Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/modules/godot_physics_3d/godot_body_pair_3d.cpp
11352 views
1
/**************************************************************************/
2
/* godot_body_pair_3d.cpp */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#include "godot_body_pair_3d.h"
32
33
#include "godot_collision_solver_3d.h"
34
#include "godot_space_3d.h"
35
36
#define MIN_VELOCITY 0.0001
37
#define MAX_BIAS_ROTATION (Math::PI / 8)
38
39
void GodotBodyPair3D::_contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) {
40
GodotBodyPair3D *pair = static_cast<GodotBodyPair3D *>(p_userdata);
41
pair->contact_added_callback(p_point_A, p_index_A, p_point_B, p_index_B, normal);
42
}
43
44
void GodotBodyPair3D::contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal) {
45
Vector3 local_A = A->get_inv_transform().basis.xform(p_point_A);
46
Vector3 local_B = B->get_inv_transform().basis.xform(p_point_B - offset_B);
47
48
int new_index = contact_count;
49
50
ERR_FAIL_COND(new_index >= (MAX_CONTACTS + 1));
51
52
Contact contact;
53
contact.index_A = p_index_A;
54
contact.index_B = p_index_B;
55
contact.local_A = local_A;
56
contact.local_B = local_B;
57
contact.normal = (p_point_A - p_point_B).normalized();
58
contact.used = true;
59
60
// Attempt to determine if the contact will be reused.
61
real_t contact_recycle_radius = space->get_contact_recycle_radius();
62
63
for (int i = 0; i < contact_count; i++) {
64
Contact &c = contacts[i];
65
if (c.local_A.distance_squared_to(local_A) < (contact_recycle_radius * contact_recycle_radius) &&
66
c.local_B.distance_squared_to(local_B) < (contact_recycle_radius * contact_recycle_radius)) {
67
contact.acc_normal_impulse = c.acc_normal_impulse;
68
contact.acc_bias_impulse = c.acc_bias_impulse;
69
contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass;
70
contact.acc_tangent_impulse = c.acc_tangent_impulse;
71
c = contact;
72
return;
73
}
74
}
75
76
// Figure out if the contact amount must be reduced to fit the new contact.
77
if (new_index == MAX_CONTACTS) {
78
// Remove the contact with the minimum depth.
79
80
const Basis &basis_A = A->get_transform().basis;
81
const Basis &basis_B = B->get_transform().basis;
82
83
int least_deep = -1;
84
real_t min_depth;
85
86
// Start with depth for new contact.
87
{
88
Vector3 global_A = basis_A.xform(contact.local_A);
89
Vector3 global_B = basis_B.xform(contact.local_B) + offset_B;
90
91
Vector3 axis = global_A - global_B;
92
min_depth = axis.dot(contact.normal);
93
}
94
95
for (int i = 0; i < contact_count; i++) {
96
const Contact &c = contacts[i];
97
Vector3 global_A = basis_A.xform(c.local_A);
98
Vector3 global_B = basis_B.xform(c.local_B) + offset_B;
99
100
Vector3 axis = global_A - global_B;
101
real_t depth = axis.dot(c.normal);
102
103
if (depth < min_depth) {
104
min_depth = depth;
105
least_deep = i;
106
}
107
}
108
109
if (least_deep > -1) {
110
// Replace the least deep contact by the new one.
111
contacts[least_deep] = contact;
112
}
113
114
return;
115
}
116
117
contacts[new_index] = contact;
118
contact_count++;
119
}
120
121
void GodotBodyPair3D::validate_contacts() {
122
// Make sure to erase contacts that are no longer valid.
123
real_t max_separation = space->get_contact_max_separation();
124
real_t max_separation2 = max_separation * max_separation;
125
126
const Basis &basis_A = A->get_transform().basis;
127
const Basis &basis_B = B->get_transform().basis;
128
129
for (int i = 0; i < contact_count; i++) {
130
Contact &c = contacts[i];
131
132
bool erase = false;
133
if (!c.used) {
134
// Was left behind in previous frame.
135
erase = true;
136
} else {
137
c.used = false;
138
139
Vector3 global_A = basis_A.xform(c.local_A);
140
Vector3 global_B = basis_B.xform(c.local_B) + offset_B;
141
Vector3 axis = global_A - global_B;
142
real_t depth = axis.dot(c.normal);
143
144
if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) {
145
erase = true;
146
}
147
}
148
149
if (erase) {
150
// Contact no longer needed, remove.
151
if ((i + 1) < contact_count) {
152
// Swap with the last one.
153
SWAP(contacts[i], contacts[contact_count - 1]);
154
}
155
156
i--;
157
contact_count--;
158
}
159
}
160
}
161
162
// `_test_ccd` prevents tunneling by slowing down a high velocity body that is about to collide so
163
// that next frame it will be at an appropriate location to collide (i.e. slight overlap).
164
// WARNING: The way velocity is adjusted down to cause a collision means the momentum will be
165
// weaker than it should for a bounce!
166
// Process: Only proceed if body A's motion is high relative to its size.
167
// Cast forward along motion vector to see if A is going to enter/pass B's collider next frame, only proceed if it does.
168
// Adjust the velocity of A down so that it will just slightly intersect the collider instead of blowing right past it.
169
bool GodotBodyPair3D::_test_ccd(real_t p_step, GodotBody3D *p_A, int p_shape_A, const Transform3D &p_xform_A, GodotBody3D *p_B, int p_shape_B, const Transform3D &p_xform_B) {
170
GodotShape3D *shape_A_ptr = p_A->get_shape(p_shape_A);
171
172
Vector3 motion = p_A->get_linear_velocity() * p_step;
173
real_t mlen = motion.length();
174
if (mlen < CMP_EPSILON) {
175
return false;
176
}
177
178
Vector3 mnormal = motion / mlen;
179
180
real_t min = 0.0, max = 0.0;
181
shape_A_ptr->project_range(mnormal, p_xform_A, min, max);
182
183
// Did it move enough in this direction to even attempt raycast?
184
// Let's say it should move more than 1/3 the size of the object in that axis.
185
bool fast_object = mlen > (max - min) * 0.3;
186
if (!fast_object) {
187
return false; // moving slow enough that there's no chance of tunneling.
188
}
189
190
// A is moving fast enough that tunneling might occur. See if it's really about to collide.
191
192
// Roughly predict body B's position in the next frame (ignoring collisions).
193
Transform3D predicted_xform_B = p_xform_B.translated(p_B->get_linear_velocity() * p_step);
194
195
// Support points are the farthest forward points on A in the direction of the motion vector.
196
// i.e. the candidate points of which one should hit B first if any collision does occur.
197
static const int max_supports = 16;
198
Vector3 supports_A[max_supports];
199
int support_count_A;
200
GodotShape3D::FeatureType support_type_A;
201
// Convert mnormal into body A's local xform because get_supports requires (and returns) local coordinates.
202
shape_A_ptr->get_supports(p_xform_A.basis.xform_inv(mnormal).normalized(), max_supports, supports_A, support_count_A, support_type_A);
203
204
// Cast a segment from each support point of A in the motion direction.
205
int segment_support_idx = -1;
206
float segment_hit_length = FLT_MAX;
207
Vector3 segment_hit_local;
208
for (int i = 0; i < support_count_A; i++) {
209
supports_A[i] = p_xform_A.xform(supports_A[i]);
210
211
Vector3 from = supports_A[i];
212
Vector3 to = from + motion;
213
214
Transform3D from_inv = predicted_xform_B.affine_inverse();
215
216
// Back up 10% of the per-frame motion behind the support point and use that as the beginning of our cast.
217
// At high speeds, this may mean we're actually casting from well behind the body instead of inside it, which is odd.
218
// But it still works out.
219
Vector3 local_from = from_inv.xform(from - motion * 0.1);
220
Vector3 local_to = from_inv.xform(to);
221
222
Vector3 rpos, rnorm;
223
int fi = -1;
224
if (p_B->get_shape(p_shape_B)->intersect_segment(local_from, local_to, rpos, rnorm, fi, true)) {
225
float hit_length = local_from.distance_to(rpos);
226
if (hit_length < segment_hit_length) {
227
segment_support_idx = i;
228
segment_hit_length = hit_length;
229
segment_hit_local = rpos;
230
}
231
}
232
}
233
234
if (segment_support_idx == -1) {
235
// There was no hit. Since the segment is the length of per-frame motion, this means the bodies will not
236
// actually collide yet on next frame. We'll probably check again next frame once they're closer.
237
return false;
238
}
239
240
Vector3 hitpos = predicted_xform_B.xform(segment_hit_local);
241
242
real_t newlen = hitpos.distance_to(supports_A[segment_support_idx]);
243
// Adding 1% of body length to the distance between collision and support point
244
// should cause body A's support point to arrive just within B's collider next frame.
245
newlen += (max - min) * 0.01;
246
// FIXME: This doesn't always work well when colliding with a triangle face of a trimesh shape.
247
248
p_A->set_linear_velocity((mnormal * newlen) / p_step);
249
250
return true;
251
}
252
253
real_t combine_bounce(GodotBody3D *A, GodotBody3D *B) {
254
return CLAMP(A->get_bounce() + B->get_bounce(), 0, 1);
255
}
256
257
real_t combine_friction(GodotBody3D *A, GodotBody3D *B) {
258
return Math::abs(MIN(A->get_friction(), B->get_friction()));
259
}
260
261
bool GodotBodyPair3D::setup(real_t p_step) {
262
check_ccd = false;
263
264
if (!A->interacts_with(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self())) {
265
collided = false;
266
return false;
267
}
268
269
collide_A = (A->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && A->collides_with(B);
270
collide_B = (B->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && B->collides_with(A);
271
272
report_contacts_only = false;
273
if (!collide_A && !collide_B) {
274
if ((A->get_max_contacts_reported() > 0) || (B->get_max_contacts_reported() > 0)) {
275
report_contacts_only = true;
276
} else {
277
collided = false;
278
return false;
279
}
280
}
281
282
offset_B = B->get_transform().get_origin() - A->get_transform().get_origin();
283
284
validate_contacts();
285
286
const Vector3 &offset_A = A->get_transform().get_origin();
287
Transform3D xform_Au = Transform3D(A->get_transform().basis, Vector3());
288
Transform3D xform_A = xform_Au * A->get_shape_transform(shape_A);
289
290
Transform3D xform_Bu = B->get_transform();
291
xform_Bu.origin -= offset_A;
292
Transform3D xform_B = xform_Bu * B->get_shape_transform(shape_B);
293
294
GodotShape3D *shape_A_ptr = A->get_shape(shape_A);
295
GodotShape3D *shape_B_ptr = B->get_shape(shape_B);
296
297
collided = GodotCollisionSolver3D::solve_static(shape_A_ptr, xform_A, shape_B_ptr, xform_B, _contact_added_callback, this, &sep_axis);
298
299
if (!collided) {
300
if (A->is_continuous_collision_detection_enabled() && collide_A) {
301
check_ccd = true;
302
return true;
303
}
304
305
if (B->is_continuous_collision_detection_enabled() && collide_B) {
306
check_ccd = true;
307
return true;
308
}
309
310
return false;
311
}
312
313
return true;
314
}
315
316
bool GodotBodyPair3D::pre_solve(real_t p_step) {
317
if (!collided) {
318
if (check_ccd) {
319
const Vector3 &offset_A = A->get_transform().get_origin();
320
Transform3D xform_Au = Transform3D(A->get_transform().basis, Vector3());
321
Transform3D xform_A = xform_Au * A->get_shape_transform(shape_A);
322
323
Transform3D xform_Bu = B->get_transform();
324
xform_Bu.origin -= offset_A;
325
Transform3D xform_B = xform_Bu * B->get_shape_transform(shape_B);
326
327
if (A->is_continuous_collision_detection_enabled() && collide_A) {
328
_test_ccd(p_step, A, shape_A, xform_A, B, shape_B, xform_B);
329
}
330
331
if (B->is_continuous_collision_detection_enabled() && collide_B) {
332
_test_ccd(p_step, B, shape_B, xform_B, A, shape_A, xform_A);
333
}
334
}
335
336
return false;
337
}
338
339
real_t max_penetration = space->get_contact_max_allowed_penetration();
340
341
real_t bias = 0.8;
342
343
GodotShape3D *shape_A_ptr = A->get_shape(shape_A);
344
GodotShape3D *shape_B_ptr = B->get_shape(shape_B);
345
346
if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) {
347
if (shape_A_ptr->get_custom_bias() == 0) {
348
bias = shape_B_ptr->get_custom_bias();
349
} else if (shape_B_ptr->get_custom_bias() == 0) {
350
bias = shape_A_ptr->get_custom_bias();
351
} else {
352
bias = (shape_B_ptr->get_custom_bias() + shape_A_ptr->get_custom_bias()) * 0.5;
353
}
354
}
355
356
real_t inv_dt = 1.0 / p_step;
357
358
bool do_process = false;
359
360
const Vector3 &offset_A = A->get_transform().get_origin();
361
362
const Basis &basis_A = A->get_transform().basis;
363
const Basis &basis_B = B->get_transform().basis;
364
365
Basis zero_basis;
366
zero_basis.set_zero();
367
368
const Basis &inv_inertia_tensor_A = collide_A ? A->get_inv_inertia_tensor() : zero_basis;
369
const Basis &inv_inertia_tensor_B = collide_B ? B->get_inv_inertia_tensor() : zero_basis;
370
371
real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0;
372
real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0;
373
374
for (int i = 0; i < contact_count; i++) {
375
Contact &c = contacts[i];
376
c.active = false;
377
378
Vector3 global_A = basis_A.xform(c.local_A);
379
Vector3 global_B = basis_B.xform(c.local_B) + offset_B;
380
381
Vector3 axis = global_A - global_B;
382
real_t depth = axis.dot(c.normal);
383
384
if (depth <= 0.0) {
385
continue;
386
}
387
388
#ifdef DEBUG_ENABLED
389
if (space->is_debugging_contacts()) {
390
space->add_debug_contact(global_A + offset_A);
391
space->add_debug_contact(global_B + offset_A);
392
}
393
#endif
394
395
c.rA = global_A - A->get_center_of_mass();
396
c.rB = global_B - B->get_center_of_mass() - offset_B;
397
398
// Precompute normal mass, tangent mass, and bias.
399
Vector3 inertia_A = inv_inertia_tensor_A.xform(c.rA.cross(c.normal));
400
Vector3 inertia_B = inv_inertia_tensor_B.xform(c.rB.cross(c.normal));
401
real_t kNormal = inv_mass_A + inv_mass_B;
402
kNormal += c.normal.dot(inertia_A.cross(c.rA)) + c.normal.dot(inertia_B.cross(c.rB));
403
c.mass_normal = 1.0f / kNormal;
404
405
c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration);
406
c.depth = depth;
407
408
Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse;
409
410
c.acc_impulse -= j_vec;
411
412
// contact query reporting...
413
414
if (A->can_report_contacts() || B->can_report_contacts()) {
415
Vector3 crB = B->get_angular_velocity().cross(c.rB) + B->get_linear_velocity();
416
Vector3 crA = A->get_angular_velocity().cross(c.rA) + A->get_linear_velocity();
417
418
if (A->can_report_contacts()) {
419
A->add_contact(global_A + offset_A, -c.normal, depth, shape_A, crA, global_B + offset_A, shape_B, B->get_instance_id(), B->get_self(), crB, c.acc_impulse);
420
}
421
422
if (B->can_report_contacts()) {
423
B->add_contact(global_B + offset_A, c.normal, depth, shape_B, crB, global_A + offset_A, shape_A, A->get_instance_id(), A->get_self(), crA, -c.acc_impulse);
424
}
425
}
426
427
if (report_contacts_only) {
428
collided = false;
429
continue;
430
}
431
432
c.active = true;
433
do_process = true;
434
435
if (collide_A) {
436
A->apply_impulse(-j_vec, c.rA + A->get_center_of_mass());
437
}
438
if (collide_B) {
439
B->apply_impulse(j_vec, c.rB + B->get_center_of_mass());
440
}
441
442
c.bounce = combine_bounce(A, B);
443
if (c.bounce) {
444
Vector3 crA = A->get_prev_angular_velocity().cross(c.rA);
445
Vector3 crB = B->get_prev_angular_velocity().cross(c.rB);
446
Vector3 dv = B->get_prev_linear_velocity() + crB - A->get_prev_linear_velocity() - crA;
447
c.bounce = c.bounce * dv.dot(c.normal);
448
}
449
}
450
451
return do_process;
452
}
453
454
void GodotBodyPair3D::solve(real_t p_step) {
455
if (!collided) {
456
return;
457
}
458
459
const real_t max_bias_av = MAX_BIAS_ROTATION / p_step;
460
461
Basis zero_basis;
462
zero_basis.set_zero();
463
464
const Basis &inv_inertia_tensor_A = collide_A ? A->get_inv_inertia_tensor() : zero_basis;
465
const Basis &inv_inertia_tensor_B = collide_B ? B->get_inv_inertia_tensor() : zero_basis;
466
467
real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0;
468
real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0;
469
470
for (int i = 0; i < contact_count; i++) {
471
Contact &c = contacts[i];
472
if (!c.active) {
473
continue;
474
}
475
476
c.active = false; //try to deactivate, will activate itself if still needed
477
478
//bias impulse
479
480
Vector3 crbA = A->get_biased_angular_velocity().cross(c.rA);
481
Vector3 crbB = B->get_biased_angular_velocity().cross(c.rB);
482
Vector3 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;
483
484
real_t vbn = dbv.dot(c.normal);
485
486
if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
487
real_t jbn = (-vbn + c.bias) * c.mass_normal;
488
real_t jbnOld = c.acc_bias_impulse;
489
c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f);
490
491
Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld);
492
493
if (collide_A) {
494
A->apply_bias_impulse(-jb, c.rA + A->get_center_of_mass(), max_bias_av);
495
}
496
if (collide_B) {
497
B->apply_bias_impulse(jb, c.rB + B->get_center_of_mass(), max_bias_av);
498
}
499
500
crbA = A->get_biased_angular_velocity().cross(c.rA);
501
crbB = B->get_biased_angular_velocity().cross(c.rB);
502
dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;
503
504
vbn = dbv.dot(c.normal);
505
506
if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
507
real_t jbn_com = (-vbn + c.bias) / (inv_mass_A + inv_mass_B);
508
real_t jbnOld_com = c.acc_bias_impulse_center_of_mass;
509
c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f);
510
511
Vector3 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com);
512
513
if (collide_A) {
514
A->apply_bias_impulse(-jb_com, A->get_center_of_mass(), 0.0f);
515
}
516
if (collide_B) {
517
B->apply_bias_impulse(jb_com, B->get_center_of_mass(), 0.0f);
518
}
519
}
520
521
c.active = true;
522
}
523
524
Vector3 crA = A->get_angular_velocity().cross(c.rA);
525
Vector3 crB = B->get_angular_velocity().cross(c.rB);
526
Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;
527
528
//normal impulse
529
real_t vn = dv.dot(c.normal);
530
531
if (Math::abs(vn) > MIN_VELOCITY) {
532
real_t jn = -(c.bounce + vn) * c.mass_normal;
533
real_t jnOld = c.acc_normal_impulse;
534
c.acc_normal_impulse = MAX(jnOld + jn, 0.0f);
535
536
Vector3 j = c.normal * (c.acc_normal_impulse - jnOld);
537
538
if (collide_A) {
539
A->apply_impulse(-j, c.rA + A->get_center_of_mass());
540
}
541
if (collide_B) {
542
B->apply_impulse(j, c.rB + B->get_center_of_mass());
543
}
544
c.acc_impulse -= j;
545
546
c.active = true;
547
}
548
549
//friction impulse
550
551
real_t friction = combine_friction(A, B);
552
553
Vector3 lvA = A->get_linear_velocity() + A->get_angular_velocity().cross(c.rA);
554
Vector3 lvB = B->get_linear_velocity() + B->get_angular_velocity().cross(c.rB);
555
556
Vector3 dtv = lvB - lvA;
557
real_t tn = c.normal.dot(dtv);
558
559
// tangential velocity
560
Vector3 tv = dtv - c.normal * tn;
561
real_t tvl = tv.length();
562
563
if (tvl > MIN_VELOCITY) {
564
tv /= tvl;
565
566
Vector3 temp1 = inv_inertia_tensor_A.xform(c.rA.cross(tv));
567
Vector3 temp2 = inv_inertia_tensor_B.xform(c.rB.cross(tv));
568
569
real_t t = -tvl / (inv_mass_A + inv_mass_B + tv.dot(temp1.cross(c.rA) + temp2.cross(c.rB)));
570
571
Vector3 jt = t * tv;
572
573
Vector3 jtOld = c.acc_tangent_impulse;
574
c.acc_tangent_impulse += jt;
575
576
real_t fi_len = c.acc_tangent_impulse.length();
577
real_t jtMax = c.acc_normal_impulse * friction;
578
579
if (fi_len > CMP_EPSILON && fi_len > jtMax) {
580
c.acc_tangent_impulse *= jtMax / fi_len;
581
}
582
583
jt = c.acc_tangent_impulse - jtOld;
584
585
if (collide_A) {
586
A->apply_impulse(-jt, c.rA + A->get_center_of_mass());
587
}
588
if (collide_B) {
589
B->apply_impulse(jt, c.rB + B->get_center_of_mass());
590
}
591
c.acc_impulse -= jt;
592
593
c.active = true;
594
}
595
}
596
}
597
598
GodotBodyPair3D::GodotBodyPair3D(GodotBody3D *p_A, int p_shape_A, GodotBody3D *p_B, int p_shape_B) :
599
GodotBodyContact3D(_arr, 2) {
600
A = p_A;
601
B = p_B;
602
shape_A = p_shape_A;
603
shape_B = p_shape_B;
604
space = A->get_space();
605
A->add_constraint(this, 0);
606
B->add_constraint(this, 1);
607
}
608
609
GodotBodyPair3D::~GodotBodyPair3D() {
610
A->remove_constraint(this);
611
B->remove_constraint(this);
612
}
613
614
void GodotBodySoftBodyPair3D::_contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) {
615
GodotBodySoftBodyPair3D *pair = static_cast<GodotBodySoftBodyPair3D *>(p_userdata);
616
pair->contact_added_callback(p_point_A, p_index_A, p_point_B, p_index_B, normal);
617
}
618
619
void GodotBodySoftBodyPair3D::contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal) {
620
Vector3 local_A = body->get_inv_transform().xform(p_point_A);
621
Vector3 local_B = p_point_B - soft_body->get_node_position(p_index_B);
622
623
Contact contact;
624
contact.index_A = p_index_A;
625
contact.index_B = p_index_B;
626
contact.local_A = local_A;
627
contact.local_B = local_B;
628
contact.normal = (normal.dot((p_point_A - p_point_B)) < 0 ? -normal : normal);
629
contact.used = true;
630
631
// Attempt to determine if the contact will be reused.
632
real_t contact_recycle_radius = space->get_contact_recycle_radius();
633
634
uint32_t contact_count = contacts.size();
635
for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
636
Contact &c = contacts[contact_index];
637
if (c.index_B == p_index_B) {
638
if (c.local_A.distance_squared_to(local_A) < (contact_recycle_radius * contact_recycle_radius) &&
639
c.local_B.distance_squared_to(local_B) < (contact_recycle_radius * contact_recycle_radius)) {
640
contact.acc_normal_impulse = c.acc_normal_impulse;
641
contact.acc_bias_impulse = c.acc_bias_impulse;
642
contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass;
643
contact.acc_tangent_impulse = c.acc_tangent_impulse;
644
}
645
c = contact;
646
return;
647
}
648
}
649
650
contacts.push_back(contact);
651
}
652
653
void GodotBodySoftBodyPair3D::validate_contacts() {
654
// Make sure to erase contacts that are no longer valid.
655
real_t max_separation = space->get_contact_max_separation();
656
real_t max_separation2 = max_separation * max_separation;
657
658
const Transform3D &transform_A = body->get_transform();
659
660
uint32_t contact_count = contacts.size();
661
for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
662
Contact &c = contacts[contact_index];
663
664
bool erase = false;
665
if (!c.used) {
666
// Was left behind in previous frame.
667
erase = true;
668
} else {
669
c.used = false;
670
671
Vector3 global_A = transform_A.xform(c.local_A);
672
Vector3 global_B = soft_body->get_node_position(c.index_B) + c.local_B;
673
Vector3 axis = global_A - global_B;
674
real_t depth = axis.dot(c.normal);
675
676
if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) {
677
erase = true;
678
}
679
}
680
681
if (erase) {
682
// Contact no longer needed, remove.
683
if ((contact_index + 1) < contact_count) {
684
// Swap with the last one.
685
SWAP(c, contacts[contact_count - 1]);
686
}
687
688
contact_index--;
689
contact_count--;
690
}
691
}
692
693
contacts.resize(contact_count);
694
}
695
696
bool GodotBodySoftBodyPair3D::setup(real_t p_step) {
697
if (!body->interacts_with(soft_body) || body->has_exception(soft_body->get_self()) || soft_body->has_exception(body->get_self())) {
698
collided = false;
699
return false;
700
}
701
702
body_collides = (body->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && body->collides_with(soft_body);
703
soft_body_collides = soft_body->collides_with(body);
704
705
if (!body_collides && !soft_body_collides) {
706
if (body->get_max_contacts_reported() > 0) {
707
report_contacts_only = true;
708
} else {
709
collided = false;
710
return false;
711
}
712
}
713
714
const Transform3D &xform_Au = body->get_transform();
715
Transform3D xform_A = xform_Au * body->get_shape_transform(body_shape);
716
717
Transform3D xform_Bu = soft_body->get_transform();
718
Transform3D xform_B = xform_Bu * soft_body->get_shape_transform(0);
719
720
validate_contacts();
721
722
GodotShape3D *shape_A_ptr = body->get_shape(body_shape);
723
GodotShape3D *shape_B_ptr = soft_body->get_shape(0);
724
725
collided = GodotCollisionSolver3D::solve_static(shape_A_ptr, xform_A, shape_B_ptr, xform_B, _contact_added_callback, this, &sep_axis);
726
727
return collided;
728
}
729
730
bool GodotBodySoftBodyPair3D::pre_solve(real_t p_step) {
731
if (!collided) {
732
return false;
733
}
734
735
real_t max_penetration = space->get_contact_max_allowed_penetration();
736
737
real_t bias = space->get_contact_bias();
738
739
GodotShape3D *shape_A_ptr = body->get_shape(body_shape);
740
741
if (shape_A_ptr->get_custom_bias()) {
742
bias = shape_A_ptr->get_custom_bias();
743
}
744
745
real_t inv_dt = 1.0 / p_step;
746
747
bool do_process = false;
748
749
const Transform3D &transform_A = body->get_transform();
750
751
Basis zero_basis;
752
zero_basis.set_zero();
753
754
const Basis &body_inv_inertia_tensor = body_collides ? body->get_inv_inertia_tensor() : zero_basis;
755
756
real_t body_inv_mass = body_collides ? body->get_inv_mass() : 0.0;
757
758
uint32_t contact_count = contacts.size();
759
for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
760
Contact &c = contacts[contact_index];
761
c.active = false;
762
763
real_t node_inv_mass = soft_body_collides ? soft_body->get_node_inv_mass(c.index_B) : 0.0;
764
if ((node_inv_mass == 0.0) && (body_inv_mass == 0.0)) {
765
continue;
766
}
767
768
Vector3 global_A = transform_A.xform(c.local_A);
769
Vector3 global_B = soft_body->get_node_position(c.index_B) + c.local_B;
770
Vector3 axis = global_A - global_B;
771
real_t depth = axis.dot(c.normal);
772
773
if (depth <= 0.0) {
774
continue;
775
}
776
777
#ifdef DEBUG_ENABLED
778
if (space->is_debugging_contacts()) {
779
space->add_debug_contact(global_A);
780
space->add_debug_contact(global_B);
781
}
782
#endif
783
784
c.rA = global_A - transform_A.origin - body->get_center_of_mass();
785
c.rB = global_B;
786
787
// Precompute normal mass, tangent mass, and bias.
788
Vector3 inertia_A = body_inv_inertia_tensor.xform(c.rA.cross(c.normal));
789
real_t kNormal = body_inv_mass + node_inv_mass;
790
kNormal += c.normal.dot(inertia_A.cross(c.rA));
791
c.mass_normal = 1.0f / kNormal;
792
793
c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration);
794
c.depth = depth;
795
796
Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse;
797
if (body_collides) {
798
body->apply_impulse(-j_vec, c.rA + body->get_center_of_mass());
799
}
800
if (soft_body_collides) {
801
soft_body->apply_node_impulse(c.index_B, j_vec);
802
}
803
c.acc_impulse -= j_vec;
804
805
if (body->can_report_contacts()) {
806
Vector3 crA = body->get_angular_velocity().cross(c.rA) + body->get_linear_velocity();
807
Vector3 crB = soft_body->get_node_velocity(c.index_B);
808
body->add_contact(global_A, -c.normal, depth, body_shape, crA, global_B, 0, soft_body->get_instance_id(), soft_body->get_self(), crB, c.acc_impulse);
809
}
810
if (report_contacts_only) {
811
collided = false;
812
continue;
813
}
814
815
c.active = true;
816
do_process = true;
817
818
if (body_collides) {
819
body->set_active(true);
820
}
821
822
c.bounce = body->get_bounce();
823
824
if (c.bounce) {
825
Vector3 crA = body->get_angular_velocity().cross(c.rA);
826
Vector3 dv = soft_body->get_node_velocity(c.index_B) - body->get_linear_velocity() - crA;
827
828
// Normal impulse.
829
c.bounce = c.bounce * dv.dot(c.normal);
830
}
831
}
832
833
return do_process;
834
}
835
836
void GodotBodySoftBodyPair3D::solve(real_t p_step) {
837
if (!collided) {
838
return;
839
}
840
841
const real_t max_bias_av = MAX_BIAS_ROTATION / p_step;
842
843
Basis zero_basis;
844
zero_basis.set_zero();
845
846
const Basis &body_inv_inertia_tensor = body_collides ? body->get_inv_inertia_tensor() : zero_basis;
847
848
real_t body_inv_mass = body_collides ? body->get_inv_mass() : 0.0;
849
850
uint32_t contact_count = contacts.size();
851
for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
852
Contact &c = contacts[contact_index];
853
if (!c.active) {
854
continue;
855
}
856
857
c.active = false;
858
859
real_t node_inv_mass = soft_body_collides ? soft_body->get_node_inv_mass(c.index_B) : 0.0;
860
861
// Bias impulse.
862
Vector3 crbA = body->get_biased_angular_velocity().cross(c.rA);
863
Vector3 dbv = soft_body->get_node_biased_velocity(c.index_B) - body->get_biased_linear_velocity() - crbA;
864
865
real_t vbn = dbv.dot(c.normal);
866
867
if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
868
real_t jbn = (-vbn + c.bias) * c.mass_normal;
869
real_t jbnOld = c.acc_bias_impulse;
870
c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f);
871
872
Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld);
873
874
if (body_collides) {
875
body->apply_bias_impulse(-jb, c.rA + body->get_center_of_mass(), max_bias_av);
876
}
877
if (soft_body_collides) {
878
soft_body->apply_node_bias_impulse(c.index_B, jb);
879
}
880
881
crbA = body->get_biased_angular_velocity().cross(c.rA);
882
dbv = soft_body->get_node_biased_velocity(c.index_B) - body->get_biased_linear_velocity() - crbA;
883
884
vbn = dbv.dot(c.normal);
885
886
if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
887
real_t jbn_com = (-vbn + c.bias) / (body_inv_mass + node_inv_mass);
888
real_t jbnOld_com = c.acc_bias_impulse_center_of_mass;
889
c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f);
890
891
Vector3 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com);
892
893
if (body_collides) {
894
body->apply_bias_impulse(-jb_com, body->get_center_of_mass(), 0.0f);
895
}
896
if (soft_body_collides) {
897
soft_body->apply_node_bias_impulse(c.index_B, jb_com);
898
}
899
}
900
901
c.active = true;
902
}
903
904
Vector3 crA = body->get_angular_velocity().cross(c.rA);
905
Vector3 dv = soft_body->get_node_velocity(c.index_B) - body->get_linear_velocity() - crA;
906
907
// Normal impulse.
908
real_t vn = dv.dot(c.normal);
909
910
if (Math::abs(vn) > MIN_VELOCITY) {
911
real_t jn = -(c.bounce + vn) * c.mass_normal;
912
real_t jnOld = c.acc_normal_impulse;
913
c.acc_normal_impulse = MAX(jnOld + jn, 0.0f);
914
915
Vector3 j = c.normal * (c.acc_normal_impulse - jnOld);
916
917
if (body_collides) {
918
body->apply_impulse(-j, c.rA + body->get_center_of_mass());
919
}
920
if (soft_body_collides) {
921
soft_body->apply_node_impulse(c.index_B, j);
922
}
923
c.acc_impulse -= j;
924
925
c.active = true;
926
}
927
928
// Friction impulse.
929
real_t friction = body->get_friction();
930
931
Vector3 lvA = body->get_linear_velocity() + body->get_angular_velocity().cross(c.rA);
932
Vector3 lvB = soft_body->get_node_velocity(c.index_B);
933
Vector3 dtv = lvB - lvA;
934
935
real_t tn = c.normal.dot(dtv);
936
937
// Tangential velocity.
938
Vector3 tv = dtv - c.normal * tn;
939
real_t tvl = tv.length();
940
941
if (tvl > MIN_VELOCITY) {
942
tv /= tvl;
943
944
Vector3 temp1 = body_inv_inertia_tensor.xform(c.rA.cross(tv));
945
946
real_t t = -tvl / (body_inv_mass + node_inv_mass + tv.dot(temp1.cross(c.rA)));
947
948
Vector3 jt = t * tv;
949
950
Vector3 jtOld = c.acc_tangent_impulse;
951
c.acc_tangent_impulse += jt;
952
953
real_t fi_len = c.acc_tangent_impulse.length();
954
real_t jtMax = c.acc_normal_impulse * friction;
955
956
if (fi_len > CMP_EPSILON && fi_len > jtMax) {
957
c.acc_tangent_impulse *= jtMax / fi_len;
958
}
959
960
jt = c.acc_tangent_impulse - jtOld;
961
962
if (body_collides) {
963
body->apply_impulse(-jt, c.rA + body->get_center_of_mass());
964
}
965
if (soft_body_collides) {
966
soft_body->apply_node_impulse(c.index_B, jt);
967
}
968
c.acc_impulse -= jt;
969
970
c.active = true;
971
}
972
}
973
}
974
975
GodotBodySoftBodyPair3D::GodotBodySoftBodyPair3D(GodotBody3D *p_A, int p_shape_A, GodotSoftBody3D *p_B) :
976
GodotBodyContact3D(&body, 1) {
977
body = p_A;
978
soft_body = p_B;
979
body_shape = p_shape_A;
980
space = p_A->get_space();
981
body->add_constraint(this, 0);
982
soft_body->add_constraint(this);
983
}
984
985
GodotBodySoftBodyPair3D::~GodotBodySoftBodyPair3D() {
986
body->remove_constraint(this);
987
soft_body->remove_constraint(this);
988
}
989
990