Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/main/main_timer_sync.cpp
9887 views
1
/**************************************************************************/
2
/* main_timer_sync.cpp */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#include "main_timer_sync.h"
32
33
#include "core/os/os.h"
34
#include "servers/display_server.h"
35
36
void MainFrameTime::clamp_process_step(double min_process_step, double max_process_step) {
37
if (process_step < min_process_step) {
38
process_step = min_process_step;
39
} else if (process_step > max_process_step) {
40
process_step = max_process_step;
41
}
42
}
43
44
/////////////////////////////////
45
46
void MainTimerSync::DeltaSmoother::update_refresh_rate_estimator(int64_t p_delta) {
47
// the calling code should prevent 0 or negative values of delta
48
// (preventing divide by zero)
49
50
// note that if the estimate gets locked, and something external changes this
51
// (e.g. user changes to non-vsync in the OS), then the results may be less than ideal,
52
// but usually it will detect this via the FPS measurement and not attempt smoothing.
53
// This should be a rare occurrence anyway, and will be cured next time user restarts game.
54
if (_estimate_locked) {
55
return;
56
}
57
58
// First average the delta over NUM_READINGS
59
_estimator_total_delta += p_delta;
60
_estimator_delta_readings++;
61
62
const int NUM_READINGS = 60;
63
64
if (_estimator_delta_readings < NUM_READINGS) {
65
return;
66
}
67
68
// use average
69
p_delta = _estimator_total_delta / NUM_READINGS;
70
71
// reset the averager for next time
72
_estimator_delta_readings = 0;
73
_estimator_total_delta = 0;
74
75
///////////////////////////////
76
77
int fps = Math::round(1000000.0 / p_delta);
78
79
// initial estimation, to speed up converging, special case we will estimate the refresh rate
80
// from the first average FPS reading
81
if (_estimated_fps == 0) {
82
// below 50 might be chugging loading stuff, or else
83
// dropping loads of frames, so the estimate will be inaccurate
84
if (fps >= 50) {
85
_estimated_fps = fps;
86
#ifdef GODOT_DEBUG_DELTA_SMOOTHER
87
print_line("initial guess (average measured) refresh rate: " + itos(fps));
88
#endif
89
} else {
90
// can't get started until above 50
91
return;
92
}
93
}
94
95
// we hit our exact estimated refresh rate.
96
// increase our confidence in the estimate.
97
if (fps == _estimated_fps) {
98
// note that each hit is an average of NUM_READINGS frames
99
_hits_at_estimated++;
100
101
if (_estimate_complete && _hits_at_estimated == 20) {
102
_estimate_locked = true;
103
#ifdef GODOT_DEBUG_DELTA_SMOOTHER
104
print_line("estimate LOCKED at " + itos(_estimated_fps) + " fps");
105
#endif
106
return;
107
}
108
109
// if we are getting pretty confident in this estimate, decide it is complete
110
// (it can still be increased later, and possibly lowered but only for a short time)
111
if ((!_estimate_complete) && (_hits_at_estimated > 2)) {
112
// when the estimate is complete we turn on smoothing
113
if (_estimated_fps) {
114
_estimate_complete = true;
115
_vsync_delta = 1000000 / _estimated_fps;
116
117
#ifdef GODOT_DEBUG_DELTA_SMOOTHER
118
print_line("estimate complete. vsync_delta " + itos(_vsync_delta) + ", fps " + itos(_estimated_fps));
119
#endif
120
}
121
}
122
123
#ifdef GODOT_DEBUG_DELTA_SMOOTHER
124
if ((_hits_at_estimated % (400 / NUM_READINGS)) == 0) {
125
String sz = "hits at estimated : " + itos(_hits_at_estimated) + ", above : " + itos(_hits_above_estimated) + "( " + itos(_hits_one_above_estimated) + " ), below : " + itos(_hits_below_estimated) + " (" + itos(_hits_one_below_estimated) + " )";
126
127
print_line(sz);
128
}
129
#endif
130
131
return;
132
}
133
134
const int SIGNIFICANCE_UP = 1;
135
const int SIGNIFICANCE_DOWN = 2;
136
137
// we are not usually interested in slowing the estimate
138
// but we may have overshot, so make it possible to reduce
139
if (fps < _estimated_fps) {
140
// micro changes
141
if (fps == (_estimated_fps - 1)) {
142
_hits_one_below_estimated++;
143
144
if ((_hits_one_below_estimated > _hits_at_estimated) && (_hits_one_below_estimated > SIGNIFICANCE_DOWN)) {
145
_estimated_fps--;
146
made_new_estimate();
147
}
148
149
return;
150
} else {
151
_hits_below_estimated++;
152
153
// don't allow large lowering if we are established at a refresh rate, as it will probably be dropped frames
154
bool established = _estimate_complete && (_hits_at_estimated > 10);
155
156
// macro changes
157
// note there is a large barrier to macro lowering. That is because it is more likely to be dropped frames
158
// than mis-estimation of the refresh rate.
159
if (!established) {
160
if (((_hits_below_estimated / 8) > _hits_at_estimated) && (_hits_below_estimated > SIGNIFICANCE_DOWN)) {
161
// decrease the estimate
162
_estimated_fps--;
163
made_new_estimate();
164
}
165
}
166
167
return;
168
}
169
}
170
171
// Changes increasing the estimate.
172
// micro changes
173
if (fps == (_estimated_fps + 1)) {
174
_hits_one_above_estimated++;
175
176
if ((_hits_one_above_estimated > _hits_at_estimated) && (_hits_one_above_estimated > SIGNIFICANCE_UP)) {
177
_estimated_fps++;
178
made_new_estimate();
179
}
180
return;
181
} else {
182
_hits_above_estimated++;
183
184
// macro changes
185
if ((_hits_above_estimated > _hits_at_estimated) && (_hits_above_estimated > SIGNIFICANCE_UP)) {
186
// increase the estimate
187
int change = fps - _estimated_fps;
188
change /= 2;
189
change = MAX(1, change);
190
191
_estimated_fps += change;
192
made_new_estimate();
193
}
194
return;
195
}
196
}
197
198
bool MainTimerSync::DeltaSmoother::fps_allows_smoothing(int64_t p_delta) {
199
_measurement_time += p_delta;
200
_measurement_frame_count++;
201
202
if (_measurement_frame_count == _measurement_end_frame) {
203
// only switch on or off if the estimate is complete
204
if (_estimate_complete) {
205
int64_t time_passed = _measurement_time - _measurement_start_time;
206
207
// average delta
208
time_passed /= MEASURE_FPS_OVER_NUM_FRAMES;
209
210
// estimate fps
211
if (time_passed) {
212
double fps = 1000000.0 / time_passed;
213
double ratio = fps / (double)_estimated_fps;
214
215
//print_line("ratio : " + String(Variant(ratio)));
216
217
if ((ratio > 0.95) && (ratio < 1.05)) {
218
_measurement_allows_smoothing = true;
219
} else {
220
_measurement_allows_smoothing = false;
221
}
222
}
223
} // estimate complete
224
225
// new start time for next iteration
226
_measurement_start_time = _measurement_time;
227
_measurement_end_frame += MEASURE_FPS_OVER_NUM_FRAMES;
228
}
229
230
return _measurement_allows_smoothing;
231
}
232
233
int64_t MainTimerSync::DeltaSmoother::smooth_delta(int64_t p_delta) {
234
// Conditions to disable smoothing.
235
// Note that vsync is a request, it cannot be relied on, the OS may override this.
236
// If the OS turns vsync on without vsync in the app, smoothing will not be enabled.
237
// If the OS turns vsync off with sync enabled in the app, the smoothing must detect this
238
// via the error metric and switch off.
239
// Also only try smoothing if vsync is enabled (classical vsync, not new types) ..
240
// This condition is currently checked before calling smooth_delta().
241
if (!OS::get_singleton()->is_delta_smoothing_enabled() || Engine::get_singleton()->is_editor_hint()) {
242
return p_delta;
243
}
244
245
// only attempt smoothing if vsync is selected
246
DisplayServer::VSyncMode vsync_mode = DisplayServer::get_singleton()->window_get_vsync_mode(DisplayServer::MAIN_WINDOW_ID);
247
if (vsync_mode != DisplayServer::VSYNC_ENABLED) {
248
return p_delta;
249
}
250
251
// Very important, ignore long deltas and pass them back unmodified.
252
// This is to deal with resuming after suspend for long periods.
253
if (p_delta > 1000000) {
254
return p_delta;
255
}
256
257
// keep a running guesstimate of the FPS, and turn off smoothing if
258
// conditions not close to the estimated FPS
259
if (!fps_allows_smoothing(p_delta)) {
260
return p_delta;
261
}
262
263
// we can't cope with negative deltas .. OS bug on some hardware
264
// and also very small deltas caused by vsync being off.
265
// This could possibly be part of a hiccup, this value isn't fixed in stone...
266
if (p_delta < 1000) {
267
return p_delta;
268
}
269
270
// note still some vsync off will still get through to this point...
271
// and we need to cope with it by not converging the estimator / and / or not smoothing
272
update_refresh_rate_estimator(p_delta);
273
274
// no smoothing until we know what the refresh rate is
275
if (!_estimate_complete) {
276
return p_delta;
277
}
278
279
// accumulate the time we have available to use
280
_leftover_time += p_delta;
281
282
// how many vsyncs units can we fit?
283
int64_t units = _leftover_time / _vsync_delta;
284
285
// a delta must include minimum 1 vsync
286
// (if it is less than that, it is either random error or we are no longer running at the vsync rate,
287
// in which case we should switch off delta smoothing, or re-estimate the refresh rate)
288
units = MAX(units, 1);
289
290
_leftover_time -= units * _vsync_delta;
291
// print_line("units " + itos(units) + ", leftover " + itos(_leftover_time/1000) + " ms");
292
293
return units * _vsync_delta;
294
}
295
296
/////////////////////////////////////
297
298
// returns the fraction of p_physics_step required for the timer to overshoot
299
// before advance_core considers changing the physics_steps return from
300
// the typical values as defined by typical_physics_steps
301
double MainTimerSync::get_physics_jitter_fix() {
302
return Engine::get_singleton()->get_physics_jitter_fix();
303
}
304
305
// gets our best bet for the average number of physics steps per render frame
306
// return value: number of frames back this data is consistent
307
int MainTimerSync::get_average_physics_steps(double &p_min, double &p_max) {
308
p_min = typical_physics_steps[0];
309
p_max = p_min + 1;
310
311
for (int i = 1; i < CONTROL_STEPS; ++i) {
312
const double typical_lower = typical_physics_steps[i];
313
const double current_min = typical_lower / (i + 1);
314
if (current_min > p_max) {
315
return i; // bail out if further restrictions would void the interval
316
} else if (current_min > p_min) {
317
p_min = current_min;
318
}
319
const double current_max = (typical_lower + 1) / (i + 1);
320
if (current_max < p_min) {
321
return i;
322
} else if (current_max < p_max) {
323
p_max = current_max;
324
}
325
}
326
327
return CONTROL_STEPS;
328
}
329
330
// advance physics clock by p_process_step, return appropriate number of steps to simulate
331
MainFrameTime MainTimerSync::advance_core(double p_physics_step, int p_physics_ticks_per_second, double p_process_step) {
332
MainFrameTime ret;
333
334
ret.process_step = p_process_step;
335
336
// simple determination of number of physics iteration
337
time_accum += ret.process_step;
338
ret.physics_steps = std::floor(time_accum * p_physics_ticks_per_second);
339
340
int min_typical_steps = typical_physics_steps[0];
341
int max_typical_steps = min_typical_steps + 1;
342
343
// given the past recorded steps and typical steps to match, calculate bounds for this
344
// step to be typical
345
bool update_typical = false;
346
347
for (int i = 0; i < CONTROL_STEPS - 1; ++i) {
348
int steps_left_to_match_typical = typical_physics_steps[i + 1] - accumulated_physics_steps[i];
349
if (steps_left_to_match_typical > max_typical_steps ||
350
steps_left_to_match_typical + 1 < min_typical_steps) {
351
update_typical = true;
352
break;
353
}
354
355
if (steps_left_to_match_typical > min_typical_steps) {
356
min_typical_steps = steps_left_to_match_typical;
357
}
358
if (steps_left_to_match_typical + 1 < max_typical_steps) {
359
max_typical_steps = steps_left_to_match_typical + 1;
360
}
361
}
362
363
#ifdef DEBUG_ENABLED
364
if (max_typical_steps < 0) {
365
WARN_PRINT_ONCE("`max_typical_steps` is negative. This could hint at an engine bug or system timer misconfiguration.");
366
}
367
#endif
368
369
// try to keep it consistent with previous iterations
370
if (ret.physics_steps < min_typical_steps) {
371
const int max_possible_steps = std::floor((time_accum)*p_physics_ticks_per_second + get_physics_jitter_fix());
372
if (max_possible_steps < min_typical_steps) {
373
ret.physics_steps = max_possible_steps;
374
update_typical = true;
375
} else {
376
ret.physics_steps = min_typical_steps;
377
}
378
} else if (ret.physics_steps > max_typical_steps) {
379
const int min_possible_steps = std::floor((time_accum)*p_physics_ticks_per_second - get_physics_jitter_fix());
380
if (min_possible_steps > max_typical_steps) {
381
ret.physics_steps = min_possible_steps;
382
update_typical = true;
383
} else {
384
ret.physics_steps = max_typical_steps;
385
}
386
}
387
388
if (ret.physics_steps < 0) {
389
ret.physics_steps = 0;
390
}
391
392
time_accum -= ret.physics_steps * p_physics_step;
393
394
// keep track of accumulated step counts
395
for (int i = CONTROL_STEPS - 2; i >= 0; --i) {
396
accumulated_physics_steps[i + 1] = accumulated_physics_steps[i] + ret.physics_steps;
397
}
398
accumulated_physics_steps[0] = ret.physics_steps;
399
400
if (update_typical) {
401
for (int i = CONTROL_STEPS - 1; i >= 0; --i) {
402
if (typical_physics_steps[i] > accumulated_physics_steps[i]) {
403
typical_physics_steps[i] = accumulated_physics_steps[i];
404
} else if (typical_physics_steps[i] < accumulated_physics_steps[i] - 1) {
405
typical_physics_steps[i] = accumulated_physics_steps[i] - 1;
406
}
407
}
408
}
409
410
return ret;
411
}
412
413
// calls advance_core, keeps track of deficit it adds to animaption_step, make sure the deficit sum stays close to zero
414
MainFrameTime MainTimerSync::advance_checked(double p_physics_step, int p_physics_ticks_per_second, double p_process_step) {
415
if (fixed_fps != -1) {
416
p_process_step = 1.0 / fixed_fps;
417
}
418
419
float min_output_step = p_process_step / 8;
420
min_output_step = MAX(min_output_step, 1E-6);
421
422
// compensate for last deficit
423
p_process_step += time_deficit;
424
425
MainFrameTime ret = advance_core(p_physics_step, p_physics_ticks_per_second, p_process_step);
426
427
// we will do some clamping on ret.process_step and need to sync those changes to time_accum,
428
// that's easiest if we just remember their fixed difference now
429
const double process_minus_accum = ret.process_step - time_accum;
430
431
// first, least important clamping: keep ret.process_step consistent with typical_physics_steps.
432
// this smoothes out the process steps and culls small but quick variations.
433
{
434
double min_average_physics_steps, max_average_physics_steps;
435
int consistent_steps = get_average_physics_steps(min_average_physics_steps, max_average_physics_steps);
436
if (consistent_steps > 3) {
437
ret.clamp_process_step(min_average_physics_steps * p_physics_step, max_average_physics_steps * p_physics_step);
438
}
439
}
440
441
// second clamping: keep abs(time_deficit) < jitter_fix * frame_slise
442
double max_clock_deviation = get_physics_jitter_fix() * p_physics_step;
443
ret.clamp_process_step(p_process_step - max_clock_deviation, p_process_step + max_clock_deviation);
444
445
// last clamping: make sure time_accum is between 0 and p_physics_step for consistency between physics and process
446
ret.clamp_process_step(process_minus_accum, process_minus_accum + p_physics_step);
447
448
// all the operations above may have turned ret.p_process_step negative or zero, keep a minimal value
449
if (ret.process_step < min_output_step) {
450
ret.process_step = min_output_step;
451
}
452
453
// restore time_accum
454
time_accum = ret.process_step - process_minus_accum;
455
456
// forcing ret.process_step to be positive may trigger a violation of the
457
// promise that time_accum is between 0 and p_physics_step
458
#ifdef DEBUG_ENABLED
459
if (time_accum < -1E-7) {
460
WARN_PRINT_ONCE("Intermediate value of `time_accum` is negative. This could hint at an engine bug or system timer misconfiguration.");
461
}
462
#endif
463
464
if (time_accum > p_physics_step) {
465
const int extra_physics_steps = std::floor(time_accum * p_physics_ticks_per_second);
466
time_accum -= extra_physics_steps * p_physics_step;
467
ret.physics_steps += extra_physics_steps;
468
}
469
470
#ifdef DEBUG_ENABLED
471
if (time_accum < -1E-7) {
472
WARN_PRINT_ONCE("Final value of `time_accum` is negative. It should always be between 0 and `p_physics_step`. This hints at an engine bug.");
473
}
474
if (time_accum > p_physics_step + 1E-7) {
475
WARN_PRINT_ONCE("Final value of `time_accum` is larger than `p_physics_step`. It should always be between 0 and `p_physics_step`. This hints at an engine bug.");
476
}
477
#endif
478
479
// track deficit
480
time_deficit = p_process_step - ret.process_step;
481
482
// p_physics_step is 1.0 / iterations_per_sec
483
// i.e. the time in seconds taken by a physics tick
484
ret.interpolation_fraction = time_accum / p_physics_step;
485
486
return ret;
487
}
488
489
// determine wall clock step since last iteration
490
double MainTimerSync::get_cpu_process_step() {
491
uint64_t cpu_ticks_elapsed = current_cpu_ticks_usec - last_cpu_ticks_usec;
492
last_cpu_ticks_usec = current_cpu_ticks_usec;
493
494
cpu_ticks_elapsed = _delta_smoother.smooth_delta(cpu_ticks_elapsed);
495
496
return cpu_ticks_elapsed / 1000000.0;
497
}
498
499
MainTimerSync::MainTimerSync() {
500
for (int i = CONTROL_STEPS - 1; i >= 0; --i) {
501
typical_physics_steps[i] = i;
502
accumulated_physics_steps[i] = i;
503
}
504
}
505
506
// start the clock
507
void MainTimerSync::init(uint64_t p_cpu_ticks_usec) {
508
current_cpu_ticks_usec = last_cpu_ticks_usec = p_cpu_ticks_usec;
509
}
510
511
// set measured wall clock time
512
void MainTimerSync::set_cpu_ticks_usec(uint64_t p_cpu_ticks_usec) {
513
current_cpu_ticks_usec = p_cpu_ticks_usec;
514
}
515
516
void MainTimerSync::set_fixed_fps(int p_fixed_fps) {
517
fixed_fps = p_fixed_fps;
518
}
519
520
// advance one physics frame, return timesteps to take
521
MainFrameTime MainTimerSync::advance(double p_physics_step, int p_physics_ticks_per_second) {
522
double cpu_process_step = get_cpu_process_step();
523
524
return advance_checked(p_physics_step, p_physics_ticks_per_second, cpu_process_step);
525
}
526
527