Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/modules/navigation_2d/2d/nav_mesh_queries_2d.cpp
11353 views
1
/**************************************************************************/
2
/* nav_mesh_queries_2d.cpp */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#include "nav_mesh_queries_2d.h"
32
33
#include "../nav_base_2d.h"
34
#include "../nav_map_2d.h"
35
#include "../triangle2.h"
36
#include "nav_region_iteration_2d.h"
37
38
#include "core/math/geometry_2d.h"
39
40
using namespace Nav2D;
41
42
#define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (-((m_c) - (m_a)).cross((m_b) - (m_a)))
43
44
bool NavMeshQueries2D::emit_callback(const Callable &p_callback) {
45
ERR_FAIL_COND_V(!p_callback.is_valid(), false);
46
47
Callable::CallError ce;
48
Variant result;
49
p_callback.callp(nullptr, 0, result, ce);
50
51
return ce.error == Callable::CallError::CALL_OK;
52
}
53
54
Vector2 NavMeshQueries2D::polygons_get_random_point(const LocalVector<Polygon> &p_polygons, uint32_t p_navigation_layers, bool p_uniformly) {
55
const LocalVector<Polygon> &region_polygons = p_polygons;
56
57
if (region_polygons.is_empty()) {
58
return Vector2();
59
}
60
61
if (p_uniformly) {
62
real_t accumulated_area = 0;
63
RBMap<real_t, uint32_t> region_area_map;
64
65
for (uint32_t rp_index = 0; rp_index < region_polygons.size(); rp_index++) {
66
const Polygon &region_polygon = region_polygons[rp_index];
67
real_t polyon_area = region_polygon.surface_area;
68
69
if (polyon_area == 0.0) {
70
continue;
71
}
72
region_area_map[accumulated_area] = rp_index;
73
accumulated_area += polyon_area;
74
}
75
if (region_area_map.is_empty() || accumulated_area == 0) {
76
// All polygons have no real surface / no area.
77
return Vector2();
78
}
79
80
real_t region_area_map_pos = Math::random(real_t(0), accumulated_area);
81
82
RBMap<real_t, uint32_t>::Iterator region_E = region_area_map.find_closest(region_area_map_pos);
83
ERR_FAIL_COND_V(!region_E, Vector2());
84
uint32_t rrp_polygon_index = region_E->value;
85
ERR_FAIL_UNSIGNED_INDEX_V(rrp_polygon_index, region_polygons.size(), Vector2());
86
87
const Polygon &rr_polygon = region_polygons[rrp_polygon_index];
88
89
real_t accumulated_polygon_area = 0;
90
RBMap<real_t, uint32_t> polygon_area_map;
91
92
for (uint32_t rpp_index = 2; rpp_index < rr_polygon.vertices.size(); rpp_index++) {
93
real_t triangle_area = Triangle2(rr_polygon.vertices[0], rr_polygon.vertices[rpp_index - 1], rr_polygon.vertices[rpp_index]).get_area();
94
95
if (triangle_area == 0.0) {
96
continue;
97
}
98
polygon_area_map[accumulated_polygon_area] = rpp_index;
99
accumulated_polygon_area += triangle_area;
100
}
101
if (polygon_area_map.is_empty() || accumulated_polygon_area == 0) {
102
// All faces have no real surface / no area.
103
return Vector2();
104
}
105
106
real_t polygon_area_map_pos = Math::random(real_t(0), accumulated_polygon_area);
107
108
RBMap<real_t, uint32_t>::Iterator polygon_E = polygon_area_map.find_closest(polygon_area_map_pos);
109
ERR_FAIL_COND_V(!polygon_E, Vector2());
110
uint32_t rrp_face_index = polygon_E->value;
111
ERR_FAIL_UNSIGNED_INDEX_V(rrp_face_index, rr_polygon.vertices.size(), Vector2());
112
113
const Triangle2 triangle(rr_polygon.vertices[0], rr_polygon.vertices[rrp_face_index - 1], rr_polygon.vertices[rrp_face_index]);
114
115
Vector2 triangle_random_position = triangle.get_random_point_inside();
116
return triangle_random_position;
117
118
} else {
119
uint32_t rrp_polygon_index = Math::random(int(0), region_polygons.size() - 1);
120
121
const Polygon &rr_polygon = region_polygons[rrp_polygon_index];
122
123
uint32_t rrp_face_index = Math::random(int(2), rr_polygon.vertices.size() - 1);
124
125
const Triangle2 triangle(rr_polygon.vertices[0], rr_polygon.vertices[rrp_face_index - 1], rr_polygon.vertices[rrp_face_index]);
126
127
Vector2 triangle_random_position = triangle.get_random_point_inside();
128
return triangle_random_position;
129
}
130
}
131
132
void NavMeshQueries2D::_query_task_push_back_point_with_metadata(NavMeshPathQueryTask2D &p_query_task, const Vector2 &p_point, const Polygon *p_point_polygon) {
133
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
134
p_query_task.path_meta_point_types.push_back(p_point_polygon->owner->get_type());
135
}
136
137
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
138
p_query_task.path_meta_point_rids.push_back(p_point_polygon->owner->get_self());
139
}
140
141
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
142
p_query_task.path_meta_point_owners.push_back(p_point_polygon->owner->get_owner_id());
143
}
144
145
p_query_task.path_points.push_back(p_point);
146
}
147
148
void NavMeshQueries2D::map_query_path(NavMap2D *p_map, const Ref<NavigationPathQueryParameters2D> &p_query_parameters, Ref<NavigationPathQueryResult2D> p_query_result, const Callable &p_callback) {
149
ERR_FAIL_NULL(p_map);
150
ERR_FAIL_COND(p_query_parameters.is_null());
151
ERR_FAIL_COND(p_query_result.is_null());
152
153
using namespace NavigationDefaults2D;
154
155
NavMeshQueries2D::NavMeshPathQueryTask2D query_task;
156
query_task.start_position = p_query_parameters->get_start_position();
157
query_task.target_position = p_query_parameters->get_target_position();
158
query_task.navigation_layers = p_query_parameters->get_navigation_layers();
159
query_task.callback = p_callback;
160
161
const TypedArray<RID> &_excluded_regions = p_query_parameters->get_excluded_regions();
162
const TypedArray<RID> &_included_regions = p_query_parameters->get_included_regions();
163
164
uint32_t _excluded_region_count = _excluded_regions.size();
165
uint32_t _included_region_count = _included_regions.size();
166
167
query_task.exclude_regions = _excluded_region_count > 0;
168
query_task.include_regions = _included_region_count > 0;
169
170
if (query_task.exclude_regions) {
171
query_task.excluded_regions.resize(_excluded_region_count);
172
for (uint32_t i = 0; i < _excluded_region_count; i++) {
173
query_task.excluded_regions[i] = _excluded_regions[i];
174
}
175
}
176
177
if (query_task.include_regions) {
178
query_task.included_regions.resize(_included_region_count);
179
for (uint32_t i = 0; i < _included_region_count; i++) {
180
query_task.included_regions[i] = _included_regions[i];
181
}
182
}
183
184
switch (p_query_parameters->get_pathfinding_algorithm()) {
185
case NavigationPathQueryParameters2D::PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR: {
186
query_task.pathfinding_algorithm = PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR;
187
} break;
188
default: {
189
WARN_PRINT("No match for used PathfindingAlgorithm - fallback to default");
190
query_task.pathfinding_algorithm = PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR;
191
} break;
192
}
193
194
switch (p_query_parameters->get_path_postprocessing()) {
195
case NavigationPathQueryParameters2D::PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL: {
196
query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL;
197
} break;
198
case NavigationPathQueryParameters2D::PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED: {
199
query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED;
200
} break;
201
case NavigationPathQueryParameters2D::PathPostProcessing::PATH_POSTPROCESSING_NONE: {
202
query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_NONE;
203
} break;
204
default: {
205
WARN_PRINT("No match for used PathPostProcessing - fallback to default");
206
query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL;
207
} break;
208
}
209
210
query_task.metadata_flags = (int64_t)p_query_parameters->get_metadata_flags();
211
query_task.simplify_path = p_query_parameters->get_simplify_path();
212
query_task.simplify_epsilon = p_query_parameters->get_simplify_epsilon();
213
query_task.path_return_max_length = p_query_parameters->get_path_return_max_length();
214
query_task.path_return_max_radius = p_query_parameters->get_path_return_max_radius();
215
query_task.path_search_max_polygons = p_query_parameters->get_path_search_max_polygons();
216
query_task.path_search_max_distance = p_query_parameters->get_path_search_max_distance();
217
query_task.status = NavMeshPathQueryTask2D::TaskStatus::QUERY_STARTED;
218
219
p_map->query_path(query_task);
220
221
p_query_result->set_data(
222
query_task.path_points,
223
query_task.path_meta_point_types,
224
query_task.path_meta_point_rids,
225
query_task.path_meta_point_owners);
226
p_query_result->set_path_length(query_task.path_length);
227
228
if (query_task.callback.is_valid()) {
229
if (emit_callback(query_task.callback)) {
230
query_task.status = NavMeshPathQueryTask2D::TaskStatus::CALLBACK_DISPATCHED;
231
} else {
232
query_task.status = NavMeshPathQueryTask2D::TaskStatus::CALLBACK_FAILED;
233
}
234
}
235
}
236
237
void NavMeshQueries2D::_query_task_find_start_end_positions(NavMeshPathQueryTask2D &p_query_task, const NavMapIteration2D &p_map_iteration) {
238
real_t begin_d = FLT_MAX;
239
real_t end_d = FLT_MAX;
240
241
const LocalVector<Ref<NavRegionIteration2D>> &regions = p_map_iteration.region_iterations;
242
243
for (const Ref<NavRegionIteration2D> &region : regions) {
244
if (!_query_task_is_connection_owner_usable(p_query_task, region.ptr())) {
245
continue;
246
}
247
248
// Find the initial poly and the end poly on this map.
249
for (const Polygon &p : region->get_navmesh_polygons()) {
250
// Only consider the polygon if it in a region with compatible layers.
251
if ((p_query_task.navigation_layers & p.owner->get_navigation_layers()) == 0) {
252
continue;
253
}
254
255
// For each triangle check the distance between the origin/destination.
256
for (uint32_t point_id = 2; point_id < p.vertices.size(); point_id++) {
257
const Triangle2 triangle(p.vertices[0], p.vertices[point_id - 1], p.vertices[point_id]);
258
259
Vector2 point = triangle.get_closest_point_to(p_query_task.start_position);
260
real_t distance_to_point = point.distance_to(p_query_task.start_position);
261
if (distance_to_point < begin_d) {
262
begin_d = distance_to_point;
263
p_query_task.begin_polygon = &p;
264
p_query_task.begin_position = point;
265
}
266
267
point = triangle.get_closest_point_to(p_query_task.target_position);
268
distance_to_point = point.distance_to(p_query_task.target_position);
269
if (distance_to_point < end_d) {
270
end_d = distance_to_point;
271
p_query_task.end_polygon = &p;
272
p_query_task.end_position = point;
273
}
274
}
275
}
276
}
277
}
278
279
void NavMeshQueries2D::_query_task_search_polygon_connections(NavMeshPathQueryTask2D &p_query_task, const Connection &p_connection, uint32_t p_least_cost_id, const NavigationPoly &p_least_cost_poly, real_t p_poly_enter_cost, const Vector2 &p_end_point) {
280
const NavBaseIteration2D *connection_owner = p_connection.polygon->owner;
281
ERR_FAIL_NULL(connection_owner);
282
const bool owner_is_usable = _query_task_is_connection_owner_usable(p_query_task, connection_owner);
283
if (!owner_is_usable) {
284
return;
285
}
286
287
Heap<NavigationPoly *, NavPolyTravelCostGreaterThan, NavPolyHeapIndexer>
288
&traversable_polys = p_query_task.path_query_slot->traversable_polys;
289
LocalVector<NavigationPoly> &navigation_polys = p_query_task.path_query_slot->path_corridor;
290
291
real_t poly_travel_cost = p_least_cost_poly.poly->owner->get_travel_cost();
292
293
Vector2 new_entry = Geometry2D::get_closest_point_to_segment(p_least_cost_poly.entry, p_connection.pathway_start, p_connection.pathway_end);
294
real_t new_traveled_distance = p_least_cost_poly.entry.distance_to(new_entry) * poly_travel_cost + p_poly_enter_cost + p_least_cost_poly.traveled_distance;
295
296
// Check if the neighbor polygon has already been processed.
297
NavigationPoly &neighbor_poly = navigation_polys[p_query_task.path_query_slot->poly_to_id[p_connection.polygon]];
298
if (new_traveled_distance < neighbor_poly.traveled_distance) {
299
// Add the polygon to the heap of polygons to traverse next.
300
neighbor_poly.back_navigation_poly_id = p_least_cost_id;
301
neighbor_poly.back_navigation_edge = p_connection.edge;
302
neighbor_poly.back_navigation_edge_pathway_start = p_connection.pathway_start;
303
neighbor_poly.back_navigation_edge_pathway_end = p_connection.pathway_end;
304
neighbor_poly.traveled_distance = new_traveled_distance;
305
neighbor_poly.distance_to_destination =
306
new_entry.distance_to(p_end_point) *
307
connection_owner->get_travel_cost();
308
neighbor_poly.entry = new_entry;
309
310
if (neighbor_poly.traversable_poly_index != traversable_polys.INVALID_INDEX) {
311
traversable_polys.shift(neighbor_poly.traversable_poly_index);
312
} else {
313
neighbor_poly.poly = p_connection.polygon;
314
traversable_polys.push(&neighbor_poly);
315
}
316
}
317
}
318
319
void NavMeshQueries2D::_query_task_build_path_corridor(NavMeshPathQueryTask2D &p_query_task, const NavMapIteration2D &p_map_iteration) {
320
const Vector2 p_target_position = p_query_task.target_position;
321
const Polygon *begin_poly = p_query_task.begin_polygon;
322
const Polygon *end_poly = p_query_task.end_polygon;
323
Vector2 begin_point = p_query_task.begin_position;
324
Vector2 end_point = p_query_task.end_position;
325
326
// Heap of polygons to travel next.
327
Heap<NavigationPoly *, NavPolyTravelCostGreaterThan, NavPolyHeapIndexer>
328
&traversable_polys = p_query_task.path_query_slot->traversable_polys;
329
traversable_polys.clear();
330
331
LocalVector<NavigationPoly> &navigation_polys = p_query_task.path_query_slot->path_corridor;
332
for (NavigationPoly &polygon : navigation_polys) {
333
polygon.reset();
334
}
335
336
// Initialize the matching navigation polygon.
337
NavigationPoly &begin_navigation_poly = navigation_polys[p_query_task.path_query_slot->poly_to_id[begin_poly]];
338
begin_navigation_poly.poly = begin_poly;
339
begin_navigation_poly.entry = begin_point;
340
begin_navigation_poly.back_navigation_edge_pathway_start = begin_point;
341
begin_navigation_poly.back_navigation_edge_pathway_end = begin_point;
342
begin_navigation_poly.traveled_distance = 0.f;
343
344
// This is an implementation of the A* algorithm.
345
uint32_t least_cost_id = p_query_task.path_query_slot->poly_to_id[begin_poly];
346
bool found_route = false;
347
348
const Polygon *reachable_end = nullptr;
349
real_t distance_to_reachable_end = FLT_MAX;
350
bool is_reachable = true;
351
real_t poly_enter_cost = 0.0;
352
353
const HashMap<const NavBaseIteration2D *, LocalVector<LocalVector<Nav2D::Connection>>> &navbases_polygons_external_connections = p_map_iteration.navbases_polygons_external_connections;
354
355
// True if we reached the max polygon search count or distance from the begin position.
356
bool path_search_max_reached = false;
357
358
const float path_search_max_distance_sqr = p_query_task.path_search_max_distance * p_query_task.path_search_max_distance;
359
bool has_path_search_max_distance = path_search_max_distance_sqr > 0.0;
360
361
int processed_polygon_count = 0;
362
bool has_path_search_max_polygons = p_query_task.path_search_max_polygons > 0;
363
364
bool has_path_search_max = p_query_task.path_search_max_polygons > 0 || path_search_max_distance_sqr > 0.0;
365
366
while (true) {
367
const NavigationPoly &least_cost_poly = navigation_polys[least_cost_id];
368
369
const NavBaseIteration2D *least_cost_navbase = least_cost_poly.poly->owner;
370
371
processed_polygon_count += 1;
372
373
const uint32_t navbase_local_polygon_id = least_cost_poly.poly->id;
374
const LocalVector<LocalVector<Connection>> &navbase_polygons_to_connections = least_cost_poly.poly->owner->get_internal_connections();
375
376
if (navbase_polygons_to_connections.size() > 0) {
377
const LocalVector<Connection> &polygon_connections = navbase_polygons_to_connections[navbase_local_polygon_id];
378
379
for (const Connection &connection : polygon_connections) {
380
_query_task_search_polygon_connections(p_query_task, connection, least_cost_id, least_cost_poly, poly_enter_cost, end_point);
381
}
382
}
383
384
// Search region external navmesh polygon connections, aka connections to other regions created by outline edge merge or links.
385
for (const Connection &connection : navbases_polygons_external_connections[least_cost_navbase][navbase_local_polygon_id]) {
386
_query_task_search_polygon_connections(p_query_task, connection, least_cost_id, least_cost_poly, poly_enter_cost, end_point);
387
}
388
389
if (has_path_search_max && !path_search_max_reached) {
390
if (has_path_search_max_polygons && processed_polygon_count >= p_query_task.path_search_max_polygons) {
391
path_search_max_reached = true;
392
traversable_polys.clear();
393
} else if (has_path_search_max_distance && begin_point.distance_squared_to(least_cost_poly.entry) > path_search_max_distance_sqr) {
394
path_search_max_reached = true;
395
traversable_polys.clear();
396
}
397
}
398
399
poly_enter_cost = 0;
400
// When the heap of traversable polygons is empty at this point it means the end polygon is
401
// unreachable.
402
if (traversable_polys.is_empty()) {
403
// Thus use the further reachable polygon
404
ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
405
is_reachable = false;
406
if (reachable_end == nullptr) {
407
// The path is not found and there is not a way out.
408
break;
409
}
410
411
// Set as end point the furthest reachable point.
412
end_poly = reachable_end;
413
real_t end_d = FLT_MAX;
414
415
for (uint32_t point_id = 2; point_id < end_poly->vertices.size(); point_id++) {
416
Triangle2 t(end_poly->vertices[0], end_poly->vertices[point_id - 1], end_poly->vertices[point_id]);
417
Vector2 spoint = t.get_closest_point_to(p_target_position);
418
real_t dpoint = spoint.distance_squared_to(p_target_position);
419
if (dpoint < end_d) {
420
end_point = spoint;
421
end_d = dpoint;
422
}
423
}
424
425
// Search all faces of start polygon as well.
426
bool closest_point_on_start_poly = false;
427
428
for (uint32_t point_id = 2; point_id < begin_poly->vertices.size(); point_id++) {
429
Triangle2 t(begin_poly->vertices[0], begin_poly->vertices[point_id - 1], begin_poly->vertices[point_id]);
430
Vector2 spoint = t.get_closest_point_to(p_target_position);
431
real_t dpoint = spoint.distance_squared_to(p_target_position);
432
if (dpoint < end_d) {
433
end_point = spoint;
434
end_d = dpoint;
435
closest_point_on_start_poly = true;
436
}
437
}
438
439
if (closest_point_on_start_poly) {
440
// No point to run PostProcessing when start and end convex polygon is the same.
441
p_query_task.path_clear();
442
443
_query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
444
_query_task_push_back_point_with_metadata(p_query_task, end_point, begin_poly);
445
p_query_task.status = NavMeshPathQueryTask2D::TaskStatus::QUERY_FINISHED;
446
return;
447
}
448
449
for (NavigationPoly &nav_poly : navigation_polys) {
450
nav_poly.poly = nullptr;
451
nav_poly.traveled_distance = FLT_MAX;
452
}
453
uint32_t _bp_id = p_query_task.path_query_slot->poly_to_id[begin_poly];
454
navigation_polys[_bp_id].poly = begin_poly;
455
navigation_polys[_bp_id].traveled_distance = 0;
456
least_cost_id = _bp_id;
457
reachable_end = nullptr;
458
} else {
459
// Pop the polygon with the lowest travel cost from the heap of traversable polygons.
460
least_cost_id = p_query_task.path_query_slot->poly_to_id[traversable_polys.pop()->poly];
461
462
// Store the farthest reachable end polygon in case our goal is not reachable.
463
if (is_reachable) {
464
real_t distance = navigation_polys[least_cost_id].entry.distance_squared_to(p_target_position);
465
if (distance_to_reachable_end > distance) {
466
distance_to_reachable_end = distance;
467
reachable_end = navigation_polys[least_cost_id].poly;
468
}
469
}
470
471
// Check if we reached the end
472
if (navigation_polys[least_cost_id].poly == end_poly) {
473
found_route = true;
474
break;
475
}
476
477
if (navigation_polys[least_cost_id].poly->owner->get_self() != least_cost_poly.poly->owner->get_self()) {
478
ERR_FAIL_NULL(least_cost_poly.poly->owner);
479
poly_enter_cost = least_cost_poly.poly->owner->get_enter_cost();
480
}
481
}
482
}
483
484
// We did not find a route but we have both a start polygon and an end polygon at this point.
485
// Usually this happens because there was not a single external or internal connected edge, e.g. our start polygon is an isolated, single convex polygon.
486
if (!found_route) {
487
real_t end_d = FLT_MAX;
488
// Search all faces of the start polygon for the closest point to our target position.
489
490
for (uint32_t point_id = 2; point_id < begin_poly->vertices.size(); point_id++) {
491
Triangle2 t(begin_poly->vertices[0], begin_poly->vertices[point_id - 1], begin_poly->vertices[point_id]);
492
Vector2 spoint = t.get_closest_point_to(p_target_position);
493
real_t dpoint = spoint.distance_squared_to(p_target_position);
494
if (dpoint < end_d) {
495
end_point = spoint;
496
end_d = dpoint;
497
}
498
}
499
500
p_query_task.path_clear();
501
502
_query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
503
_query_task_push_back_point_with_metadata(p_query_task, end_point, begin_poly);
504
p_query_task.status = NavMeshPathQueryTask2D::TaskStatus::QUERY_FINISHED;
505
} else {
506
p_query_task.end_position = end_point;
507
p_query_task.end_polygon = end_poly;
508
p_query_task.begin_position = begin_point;
509
p_query_task.begin_polygon = begin_poly;
510
p_query_task.least_cost_id = least_cost_id;
511
}
512
}
513
514
void NavMeshQueries2D::query_task_map_iteration_get_path(NavMeshPathQueryTask2D &p_query_task, const NavMapIteration2D &p_map_iteration) {
515
p_query_task.path_clear();
516
517
_query_task_find_start_end_positions(p_query_task, p_map_iteration);
518
519
// Check for trivial cases.
520
if (!p_query_task.begin_polygon || !p_query_task.end_polygon) {
521
p_query_task.status = NavMeshPathQueryTask2D::TaskStatus::QUERY_FINISHED;
522
return;
523
}
524
if (p_query_task.begin_polygon == p_query_task.end_polygon) {
525
p_query_task.path_clear();
526
_query_task_push_back_point_with_metadata(p_query_task, p_query_task.begin_position, p_query_task.begin_polygon);
527
_query_task_push_back_point_with_metadata(p_query_task, p_query_task.end_position, p_query_task.end_polygon);
528
_query_task_process_path_result_limits(p_query_task);
529
p_query_task.status = NavMeshPathQueryTask2D::TaskStatus::QUERY_FINISHED;
530
return;
531
}
532
533
_query_task_build_path_corridor(p_query_task, p_map_iteration);
534
535
if (p_query_task.status == NavMeshPathQueryTask2D::TaskStatus::QUERY_FINISHED || p_query_task.status == NavMeshPathQueryTask2D::TaskStatus::QUERY_FAILED) {
536
_query_task_process_path_result_limits(p_query_task);
537
return;
538
}
539
540
// Post-Process path.
541
switch (p_query_task.path_postprocessing) {
542
case PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL: {
543
_query_task_post_process_corridorfunnel(p_query_task);
544
} break;
545
case PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED: {
546
_query_task_post_process_edgecentered(p_query_task);
547
} break;
548
case PathPostProcessing::PATH_POSTPROCESSING_NONE: {
549
_query_task_post_process_nopostprocessing(p_query_task);
550
} break;
551
default: {
552
WARN_PRINT("No match for used PathPostProcessing - fallback to default");
553
_query_task_post_process_corridorfunnel(p_query_task);
554
} break;
555
}
556
557
p_query_task.path_reverse();
558
559
if (p_query_task.simplify_path) {
560
_query_task_simplified_path_points(p_query_task);
561
}
562
563
_query_task_process_path_result_limits(p_query_task);
564
565
#ifdef DEBUG_ENABLED
566
// Ensure post conditions as path meta arrays if used MUST match in array size with the path points.
567
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
568
DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_types.size());
569
}
570
571
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
572
DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_rids.size());
573
}
574
575
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
576
DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_owners.size());
577
}
578
#endif // DEBUG_ENABLED
579
580
p_query_task.status = NavMeshPathQueryTask2D::TaskStatus::QUERY_FINISHED;
581
}
582
583
float NavMeshQueries2D::_calculate_path_length(const LocalVector<Vector2> &p_path, uint32_t p_start_index, uint32_t p_end_index) {
584
const uint32_t path_size = p_path.size();
585
if (path_size < 2) {
586
return 0.0;
587
}
588
589
ERR_FAIL_COND_V(p_start_index >= p_end_index, 0.0);
590
ERR_FAIL_COND_V(p_start_index >= path_size - 1, 0.0);
591
ERR_FAIL_COND_V(p_end_index >= path_size, 0.0);
592
593
const Vector2 *path_ptr = p_path.ptr();
594
595
float path_length = 0.0;
596
597
for (uint32_t i = p_start_index; i < p_end_index; i++) {
598
const Vector2 &vertex1 = path_ptr[i];
599
const Vector2 &vertex2 = path_ptr[i + 1];
600
float edge_length = vertex1.distance_to(vertex2);
601
path_length += edge_length;
602
}
603
604
return path_length;
605
}
606
607
void NavMeshQueries2D::_query_task_process_path_result_limits(NavMeshPathQueryTask2D &p_query_task) {
608
if (p_query_task.path_points.size() < 2) {
609
return;
610
}
611
612
bool check_max_length = p_query_task.path_return_max_length > 0.0;
613
bool check_max_radius = p_query_task.path_return_max_radius > 0.0;
614
615
if (!check_max_length && !check_max_radius) {
616
p_query_task.path_length = _calculate_path_length(p_query_task.path_points, 0, p_query_task.path_points.size() - 1);
617
return;
618
}
619
620
LocalVector<Vector2> &path = p_query_task.path_points;
621
622
const float max_length = p_query_task.path_return_max_length;
623
const float max_radius = p_query_task.path_return_max_radius;
624
const float max_radius_sqr = max_radius * max_radius;
625
626
const Vector2 &start_pos = path[0];
627
628
float accumulated_path_length = 0.0;
629
630
Vector2 *path_ptrw = path.ptr();
631
632
uint32_t path_max_size = path.size();
633
bool path_max_reached = false;
634
635
for (uint32_t i = 0; i < path.size() - 1; i++) {
636
uint32_t next_index = i + 1;
637
const Vector2 &vertex1 = path_ptrw[i];
638
Vector2 &vertex2 = path_ptrw[next_index];
639
640
float edge_length = (vertex2 - vertex1).length();
641
642
if (check_max_radius && start_pos.distance_squared_to(vertex2) > max_radius_sqr) {
643
// Path point segment goes over max radius, clip it.
644
645
real_t intersect_distance = Geometry2D::segment_intersects_circle(vertex2, vertex1, start_pos, max_radius);
646
if (intersect_distance != -1) {
647
edge_length = intersect_distance;
648
Vector2 intersect_positon = vertex1 + (vertex1.direction_to(vertex2) * intersect_distance);
649
650
path_ptrw[next_index] = intersect_positon;
651
path_max_size = next_index + 1;
652
path_max_reached = true;
653
}
654
}
655
656
if (check_max_length && accumulated_path_length + edge_length > max_length) {
657
// Path point segment goes over max length, clip it.
658
edge_length = max_length - accumulated_path_length;
659
Vector2 edge_direction = vertex1.direction_to(vertex2);
660
661
path_ptrw[next_index] = vertex1 + (edge_direction * edge_length);
662
path_max_size = next_index + 1;
663
664
p_query_task.path_length = accumulated_path_length + edge_length;
665
path_max_reached = true;
666
}
667
668
accumulated_path_length += edge_length;
669
670
if (path_max_reached) {
671
break;
672
}
673
}
674
675
p_query_task.path_length = accumulated_path_length;
676
677
if (path_max_size < path.size()) {
678
p_query_task.path_points.resize(path_max_size);
679
680
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
681
p_query_task.path_meta_point_types.resize(path_max_size);
682
}
683
684
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
685
p_query_task.path_meta_point_rids.resize(path_max_size);
686
}
687
688
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
689
p_query_task.path_meta_point_owners.resize(path_max_size);
690
}
691
}
692
}
693
694
void NavMeshQueries2D::_query_task_simplified_path_points(NavMeshPathQueryTask2D &p_query_task) {
695
if (!p_query_task.simplify_path || p_query_task.path_points.size() <= 2) {
696
return;
697
}
698
699
const LocalVector<uint32_t> &simplified_path_indices = NavMeshQueries2D::get_simplified_path_indices(p_query_task.path_points, p_query_task.simplify_epsilon);
700
701
uint32_t index_count = simplified_path_indices.size();
702
703
{
704
Vector2 *points_ptr = p_query_task.path_points.ptr();
705
for (uint32_t i = 0; i < index_count; i++) {
706
points_ptr[i] = points_ptr[simplified_path_indices[i]];
707
}
708
p_query_task.path_points.resize(index_count);
709
}
710
711
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
712
int32_t *types_ptr = p_query_task.path_meta_point_types.ptr();
713
for (uint32_t i = 0; i < index_count; i++) {
714
types_ptr[i] = types_ptr[simplified_path_indices[i]];
715
}
716
p_query_task.path_meta_point_types.resize(index_count);
717
}
718
719
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
720
RID *rids_ptr = p_query_task.path_meta_point_rids.ptr();
721
for (uint32_t i = 0; i < index_count; i++) {
722
rids_ptr[i] = rids_ptr[simplified_path_indices[i]];
723
}
724
p_query_task.path_meta_point_rids.resize(index_count);
725
}
726
727
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
728
int64_t *owners_ptr = p_query_task.path_meta_point_owners.ptr();
729
for (uint32_t i = 0; i < index_count; i++) {
730
owners_ptr[i] = owners_ptr[simplified_path_indices[i]];
731
}
732
p_query_task.path_meta_point_owners.resize(index_count);
733
}
734
}
735
736
void NavMeshQueries2D::_query_task_post_process_corridorfunnel(NavMeshPathQueryTask2D &p_query_task) {
737
Vector2 end_point = p_query_task.end_position;
738
const Polygon *end_poly = p_query_task.end_polygon;
739
Vector2 begin_point = p_query_task.begin_position;
740
const Polygon *begin_poly = p_query_task.begin_polygon;
741
uint32_t least_cost_id = p_query_task.least_cost_id;
742
LocalVector<NavigationPoly> &navigation_polys = p_query_task.path_query_slot->path_corridor;
743
744
// Set the apex poly/point to the end point.
745
NavigationPoly *apex_poly = &navigation_polys[least_cost_id];
746
747
const Vector2 back_edge_closest_point = Geometry2D::get_closest_point_to_segment(end_point, apex_poly->back_navigation_edge_pathway_start, apex_poly->back_navigation_edge_pathway_end);
748
if (end_point.is_equal_approx(back_edge_closest_point)) {
749
// The end point is basically on top of the last crossed edge, funneling around the corners would at best do nothing.
750
// At worst it would add an unwanted path point before the last point due to precision issues so skip to the next polygon.
751
if (apex_poly->back_navigation_poly_id != -1) {
752
apex_poly = &navigation_polys[apex_poly->back_navigation_poly_id];
753
}
754
}
755
756
Vector2 apex_point = end_point;
757
758
NavigationPoly *left_poly = apex_poly;
759
Vector2 left_portal = apex_point;
760
NavigationPoly *right_poly = apex_poly;
761
Vector2 right_portal = apex_point;
762
763
NavigationPoly *p = apex_poly;
764
765
_query_task_push_back_point_with_metadata(p_query_task, end_point, end_poly);
766
767
while (p) {
768
// Set left and right points of the pathway between polygons.
769
Vector2 left = p->back_navigation_edge_pathway_start;
770
Vector2 right = p->back_navigation_edge_pathway_end;
771
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right) < 0) {
772
SWAP(left, right);
773
}
774
775
bool skip = false;
776
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left) >= 0) {
777
// Process.
778
if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal) > 0) {
779
left_poly = p;
780
left_portal = left;
781
} else {
782
_query_task_clip_path(p_query_task, apex_poly, right_portal, right_poly);
783
784
apex_point = right_portal;
785
p = right_poly;
786
left_poly = p;
787
apex_poly = p;
788
left_portal = apex_point;
789
right_portal = apex_point;
790
791
_query_task_push_back_point_with_metadata(p_query_task, apex_point, apex_poly->poly);
792
skip = true;
793
}
794
}
795
796
if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right) <= 0) {
797
// Process.
798
if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal) < 0) {
799
right_poly = p;
800
right_portal = right;
801
} else {
802
_query_task_clip_path(p_query_task, apex_poly, left_portal, left_poly);
803
804
apex_point = left_portal;
805
p = left_poly;
806
right_poly = p;
807
apex_poly = p;
808
right_portal = apex_point;
809
left_portal = apex_point;
810
811
_query_task_push_back_point_with_metadata(p_query_task, apex_point, apex_poly->poly);
812
}
813
}
814
815
// Go to the previous polygon.
816
if (p->back_navigation_poly_id != -1) {
817
p = &navigation_polys[p->back_navigation_poly_id];
818
} else {
819
// The end
820
p = nullptr;
821
}
822
}
823
824
// If the last point is not the begin point, add it to the list.
825
if (p_query_task.path_points[p_query_task.path_points.size() - 1] != begin_point) {
826
_query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
827
}
828
}
829
830
void NavMeshQueries2D::_query_task_post_process_edgecentered(NavMeshPathQueryTask2D &p_query_task) {
831
Vector2 end_point = p_query_task.end_position;
832
const Polygon *end_poly = p_query_task.end_polygon;
833
Vector2 begin_point = p_query_task.begin_position;
834
const Polygon *begin_poly = p_query_task.begin_polygon;
835
uint32_t least_cost_id = p_query_task.least_cost_id;
836
LocalVector<NavigationPoly> &navigation_polys = p_query_task.path_query_slot->path_corridor;
837
838
_query_task_push_back_point_with_metadata(p_query_task, end_point, end_poly);
839
840
// Add mid points.
841
int np_id = least_cost_id;
842
while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) {
843
if (navigation_polys[np_id].back_navigation_edge != -1) {
844
int prev = navigation_polys[np_id].back_navigation_edge;
845
int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->vertices.size();
846
Vector2 point = (navigation_polys[np_id].poly->vertices[prev] + navigation_polys[np_id].poly->vertices[prev_n]) * 0.5;
847
848
_query_task_push_back_point_with_metadata(p_query_task, point, navigation_polys[np_id].poly);
849
} else {
850
_query_task_push_back_point_with_metadata(p_query_task, navigation_polys[np_id].entry, navigation_polys[np_id].poly);
851
}
852
853
np_id = navigation_polys[np_id].back_navigation_poly_id;
854
}
855
856
_query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
857
}
858
859
void NavMeshQueries2D::_query_task_post_process_nopostprocessing(NavMeshPathQueryTask2D &p_query_task) {
860
Vector2 end_point = p_query_task.end_position;
861
const Polygon *end_poly = p_query_task.end_polygon;
862
Vector2 begin_point = p_query_task.begin_position;
863
const Polygon *begin_poly = p_query_task.begin_polygon;
864
uint32_t least_cost_id = p_query_task.least_cost_id;
865
LocalVector<NavigationPoly> &navigation_polys = p_query_task.path_query_slot->path_corridor;
866
867
_query_task_push_back_point_with_metadata(p_query_task, end_point, end_poly);
868
869
// Add mid points.
870
int np_id = least_cost_id;
871
while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) {
872
_query_task_push_back_point_with_metadata(p_query_task, navigation_polys[np_id].entry, navigation_polys[np_id].poly);
873
874
np_id = navigation_polys[np_id].back_navigation_poly_id;
875
}
876
877
_query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
878
}
879
880
Vector2 NavMeshQueries2D::map_iteration_get_closest_point(const NavMapIteration2D &p_map_iteration, const Vector2 &p_point) {
881
ClosestPointQueryResult cp = map_iteration_get_closest_point_info(p_map_iteration, p_point);
882
return cp.point;
883
}
884
885
RID NavMeshQueries2D::map_iteration_get_closest_point_owner(const NavMapIteration2D &p_map_iteration, const Vector2 &p_point) {
886
ClosestPointQueryResult cp = map_iteration_get_closest_point_info(p_map_iteration, p_point);
887
return cp.owner;
888
}
889
890
ClosestPointQueryResult NavMeshQueries2D::map_iteration_get_closest_point_info(const NavMapIteration2D &p_map_iteration, const Vector2 &p_point) {
891
ClosestPointQueryResult result;
892
real_t closest_point_distance_squared = FLT_MAX;
893
894
// TODO: Check for further 2D improvements.
895
896
const LocalVector<Ref<NavRegionIteration2D>> &regions = p_map_iteration.region_iterations;
897
for (const Ref<NavRegionIteration2D> &region : regions) {
898
for (const Polygon &polygon : region->get_navmesh_polygons()) {
899
real_t cross = -(polygon.vertices[1] - polygon.vertices[0]).cross(polygon.vertices[2] - polygon.vertices[0]);
900
Vector2 closest_on_polygon;
901
real_t closest = FLT_MAX;
902
bool inside = true;
903
Vector2 previous = polygon.vertices[polygon.vertices.size() - 1];
904
for (uint32_t point_id = 0; point_id < polygon.vertices.size(); ++point_id) {
905
Vector2 edge = polygon.vertices[point_id] - previous;
906
Vector2 to_point = p_point - previous;
907
real_t edge_to_point_cross = -edge.cross(to_point);
908
bool clockwise = (edge_to_point_cross * cross) > 0;
909
// If we are not clockwise, the point will never be inside the polygon and so the closest point will be on an edge.
910
if (!clockwise) {
911
inside = false;
912
real_t point_projected_on_edge = edge.dot(to_point);
913
real_t edge_square = edge.length_squared();
914
915
if (point_projected_on_edge > edge_square) {
916
real_t distance = polygon.vertices[point_id].distance_squared_to(p_point);
917
if (distance < closest) {
918
closest_on_polygon = polygon.vertices[point_id];
919
closest = distance;
920
}
921
} else if (point_projected_on_edge < 0.0) {
922
real_t distance = previous.distance_squared_to(p_point);
923
if (distance < closest) {
924
closest_on_polygon = previous;
925
closest = distance;
926
}
927
} else {
928
// If we project on this edge, this will be the closest point.
929
real_t percent = point_projected_on_edge / edge_square;
930
closest_on_polygon = previous + percent * edge;
931
break;
932
}
933
}
934
previous = polygon.vertices[point_id];
935
}
936
937
if (inside) {
938
closest_point_distance_squared = 0.0;
939
result.point = p_point;
940
result.owner = polygon.owner->get_self();
941
942
break;
943
} else {
944
real_t distance = closest_on_polygon.distance_squared_to(p_point);
945
if (distance < closest_point_distance_squared) {
946
closest_point_distance_squared = distance;
947
result.point = closest_on_polygon;
948
result.owner = polygon.owner->get_self();
949
}
950
}
951
}
952
}
953
954
return result;
955
}
956
957
Vector2 NavMeshQueries2D::map_iteration_get_random_point(const NavMapIteration2D &p_map_iteration, uint32_t p_navigation_layers, bool p_uniformly) {
958
if (p_map_iteration.region_iterations.is_empty()) {
959
return Vector2();
960
}
961
962
LocalVector<uint32_t> accessible_regions;
963
accessible_regions.reserve(p_map_iteration.region_iterations.size());
964
965
for (uint32_t i = 0; i < p_map_iteration.region_iterations.size(); i++) {
966
const Ref<NavRegionIteration2D> &region = p_map_iteration.region_iterations[i];
967
if (!region->get_enabled() || (p_navigation_layers & region->get_navigation_layers()) == 0) {
968
continue;
969
}
970
accessible_regions.push_back(i);
971
}
972
973
if (accessible_regions.is_empty()) {
974
// All existing region polygons are disabled.
975
return Vector2();
976
}
977
978
if (p_uniformly) {
979
real_t accumulated_region_surface_area = 0;
980
RBMap<real_t, uint32_t> accessible_regions_area_map;
981
982
for (uint32_t accessible_region_index = 0; accessible_region_index < accessible_regions.size(); accessible_region_index++) {
983
const Ref<NavRegionIteration2D> &region = p_map_iteration.region_iterations[accessible_regions[accessible_region_index]];
984
985
real_t region_surface_area = region->surface_area;
986
987
if (region_surface_area == 0.0f) {
988
continue;
989
}
990
991
accessible_regions_area_map[accumulated_region_surface_area] = accessible_region_index;
992
accumulated_region_surface_area += region_surface_area;
993
}
994
if (accessible_regions_area_map.is_empty() || accumulated_region_surface_area == 0) {
995
// All faces have no real surface / no area.
996
return Vector2();
997
}
998
999
real_t random_accessible_regions_area_map = Math::random(real_t(0), accumulated_region_surface_area);
1000
1001
RBMap<real_t, uint32_t>::Iterator E = accessible_regions_area_map.find_closest(random_accessible_regions_area_map);
1002
ERR_FAIL_COND_V(!E, Vector2());
1003
uint32_t random_region_index = E->value;
1004
ERR_FAIL_UNSIGNED_INDEX_V(random_region_index, accessible_regions.size(), Vector2());
1005
1006
const Ref<NavRegionIteration2D> &random_region = p_map_iteration.region_iterations[accessible_regions[random_region_index]];
1007
1008
return NavMeshQueries2D::polygons_get_random_point(random_region->navmesh_polygons, p_navigation_layers, p_uniformly);
1009
1010
} else {
1011
uint32_t random_region_index = Math::random(int(0), accessible_regions.size() - 1);
1012
1013
const Ref<NavRegionIteration2D> &random_region = p_map_iteration.region_iterations[accessible_regions[random_region_index]];
1014
1015
return NavMeshQueries2D::polygons_get_random_point(random_region->navmesh_polygons, p_navigation_layers, p_uniformly);
1016
}
1017
}
1018
1019
Vector2 NavMeshQueries2D::polygons_get_closest_point(const LocalVector<Polygon> &p_polygons, const Vector2 &p_point) {
1020
ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
1021
return cp.point;
1022
}
1023
1024
ClosestPointQueryResult NavMeshQueries2D::polygons_get_closest_point_info(const LocalVector<Polygon> &p_polygons, const Vector2 &p_point) {
1025
ClosestPointQueryResult result;
1026
real_t closest_point_distance_squared = FLT_MAX;
1027
1028
// TODO: Check for further 2D improvements.
1029
1030
for (const Polygon &polygon : p_polygons) {
1031
real_t cross = -(polygon.vertices[1] - polygon.vertices[0]).cross(polygon.vertices[2] - polygon.vertices[0]);
1032
Vector2 closest_on_polygon;
1033
real_t closest = FLT_MAX;
1034
bool inside = true;
1035
Vector2 previous = polygon.vertices[polygon.vertices.size() - 1];
1036
for (uint32_t point_id = 0; point_id < polygon.vertices.size(); ++point_id) {
1037
Vector2 edge = polygon.vertices[point_id] - previous;
1038
Vector2 to_point = p_point - previous;
1039
real_t edge_to_point_cross = -edge.cross(to_point);
1040
bool clockwise = (edge_to_point_cross * cross) > 0;
1041
// If we are not clockwise, the point will never be inside the polygon and so the closest point will be on an edge.
1042
if (!clockwise) {
1043
inside = false;
1044
real_t point_projected_on_edge = edge.dot(to_point);
1045
real_t edge_square = edge.length_squared();
1046
1047
if (point_projected_on_edge > edge_square) {
1048
real_t distance = polygon.vertices[point_id].distance_squared_to(p_point);
1049
if (distance < closest) {
1050
closest_on_polygon = polygon.vertices[point_id];
1051
closest = distance;
1052
}
1053
} else if (point_projected_on_edge < 0.0) {
1054
real_t distance = previous.distance_squared_to(p_point);
1055
if (distance < closest) {
1056
closest_on_polygon = previous;
1057
closest = distance;
1058
}
1059
} else {
1060
// If we project on this edge, this will be the closest point.
1061
real_t percent = point_projected_on_edge / edge_square;
1062
closest_on_polygon = previous + percent * edge;
1063
break;
1064
}
1065
}
1066
previous = polygon.vertices[point_id];
1067
}
1068
1069
if (inside) {
1070
closest_point_distance_squared = 0.0;
1071
result.point = p_point;
1072
result.owner = polygon.owner->get_self();
1073
break;
1074
} else {
1075
real_t distance = closest_on_polygon.distance_squared_to(p_point);
1076
if (distance < closest_point_distance_squared) {
1077
closest_point_distance_squared = distance;
1078
result.point = closest_on_polygon;
1079
result.owner = polygon.owner->get_self();
1080
}
1081
}
1082
}
1083
1084
return result;
1085
}
1086
1087
RID NavMeshQueries2D::polygons_get_closest_point_owner(const LocalVector<Polygon> &p_polygons, const Vector2 &p_point) {
1088
ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
1089
return cp.owner;
1090
}
1091
1092
static bool _line_intersects_segment(const Vector2 &p_line_normal, real_t p_line_d, const Vector2 &p_segment_begin, const Vector2 &p_segment_end, Vector2 &r_intersection) {
1093
Vector2 segment = p_segment_begin - p_segment_end;
1094
real_t den = p_line_normal.dot(segment);
1095
1096
if (Math::is_zero_approx(den)) {
1097
return false;
1098
}
1099
1100
real_t dist = (p_line_normal.dot(p_segment_begin) - p_line_d) / den;
1101
1102
if (dist < (real_t)-CMP_EPSILON || dist > (1.0 + (real_t)CMP_EPSILON)) {
1103
return false;
1104
}
1105
1106
r_intersection = p_segment_begin - segment * dist;
1107
return true;
1108
}
1109
1110
void NavMeshQueries2D::_query_task_clip_path(NavMeshPathQueryTask2D &p_query_task, const NavigationPoly *p_from_poly, const Vector2 &p_to_point, const NavigationPoly *p_to_poly) {
1111
Vector2 from = p_query_task.path_points[p_query_task.path_points.size() - 1];
1112
const LocalVector<NavigationPoly> &p_navigation_polys = p_query_task.path_query_slot->path_corridor;
1113
1114
if (from.is_equal_approx(p_to_point)) {
1115
return;
1116
}
1117
1118
// Compute line parameters (equivalent to the Plane case in 3D).
1119
const Vector2 normal = -(from - p_to_point).orthogonal().normalized();
1120
const real_t d = normal.dot(from);
1121
1122
while (p_from_poly != p_to_poly) {
1123
Vector2 pathway_start = p_from_poly->back_navigation_edge_pathway_start;
1124
Vector2 pathway_end = p_from_poly->back_navigation_edge_pathway_end;
1125
1126
ERR_FAIL_COND(p_from_poly->back_navigation_poly_id == -1);
1127
p_from_poly = &p_navigation_polys[p_from_poly->back_navigation_poly_id];
1128
1129
if (!pathway_start.is_equal_approx(pathway_end)) {
1130
Vector2 inters;
1131
if (_line_intersects_segment(normal, d, pathway_start, pathway_end, inters)) {
1132
if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(p_query_task.path_points[p_query_task.path_points.size() - 1])) {
1133
_query_task_push_back_point_with_metadata(p_query_task, inters, p_from_poly->poly);
1134
}
1135
}
1136
}
1137
}
1138
}
1139
1140
bool NavMeshQueries2D::_query_task_is_connection_owner_usable(const NavMeshPathQueryTask2D &p_query_task, const NavBaseIteration2D *p_owner) {
1141
ERR_FAIL_NULL_V(p_owner, false);
1142
1143
bool owner_usable = true;
1144
1145
if (!p_owner->get_enabled()) {
1146
owner_usable = false;
1147
return owner_usable;
1148
}
1149
1150
if ((p_query_task.navigation_layers & p_owner->get_navigation_layers()) == 0) {
1151
// Not usable. No matching bit between task filter bitmask and owner bitmask.
1152
owner_usable = false;
1153
return owner_usable;
1154
}
1155
1156
if (p_query_task.exclude_regions || p_query_task.include_regions) {
1157
switch (p_owner->get_type()) {
1158
case NavigationEnums2D::PathSegmentType::PATH_SEGMENT_TYPE_REGION: {
1159
if (p_query_task.exclude_regions && p_query_task.excluded_regions.has(p_owner->get_self())) {
1160
// Not usable. Exclude region filter is active and this region is excluded.
1161
owner_usable = false;
1162
} else if (p_query_task.include_regions && !p_query_task.included_regions.has(p_owner->get_self())) {
1163
// Not usable. Include region filter is active and this region is not included.
1164
owner_usable = false;
1165
}
1166
} break;
1167
case NavigationEnums2D::PathSegmentType::PATH_SEGMENT_TYPE_LINK: {
1168
const LocalVector<Polygon> &link_polygons = p_owner->get_navmesh_polygons();
1169
if (link_polygons.size() != 2) {
1170
// Not usable. Whatever this is, it is not a valid connected link.
1171
owner_usable = false;
1172
} else {
1173
const RID link_start_region = link_polygons[0].owner->get_self();
1174
const RID link_end_region = link_polygons[1].owner->get_self();
1175
if (p_query_task.exclude_regions && (p_query_task.excluded_regions.has(link_start_region) || p_query_task.excluded_regions.has(link_end_region))) {
1176
// Not usable. Exclude region filter is active and at least one region of the link is excluded.
1177
owner_usable = false;
1178
}
1179
if (p_query_task.include_regions && (!p_query_task.included_regions.has(link_start_region) || !p_query_task.excluded_regions.has(link_end_region))) {
1180
// Not usable. Include region filter is active and not both regions of the links are included.
1181
owner_usable = false;
1182
}
1183
}
1184
} break;
1185
}
1186
}
1187
1188
return owner_usable;
1189
}
1190
1191
LocalVector<uint32_t> NavMeshQueries2D::get_simplified_path_indices(const LocalVector<Vector2> &p_path, real_t p_epsilon) {
1192
p_epsilon = MAX(0.0, p_epsilon);
1193
real_t squared_epsilon = p_epsilon * p_epsilon;
1194
1195
LocalVector<uint32_t> simplified_path_indices;
1196
simplified_path_indices.reserve(p_path.size());
1197
simplified_path_indices.push_back(0);
1198
simplify_path_segment(0, p_path.size() - 1, p_path, squared_epsilon, simplified_path_indices);
1199
simplified_path_indices.push_back(p_path.size() - 1);
1200
1201
return simplified_path_indices;
1202
}
1203
1204
void NavMeshQueries2D::simplify_path_segment(int p_start_inx, int p_end_inx, const LocalVector<Vector2> &p_points, real_t p_epsilon, LocalVector<uint32_t> &r_simplified_path_indices) {
1205
real_t point_max_distance = 0.0;
1206
int point_max_index = 0;
1207
1208
for (int i = p_start_inx; i < p_end_inx; i++) {
1209
const Vector2 &checked_point = p_points[i];
1210
1211
const Vector2 closest_point = Geometry2D::get_closest_point_to_segment(checked_point, p_points[p_start_inx], p_points[p_end_inx]);
1212
real_t distance_squared = closest_point.distance_squared_to(checked_point);
1213
1214
if (distance_squared > point_max_distance) {
1215
point_max_index = i;
1216
point_max_distance = distance_squared;
1217
}
1218
}
1219
1220
if (point_max_distance > p_epsilon) {
1221
simplify_path_segment(p_start_inx, point_max_index, p_points, p_epsilon, r_simplified_path_indices);
1222
r_simplified_path_indices.push_back(point_max_index);
1223
simplify_path_segment(point_max_index, p_end_inx, p_points, p_epsilon, r_simplified_path_indices);
1224
}
1225
}
1226
1227