *mi : mesh->instances) {
851
_mesh_instance_clear(mi);
852
}
853
854
for (uint32_t i = 0; i < mesh->surface_count; i++) {
855
_mesh_surface_clear(mesh, i);
856
}
857
if (mesh->surfaces) {
858
memfree(mesh->surfaces);
859
}
860
861
mesh->surfaces = nullptr;
862
mesh->surface_count = 0;
863
mesh->material_cache.clear();
864
mesh->has_bone_weights = false;
865
mesh->aabb = AABB();
866
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
867
868
for (Mesh *E : mesh->shadow_owners) {
869
Mesh *shadow_owner = E;
870
shadow_owner->shadow_mesh = RID();
871
shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
872
}
873
}
874
875
void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint64_t p_input_mask, bool p_uses_motion_vectors, MeshInstance::Surface *mis, int p_current_vertex_buffer, int p_prev_vertex_buffer) {
876
Mesh::Surface::Attrib attribs[RS::ARRAY_MAX];
877
878
int position_stride = 0; // Vertex position only.
879
int normal_tangent_stride = 0;
880
int attributes_stride = 0;
881
int skin_stride = 0;
882
883
for (int i = 0; i < RS::ARRAY_INDEX; i++) {
884
attribs[i].enabled = false;
885
attribs[i].integer = false;
886
if (!(s->format & (1ULL << i))) {
887
continue;
888
}
889
890
if ((p_input_mask & (1ULL << i))) {
891
// Only enable if it matches input mask.
892
// Iterate over all anyway, so we can calculate stride.
893
attribs[i].enabled = true;
894
}
895
896
switch (i) {
897
case RS::ARRAY_VERTEX: {
898
attribs[i].offset = 0;
899
attribs[i].type = GL_FLOAT;
900
attribs[i].normalized = GL_FALSE;
901
if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
902
attribs[i].size = 2;
903
position_stride = attribs[i].size * sizeof(float);
904
} else {
905
if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
906
attribs[i].size = 4;
907
position_stride = attribs[i].size * sizeof(uint16_t);
908
attribs[i].type = GL_UNSIGNED_SHORT;
909
attribs[i].normalized = GL_TRUE;
910
} else {
911
attribs[i].size = 3;
912
position_stride = attribs[i].size * sizeof(float);
913
}
914
}
915
} break;
916
case RS::ARRAY_NORMAL: {
917
if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
918
attribs[i].size = 2;
919
normal_tangent_stride += 2 * attribs[i].size;
920
} else {
921
attribs[i].size = 4;
922
// A small trick here: if we are uncompressed and we have normals, but no tangents. We need
923
// the shader to think there are 4 components to "axis_tangent_attrib". So we give a size of 4,
924
// but a stride based on only having 2 elements.
925
if (!(s->format & RS::ARRAY_FORMAT_TANGENT)) {
926
normal_tangent_stride += (mis ? sizeof(float) : sizeof(uint16_t)) * 2;
927
} else {
928
normal_tangent_stride += (mis ? sizeof(float) : sizeof(uint16_t)) * 4;
929
}
930
}
931
932
if (mis) {
933
// Transform feedback has interleave all or no attributes. It can't mix interleaving.
934
attribs[i].offset = position_stride;
935
normal_tangent_stride += position_stride;
936
position_stride = normal_tangent_stride;
937
} else {
938
attribs[i].offset = position_stride * s->vertex_count;
939
}
940
attribs[i].type = (mis ? GL_FLOAT : GL_UNSIGNED_SHORT);
941
attribs[i].normalized = GL_TRUE;
942
} break;
943
case RS::ARRAY_TANGENT: {
944
// We never use the tangent attribute. It is always packed in ARRAY_NORMAL, or ARRAY_VERTEX.
945
attribs[i].enabled = false;
946
attribs[i].integer = false;
947
} break;
948
case RS::ARRAY_COLOR: {
949
attribs[i].offset = attributes_stride;
950
attribs[i].size = 4;
951
attribs[i].type = GL_UNSIGNED_BYTE;
952
attributes_stride += 4;
953
attribs[i].normalized = GL_TRUE;
954
} break;
955
case RS::ARRAY_TEX_UV: {
956
attribs[i].offset = attributes_stride;
957
attribs[i].size = 2;
958
if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
959
attribs[i].type = GL_UNSIGNED_SHORT;
960
attributes_stride += 2 * sizeof(uint16_t);
961
attribs[i].normalized = GL_TRUE;
962
} else {
963
attribs[i].type = GL_FLOAT;
964
attributes_stride += 2 * sizeof(float);
965
attribs[i].normalized = GL_FALSE;
966
}
967
} break;
968
case RS::ARRAY_TEX_UV2: {
969
attribs[i].offset = attributes_stride;
970
attribs[i].size = 2;
971
if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
972
attribs[i].type = GL_UNSIGNED_SHORT;
973
attributes_stride += 2 * sizeof(uint16_t);
974
attribs[i].normalized = GL_TRUE;
975
} else {
976
attribs[i].type = GL_FLOAT;
977
attributes_stride += 2 * sizeof(float);
978
attribs[i].normalized = GL_FALSE;
979
}
980
} break;
981
case RS::ARRAY_CUSTOM0:
982
case RS::ARRAY_CUSTOM1:
983
case RS::ARRAY_CUSTOM2:
984
case RS::ARRAY_CUSTOM3: {
985
attribs[i].offset = attributes_stride;
986
987
int idx = i - RS::ARRAY_CUSTOM0;
988
uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
989
uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
990
uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
991
GLenum gl_type[RS::ARRAY_CUSTOM_MAX] = { GL_UNSIGNED_BYTE, GL_BYTE, GL_HALF_FLOAT, GL_HALF_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT };
992
GLboolean norm[RS::ARRAY_CUSTOM_MAX] = { GL_TRUE, GL_TRUE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE };
993
attribs[i].type = gl_type[fmt];
994
attributes_stride += fmtsize[fmt];
995
attribs[i].size = fmtsize[fmt] / sizeof(float);
996
attribs[i].normalized = norm[fmt];
997
} break;
998
case RS::ARRAY_BONES: {
999
attribs[i].offset = skin_stride;
1000
attribs[i].size = 4;
1001
attribs[i].type = GL_UNSIGNED_SHORT;
1002
skin_stride += 4 * sizeof(uint16_t);
1003
attribs[i].normalized = GL_FALSE;
1004
attribs[i].integer = true;
1005
} break;
1006
case RS::ARRAY_WEIGHTS: {
1007
attribs[i].offset = skin_stride;
1008
attribs[i].size = 4;
1009
attribs[i].type = GL_UNSIGNED_SHORT;
1010
skin_stride += 4 * sizeof(uint16_t);
1011
attribs[i].normalized = GL_TRUE;
1012
} break;
1013
}
1014
}
1015
1016
glGenVertexArrays(1, &v.vertex_array);
1017
glBindVertexArray(v.vertex_array);
1018
1019
for (int i = 0; i < RS::ARRAY_INDEX; i++) {
1020
if (!attribs[i].enabled) {
1021
glDisableVertexAttribArray(i);
1022
continue;
1023
}
1024
if (i <= RS::ARRAY_TANGENT) {
1025
attribs[i].stride = (i == RS::ARRAY_VERTEX) ? position_stride : normal_tangent_stride;
1026
if (mis) {
1027
glBindBuffer(GL_ARRAY_BUFFER, mis->vertex_buffers[p_current_vertex_buffer]);
1028
} else {
1029
glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer);
1030
}
1031
} else if (i <= RS::ARRAY_CUSTOM3) {
1032
attribs[i].stride = attributes_stride;
1033
glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer);
1034
} else {
1035
attribs[i].stride = skin_stride;
1036
glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer);
1037
}
1038
1039
if (attribs[i].integer) {
1040
glVertexAttribIPointer(i, attribs[i].size, attribs[i].type, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
1041
} else {
1042
glVertexAttribPointer(i, attribs[i].size, attribs[i].type, attribs[i].normalized, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
1043
}
1044
glEnableVertexAttribArray(i);
1045
}
1046
1047
if (p_uses_motion_vectors) {
1048
for (int i = 0; i < RS::ARRAY_TANGENT; i++) {
1049
if (mis) {
1050
glBindBuffer(GL_ARRAY_BUFFER, mis->vertex_buffers[mis->prev_vertex_buffer]);
1051
} else {
1052
glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer);
1053
}
1054
1055
glVertexAttribPointer(i + 16, attribs[i].size, attribs[i].type, attribs[i].normalized, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
1056
glEnableVertexAttribArray(i + 16);
1057
}
1058
}
1059
1060
// Do not bind index here as we want to switch between index buffers for LOD
1061
1062
glBindVertexArray(0);
1063
glBindBuffer(GL_ARRAY_BUFFER, 0);
1064
1065
v.input_mask = p_input_mask;
1066
v.uses_motion_vectors = p_uses_motion_vectors;
1067
v.current_vertex_buffer = p_current_vertex_buffer;
1068
v.prev_vertex_buffer = p_prev_vertex_buffer;
1069
}
1070
1071
void MeshStorage::mesh_surface_remove(RID p_mesh, int p_surface) {
1072
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
1073
ERR_FAIL_NULL(mesh);
1074
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
1075
1076
// Clear instance data before mesh data.
1077
for (MeshInstance *mi : mesh->instances) {
1078
_mesh_instance_remove_surface(mi, p_surface);
1079
}
1080
1081
_mesh_surface_clear(mesh, p_surface);
1082
1083
if ((uint32_t)p_surface < mesh->surface_count - 1) {
1084
memmove(mesh->surfaces + p_surface, mesh->surfaces + p_surface + 1, sizeof(Mesh::Surface *) * (mesh->surface_count - (p_surface + 1)));
1085
}
1086
mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count - 1));
1087
--mesh->surface_count;
1088
1089
mesh->material_cache.clear();
1090
1091
mesh->skeleton_aabb_version = 0;
1092
1093
if (mesh->has_bone_weights) {
1094
mesh->has_bone_weights = false;
1095
for (uint32_t i = 0; i < mesh->surface_count; i++) {
1096
if (mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) {
1097
mesh->has_bone_weights = true;
1098
break;
1099
}
1100
}
1101
}
1102
1103
if (mesh->surface_count == 0) {
1104
mesh->aabb = AABB();
1105
} else {
1106
mesh->aabb = mesh->surfaces[0]->aabb;
1107
for (uint32_t i = 1; i < mesh->surface_count; i++) {
1108
mesh->aabb.merge_with(mesh->surfaces[i]->aabb);
1109
}
1110
}
1111
1112
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
1113
1114
for (Mesh *E : mesh->shadow_owners) {
1115
Mesh *shadow_owner = E;
1116
shadow_owner->shadow_mesh = RID();
1117
shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
1118
}
1119
}
1120
1121
/* MESH INSTANCE API */
1122
1123
RID MeshStorage::mesh_instance_create(RID p_base) {
1124
Mesh *mesh = mesh_owner.get_or_null(p_base);
1125
ERR_FAIL_NULL_V(mesh, RID());
1126
1127
RID rid = mesh_instance_owner.make_rid();
1128
MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
1129
1130
mi->mesh = mesh;
1131
1132
for (uint32_t i = 0; i < mesh->surface_count; i++) {
1133
_mesh_instance_add_surface(mi, mesh, i);
1134
}
1135
1136
mi->I = mesh->instances.push_back(mi);
1137
1138
mi->dirty = true;
1139
1140
return rid;
1141
}
1142
1143
void MeshStorage::mesh_instance_free(RID p_rid) {
1144
MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
1145
_mesh_instance_clear(mi);
1146
mi->mesh->instances.erase(mi->I);
1147
mi->I = nullptr;
1148
1149
mesh_instance_owner.free(p_rid);
1150
}
1151
1152
void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
1153
MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
1154
if (mi->skeleton == p_skeleton) {
1155
return;
1156
}
1157
mi->skeleton = p_skeleton;
1158
mi->skeleton_version = 0;
1159
mi->dirty = true;
1160
}
1161
1162
void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
1163
MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
1164
ERR_FAIL_NULL(mi);
1165
ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
1166
mi->blend_weights[p_shape] = p_weight;
1167
mi->dirty = true;
1168
}
1169
1170
void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
1171
while (mi->surfaces.size()) {
1172
_mesh_instance_remove_surface(mi, mi->surfaces.size() - 1);
1173
}
1174
mi->dirty = false;
1175
}
1176
1177
void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
1178
if (mesh->blend_shape_count > 0) {
1179
mi->blend_weights.resize(mesh->blend_shape_count);
1180
for (uint32_t i = 0; i < mi->blend_weights.size(); i++) {
1181
mi->blend_weights[i] = 0.0;
1182
}
1183
}
1184
1185
MeshInstance::Surface s;
1186
if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
1187
// Cache surface properties
1188
s.format_cache = mesh->surfaces[p_surface]->format;
1189
if ((s.format_cache & (1ULL << RS::ARRAY_VERTEX))) {
1190
if (s.format_cache & RS::ARRAY_FLAG_USE_2D_VERTICES) {
1191
s.vertex_size_cache = 2;
1192
} else {
1193
s.vertex_size_cache = 3;
1194
}
1195
s.vertex_stride_cache = sizeof(float) * s.vertex_size_cache;
1196
}
1197
if ((s.format_cache & (1ULL << RS::ARRAY_NORMAL))) {
1198
s.vertex_normal_offset_cache = s.vertex_stride_cache;
1199
s.vertex_stride_cache += sizeof(uint32_t) * 2;
1200
}
1201
if ((s.format_cache & (1ULL << RS::ARRAY_TANGENT))) {
1202
s.vertex_tangent_offset_cache = s.vertex_stride_cache;
1203
s.vertex_stride_cache += sizeof(uint32_t) * 2;
1204
}
1205
1206
int buffer_size = s.vertex_stride_cache * mesh->surfaces[p_surface]->vertex_count;
1207
1208
// First buffer to be used for rendering. Final output of skeleton and blend shapes.
1209
// If motion vectors are enabled, a second buffer will be created on demand, and they'll be swapped every frame.
1210
glGenBuffers(1, &s.vertex_buffers[0]);
1211
glBindBuffer(GL_ARRAY_BUFFER, s.vertex_buffers[0]);
1212
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s.vertex_buffers[0], buffer_size, nullptr, GL_DYNAMIC_DRAW, "MeshInstance vertex buffer");
1213
if (mesh->blend_shape_count > 0) {
1214
// Ping-Pong buffers for processing blendshapes.
1215
glGenBuffers(2, s.blend_shape_vertex_buffers);
1216
for (uint32_t i = 0; i < 2; i++) {
1217
glBindBuffer(GL_ARRAY_BUFFER, s.blend_shape_vertex_buffers[i]);
1218
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s.blend_shape_vertex_buffers[i], buffer_size, nullptr, GL_DYNAMIC_DRAW, "MeshInstance process buffer[" + itos(i) + "]");
1219
}
1220
}
1221
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
1222
}
1223
1224
mi->surfaces.push_back(s);
1225
mi->dirty = true;
1226
}
1227
1228
void MeshStorage::_mesh_instance_remove_surface(MeshInstance *mi, int p_surface) {
1229
MeshInstance::Surface &surface = mi->surfaces[p_surface];
1230
1231
if (surface.version_count != 0) {
1232
for (uint32_t j = 0; j < surface.version_count; j++) {
1233
glDeleteVertexArrays(1, &surface.versions[j].vertex_array);
1234
surface.versions[j].vertex_array = 0;
1235
}
1236
memfree(surface.versions);
1237
}
1238
1239
if (surface.blend_shape_vertex_buffers[0] != 0) {
1240
GLES3::Utilities::get_singleton()->buffer_free_data(surface.blend_shape_vertex_buffers[0]);
1241
GLES3::Utilities::get_singleton()->buffer_free_data(surface.blend_shape_vertex_buffers[1]);
1242
surface.blend_shape_vertex_buffers[0] = 0;
1243
surface.blend_shape_vertex_buffers[1] = 0;
1244
}
1245
1246
for (int i = 0; i < 2; i++) {
1247
if (surface.vertex_buffers[i] != 0) {
1248
GLES3::Utilities::get_singleton()->buffer_free_data(surface.vertex_buffers[i]);
1249
surface.vertex_buffers[i] = 0;
1250
}
1251
}
1252
1253
mi->surfaces.remove_at(p_surface);
1254
1255
if (mi->surfaces.is_empty()) {
1256
mi->blend_weights.clear();
1257
mi->weights_dirty = false;
1258
mi->skeleton_version = 0;
1259
}
1260
mi->dirty = true;
1261
}
1262
1263
void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
1264
MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
1265
1266
bool needs_update = mi->dirty;
1267
1268
if (mi->array_update_list.in_list()) {
1269
return;
1270
}
1271
1272
if (!needs_update && mi->skeleton.is_valid()) {
1273
Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
1274
if (sk && sk->version != mi->skeleton_version) {
1275
needs_update = true;
1276
}
1277
}
1278
1279
if (needs_update) {
1280
dirty_mesh_instance_arrays.add(&mi->array_update_list);
1281
}
1282
}
1283
1284
void MeshStorage::mesh_instance_set_canvas_item_transform(RID p_mesh_instance, const Transform2D &p_transform) {
1285
MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
1286
mi->canvas_item_transform_2d = p_transform;
1287
}
1288
1289
void MeshStorage::_blend_shape_bind_mesh_instance_buffer(MeshInstance *p_mi, uint32_t p_surface) {
1290
glBindBuffer(GL_ARRAY_BUFFER, p_mi->surfaces[p_surface].blend_shape_vertex_buffers[0]);
1291
1292
if ((p_mi->surfaces[p_surface].format_cache & (1ULL << RS::ARRAY_VERTEX))) {
1293
glEnableVertexAttribArray(RS::ARRAY_VERTEX);
1294
glVertexAttribPointer(RS::ARRAY_VERTEX, p_mi->surfaces[p_surface].vertex_size_cache, GL_FLOAT, GL_FALSE, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(0));
1295
} else {
1296
glDisableVertexAttribArray(RS::ARRAY_VERTEX);
1297
}
1298
if ((p_mi->surfaces[p_surface].format_cache & (1ULL << RS::ARRAY_NORMAL))) {
1299
glEnableVertexAttribArray(RS::ARRAY_NORMAL);
1300
glVertexAttribIPointer(RS::ARRAY_NORMAL, 2, GL_UNSIGNED_INT, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(p_mi->surfaces[p_surface].vertex_normal_offset_cache));
1301
} else {
1302
glDisableVertexAttribArray(RS::ARRAY_NORMAL);
1303
}
1304
if ((p_mi->surfaces[p_surface].format_cache & (1ULL << RS::ARRAY_TANGENT))) {
1305
glEnableVertexAttribArray(RS::ARRAY_TANGENT);
1306
glVertexAttribIPointer(RS::ARRAY_TANGENT, 2, GL_UNSIGNED_INT, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(p_mi->surfaces[p_surface].vertex_tangent_offset_cache));
1307
} else {
1308
glDisableVertexAttribArray(RS::ARRAY_TANGENT);
1309
}
1310
}
1311
1312
void MeshStorage::_compute_skeleton(MeshInstance *p_mi, Skeleton *p_sk, uint32_t p_surface) {
1313
// Add in the bones and weights.
1314
glBindBuffer(GL_ARRAY_BUFFER, p_mi->mesh->surfaces[p_surface]->skin_buffer);
1315
1316
bool use_8_weights = p_mi->surfaces[p_surface].format_cache & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
1317
int skin_stride = sizeof(int16_t) * (use_8_weights ? 16 : 8);
1318
glEnableVertexAttribArray(RS::ARRAY_BONES);
1319
glVertexAttribIPointer(RS::ARRAY_BONES, 4, GL_UNSIGNED_SHORT, skin_stride, CAST_INT_TO_UCHAR_PTR(0));
1320
if (use_8_weights) {
1321
glEnableVertexAttribArray(11);
1322
glVertexAttribIPointer(11, 4, GL_UNSIGNED_SHORT, skin_stride, CAST_INT_TO_UCHAR_PTR(4 * sizeof(uint16_t)));
1323
glEnableVertexAttribArray(12);
1324
glVertexAttribPointer(12, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(8 * sizeof(uint16_t)));
1325
glEnableVertexAttribArray(13);
1326
glVertexAttribPointer(13, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(12 * sizeof(uint16_t)));
1327
} else {
1328
glEnableVertexAttribArray(RS::ARRAY_WEIGHTS);
1329
glVertexAttribPointer(RS::ARRAY_WEIGHTS, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(4 * sizeof(uint16_t)));
1330
}
1331
1332
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, p_mi->surfaces[p_surface].vertex_buffers[p_mi->surfaces[p_surface].current_vertex_buffer]);
1333
glActiveTexture(GL_TEXTURE0);
1334
glBindTexture(GL_TEXTURE_2D, p_sk->transforms_texture);
1335
1336
glBeginTransformFeedback(GL_POINTS);
1337
glDrawArrays(GL_POINTS, 0, p_mi->mesh->surfaces[p_surface]->vertex_count);
1338
glEndTransformFeedback();
1339
1340
glDisableVertexAttribArray(RS::ARRAY_BONES);
1341
glDisableVertexAttribArray(RS::ARRAY_WEIGHTS);
1342
glDisableVertexAttribArray(RS::ARRAY_BONES + 2);
1343
glDisableVertexAttribArray(RS::ARRAY_WEIGHTS + 2);
1344
glBindVertexArray(0);
1345
glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, 0);
1346
}
1347
1348
void MeshStorage::update_mesh_instances() {
1349
if (dirty_mesh_instance_arrays.first() == nullptr) {
1350
return; //nothing to do
1351
}
1352
1353
glEnable(GL_RASTERIZER_DISCARD);
1354
glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo);
1355
// Process skeletons and blend shapes using transform feedback
1356
while (dirty_mesh_instance_arrays.first()) {
1357
MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
1358
1359
bool uses_motion_vectors = RSG::viewport->get_num_viewports_with_motion_vectors() > 0;
1360
int frame = RSG::rasterizer->get_frame_number();
1361
if (uses_motion_vectors) {
1362
for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
1363
mi->surfaces[i].prev_vertex_buffer = mi->surfaces[i].current_vertex_buffer;
1364
1365
if (frame - mi->surfaces[i].last_change == 1) {
1366
// Previous buffer's data can only be one frame old to be able to use motion vectors.
1367
uint32_t new_buffer_index = mi->surfaces[i].current_vertex_buffer ^ 1;
1368
1369
if (mi->surfaces[i].vertex_buffers[new_buffer_index] == 0) {
1370
// Create the new vertex buffer on demand where the result for the current frame will be stored.
1371
GLuint new_vertex_buffer = 0;
1372
GLES3::Mesh::Surface *surface = mi->mesh->surfaces[i];
1373
int buffer_size = mi->surfaces[i].vertex_stride_cache * surface->vertex_count;
1374
glGenBuffers(1, &new_vertex_buffer);
1375
glBindBuffer(GL_ARRAY_BUFFER, new_vertex_buffer);
1376
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, new_vertex_buffer, buffer_size, nullptr, (surface->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Secondary mesh vertex buffer");
1377
glBindBuffer(GL_ARRAY_BUFFER, 0);
1378
1379
mi->surfaces[i].vertex_buffers[new_buffer_index] = new_vertex_buffer;
1380
}
1381
1382
mi->surfaces[i].current_vertex_buffer = new_buffer_index;
1383
}
1384
1385
mi->surfaces[i].last_change = frame;
1386
}
1387
}
1388
1389
Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
1390
1391
// Precompute base weight if using blend shapes.
1392
float base_weight = 1.0;
1393
if (mi->surfaces.size() && mi->mesh->blend_shape_count && mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED) {
1394
for (uint32_t i = 0; i < mi->mesh->blend_shape_count; i++) {
1395
base_weight -= mi->blend_weights[i];
1396
}
1397
}
1398
1399
for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
1400
if (mi->surfaces[i].vertex_buffers[mi->surfaces[i].current_vertex_buffer] == 0) {
1401
continue;
1402
}
1403
1404
bool array_is_2d = mi->surfaces[i].format_cache & RS::ARRAY_FLAG_USE_2D_VERTICES;
1405
bool can_use_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->surfaces[i].format_cache & RS::ARRAY_FORMAT_BONES);
1406
bool use_8_weights = mi->surfaces[i].format_cache & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
1407
1408
// Always process blend shapes first.
1409
if (mi->mesh->blend_shape_count) {
1410
SkeletonShaderGLES3::ShaderVariant variant = SkeletonShaderGLES3::MODE_BASE_PASS;
1411
uint64_t specialization = 0;
1412
specialization |= array_is_2d ? SkeletonShaderGLES3::MODE_2D : 0;
1413
specialization |= SkeletonShaderGLES3::USE_BLEND_SHAPES;
1414
if (!array_is_2d) {
1415
if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_NORMAL))) {
1416
specialization |= SkeletonShaderGLES3::USE_NORMAL;
1417
}
1418
if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_TANGENT))) {
1419
specialization |= SkeletonShaderGLES3::USE_TANGENT;
1420
}
1421
}
1422
1423
bool success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
1424
if (!success) {
1425
continue;
1426
}
1427
1428
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, base_weight, skeleton_shader.shader_version, variant, specialization);
1429
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization);
1430
1431
glBindBuffer(GL_ARRAY_BUFFER, 0);
1432
GLuint vertex_array_gl = 0;
1433
uint64_t mask = RS::ARRAY_FORMAT_VERTEX | RS::ARRAY_FORMAT_NORMAL | RS::ARRAY_FORMAT_VERTEX;
1434
uint64_t format = mi->mesh->surfaces[i]->format & mask; // Format should only have vertex, normal, tangent (as necessary).
1435
mesh_surface_get_vertex_arrays_and_format(mi->mesh->surfaces[i], format, false, vertex_array_gl);
1436
glBindVertexArray(vertex_array_gl);
1437
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].blend_shape_vertex_buffers[0]);
1438
glBeginTransformFeedback(GL_POINTS);
1439
glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count);
1440
glEndTransformFeedback();
1441
1442
variant = SkeletonShaderGLES3::MODE_BLEND_PASS;
1443
success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
1444
if (!success) {
1445
continue;
1446
}
1447
1448
//Do the last blend shape separately, as it can be combined with the skeleton pass.
1449
for (uint32_t bs = 0; bs < mi->mesh->blend_shape_count - 1; bs++) {
1450
float weight = mi->blend_weights[bs];
1451
1452
if (Math::is_zero_approx(weight)) {
1453
//not bother with this one
1454
continue;
1455
}
1456
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, weight, skeleton_shader.shader_version, variant, specialization);
1457
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization);
1458
1459
// Ensure the skeleton shader outputs to the correct (current) VBO.
1460
1461
glBindVertexArray(mi->mesh->surfaces[i]->blend_shapes[bs].vertex_array);
1462
_blend_shape_bind_mesh_instance_buffer(mi, i);
1463
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].blend_shape_vertex_buffers[1]);
1464
1465
glBeginTransformFeedback(GL_POINTS);
1466
glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count);
1467
glEndTransformFeedback();
1468
1469
SWAP(mi->surfaces[i].blend_shape_vertex_buffers[0], mi->surfaces[i].blend_shape_vertex_buffers[1]);
1470
}
1471
uint32_t bs = mi->mesh->blend_shape_count - 1;
1472
1473
float weight = mi->blend_weights[bs];
1474
1475
glBindVertexArray(mi->mesh->surfaces[i]->blend_shapes[bs].vertex_array);
1476
_blend_shape_bind_mesh_instance_buffer(mi, i);
1477
1478
specialization |= can_use_skeleton ? SkeletonShaderGLES3::USE_SKELETON : 0;
1479
specialization |= (can_use_skeleton && use_8_weights) ? SkeletonShaderGLES3::USE_EIGHT_WEIGHTS : 0;
1480
specialization |= SkeletonShaderGLES3::FINAL_PASS;
1481
success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
1482
if (!success) {
1483
continue;
1484
}
1485
1486
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, weight, skeleton_shader.shader_version, variant, specialization);
1487
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization);
1488
1489
if (can_use_skeleton) {
1490
Transform2D transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
1491
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_X, transform[0], skeleton_shader.shader_version, variant, specialization);
1492
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_Y, transform[1], skeleton_shader.shader_version, variant, specialization);
1493
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_OFFSET, transform[2], skeleton_shader.shader_version, variant, specialization);
1494
1495
Transform2D inverse_transform = transform.affine_inverse();
1496
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_X, inverse_transform[0], skeleton_shader.shader_version, variant, specialization);
1497
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_Y, inverse_transform[1], skeleton_shader.shader_version, variant, specialization);
1498
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_OFFSET, inverse_transform[2], skeleton_shader.shader_version, variant, specialization);
1499
1500
// Do last blendshape in the same pass as the Skeleton.
1501
_compute_skeleton(mi, sk, i);
1502
can_use_skeleton = false;
1503
} else {
1504
// Do last blendshape by itself and prepare vertex data for use by the renderer.
1505
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffers[mi->surfaces[i].current_vertex_buffer]);
1506
1507
glBeginTransformFeedback(GL_POINTS);
1508
glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count);
1509
glEndTransformFeedback();
1510
}
1511
1512
glBindVertexArray(0);
1513
glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, 0);
1514
}
1515
1516
// This branch should only execute when Skeleton is run by itself.
1517
if (can_use_skeleton) {
1518
SkeletonShaderGLES3::ShaderVariant variant = SkeletonShaderGLES3::MODE_BASE_PASS;
1519
uint64_t specialization = 0;
1520
specialization |= array_is_2d ? SkeletonShaderGLES3::MODE_2D : 0;
1521
specialization |= SkeletonShaderGLES3::USE_SKELETON;
1522
specialization |= SkeletonShaderGLES3::FINAL_PASS;
1523
specialization |= use_8_weights ? SkeletonShaderGLES3::USE_EIGHT_WEIGHTS : 0;
1524
if (!array_is_2d) {
1525
if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_NORMAL))) {
1526
specialization |= SkeletonShaderGLES3::USE_NORMAL;
1527
}
1528
if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_TANGENT))) {
1529
specialization |= SkeletonShaderGLES3::USE_TANGENT;
1530
}
1531
}
1532
1533
bool success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
1534
if (!success) {
1535
continue;
1536
}
1537
1538
Transform2D transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
1539
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_X, transform[0], skeleton_shader.shader_version, variant, specialization);
1540
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_Y, transform[1], skeleton_shader.shader_version, variant, specialization);
1541
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_OFFSET, transform[2], skeleton_shader.shader_version, variant, specialization);
1542
1543
Transform2D inverse_transform = transform.affine_inverse();
1544
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_X, inverse_transform[0], skeleton_shader.shader_version, variant, specialization);
1545
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_Y, inverse_transform[1], skeleton_shader.shader_version, variant, specialization);
1546
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_OFFSET, inverse_transform[2], skeleton_shader.shader_version, variant, specialization);
1547
1548
GLuint vertex_array_gl = 0;
1549
uint64_t mask = RS::ARRAY_FORMAT_VERTEX | RS::ARRAY_FORMAT_NORMAL | RS::ARRAY_FORMAT_VERTEX;
1550
uint64_t format = mi->mesh->surfaces[i]->format & mask; // Format should only have vertex, normal, tangent (as necessary).
1551
mesh_surface_get_vertex_arrays_and_format(mi->mesh->surfaces[i], format, false, vertex_array_gl);
1552
glBindVertexArray(vertex_array_gl);
1553
_compute_skeleton(mi, sk, i);
1554
}
1555
}
1556
mi->dirty = false;
1557
if (sk) {
1558
mi->skeleton_version = sk->version;
1559
}
1560
dirty_mesh_instance_arrays.remove(&mi->array_update_list);
1561
}
1562
glDisable(GL_RASTERIZER_DISCARD);
1563
glBindBuffer(GL_ARRAY_BUFFER, 0);
1564
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, 0);
1565
}
1566
1567
/* MULTIMESH API */
1568
1569
RID MeshStorage::_multimesh_allocate() {
1570
return multimesh_owner.allocate_rid();
1571
}
1572
1573
void MeshStorage::_multimesh_initialize(RID p_rid) {
1574
multimesh_owner.initialize_rid(p_rid, MultiMesh());
1575
}
1576
1577
void MeshStorage::_multimesh_free(RID p_rid) {
1578
// Remove from interpolator.
1579
_interpolation_data.notify_free_multimesh(p_rid);
1580
_update_dirty_multimeshes();
1581
multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
1582
MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
1583
multimesh->dependency.deleted_notify(p_rid);
1584
multimesh_owner.free(p_rid);
1585
}
1586
1587
void MeshStorage::_multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data, bool p_use_indirect) {
1588
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1589
ERR_FAIL_NULL(multimesh);
1590
1591
if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
1592
return;
1593
}
1594
1595
for (int i = 0; i < 2; i++) {
1596
if (multimesh->buffer[i] != 0) {
1597
GLES3::Utilities::get_singleton()->buffer_free_data(multimesh->buffer[i]);
1598
multimesh->buffer[i] = 0;
1599
}
1600
}
1601
1602
if (multimesh->data_cache_dirty_regions) {
1603
memdelete_arr(multimesh->data_cache_dirty_regions);
1604
multimesh->data_cache_dirty_regions = nullptr;
1605
multimesh->data_cache_used_dirty_regions = 0;
1606
}
1607
1608
// If we have either color or custom data, reserve space for both to make data handling logic simpler.
1609
// This way we can always treat them both as a single, compressed uvec4.
1610
int color_and_custom_strides = (p_use_colors || p_use_custom_data) ? 2 : 0;
1611
1612
multimesh->instances = p_instances;
1613
multimesh->xform_format = p_transform_format;
1614
multimesh->uses_colors = p_use_colors;
1615
multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
1616
multimesh->uses_custom_data = p_use_custom_data;
1617
multimesh->custom_data_offset_cache = multimesh->color_offset_cache + color_and_custom_strides;
1618
multimesh->stride_cache = multimesh->custom_data_offset_cache + color_and_custom_strides;
1619
multimesh->buffer_set = false;
1620
1621
multimesh->data_cache = Vector<float>();
1622
multimesh->aabb = AABB();
1623
multimesh->aabb_dirty = false;
1624
multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
1625
1626
if (multimesh->instances) {
1627
glGenBuffers(1, &multimesh->buffer[0]);
1628
glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer[0]);
1629
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, multimesh->buffer[0], multimesh->instances * multimesh->stride_cache * sizeof(float), nullptr, GL_STATIC_DRAW, "MultiMesh buffer");
1630
glBindBuffer(GL_ARRAY_BUFFER, 0);
1631
}
1632
1633
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
1634
}
1635
1636
int MeshStorage::_multimesh_get_instance_count(RID p_multimesh) const {
1637
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1638
ERR_FAIL_NULL_V(multimesh, 0);
1639
return multimesh->instances;
1640
}
1641
1642
void MeshStorage::_multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
1643
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1644
ERR_FAIL_NULL(multimesh);
1645
if (multimesh->mesh == p_mesh || p_mesh.is_null()) {
1646
return;
1647
}
1648
multimesh->mesh = p_mesh;
1649
1650
if (multimesh->instances == 0) {
1651
return;
1652
}
1653
1654
if (multimesh->data_cache.size()) {
1655
//we have a data cache, just mark it dirty
1656
_multimesh_mark_all_dirty(multimesh, false, true);
1657
} else if (multimesh->instances) {
1658
// Need to re-create AABB. Unfortunately, calling this has a penalty.
1659
if (multimesh->buffer_set) {
1660
Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer[multimesh->current_buffer], multimesh->instances * multimesh->stride_cache * sizeof(float));
1661
const uint8_t *r = buffer.ptr();
1662
const float *data = (const float *)r;
1663
_multimesh_re_create_aabb(multimesh, data, multimesh->instances);
1664
}
1665
}
1666
1667
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
1668
}
1669
1670
#define MULTIMESH_DIRTY_REGION_SIZE 512
1671
1672
void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
1673
if (multimesh->data_cache.size() > 0 || multimesh->instances == 0) {
1674
return; //already local
1675
}
1676
ERR_FAIL_COND(multimesh->data_cache.size() > 0);
1677
// this means that the user wants to load/save individual elements,
1678
// for this, the data must reside on CPU, so just copy it there.
1679
multimesh->data_cache.resize(multimesh->instances * multimesh->stride_cache);
1680
{
1681
float *w = multimesh->data_cache.ptrw();
1682
1683
if (multimesh->buffer_set) {
1684
Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer[multimesh->current_buffer], multimesh->instances * multimesh->stride_cache * sizeof(float));
1685
1686
{
1687
const uint8_t *r = buffer.ptr();
1688
memcpy(w, r, buffer.size());
1689
}
1690
} else {
1691
memset(w, 0, (size_t)multimesh->instances * multimesh->stride_cache * sizeof(float));
1692
}
1693
}
1694
uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
1695
multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
1696
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
1697
multimesh->data_cache_dirty_regions[i] = false;
1698
}
1699
multimesh->data_cache_used_dirty_regions = 0;
1700
}
1701
1702
void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
1703
uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
1704
#ifdef DEBUG_ENABLED
1705
uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
1706
ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
1707
#endif
1708
if (!multimesh->data_cache_dirty_regions[region_index]) {
1709
multimesh->data_cache_dirty_regions[region_index] = true;
1710
multimesh->data_cache_used_dirty_regions++;
1711
}
1712
1713
if (p_aabb) {
1714
multimesh->aabb_dirty = true;
1715
}
1716
1717
if (!multimesh->dirty) {
1718
multimesh->dirty_list = multimesh_dirty_list;
1719
multimesh_dirty_list = multimesh;
1720
multimesh->dirty = true;
1721
}
1722
}
1723
1724
void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
1725
if (p_data) {
1726
uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
1727
1728
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
1729
if (!multimesh->data_cache_dirty_regions[i]) {
1730
multimesh->data_cache_dirty_regions[i] = true;
1731
multimesh->data_cache_used_dirty_regions++;
1732
}
1733
}
1734
}
1735
1736
if (p_aabb) {
1737
multimesh->aabb_dirty = true;
1738
}
1739
1740
if (!multimesh->dirty) {
1741
multimesh->dirty_list = multimesh_dirty_list;
1742
multimesh_dirty_list = multimesh;
1743
multimesh->dirty = true;
1744
}
1745
}
1746
1747
void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
1748
ERR_FAIL_COND(multimesh->mesh.is_null());
1749
if (multimesh->custom_aabb != AABB()) {
1750
return;
1751
}
1752
AABB aabb;
1753
AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
1754
for (int i = 0; i < p_instances; i++) {
1755
const float *data = p_data + multimesh->stride_cache * i;
1756
Transform3D t;
1757
1758
if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
1759
t.basis.rows[0][0] = data[0];
1760
t.basis.rows[0][1] = data[1];
1761
t.basis.rows[0][2] = data[2];
1762
t.origin.x = data[3];
1763
t.basis.rows[1][0] = data[4];
1764
t.basis.rows[1][1] = data[5];
1765
t.basis.rows[1][2] = data[6];
1766
t.origin.y = data[7];
1767
t.basis.rows[2][0] = data[8];
1768
t.basis.rows[2][1] = data[9];
1769
t.basis.rows[2][2] = data[10];
1770
t.origin.z = data[11];
1771
1772
} else {
1773
t.basis.rows[0][0] = data[0];
1774
t.basis.rows[0][1] = data[1];
1775
t.origin.x = data[3];
1776
1777
t.basis.rows[1][0] = data[4];
1778
t.basis.rows[1][1] = data[5];
1779
t.origin.y = data[7];
1780
}
1781
1782
if (i == 0) {
1783
aabb = t.xform(mesh_aabb);
1784
} else {
1785
aabb.merge_with(t.xform(mesh_aabb));
1786
}
1787
}
1788
1789
multimesh->aabb = aabb;
1790
}
1791
1792
void MeshStorage::_multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
1793
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1794
ERR_FAIL_NULL(multimesh);
1795
ERR_FAIL_INDEX(p_index, multimesh->instances);
1796
ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
1797
1798
_multimesh_make_local(multimesh);
1799
1800
{
1801
float *w = multimesh->data_cache.ptrw();
1802
1803
float *dataptr = w + p_index * multimesh->stride_cache;
1804
1805
dataptr[0] = p_transform.basis.rows[0][0];
1806
dataptr[1] = p_transform.basis.rows[0][1];
1807
dataptr[2] = p_transform.basis.rows[0][2];
1808
dataptr[3] = p_transform.origin.x;
1809
dataptr[4] = p_transform.basis.rows[1][0];
1810
dataptr[5] = p_transform.basis.rows[1][1];
1811
dataptr[6] = p_transform.basis.rows[1][2];
1812
dataptr[7] = p_transform.origin.y;
1813
dataptr[8] = p_transform.basis.rows[2][0];
1814
dataptr[9] = p_transform.basis.rows[2][1];
1815
dataptr[10] = p_transform.basis.rows[2][2];
1816
dataptr[11] = p_transform.origin.z;
1817
}
1818
1819
_multimesh_mark_dirty(multimesh, p_index, true);
1820
}
1821
1822
void MeshStorage::_multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
1823
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1824
ERR_FAIL_NULL(multimesh);
1825
ERR_FAIL_INDEX(p_index, multimesh->instances);
1826
ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
1827
1828
_multimesh_make_local(multimesh);
1829
1830
{
1831
float *w = multimesh->data_cache.ptrw();
1832
1833
float *dataptr = w + p_index * multimesh->stride_cache;
1834
1835
dataptr[0] = p_transform.columns[0][0];
1836
dataptr[1] = p_transform.columns[1][0];
1837
dataptr[2] = 0;
1838
dataptr[3] = p_transform.columns[2][0];
1839
dataptr[4] = p_transform.columns[0][1];
1840
dataptr[5] = p_transform.columns[1][1];
1841
dataptr[6] = 0;
1842
dataptr[7] = p_transform.columns[2][1];
1843
}
1844
1845
_multimesh_mark_dirty(multimesh, p_index, true);
1846
}
1847
1848
void MeshStorage::_multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
1849
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1850
ERR_FAIL_NULL(multimesh);
1851
ERR_FAIL_INDEX(p_index, multimesh->instances);
1852
ERR_FAIL_COND(!multimesh->uses_colors);
1853
1854
_multimesh_make_local(multimesh);
1855
1856
{
1857
// Colors are packed into 2 floats.
1858
float *w = multimesh->data_cache.ptrw();
1859
1860
float *dataptr = w + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
1861
uint16_t val[4] = { Math::make_half_float(p_color.r), Math::make_half_float(p_color.g), Math::make_half_float(p_color.b), Math::make_half_float(p_color.a) };
1862
memcpy(dataptr, val, 2 * 4);
1863
}
1864
1865
_multimesh_mark_dirty(multimesh, p_index, false);
1866
}
1867
1868
void MeshStorage::_multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
1869
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1870
ERR_FAIL_NULL(multimesh);
1871
ERR_FAIL_INDEX(p_index, multimesh->instances);
1872
ERR_FAIL_COND(!multimesh->uses_custom_data);
1873
1874
_multimesh_make_local(multimesh);
1875
1876
{
1877
float *w = multimesh->data_cache.ptrw();
1878
1879
float *dataptr = w + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
1880
uint16_t val[4] = { Math::make_half_float(p_color.r), Math::make_half_float(p_color.g), Math::make_half_float(p_color.b), Math::make_half_float(p_color.a) };
1881
memcpy(dataptr, val, 2 * 4);
1882
}
1883
1884
_multimesh_mark_dirty(multimesh, p_index, false);
1885
}
1886
1887
RID MeshStorage::_multimesh_get_mesh(RID p_multimesh) const {
1888
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1889
ERR_FAIL_NULL_V(multimesh, RID());
1890
1891
return multimesh->mesh;
1892
}
1893
1894
void MeshStorage::_multimesh_set_custom_aabb(RID p_multimesh, const AABB &p_aabb) {
1895
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1896
ERR_FAIL_NULL(multimesh);
1897
multimesh->custom_aabb = p_aabb;
1898
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
1899
}
1900
1901
AABB MeshStorage::_multimesh_get_custom_aabb(RID p_multimesh) const {
1902
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1903
ERR_FAIL_NULL_V(multimesh, AABB());
1904
return multimesh->custom_aabb;
1905
}
1906
1907
AABB MeshStorage::_multimesh_get_aabb(RID p_multimesh) {
1908
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1909
ERR_FAIL_NULL_V(multimesh, AABB());
1910
if (multimesh->custom_aabb != AABB()) {
1911
return multimesh->custom_aabb;
1912
}
1913
if (multimesh->aabb_dirty) {
1914
_update_dirty_multimeshes();
1915
}
1916
return multimesh->aabb;
1917
}
1918
1919
Transform3D MeshStorage::_multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
1920
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1921
ERR_FAIL_NULL_V(multimesh, Transform3D());
1922
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
1923
ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
1924
1925
_multimesh_make_local(multimesh);
1926
1927
Transform3D t;
1928
{
1929
const float *r = multimesh->data_cache.ptr();
1930
1931
const float *dataptr = r + p_index * multimesh->stride_cache;
1932
1933
t.basis.rows[0][0] = dataptr[0];
1934
t.basis.rows[0][1] = dataptr[1];
1935
t.basis.rows[0][2] = dataptr[2];
1936
t.origin.x = dataptr[3];
1937
t.basis.rows[1][0] = dataptr[4];
1938
t.basis.rows[1][1] = dataptr[5];
1939
t.basis.rows[1][2] = dataptr[6];
1940
t.origin.y = dataptr[7];
1941
t.basis.rows[2][0] = dataptr[8];
1942
t.basis.rows[2][1] = dataptr[9];
1943
t.basis.rows[2][2] = dataptr[10];
1944
t.origin.z = dataptr[11];
1945
}
1946
1947
return t;
1948
}
1949
1950
Transform2D MeshStorage::_multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
1951
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1952
ERR_FAIL_NULL_V(multimesh, Transform2D());
1953
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
1954
ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
1955
1956
_multimesh_make_local(multimesh);
1957
1958
Transform2D t;
1959
{
1960
const float *r = multimesh->data_cache.ptr();
1961
1962
const float *dataptr = r + p_index * multimesh->stride_cache;
1963
1964
t.columns[0][0] = dataptr[0];
1965
t.columns[1][0] = dataptr[1];
1966
t.columns[2][0] = dataptr[3];
1967
t.columns[0][1] = dataptr[4];
1968
t.columns[1][1] = dataptr[5];
1969
t.columns[2][1] = dataptr[7];
1970
}
1971
1972
return t;
1973
}
1974
1975
Color MeshStorage::_multimesh_instance_get_color(RID p_multimesh, int p_index) const {
1976
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
1977
ERR_FAIL_NULL_V(multimesh, Color());
1978
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
1979
ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
1980
1981
_multimesh_make_local(multimesh);
1982
1983
Color c;
1984
{
1985
const float *r = multimesh->data_cache.ptr();
1986
1987
const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
1988
uint16_t raw_data[4];
1989
memcpy(raw_data, dataptr, 2 * 4);
1990
c.r = Math::half_to_float(raw_data[0]);
1991
c.g = Math::half_to_float(raw_data[1]);
1992
c.b = Math::half_to_float(raw_data[2]);
1993
c.a = Math::half_to_float(raw_data[3]);
1994
}
1995
1996
return c;
1997
}
1998
1999
Color MeshStorage::_multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
2000
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
2001
ERR_FAIL_NULL_V(multimesh, Color());
2002
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
2003
ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
2004
2005
_multimesh_make_local(multimesh);
2006
2007
Color c;
2008
{
2009
const float *r = multimesh->data_cache.ptr();
2010
2011
const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
2012
uint16_t raw_data[4];
2013
memcpy(raw_data, dataptr, 2 * 4);
2014
c.r = Math::half_to_float(raw_data[0]);
2015
c.g = Math::half_to_float(raw_data[1]);
2016
c.b = Math::half_to_float(raw_data[2]);
2017
c.a = Math::half_to_float(raw_data[3]);
2018
}
2019
2020
return c;
2021
}
2022
2023
void MeshStorage::_multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
2024
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
2025
ERR_FAIL_NULL(multimesh);
2026
2027
// Assign data to previous buffer if motion vectors are used, that data will be made current in _update_dirty_multimeshes().
2028
bool uses_motion_vectors = RSG::viewport->get_num_viewports_with_motion_vectors() > 0;
2029
int buffer_index = uses_motion_vectors ? multimesh->prev_buffer : multimesh->current_buffer;
2030
2031
if (multimesh->uses_colors || multimesh->uses_custom_data) {
2032
// Color and custom need to be packed so copy buffer to data_cache and pack.
2033
2034
_multimesh_make_local(multimesh);
2035
2036
uint32_t old_stride = multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
2037
old_stride += multimesh->uses_colors ? 4 : 0;
2038
old_stride += multimesh->uses_custom_data ? 4 : 0;
2039
ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)old_stride));
2040
2041
multimesh->data_cache = p_buffer;
2042
2043
float *w = multimesh->data_cache.ptrw();
2044
2045
for (int i = 0; i < multimesh->instances; i++) {
2046
{
2047
float *dataptr = w + i * old_stride;
2048
float *newptr = w + i * multimesh->stride_cache;
2049
float vals[8] = { dataptr[0], dataptr[1], dataptr[2], dataptr[3], dataptr[4], dataptr[5], dataptr[6], dataptr[7] };
2050
memcpy(newptr, vals, 8 * 4);
2051
}
2052
2053
if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
2054
float *dataptr = w + i * old_stride + 8;
2055
float *newptr = w + i * multimesh->stride_cache + 8;
2056
float vals[8] = { dataptr[0], dataptr[1], dataptr[2], dataptr[3] };
2057
memcpy(newptr, vals, 4 * 4);
2058
}
2059
2060
if (multimesh->uses_colors) {
2061
float *dataptr = w + i * old_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12);
2062
float *newptr = w + i * multimesh->stride_cache + multimesh->color_offset_cache;
2063
uint16_t val[4] = { Math::make_half_float(dataptr[0]), Math::make_half_float(dataptr[1]), Math::make_half_float(dataptr[2]), Math::make_half_float(dataptr[3]) };
2064
memcpy(newptr, val, 2 * 4);
2065
}
2066
if (multimesh->uses_custom_data) {
2067
float *dataptr = w + i * old_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12) + (multimesh->uses_colors ? 4 : 0);
2068
float *newptr = w + i * multimesh->stride_cache + multimesh->custom_data_offset_cache;
2069
uint16_t val[4] = { Math::make_half_float(dataptr[0]), Math::make_half_float(dataptr[1]), Math::make_half_float(dataptr[2]), Math::make_half_float(dataptr[3]) };
2070
memcpy(newptr, val, 2 * 4);
2071
}
2072
}
2073
2074
multimesh->data_cache.resize(multimesh->instances * (int)multimesh->stride_cache);
2075
const float *r = multimesh->data_cache.ptr();
2076
glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer[buffer_index]);
2077
glBufferData(GL_ARRAY_BUFFER, multimesh->data_cache.size() * sizeof(float), r, GL_STATIC_DRAW);
2078
glBindBuffer(GL_ARRAY_BUFFER, 0);
2079
2080
} else {
2081
// If we have a data cache, just update it.
2082
if (multimesh->data_cache.size()) {
2083
multimesh->data_cache = p_buffer;
2084
}
2085
2086
// Only Transform is being used, so we can upload directly.
2087
ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
2088
const float *r = p_buffer.ptr();
2089
glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer[buffer_index]);
2090
glBufferData(GL_ARRAY_BUFFER, p_buffer.size() * sizeof(float), r, GL_STATIC_DRAW);
2091
glBindBuffer(GL_ARRAY_BUFFER, 0);
2092
}
2093
2094
multimesh->buffer_set = true;
2095
2096
if (multimesh->data_cache.size() || multimesh->uses_colors || multimesh->uses_custom_data) {
2097
// Clear dirty since nothing will be dirty anymore.
2098
uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
2099
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
2100
multimesh->data_cache_dirty_regions[i] = false;
2101
}
2102
multimesh->data_cache_used_dirty_regions = 0;
2103
2104
_multimesh_mark_all_dirty(multimesh, false, true); //update AABB
2105
} else if (multimesh->mesh.is_valid()) {
2106
//if we have a mesh set, we need to re-generate the AABB from the new data
2107
const float *data = p_buffer.ptr();
2108
2109
if (multimesh->custom_aabb == AABB()) {
2110
_multimesh_re_create_aabb(multimesh, data, multimesh->instances);
2111
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
2112
}
2113
}
2114
}
2115
2116
RID MeshStorage::_multimesh_get_command_buffer_rd_rid(RID p_multimesh) const {
2117
ERR_FAIL_V_MSG(RID(), "GLES3 does not implement indirect multimeshes.");
2118
}
2119
2120
RID MeshStorage::_multimesh_get_buffer_rd_rid(RID p_multimesh) const {
2121
ERR_FAIL_V_MSG(RID(), "GLES3 does not contain a Rid for the multimesh buffer.");
2122
}
2123
2124
Vector<float> MeshStorage::_multimesh_get_buffer(RID p_multimesh) const {
2125
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
2126
ERR_FAIL_NULL_V(multimesh, Vector<float>());
2127
Vector<float> ret;
2128
if (multimesh->buffer[multimesh->current_buffer] == 0 || multimesh->instances == 0) {
2129
return Vector<float>();
2130
} else if (multimesh->data_cache.size()) {
2131
ret = multimesh->data_cache;
2132
} else {
2133
// Buffer not cached, so fetch from GPU memory. This can be a stalling operation, avoid whenever possible.
2134
2135
Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer[multimesh->current_buffer], multimesh->instances * multimesh->stride_cache * sizeof(float));
2136
ret.resize(multimesh->instances * multimesh->stride_cache);
2137
{
2138
float *w = ret.ptrw();
2139
const uint8_t *r = buffer.ptr();
2140
memcpy(w, r, buffer.size());
2141
}
2142
}
2143
if (multimesh->uses_colors || multimesh->uses_custom_data) {
2144
// Need to decompress buffer.
2145
uint32_t new_stride = multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
2146
new_stride += multimesh->uses_colors ? 4 : 0;
2147
new_stride += multimesh->uses_custom_data ? 4 : 0;
2148
2149
Vector<float> decompressed;
2150
decompressed.resize(multimesh->instances * (int)new_stride);
2151
float *w = decompressed.ptrw();
2152
const float *r = ret.ptr();
2153
2154
for (int i = 0; i < multimesh->instances; i++) {
2155
{
2156
float *newptr = w + i * new_stride;
2157
const float *oldptr = r + i * multimesh->stride_cache;
2158
float vals[8] = { oldptr[0], oldptr[1], oldptr[2], oldptr[3], oldptr[4], oldptr[5], oldptr[6], oldptr[7] };
2159
memcpy(newptr, vals, 8 * 4);
2160
}
2161
2162
if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
2163
float *newptr = w + i * new_stride + 8;
2164
const float *oldptr = r + i * multimesh->stride_cache + 8;
2165
float vals[8] = { oldptr[0], oldptr[1], oldptr[2], oldptr[3] };
2166
memcpy(newptr, vals, 4 * 4);
2167
}
2168
2169
if (multimesh->uses_colors) {
2170
float *newptr = w + i * new_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12);
2171
const float *oldptr = r + i * multimesh->stride_cache + multimesh->color_offset_cache;
2172
uint16_t raw_data[4];
2173
memcpy(raw_data, oldptr, 2 * 4);
2174
newptr[0] = Math::half_to_float(raw_data[0]);
2175
newptr[1] = Math::half_to_float(raw_data[1]);
2176
newptr[2] = Math::half_to_float(raw_data[2]);
2177
newptr[3] = Math::half_to_float(raw_data[3]);
2178
}
2179
if (multimesh->uses_custom_data) {
2180
float *newptr = w + i * new_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12) + (multimesh->uses_colors ? 4 : 0);
2181
const float *oldptr = r + i * multimesh->stride_cache + multimesh->custom_data_offset_cache;
2182
uint16_t raw_data[4];
2183
memcpy(raw_data, oldptr, 2 * 4);
2184
newptr[0] = Math::half_to_float(raw_data[0]);
2185
newptr[1] = Math::half_to_float(raw_data[1]);
2186
newptr[2] = Math::half_to_float(raw_data[2]);
2187
newptr[3] = Math::half_to_float(raw_data[3]);
2188
}
2189
}
2190
return decompressed;
2191
} else {
2192
return ret;
2193
}
2194
}
2195
2196
void MeshStorage::_multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
2197
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
2198
ERR_FAIL_NULL(multimesh);
2199
ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
2200
if (multimesh->visible_instances == p_visible) {
2201
return;
2202
}
2203
2204
if (multimesh->data_cache.size()) {
2205
// There is a data cache, but we may need to update some sections.
2206
_multimesh_mark_all_dirty(multimesh, false, true);
2207
int start = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
2208
for (int i = start; i < p_visible; i++) {
2209
_multimesh_mark_dirty(multimesh, i, true);
2210
}
2211
}
2212
2213
multimesh->visible_instances = p_visible;
2214
2215
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
2216
}
2217
2218
int MeshStorage::_multimesh_get_visible_instances(RID p_multimesh) const {
2219
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
2220
ERR_FAIL_NULL_V(multimesh, 0);
2221
return multimesh->visible_instances;
2222
}
2223
2224
MeshStorage::MultiMeshInterpolator *MeshStorage::_multimesh_get_interpolator(RID p_multimesh) const {
2225
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
2226
ERR_FAIL_NULL_V_MSG(multimesh, nullptr, "Multimesh not found: " + itos(p_multimesh.get_id()));
2227
2228
return &multimesh->interpolator;
2229
}
2230
2231
void MeshStorage::_update_dirty_multimeshes() {
2232
while (multimesh_dirty_list) {
2233
MultiMesh *multimesh = multimesh_dirty_list;
2234
2235
bool uses_motion_vectors = RSG::viewport->get_num_viewports_with_motion_vectors() > 0;
2236
if (uses_motion_vectors) {
2237
multimesh->prev_buffer = multimesh->current_buffer;
2238
uint32_t new_buffer_index = multimesh->current_buffer ^ 1;
2239
2240
// Generate secondary buffer if it doesn't exist.
2241
if (multimesh->buffer[new_buffer_index] == 0 && multimesh->instances) {
2242
GLuint new_buffer = 0;
2243
glGenBuffers(1, &new_buffer);
2244
glBindBuffer(GL_ARRAY_BUFFER, new_buffer);
2245
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, new_buffer, multimesh->instances * multimesh->stride_cache * sizeof(float), nullptr, GL_STATIC_DRAW, "MultiMesh secondary buffer");
2246
glBindBuffer(GL_ARRAY_BUFFER, 0);
2247
multimesh->buffer[new_buffer_index] = new_buffer;
2248
}
2249
2250
multimesh->current_buffer = new_buffer_index;
2251
multimesh->last_change = RSG::rasterizer->get_frame_number();
2252
}
2253
2254
_update_dirty_multimesh(multimesh, uses_motion_vectors);
2255
2256
multimesh_dirty_list = multimesh->dirty_list;
2257
2258
multimesh->dirty_list = nullptr;
2259
multimesh->dirty = false;
2260
}
2261
2262
multimesh_dirty_list = nullptr;
2263
}
2264
2265
void MeshStorage::_update_dirty_multimesh(MultiMesh *p_multimesh, bool p_uses_motion_vectors) {
2266
if (p_multimesh->data_cache.size()) { // May have been cleared, so only process if it exists.
2267
const float *data = p_multimesh->data_cache.ptr();
2268
2269
uint32_t visible_instances = p_multimesh->visible_instances >= 0 ? p_multimesh->visible_instances : p_multimesh->instances;
2270
2271
if (p_multimesh->data_cache_used_dirty_regions) {
2272
uint32_t data_cache_dirty_region_count = Math::division_round_up(p_multimesh->instances, (int)MULTIMESH_DIRTY_REGION_SIZE);
2273
uint32_t visible_region_count = visible_instances == 0 ? 0 : Math::division_round_up(visible_instances, (uint32_t)MULTIMESH_DIRTY_REGION_SIZE);
2274
2275
GLint region_size = p_multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
2276
2277
if (p_multimesh->data_cache_used_dirty_regions > 32 || p_multimesh->data_cache_used_dirty_regions > visible_region_count / 2 || p_uses_motion_vectors) {
2278
// If there are too many dirty regions, the dirty regions represent the majority of visible regions, or motion vectors are used:
2279
// Just copy all, else transfer cost piles up too much.
2280
glBindBuffer(GL_ARRAY_BUFFER, p_multimesh->buffer[p_multimesh->current_buffer]);
2281
glBufferSubData(GL_ARRAY_BUFFER, 0, MIN(visible_region_count * region_size, p_multimesh->instances * p_multimesh->stride_cache * sizeof(float)), data);
2282
glBindBuffer(GL_ARRAY_BUFFER, 0);
2283
} else {
2284
// Not that many regions? Update them all.
2285
// TODO: profile the performance cost on low end
2286
glBindBuffer(GL_ARRAY_BUFFER, p_multimesh->buffer[p_multimesh->current_buffer]);
2287
for (uint32_t i = 0; i < visible_region_count; i++) {
2288
if (p_multimesh->data_cache_dirty_regions[i]) {
2289
GLint offset = i * region_size;
2290
GLint size = p_multimesh->stride_cache * (uint32_t)p_multimesh->instances * (uint32_t)sizeof(float);
2291
uint32_t region_start_index = p_multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
2292
glBufferSubData(GL_ARRAY_BUFFER, offset, MIN(region_size, size - offset), &data[region_start_index]);
2293
}
2294
}
2295
glBindBuffer(GL_ARRAY_BUFFER, 0);
2296
}
2297
2298
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
2299
p_multimesh->data_cache_dirty_regions[i] = false;
2300
}
2301
2302
p_multimesh->data_cache_used_dirty_regions = 0;
2303
}
2304
2305
if (p_multimesh->aabb_dirty && p_multimesh->mesh.is_valid()) {
2306
p_multimesh->aabb_dirty = false;
2307
if (p_multimesh->custom_aabb == AABB()) {
2308
_multimesh_re_create_aabb(p_multimesh, data, visible_instances);
2309
p_multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
2310
}
2311
}
2312
}
2313
}
2314
2315
void GLES3::MeshStorage::multimesh_vertex_attrib_setup(GLuint p_instance_buffer, uint32_t p_stride, bool p_uses_format_2d, bool p_has_color_or_custom_data, int p_attrib_base_index) {
2316
glBindBuffer(GL_ARRAY_BUFFER, p_instance_buffer);
2317
2318
glEnableVertexAttribArray(p_attrib_base_index + 0);
2319
glVertexAttribPointer(p_attrib_base_index + 0, 4, GL_FLOAT, GL_FALSE, p_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(0));
2320
glVertexAttribDivisor(p_attrib_base_index + 0, 1);
2321
glEnableVertexAttribArray(p_attrib_base_index + 1);
2322
glVertexAttribPointer(p_attrib_base_index + 1, 4, GL_FLOAT, GL_FALSE, p_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4));
2323
glVertexAttribDivisor(p_attrib_base_index + 1, 1);
2324
if (!p_uses_format_2d) {
2325
glEnableVertexAttribArray(p_attrib_base_index + 2);
2326
glVertexAttribPointer(p_attrib_base_index + 2, 4, GL_FLOAT, GL_FALSE, p_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(sizeof(float) * 8));
2327
glVertexAttribDivisor(p_attrib_base_index + 2, 1);
2328
}
2329
2330
if (p_has_color_or_custom_data) {
2331
uint32_t color_custom_offset = p_uses_format_2d ? 8 : 12;
2332
glEnableVertexAttribArray(p_attrib_base_index + 3);
2333
glVertexAttribIPointer(p_attrib_base_index + 3, 4, GL_UNSIGNED_INT, p_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(color_custom_offset * sizeof(float)));
2334
glVertexAttribDivisor(p_attrib_base_index + 3, 1);
2335
} else {
2336
// Set all default instance color and custom data values to 1.0 or 0.0 using a compressed format.
2337
uint16_t zero = Math::make_half_float(0.0f);
2338
uint16_t one = Math::make_half_float(1.0f);
2339
GLuint default_color = (uint32_t(one) << 16) | one;
2340
GLuint default_custom = (uint32_t(zero) << 16) | zero;
2341
glVertexAttribI4ui(p_attrib_base_index + 3, default_color, default_color, default_custom, default_custom);
2342
}
2343
}
2344
2345
/* SKELETON API */
2346
2347
RID MeshStorage::skeleton_allocate() {
2348
return skeleton_owner.allocate_rid();
2349
}
2350
2351
void MeshStorage::skeleton_initialize(RID p_rid) {
2352
skeleton_owner.initialize_rid(p_rid, Skeleton());
2353
}
2354
2355
void MeshStorage::skeleton_free(RID p_rid) {
2356
_update_dirty_skeletons();
2357
skeleton_allocate_data(p_rid, 0);
2358
Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
2359
skeleton->dependency.deleted_notify(p_rid);
2360
skeleton_owner.free(p_rid);
2361
}
2362
2363
void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
2364
if (!skeleton->dirty) {
2365
skeleton->dirty = true;
2366
skeleton->dirty_list = skeleton_dirty_list;
2367
skeleton_dirty_list = skeleton;
2368
}
2369
}
2370
2371
void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
2372
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2373
ERR_FAIL_NULL(skeleton);
2374
ERR_FAIL_COND(p_bones < 0);
2375
2376
if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
2377
return;
2378
}
2379
2380
skeleton->size = p_bones;
2381
skeleton->use_2d = p_2d_skeleton;
2382
skeleton->height = (p_bones * (p_2d_skeleton ? 2 : 3)) / 256;
2383
if ((p_bones * (p_2d_skeleton ? 2 : 3)) % 256) {
2384
skeleton->height++;
2385
}
2386
2387
if (skeleton->transforms_texture != 0) {
2388
GLES3::Utilities::get_singleton()->texture_free_data(skeleton->transforms_texture);
2389
skeleton->transforms_texture = 0;
2390
skeleton->data.clear();
2391
}
2392
2393
if (skeleton->size) {
2394
skeleton->data.resize(256 * skeleton->height * 4);
2395
glGenTextures(1, &skeleton->transforms_texture);
2396
glBindTexture(GL_TEXTURE_2D, skeleton->transforms_texture);
2397
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, skeleton->height, 0, GL_RGBA, GL_FLOAT, nullptr);
2398
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
2399
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
2400
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2401
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2402
glBindTexture(GL_TEXTURE_2D, 0);
2403
GLES3::Utilities::get_singleton()->texture_allocated_data(skeleton->transforms_texture, skeleton->data.size() * sizeof(float), "Skeleton transforms texture");
2404
2405
memset(skeleton->data.ptr(), 0, skeleton->data.size() * sizeof(float));
2406
2407
_skeleton_make_dirty(skeleton);
2408
}
2409
2410
skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
2411
}
2412
2413
void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
2414
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2415
2416
ERR_FAIL_NULL(skeleton);
2417
ERR_FAIL_COND(!skeleton->use_2d);
2418
2419
skeleton->base_transform_2d = p_base_transform;
2420
}
2421
2422
int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
2423
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2424
ERR_FAIL_NULL_V(skeleton, 0);
2425
2426
return skeleton->size;
2427
}
2428
2429
void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
2430
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2431
2432
ERR_FAIL_NULL(skeleton);
2433
ERR_FAIL_INDEX(p_bone, skeleton->size);
2434
ERR_FAIL_COND(skeleton->use_2d);
2435
2436
float *dataptr = skeleton->data.ptr() + p_bone * 12;
2437
2438
dataptr[0] = p_transform.basis.rows[0][0];
2439
dataptr[1] = p_transform.basis.rows[0][1];
2440
dataptr[2] = p_transform.basis.rows[0][2];
2441
dataptr[3] = p_transform.origin.x;
2442
dataptr[4] = p_transform.basis.rows[1][0];
2443
dataptr[5] = p_transform.basis.rows[1][1];
2444
dataptr[6] = p_transform.basis.rows[1][2];
2445
dataptr[7] = p_transform.origin.y;
2446
dataptr[8] = p_transform.basis.rows[2][0];
2447
dataptr[9] = p_transform.basis.rows[2][1];
2448
dataptr[10] = p_transform.basis.rows[2][2];
2449
dataptr[11] = p_transform.origin.z;
2450
2451
_skeleton_make_dirty(skeleton);
2452
}
2453
2454
Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
2455
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2456
2457
ERR_FAIL_NULL_V(skeleton, Transform3D());
2458
ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
2459
ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
2460
2461
const float *dataptr = skeleton->data.ptr() + p_bone * 12;
2462
2463
Transform3D t;
2464
2465
t.basis.rows[0][0] = dataptr[0];
2466
t.basis.rows[0][1] = dataptr[1];
2467
t.basis.rows[0][2] = dataptr[2];
2468
t.origin.x = dataptr[3];
2469
t.basis.rows[1][0] = dataptr[4];
2470
t.basis.rows[1][1] = dataptr[5];
2471
t.basis.rows[1][2] = dataptr[6];
2472
t.origin.y = dataptr[7];
2473
t.basis.rows[2][0] = dataptr[8];
2474
t.basis.rows[2][1] = dataptr[9];
2475
t.basis.rows[2][2] = dataptr[10];
2476
t.origin.z = dataptr[11];
2477
2478
return t;
2479
}
2480
2481
void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
2482
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2483
2484
ERR_FAIL_NULL(skeleton);
2485
ERR_FAIL_INDEX(p_bone, skeleton->size);
2486
ERR_FAIL_COND(!skeleton->use_2d);
2487
2488
float *dataptr = skeleton->data.ptr() + p_bone * 8;
2489
2490
dataptr[0] = p_transform.columns[0][0];
2491
dataptr[1] = p_transform.columns[1][0];
2492
dataptr[2] = 0;
2493
dataptr[3] = p_transform.columns[2][0];
2494
dataptr[4] = p_transform.columns[0][1];
2495
dataptr[5] = p_transform.columns[1][1];
2496
dataptr[6] = 0;
2497
dataptr[7] = p_transform.columns[2][1];
2498
2499
_skeleton_make_dirty(skeleton);
2500
}
2501
2502
Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
2503
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2504
2505
ERR_FAIL_NULL_V(skeleton, Transform2D());
2506
ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
2507
ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
2508
2509
const float *dataptr = skeleton->data.ptr() + p_bone * 8;
2510
2511
Transform2D t;
2512
t.columns[0][0] = dataptr[0];
2513
t.columns[1][0] = dataptr[1];
2514
t.columns[2][0] = dataptr[3];
2515
t.columns[0][1] = dataptr[4];
2516
t.columns[1][1] = dataptr[5];
2517
t.columns[2][1] = dataptr[7];
2518
2519
return t;
2520
}
2521
2522
void MeshStorage::_update_dirty_skeletons() {
2523
while (skeleton_dirty_list) {
2524
Skeleton *skeleton = skeleton_dirty_list;
2525
2526
if (skeleton->size) {
2527
glBindTexture(GL_TEXTURE_2D, skeleton->transforms_texture);
2528
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, skeleton->height, 0, GL_RGBA, GL_FLOAT, skeleton->data.ptr());
2529
glBindTexture(GL_TEXTURE_2D, 0);
2530
}
2531
2532
skeleton_dirty_list = skeleton->dirty_list;
2533
2534
skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
2535
2536
skeleton->version++;
2537
2538
skeleton->dirty = false;
2539
skeleton->dirty_list = nullptr;
2540
}
2541
2542
skeleton_dirty_list = nullptr;
2543
}
2544
2545
void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
2546
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
2547
ERR_FAIL_NULL(skeleton);
2548
2549
p_instance->update_dependency(&skeleton->dependency);
2550
}
2551
2552
#endif // GLES3_ENABLED
2553
2554