Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/scene/resources/3d/importer_mesh.cpp
21151 views
1
/**************************************************************************/
2
/* importer_mesh.cpp */
3
/**************************************************************************/
4
/* This file is part of: */
5
/* GODOT ENGINE */
6
/* https://godotengine.org */
7
/**************************************************************************/
8
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10
/* */
11
/* Permission is hereby granted, free of charge, to any person obtaining */
12
/* a copy of this software and associated documentation files (the */
13
/* "Software"), to deal in the Software without restriction, including */
14
/* without limitation the rights to use, copy, modify, merge, publish, */
15
/* distribute, sublicense, and/or sell copies of the Software, and to */
16
/* permit persons to whom the Software is furnished to do so, subject to */
17
/* the following conditions: */
18
/* */
19
/* The above copyright notice and this permission notice shall be */
20
/* included in all copies or substantial portions of the Software. */
21
/* */
22
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29
/**************************************************************************/
30
31
#include "importer_mesh.h"
32
33
#include "core/io/marshalls.h"
34
#include "core/math/random_pcg.h"
35
#include "scene/resources/surface_tool.h"
36
37
#ifndef PHYSICS_3D_DISABLED
38
#include "core/math/convex_hull.h"
39
#endif // PHYSICS_3D_DISABLED
40
41
String ImporterMesh::validate_blend_shape_name(const String &p_name) {
42
return p_name.replace_char(':', '_');
43
}
44
45
void ImporterMesh::add_blend_shape(const String &p_name) {
46
ERR_FAIL_COND(surfaces.size() > 0);
47
blend_shapes.push_back(validate_blend_shape_name(p_name));
48
}
49
50
int ImporterMesh::get_blend_shape_count() const {
51
return blend_shapes.size();
52
}
53
54
String ImporterMesh::get_blend_shape_name(int p_blend_shape) const {
55
ERR_FAIL_INDEX_V(p_blend_shape, blend_shapes.size(), String());
56
return blend_shapes[p_blend_shape];
57
}
58
59
void ImporterMesh::set_blend_shape_mode(Mesh::BlendShapeMode p_blend_shape_mode) {
60
blend_shape_mode = p_blend_shape_mode;
61
}
62
63
Mesh::BlendShapeMode ImporterMesh::get_blend_shape_mode() const {
64
return blend_shape_mode;
65
}
66
67
void ImporterMesh::add_surface(Mesh::PrimitiveType p_primitive, const Array &p_arrays, const TypedArray<Array> &p_blend_shapes, const Dictionary &p_lods, const Ref<Material> &p_material, const String &p_surface_name, const uint64_t p_flags) {
68
ERR_FAIL_COND(p_blend_shapes.size() != blend_shapes.size());
69
ERR_FAIL_COND(p_arrays.size() != Mesh::ARRAY_MAX);
70
Surface s;
71
s.primitive = p_primitive;
72
s.arrays = p_arrays;
73
s.name = p_surface_name;
74
s.flags = p_flags;
75
76
Vector<Vector3> vertex_array = p_arrays[Mesh::ARRAY_VERTEX];
77
int vertex_count = vertex_array.size();
78
ERR_FAIL_COND(vertex_count == 0);
79
80
for (int i = 0; i < blend_shapes.size(); i++) {
81
Array bsdata = p_blend_shapes[i];
82
ERR_FAIL_COND(bsdata.size() != Mesh::ARRAY_MAX);
83
Vector<Vector3> vertex_data = bsdata[Mesh::ARRAY_VERTEX];
84
ERR_FAIL_COND(vertex_data.size() != vertex_count);
85
Surface::BlendShape bs;
86
bs.arrays = bsdata;
87
s.blend_shape_data.push_back(bs);
88
}
89
90
for (const KeyValue<Variant, Variant> &kv : p_lods) {
91
ERR_CONTINUE(!kv.key.is_num());
92
Surface::LOD lod;
93
lod.distance = kv.key;
94
lod.indices = kv.value;
95
ERR_CONTINUE(lod.indices.is_empty());
96
s.lods.push_back(lod);
97
}
98
99
s.material = p_material;
100
101
surfaces.push_back(s);
102
mesh.unref();
103
}
104
105
int ImporterMesh::get_surface_count() const {
106
return surfaces.size();
107
}
108
109
Mesh::PrimitiveType ImporterMesh::get_surface_primitive_type(int p_surface) {
110
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Mesh::PRIMITIVE_MAX);
111
return surfaces[p_surface].primitive;
112
}
113
Array ImporterMesh::get_surface_arrays(int p_surface) const {
114
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
115
return surfaces[p_surface].arrays;
116
}
117
String ImporterMesh::get_surface_name(int p_surface) const {
118
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), String());
119
return surfaces[p_surface].name;
120
}
121
void ImporterMesh::set_surface_name(int p_surface, const String &p_name) {
122
ERR_FAIL_INDEX(p_surface, surfaces.size());
123
surfaces.write[p_surface].name = p_name;
124
mesh.unref();
125
}
126
127
Array ImporterMesh::get_surface_blend_shape_arrays(int p_surface, int p_blend_shape) const {
128
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
129
ERR_FAIL_INDEX_V(p_blend_shape, surfaces[p_surface].blend_shape_data.size(), Array());
130
return surfaces[p_surface].blend_shape_data[p_blend_shape].arrays;
131
}
132
int ImporterMesh::get_surface_lod_count(int p_surface) const {
133
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0);
134
return surfaces[p_surface].lods.size();
135
}
136
Vector<int> ImporterMesh::get_surface_lod_indices(int p_surface, int p_lod) const {
137
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Vector<int>());
138
ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), Vector<int>());
139
140
return surfaces[p_surface].lods[p_lod].indices;
141
}
142
143
float ImporterMesh::get_surface_lod_size(int p_surface, int p_lod) const {
144
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0);
145
ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), 0);
146
return surfaces[p_surface].lods[p_lod].distance;
147
}
148
149
uint64_t ImporterMesh::get_surface_format(int p_surface) const {
150
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0);
151
return surfaces[p_surface].flags;
152
}
153
154
Ref<Material> ImporterMesh::get_surface_material(int p_surface) const {
155
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Ref<Material>());
156
return surfaces[p_surface].material;
157
}
158
159
void ImporterMesh::set_surface_material(int p_surface, const Ref<Material> &p_material) {
160
ERR_FAIL_INDEX(p_surface, surfaces.size());
161
surfaces.write[p_surface].material = p_material;
162
mesh.unref();
163
}
164
165
template <typename T>
166
static Vector<T> _remap_array(Vector<T> p_array, const Vector<uint32_t> &p_remap, uint32_t p_vertex_count) {
167
ERR_FAIL_COND_V(p_array.size() % p_remap.size() != 0, p_array);
168
int num_elements = p_array.size() / p_remap.size();
169
T *data = p_array.ptrw();
170
SurfaceTool::remap_vertex_func(data, data, p_remap.size(), sizeof(T) * num_elements, p_remap.ptr());
171
p_array.resize(p_vertex_count * num_elements);
172
return p_array;
173
}
174
175
static void _remap_arrays(Array &r_arrays, const Vector<uint32_t> &p_remap, uint32_t p_vertex_count) {
176
for (int i = 0; i < r_arrays.size(); i++) {
177
if (i == RS::ARRAY_INDEX) {
178
continue;
179
}
180
181
switch (r_arrays[i].get_type()) {
182
case Variant::NIL:
183
break;
184
case Variant::PACKED_VECTOR3_ARRAY:
185
r_arrays[i] = _remap_array<Vector3>(r_arrays[i], p_remap, p_vertex_count);
186
break;
187
case Variant::PACKED_VECTOR2_ARRAY:
188
r_arrays[i] = _remap_array<Vector2>(r_arrays[i], p_remap, p_vertex_count);
189
break;
190
case Variant::PACKED_FLOAT32_ARRAY:
191
r_arrays[i] = _remap_array<float>(r_arrays[i], p_remap, p_vertex_count);
192
break;
193
case Variant::PACKED_INT32_ARRAY:
194
r_arrays[i] = _remap_array<int32_t>(r_arrays[i], p_remap, p_vertex_count);
195
break;
196
case Variant::PACKED_BYTE_ARRAY:
197
r_arrays[i] = _remap_array<uint8_t>(r_arrays[i], p_remap, p_vertex_count);
198
break;
199
case Variant::PACKED_COLOR_ARRAY:
200
r_arrays[i] = _remap_array<Color>(r_arrays[i], p_remap, p_vertex_count);
201
break;
202
default:
203
ERR_FAIL_MSG("Unhandled array type.");
204
}
205
}
206
}
207
208
void ImporterMesh::optimize_indices() {
209
if (!SurfaceTool::optimize_vertex_cache_func) {
210
return;
211
}
212
if (!SurfaceTool::optimize_vertex_fetch_remap_func || !SurfaceTool::remap_vertex_func || !SurfaceTool::remap_index_func) {
213
return;
214
}
215
216
for (int i = 0; i < surfaces.size(); i++) {
217
if (surfaces[i].primitive != Mesh::PRIMITIVE_TRIANGLES) {
218
continue;
219
}
220
221
Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX];
222
PackedInt32Array indices = surfaces[i].arrays[RS::ARRAY_INDEX];
223
224
unsigned int index_count = indices.size();
225
unsigned int vertex_count = vertices.size();
226
227
if (index_count == 0) {
228
continue;
229
}
230
231
// Optimize indices for vertex cache to establish final triangle order.
232
int *indices_ptr = indices.ptrw();
233
SurfaceTool::optimize_vertex_cache_func((unsigned int *)indices_ptr, (const unsigned int *)indices_ptr, index_count, vertex_count);
234
surfaces.write[i].arrays[RS::ARRAY_INDEX] = indices;
235
236
for (int j = 0; j < surfaces[i].lods.size(); ++j) {
237
Surface::LOD &lod = surfaces.write[i].lods.write[j];
238
int *lod_indices_ptr = lod.indices.ptrw();
239
SurfaceTool::optimize_vertex_cache_func((unsigned int *)lod_indices_ptr, (const unsigned int *)lod_indices_ptr, lod.indices.size(), vertex_count);
240
}
241
242
// Concatenate indices for all LODs in the order of coarse->fine; this establishes the effective order of vertices,
243
// and is important to optimize for vertex fetch (all GPUs) and shading (Mali GPUs)
244
PackedInt32Array merged_indices;
245
for (int j = surfaces[i].lods.size() - 1; j >= 0; --j) {
246
merged_indices.append_array(surfaces[i].lods[j].indices);
247
}
248
merged_indices.append_array(indices);
249
250
// Generate remap array that establishes optimal vertex order according to the order of indices above.
251
Vector<uint32_t> remap;
252
remap.resize(vertex_count);
253
unsigned int new_vertex_count = SurfaceTool::optimize_vertex_fetch_remap_func(remap.ptrw(), (const unsigned int *)merged_indices.ptr(), merged_indices.size(), vertex_count);
254
255
// We need to remap all vertex and index arrays in lockstep according to the remap.
256
SurfaceTool::remap_index_func((unsigned int *)indices_ptr, (const unsigned int *)indices_ptr, index_count, remap.ptr());
257
surfaces.write[i].arrays[RS::ARRAY_INDEX] = indices;
258
259
for (int j = 0; j < surfaces[i].lods.size(); ++j) {
260
Surface::LOD &lod = surfaces.write[i].lods.write[j];
261
int *lod_indices_ptr = lod.indices.ptrw();
262
SurfaceTool::remap_index_func((unsigned int *)lod_indices_ptr, (const unsigned int *)lod_indices_ptr, lod.indices.size(), remap.ptr());
263
}
264
265
_remap_arrays(surfaces.write[i].arrays, remap, new_vertex_count);
266
for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) {
267
_remap_arrays(surfaces.write[i].blend_shape_data.write[j].arrays, remap, new_vertex_count);
268
}
269
}
270
271
if (shadow_mesh.is_valid()) {
272
shadow_mesh->optimize_indices();
273
}
274
}
275
276
#define VERTEX_SKIN_FUNC(bone_count, vert_idx, read_array, write_array, transform_array, bone_array, weight_array) \
277
Vector3 transformed_vert; \
278
for (unsigned int weight_idx = 0; weight_idx < bone_count; weight_idx++) { \
279
int bone_idx = bone_array[vert_idx * bone_count + weight_idx]; \
280
float w = weight_array[vert_idx * bone_count + weight_idx]; \
281
if (w < FLT_EPSILON) { \
282
continue; \
283
} \
284
ERR_FAIL_INDEX(bone_idx, static_cast<int>(transform_array.size())); \
285
transformed_vert += transform_array[bone_idx].xform(read_array[vert_idx]) * w; \
286
} \
287
write_array[vert_idx] = transformed_vert;
288
289
void ImporterMesh::generate_lods(float p_normal_merge_angle, Array p_bone_transform_array) {
290
if (!SurfaceTool::simplify_scale_func) {
291
return;
292
}
293
if (!SurfaceTool::simplify_with_attrib_func) {
294
return;
295
}
296
297
LocalVector<Transform3D> bone_transform_vector;
298
for (int i = 0; i < p_bone_transform_array.size(); i++) {
299
ERR_FAIL_COND(p_bone_transform_array[i].get_type() != Variant::TRANSFORM3D);
300
bone_transform_vector.push_back(p_bone_transform_array[i]);
301
}
302
303
for (int i = 0; i < surfaces.size(); i++) {
304
if (surfaces[i].primitive != Mesh::PRIMITIVE_TRIANGLES) {
305
continue;
306
}
307
308
surfaces.write[i].lods.clear();
309
Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX];
310
PackedInt32Array indices = surfaces[i].arrays[RS::ARRAY_INDEX];
311
Vector<Vector3> normals = surfaces[i].arrays[RS::ARRAY_NORMAL];
312
Vector<float> tangents = surfaces[i].arrays[RS::ARRAY_TANGENT];
313
Vector<Vector2> uvs = surfaces[i].arrays[RS::ARRAY_TEX_UV];
314
Vector<Vector2> uv2s = surfaces[i].arrays[RS::ARRAY_TEX_UV2];
315
Vector<int> bones = surfaces[i].arrays[RS::ARRAY_BONES];
316
Vector<float> weights = surfaces[i].arrays[RS::ARRAY_WEIGHTS];
317
Vector<Color> colors = surfaces[i].arrays[RS::ARRAY_COLOR];
318
319
unsigned int index_count = indices.size();
320
unsigned int vertex_count = vertices.size();
321
322
if (index_count == 0) {
323
continue; //no lods if no indices
324
}
325
ERR_FAIL_COND_MSG(index_count % 3 != 0, "ImporterMesh::generate_lods: Indexed triangle meshes MUST have an index array with a size that is a multiple of 3, but got " + itos(index_count) + " indices. Cannot generate LODs for this invalid mesh.");
326
327
const Vector3 *vertices_ptr = vertices.ptr();
328
const int *indices_ptr = indices.ptr();
329
330
if (normals.is_empty()) {
331
normals.resize(index_count);
332
Vector3 *n_ptr = normals.ptrw();
333
for (unsigned int j = 0; j < index_count; j += 3) {
334
const Vector3 &v0 = vertices_ptr[indices_ptr[j + 0]];
335
const Vector3 &v1 = vertices_ptr[indices_ptr[j + 1]];
336
const Vector3 &v2 = vertices_ptr[indices_ptr[j + 2]];
337
Vector3 n = vec3_cross(v0 - v2, v0 - v1).normalized();
338
n_ptr[j + 0] = n;
339
n_ptr[j + 1] = n;
340
n_ptr[j + 2] = n;
341
}
342
}
343
344
bool deformable = bones.size() > 0 || blend_shapes.size() > 0;
345
346
if (bones.size() > 0 && weights.size() && bone_transform_vector.size() > 0) {
347
Vector3 *vertices_ptrw = vertices.ptrw();
348
349
// Apply bone transforms to regular surface.
350
unsigned int bone_weight_length = surfaces[i].flags & Mesh::ARRAY_FLAG_USE_8_BONE_WEIGHTS ? 8 : 4;
351
352
const int *bo = bones.ptr();
353
const float *we = weights.ptr();
354
355
for (unsigned int j = 0; j < vertex_count; j++) {
356
VERTEX_SKIN_FUNC(bone_weight_length, j, vertices_ptr, vertices_ptrw, bone_transform_vector, bo, we)
357
}
358
359
vertices_ptr = vertices.ptr();
360
}
361
362
float normal_merge_threshold = Math::cos(Math::deg_to_rad(p_normal_merge_angle));
363
const Vector3 *normals_ptr = normals.ptr();
364
365
HashMap<Vector3, LocalVector<Pair<int, int>>> unique_vertices;
366
367
LocalVector<int> vertex_remap;
368
LocalVector<int> vertex_inverse_remap;
369
LocalVector<Vector3> merged_vertices;
370
LocalVector<Vector3> merged_normals;
371
LocalVector<int> merged_normals_counts;
372
const Vector2 *uvs_ptr = uvs.ptr();
373
const Vector2 *uv2s_ptr = uv2s.ptr();
374
const float *tangents_ptr = tangents.ptr();
375
const Color *colors_ptr = colors.ptr();
376
377
for (unsigned int j = 0; j < vertex_count; j++) {
378
const Vector3 &v = vertices_ptr[j];
379
const Vector3 &n = normals_ptr[j];
380
381
HashMap<Vector3, LocalVector<Pair<int, int>>>::Iterator E = unique_vertices.find(v);
382
383
if (E) {
384
const LocalVector<Pair<int, int>> &close_verts = E->value;
385
386
bool found = false;
387
for (const Pair<int, int> &idx : close_verts) {
388
bool is_uvs_close = (!uvs_ptr || uvs_ptr[j].distance_squared_to(uvs_ptr[idx.second]) < CMP_EPSILON2);
389
bool is_uv2s_close = (!uv2s_ptr || uv2s_ptr[j].distance_squared_to(uv2s_ptr[idx.second]) < CMP_EPSILON2);
390
bool is_tang_aligned = !tangents_ptr || (tangents_ptr[j * 4 + 3] < 0) == (tangents_ptr[idx.second * 4 + 3] < 0);
391
ERR_FAIL_INDEX(idx.second, normals.size());
392
bool is_normals_close = normals[idx.second].dot(n) > normal_merge_threshold;
393
bool is_col_close = (!colors_ptr || colors_ptr[j].is_equal_approx(colors_ptr[idx.second]));
394
if (is_uvs_close && is_uv2s_close && is_normals_close && is_tang_aligned && is_col_close) {
395
vertex_remap.push_back(idx.first);
396
merged_normals[idx.first] += normals[idx.second];
397
merged_normals_counts[idx.first]++;
398
found = true;
399
break;
400
}
401
}
402
403
if (!found) {
404
int vcount = merged_vertices.size();
405
unique_vertices[v].push_back(Pair<int, int>(vcount, j));
406
vertex_inverse_remap.push_back(j);
407
merged_vertices.push_back(v);
408
vertex_remap.push_back(vcount);
409
merged_normals.push_back(normals_ptr[j]);
410
merged_normals_counts.push_back(1);
411
}
412
} else {
413
int vcount = merged_vertices.size();
414
unique_vertices[v] = LocalVector<Pair<int, int>>();
415
unique_vertices[v].push_back(Pair<int, int>(vcount, j));
416
vertex_inverse_remap.push_back(j);
417
merged_vertices.push_back(v);
418
vertex_remap.push_back(vcount);
419
merged_normals.push_back(normals_ptr[j]);
420
merged_normals_counts.push_back(1);
421
}
422
}
423
424
LocalVector<int> merged_indices;
425
merged_indices.resize(index_count);
426
for (unsigned int j = 0; j < index_count; j++) {
427
merged_indices[j] = vertex_remap[indices[j]];
428
}
429
430
unsigned int merged_vertex_count = merged_vertices.size();
431
const Vector3 *merged_vertices_ptr = merged_vertices.ptr();
432
Vector3 *merged_normals_ptr = merged_normals.ptr();
433
434
{
435
const int *counts_ptr = merged_normals_counts.ptr();
436
for (unsigned int j = 0; j < merged_vertex_count; j++) {
437
merged_normals_ptr[j] /= counts_ptr[j];
438
}
439
}
440
441
Vector<float> merged_vertices_f32 = vector3_to_float32_array(merged_vertices_ptr, merged_vertex_count);
442
float scale = SurfaceTool::simplify_scale_func(merged_vertices_f32.ptr(), merged_vertex_count, sizeof(float) * 3);
443
444
const size_t attrib_count = 6; // 3 for normal + 3 for color (if present)
445
446
float attrib_weights[attrib_count] = {};
447
448
// Give some weight to normal preservation
449
attrib_weights[0] = attrib_weights[1] = attrib_weights[2] = 1.0f;
450
451
// Give some weight to colors but only if present to avoid redundant computations during simplification
452
if (colors_ptr) {
453
attrib_weights[3] = attrib_weights[4] = attrib_weights[5] = 1.0f;
454
}
455
456
LocalVector<float> merged_attribs;
457
merged_attribs.resize(merged_vertex_count * attrib_count);
458
float *merged_attribs_ptr = merged_attribs.ptr();
459
460
memset(merged_attribs_ptr, 0, merged_attribs.size() * sizeof(float));
461
462
for (unsigned int j = 0; j < merged_vertex_count; ++j) {
463
merged_attribs_ptr[j * attrib_count + 0] = merged_normals_ptr[j].x;
464
merged_attribs_ptr[j * attrib_count + 1] = merged_normals_ptr[j].y;
465
merged_attribs_ptr[j * attrib_count + 2] = merged_normals_ptr[j].z;
466
467
if (colors_ptr) {
468
unsigned int rj = vertex_inverse_remap[j];
469
470
merged_attribs_ptr[j * attrib_count + 3] = colors_ptr[rj].r;
471
merged_attribs_ptr[j * attrib_count + 4] = colors_ptr[rj].g;
472
merged_attribs_ptr[j * attrib_count + 5] = colors_ptr[rj].b;
473
}
474
}
475
476
print_verbose("LOD Generation: Triangles " + itos(index_count / 3) + ", vertices " + itos(vertex_count) + " (merged " + itos(merged_vertex_count) + ")" + (deformable ? ", deformable" : ""));
477
478
const float max_mesh_error = 1.0f; // We only need LODs that can be selected by error threshold.
479
const unsigned min_target_indices = 12;
480
481
LocalVector<int> current_indices(merged_indices);
482
float current_error = 0.0f;
483
bool allow_prune = true;
484
485
while (current_indices.size() > min_target_indices * 2) {
486
unsigned int current_index_count = current_indices.size();
487
unsigned int target_index_count = MAX(((current_index_count / 3) / 2) * 3, min_target_indices);
488
489
PackedInt32Array new_indices;
490
new_indices.resize(current_index_count);
491
492
int simplify_options = SurfaceTool::SIMPLIFY_SPARSE; // Does not change appearance, but speeds up subsequent iterations.
493
494
// Lock geometric boundary in case the mesh is composed of multiple material subsets.
495
simplify_options |= SurfaceTool::SIMPLIFY_LOCK_BORDER;
496
497
if (allow_prune) {
498
// Remove small disconnected components.
499
simplify_options |= SurfaceTool::SIMPLIFY_PRUNE;
500
}
501
502
if (deformable) {
503
// Improves appearance of deformable objects after deformation by using more regular tessellation.
504
simplify_options |= SurfaceTool::SIMPLIFY_REGULARIZE;
505
}
506
507
float step_error = 0.0f;
508
size_t new_index_count = SurfaceTool::simplify_with_attrib_func(
509
(unsigned int *)new_indices.ptrw(),
510
(const uint32_t *)current_indices.ptr(), current_index_count,
511
merged_vertices_f32.ptr(), merged_vertex_count,
512
sizeof(float) * 3, // Vertex stride
513
merged_attribs_ptr,
514
sizeof(float) * attrib_count, // Attribute stride
515
attrib_weights, attrib_count,
516
nullptr, // Vertex lock
517
target_index_count,
518
max_mesh_error,
519
simplify_options,
520
&step_error);
521
522
if (new_index_count == 0 && allow_prune) {
523
// If the best result the simplifier could arrive at with pruning enabled is 0 triangles, there might still be an opportunity
524
// to reduce the number of triangles further *without* completely decimating the mesh. It will be impossible to reach the target
525
// this way - if the target was reachable without going down to 0, the simplifier would have done it! - but we might still be able
526
// to get one more slightly lower level if we retry without pruning.
527
allow_prune = false;
528
continue;
529
}
530
531
// Accumulate error over iterations. Usually, it's correct to use step_error as is; however, on coarse LODs, we may start
532
// getting *smaller* relative error compared to the previous LOD. To make sure the error is monotonic and strictly increasing,
533
// and to limit the switching (pop) distance, we ensure the error grows by an arbitrary factor each iteration.
534
current_error = MAX(current_error * 1.5f, step_error);
535
536
new_indices.resize(new_index_count);
537
current_indices = new_indices;
538
539
if (new_index_count == 0 || (new_index_count >= current_index_count * 0.75f)) {
540
print_verbose(" LOD stop: got " + itos(new_index_count / 3) + " triangles when asking for " + itos(target_index_count / 3));
541
break;
542
}
543
544
if (current_error > max_mesh_error) {
545
print_verbose(" LOD stop: reached " + rtos(current_error) + " cumulative error (step error " + rtos(step_error) + ")");
546
break;
547
}
548
549
// We need to remap the LOD indices back to the original vertex array; note that we already copied new_indices into current_indices for subsequent iteration.
550
{
551
int *ptrw = new_indices.ptrw();
552
for (unsigned int j = 0; j < new_index_count; j++) {
553
ptrw[j] = vertex_inverse_remap[ptrw[j]];
554
}
555
}
556
557
Surface::LOD lod;
558
lod.distance = MAX(current_error * scale, CMP_EPSILON2);
559
lod.indices = new_indices;
560
surfaces.write[i].lods.push_back(lod);
561
562
print_verbose(" LOD " + itos(surfaces.write[i].lods.size()) + ": " + itos(new_index_count / 3) + " triangles, error " + rtos(current_error) + " (step error " + rtos(step_error) + ")");
563
}
564
565
surfaces.write[i].lods.sort_custom<Surface::LODComparator>();
566
}
567
}
568
569
void ImporterMesh::_generate_lods_bind(float p_normal_merge_angle, float p_normal_split_angle, Array p_skin_pose_transform_array) {
570
// p_normal_split_angle is unused, but kept for compatibility
571
generate_lods(p_normal_merge_angle, p_skin_pose_transform_array);
572
}
573
574
bool ImporterMesh::has_mesh() const {
575
return mesh.is_valid();
576
}
577
578
Ref<ArrayMesh> ImporterMesh::get_mesh(const Ref<ArrayMesh> &p_base) {
579
ERR_FAIL_COND_V(surfaces.is_empty(), Ref<ArrayMesh>());
580
581
if (mesh.is_null()) {
582
if (p_base.is_valid()) {
583
mesh = p_base;
584
}
585
if (mesh.is_null()) {
586
mesh.instantiate();
587
}
588
mesh->set_name(get_name());
589
if (has_meta("import_id")) {
590
mesh->set_meta("import_id", get_meta("import_id"));
591
}
592
for (int i = 0; i < blend_shapes.size(); i++) {
593
mesh->add_blend_shape(blend_shapes[i]);
594
}
595
mesh->set_blend_shape_mode(blend_shape_mode);
596
for (int i = 0; i < surfaces.size(); i++) {
597
Array bs_data;
598
if (surfaces[i].blend_shape_data.size()) {
599
for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) {
600
bs_data.push_back(surfaces[i].blend_shape_data[j].arrays);
601
}
602
}
603
Dictionary lods;
604
if (surfaces[i].lods.size()) {
605
for (int j = 0; j < surfaces[i].lods.size(); j++) {
606
lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices;
607
}
608
}
609
610
mesh->add_surface_from_arrays(surfaces[i].primitive, surfaces[i].arrays, bs_data, lods, surfaces[i].flags);
611
if (surfaces[i].material.is_valid()) {
612
mesh->surface_set_material(mesh->get_surface_count() - 1, surfaces[i].material);
613
}
614
if (!surfaces[i].name.is_empty()) {
615
mesh->surface_set_name(mesh->get_surface_count() - 1, surfaces[i].name);
616
}
617
}
618
619
mesh->set_lightmap_size_hint(lightmap_size_hint);
620
621
if (shadow_mesh.is_valid()) {
622
Ref<ArrayMesh> shadow = shadow_mesh->get_mesh();
623
mesh->set_shadow_mesh(shadow);
624
}
625
}
626
627
return mesh;
628
}
629
630
Ref<ImporterMesh> ImporterMesh::from_mesh(const Ref<Mesh> &p_mesh) {
631
Ref<ImporterMesh> importer_mesh;
632
importer_mesh.instantiate();
633
if (p_mesh.is_null()) {
634
return importer_mesh;
635
}
636
Ref<ArrayMesh> array_mesh = p_mesh;
637
// Convert blend shape mode and names if any.
638
if (p_mesh->get_blend_shape_count() > 0) {
639
ArrayMesh::BlendShapeMode shape_mode = ArrayMesh::BLEND_SHAPE_MODE_NORMALIZED;
640
if (array_mesh.is_valid()) {
641
shape_mode = array_mesh->get_blend_shape_mode();
642
}
643
importer_mesh->set_blend_shape_mode(shape_mode);
644
for (int morph_i = 0; morph_i < p_mesh->get_blend_shape_count(); morph_i++) {
645
importer_mesh->add_blend_shape(p_mesh->get_blend_shape_name(morph_i));
646
}
647
}
648
// Add surfaces one by one.
649
for (int32_t surface_i = 0; surface_i < p_mesh->get_surface_count(); surface_i++) {
650
Ref<Material> mat = p_mesh->surface_get_material(surface_i);
651
String surface_name;
652
if (array_mesh.is_valid()) {
653
surface_name = array_mesh->surface_get_name(surface_i);
654
}
655
if (surface_name.is_empty() && mat.is_valid()) {
656
surface_name = mat->get_name();
657
}
658
importer_mesh->add_surface(p_mesh->surface_get_primitive_type(surface_i), p_mesh->surface_get_arrays(surface_i),
659
p_mesh->surface_get_blend_shape_arrays(surface_i), p_mesh->surface_get_lods(surface_i),
660
mat, surface_name, p_mesh->surface_get_format(surface_i));
661
}
662
// Merge metadata.
663
importer_mesh->merge_meta_from(*p_mesh);
664
importer_mesh->set_name(p_mesh->get_name());
665
return importer_mesh;
666
}
667
668
void ImporterMesh::clear() {
669
surfaces.clear();
670
blend_shapes.clear();
671
mesh.unref();
672
}
673
674
void ImporterMesh::create_shadow_mesh() {
675
if (shadow_mesh.is_valid()) {
676
shadow_mesh.unref();
677
}
678
679
//no shadow mesh for blendshapes
680
if (blend_shapes.size() > 0) {
681
return;
682
}
683
//no shadow mesh for skeletons
684
for (int i = 0; i < surfaces.size(); i++) {
685
if (surfaces[i].arrays[RS::ARRAY_BONES].get_type() != Variant::NIL) {
686
return;
687
}
688
if (surfaces[i].arrays[RS::ARRAY_WEIGHTS].get_type() != Variant::NIL) {
689
return;
690
}
691
}
692
693
shadow_mesh.instantiate();
694
695
for (int i = 0; i < surfaces.size(); i++) {
696
LocalVector<int> vertex_remap;
697
Vector<Vector3> new_vertices;
698
Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX];
699
int vertex_count = vertices.size();
700
{
701
HashMap<Vector3, int> unique_vertices;
702
const Vector3 *vptr = vertices.ptr();
703
for (int j = 0; j < vertex_count; j++) {
704
const Vector3 &v = vptr[j];
705
706
HashMap<Vector3, int>::Iterator E = unique_vertices.find(v);
707
708
if (E) {
709
vertex_remap.push_back(E->value);
710
} else {
711
int vcount = unique_vertices.size();
712
unique_vertices[v] = vcount;
713
vertex_remap.push_back(vcount);
714
new_vertices.push_back(v);
715
}
716
}
717
}
718
719
Array new_surface;
720
new_surface.resize(RS::ARRAY_MAX);
721
Dictionary lods;
722
723
// print_line("original vertex count: " + itos(vertices.size()) + " new vertex count: " + itos(new_vertices.size()));
724
725
new_surface[RS::ARRAY_VERTEX] = new_vertices;
726
727
Vector<int> indices = surfaces[i].arrays[RS::ARRAY_INDEX];
728
if (indices.size()) {
729
int index_count = indices.size();
730
const int *index_rptr = indices.ptr();
731
Vector<int> new_indices;
732
new_indices.resize(indices.size());
733
int *index_wptr = new_indices.ptrw();
734
735
for (int j = 0; j < index_count; j++) {
736
int index = index_rptr[j];
737
ERR_FAIL_INDEX(index, vertex_count);
738
index_wptr[j] = vertex_remap[index];
739
}
740
741
new_surface[RS::ARRAY_INDEX] = new_indices;
742
743
// Make sure the same LODs as the full version are used.
744
// This makes it more coherent between rendered model and its shadows.
745
for (int j = 0; j < surfaces[i].lods.size(); j++) {
746
indices = surfaces[i].lods[j].indices;
747
748
index_count = indices.size();
749
index_rptr = indices.ptr();
750
new_indices.resize(indices.size());
751
index_wptr = new_indices.ptrw();
752
753
for (int k = 0; k < index_count; k++) {
754
int index = index_rptr[k];
755
ERR_FAIL_INDEX(index, vertex_count);
756
index_wptr[k] = vertex_remap[index];
757
}
758
759
lods[surfaces[i].lods[j].distance] = new_indices;
760
}
761
}
762
763
shadow_mesh->add_surface(surfaces[i].primitive, new_surface, Array(), lods, Ref<Material>(), surfaces[i].name, surfaces[i].flags);
764
}
765
}
766
767
Ref<ImporterMesh> ImporterMesh::get_shadow_mesh() const {
768
return shadow_mesh;
769
}
770
771
void ImporterMesh::_set_data(const Dictionary &p_data) {
772
clear();
773
if (p_data.has("blend_shape_names")) {
774
blend_shapes = p_data["blend_shape_names"];
775
}
776
if (p_data.has("surfaces")) {
777
Array surface_arr = p_data["surfaces"];
778
for (int i = 0; i < surface_arr.size(); i++) {
779
Dictionary s = surface_arr[i];
780
ERR_CONTINUE(!s.has("primitive"));
781
ERR_CONTINUE(!s.has("arrays"));
782
Mesh::PrimitiveType prim = Mesh::PrimitiveType(int(s["primitive"]));
783
ERR_CONTINUE(prim >= Mesh::PRIMITIVE_MAX);
784
Array arr = s["arrays"];
785
Dictionary lods;
786
String surf_name;
787
if (s.has("name")) {
788
surf_name = s["name"];
789
}
790
if (s.has("lods")) {
791
lods = s["lods"];
792
}
793
Array b_shapes;
794
if (s.has("b_shapes")) {
795
b_shapes = s["b_shapes"];
796
}
797
Ref<Material> material;
798
if (s.has("material")) {
799
material = s["material"];
800
}
801
uint64_t flags = 0;
802
if (s.has("flags")) {
803
flags = s["flags"];
804
}
805
add_surface(prim, arr, b_shapes, lods, material, surf_name, flags);
806
}
807
}
808
}
809
Dictionary ImporterMesh::_get_data() const {
810
Dictionary data;
811
if (blend_shapes.size()) {
812
data["blend_shape_names"] = blend_shapes;
813
}
814
Array surface_arr;
815
for (int i = 0; i < surfaces.size(); i++) {
816
Dictionary d;
817
d["primitive"] = surfaces[i].primitive;
818
d["arrays"] = surfaces[i].arrays;
819
if (surfaces[i].blend_shape_data.size()) {
820
Array bs_data;
821
for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) {
822
bs_data.push_back(surfaces[i].blend_shape_data[j].arrays);
823
}
824
d["blend_shapes"] = bs_data;
825
}
826
if (surfaces[i].lods.size()) {
827
Dictionary lods;
828
for (int j = 0; j < surfaces[i].lods.size(); j++) {
829
lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices;
830
}
831
d["lods"] = lods;
832
}
833
834
if (surfaces[i].material.is_valid()) {
835
d["material"] = surfaces[i].material;
836
}
837
838
if (!surfaces[i].name.is_empty()) {
839
d["name"] = surfaces[i].name;
840
}
841
842
d["flags"] = surfaces[i].flags;
843
844
surface_arr.push_back(d);
845
}
846
data["surfaces"] = surface_arr;
847
return data;
848
}
849
850
Vector<Face3> ImporterMesh::get_faces() const {
851
Vector<Face3> faces;
852
for (int i = 0; i < surfaces.size(); i++) {
853
if (surfaces[i].primitive == Mesh::PRIMITIVE_TRIANGLES) {
854
Vector<Vector3> vertices = surfaces[i].arrays[Mesh::ARRAY_VERTEX];
855
Vector<int> indices = surfaces[i].arrays[Mesh::ARRAY_INDEX];
856
if (indices.size()) {
857
for (int j = 0; j < indices.size(); j += 3) {
858
Face3 f;
859
f.vertex[0] = vertices[indices[j + 0]];
860
f.vertex[1] = vertices[indices[j + 1]];
861
f.vertex[2] = vertices[indices[j + 2]];
862
faces.push_back(f);
863
}
864
} else {
865
for (int j = 0; j < vertices.size(); j += 3) {
866
Face3 f;
867
f.vertex[0] = vertices[j + 0];
868
f.vertex[1] = vertices[j + 1];
869
f.vertex[2] = vertices[j + 2];
870
faces.push_back(f);
871
}
872
}
873
}
874
}
875
876
return faces;
877
}
878
879
#ifndef PHYSICS_3D_DISABLED
880
Vector<Ref<Shape3D>> ImporterMesh::convex_decompose(const Ref<MeshConvexDecompositionSettings> &p_settings) const {
881
ERR_FAIL_NULL_V(Mesh::convex_decomposition_function, Vector<Ref<Shape3D>>());
882
883
const Vector<Face3> faces = get_faces();
884
int face_count = faces.size();
885
886
Vector<Vector3> vertices;
887
uint32_t vertex_count = 0;
888
vertices.resize(face_count * 3);
889
Vector<uint32_t> indices;
890
indices.resize(face_count * 3);
891
{
892
HashMap<Vector3, uint32_t> vertex_map;
893
Vector3 *vertex_w = vertices.ptrw();
894
uint32_t *index_w = indices.ptrw();
895
for (int i = 0; i < face_count; i++) {
896
for (int j = 0; j < 3; j++) {
897
const Vector3 &vertex = faces[i].vertex[j];
898
HashMap<Vector3, uint32_t>::Iterator found_vertex = vertex_map.find(vertex);
899
uint32_t index;
900
if (found_vertex) {
901
index = found_vertex->value;
902
} else {
903
index = vertex_count++;
904
vertex_map[vertex] = index;
905
vertex_w[index] = vertex;
906
}
907
index_w[i * 3 + j] = index;
908
}
909
}
910
}
911
vertices.resize(vertex_count);
912
913
Vector<Vector<Vector3>> decomposed = Mesh::convex_decomposition_function((real_t *)vertices.ptr(), vertex_count, indices.ptr(), face_count, p_settings, nullptr);
914
915
Vector<Ref<Shape3D>> ret;
916
917
for (int i = 0; i < decomposed.size(); i++) {
918
Ref<ConvexPolygonShape3D> shape;
919
shape.instantiate();
920
shape->set_points(decomposed[i]);
921
ret.push_back(shape);
922
}
923
924
return ret;
925
}
926
927
Ref<ConvexPolygonShape3D> ImporterMesh::create_convex_shape(bool p_clean, bool p_simplify) const {
928
if (p_simplify) {
929
Ref<MeshConvexDecompositionSettings> settings;
930
settings.instantiate();
931
settings->set_max_convex_hulls(1);
932
Vector<Ref<Shape3D>> decomposed = convex_decompose(settings);
933
if (decomposed.size() == 1) {
934
return decomposed[0];
935
} else {
936
ERR_PRINT("Convex shape simplification failed, falling back to simpler process.");
937
}
938
}
939
940
Vector<Vector3> vertices;
941
for (int i = 0; i < get_surface_count(); i++) {
942
Array a = get_surface_arrays(i);
943
ERR_FAIL_COND_V(a.is_empty(), Ref<ConvexPolygonShape3D>());
944
Vector<Vector3> v = a[Mesh::ARRAY_VERTEX];
945
vertices.append_array(v);
946
}
947
948
Ref<ConvexPolygonShape3D> shape = memnew(ConvexPolygonShape3D);
949
950
if (p_clean) {
951
Geometry3D::MeshData md;
952
Error err = ConvexHullComputer::convex_hull(vertices, md);
953
if (err == OK) {
954
shape->set_points(Vector<Vector3>(md.vertices));
955
return shape;
956
} else {
957
ERR_PRINT("Convex shape cleaning failed, falling back to simpler process.");
958
}
959
}
960
961
shape->set_points(vertices);
962
return shape;
963
}
964
965
Ref<ConcavePolygonShape3D> ImporterMesh::create_trimesh_shape() const {
966
Vector<Face3> faces = get_faces();
967
if (faces.is_empty()) {
968
return Ref<ConcavePolygonShape3D>();
969
}
970
971
Vector<Vector3> face_points;
972
face_points.resize(faces.size() * 3);
973
974
for (int i = 0; i < face_points.size(); i += 3) {
975
Face3 f = faces.get(i / 3);
976
face_points.set(i, f.vertex[0]);
977
face_points.set(i + 1, f.vertex[1]);
978
face_points.set(i + 2, f.vertex[2]);
979
}
980
981
Ref<ConcavePolygonShape3D> shape = memnew(ConcavePolygonShape3D);
982
shape->set_faces(face_points);
983
return shape;
984
}
985
#endif // PHYSICS_3D_DISABLED
986
987
Ref<NavigationMesh> ImporterMesh::create_navigation_mesh() {
988
Vector<Face3> faces = get_faces();
989
if (faces.is_empty()) {
990
return Ref<NavigationMesh>();
991
}
992
993
HashMap<Vector3, int> unique_vertices;
994
Vector<Vector<int>> face_polygons;
995
face_polygons.resize(faces.size());
996
997
for (int i = 0; i < faces.size(); i++) {
998
Vector<int> face_indices;
999
face_indices.resize(3);
1000
for (int j = 0; j < 3; j++) {
1001
Vector3 v = faces[i].vertex[j];
1002
int idx;
1003
if (unique_vertices.has(v)) {
1004
idx = unique_vertices[v];
1005
} else {
1006
idx = unique_vertices.size();
1007
unique_vertices[v] = idx;
1008
}
1009
face_indices.write[j] = idx;
1010
}
1011
face_polygons.write[i] = face_indices;
1012
}
1013
1014
Vector<Vector3> vertices;
1015
vertices.resize(unique_vertices.size());
1016
for (const KeyValue<Vector3, int> &E : unique_vertices) {
1017
vertices.write[E.value] = E.key;
1018
}
1019
1020
Ref<NavigationMesh> nm;
1021
nm.instantiate();
1022
nm->set_data(vertices, face_polygons);
1023
1024
return nm;
1025
}
1026
1027
extern bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, const uint8_t *p_cache_data, bool *r_use_cache, uint8_t **r_mesh_cache, int *r_mesh_cache_size, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y);
1028
1029
struct EditorSceneFormatImporterMeshLightmapSurface {
1030
Ref<Material> material;
1031
LocalVector<SurfaceTool::Vertex> vertices;
1032
Mesh::PrimitiveType primitive = Mesh::PrimitiveType::PRIMITIVE_MAX;
1033
uint64_t format = 0;
1034
String name;
1035
};
1036
1037
static const uint32_t custom_shift[RS::ARRAY_CUSTOM_COUNT] = { Mesh::ARRAY_FORMAT_CUSTOM0_SHIFT, Mesh::ARRAY_FORMAT_CUSTOM1_SHIFT, Mesh::ARRAY_FORMAT_CUSTOM2_SHIFT, Mesh::ARRAY_FORMAT_CUSTOM3_SHIFT };
1038
1039
Error ImporterMesh::lightmap_unwrap_cached(const Transform3D &p_base_transform, float p_texel_size, const Vector<uint8_t> &p_src_cache, Vector<uint8_t> &r_dst_cache) {
1040
ERR_FAIL_NULL_V(array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED);
1041
ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes.");
1042
1043
LocalVector<float> vertices;
1044
LocalVector<float> normals;
1045
LocalVector<int> indices;
1046
LocalVector<float> uv;
1047
LocalVector<Pair<int, int>> uv_indices;
1048
1049
Vector<EditorSceneFormatImporterMeshLightmapSurface> lightmap_surfaces;
1050
1051
// Keep only the scale
1052
Basis basis = p_base_transform.get_basis();
1053
Vector3 scale = Vector3(basis.get_column(0).length(), basis.get_column(1).length(), basis.get_column(2).length());
1054
1055
Transform3D transform;
1056
transform.scale(scale);
1057
1058
Basis normal_basis = transform.basis.inverse().transposed();
1059
1060
for (int i = 0; i < get_surface_count(); i++) {
1061
EditorSceneFormatImporterMeshLightmapSurface s;
1062
s.primitive = get_surface_primitive_type(i);
1063
1064
ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap.");
1065
Array arrays = get_surface_arrays(i);
1066
s.material = get_surface_material(i);
1067
s.name = get_surface_name(i);
1068
1069
SurfaceTool::create_vertex_array_from_arrays(arrays, s.vertices, &s.format);
1070
1071
PackedVector3Array rvertices = arrays[Mesh::ARRAY_VERTEX];
1072
int vc = rvertices.size();
1073
1074
PackedVector3Array rnormals = arrays[Mesh::ARRAY_NORMAL];
1075
1076
if (!rnormals.size()) {
1077
continue;
1078
}
1079
1080
int vertex_ofs = vertices.size() / 3;
1081
1082
vertices.resize((vertex_ofs + vc) * 3);
1083
normals.resize((vertex_ofs + vc) * 3);
1084
uv_indices.resize(vertex_ofs + vc);
1085
1086
for (int j = 0; j < vc; j++) {
1087
Vector3 v = transform.xform(rvertices[j]);
1088
Vector3 n = normal_basis.xform(rnormals[j]).normalized();
1089
1090
vertices[(j + vertex_ofs) * 3 + 0] = v.x;
1091
vertices[(j + vertex_ofs) * 3 + 1] = v.y;
1092
vertices[(j + vertex_ofs) * 3 + 2] = v.z;
1093
normals[(j + vertex_ofs) * 3 + 0] = n.x;
1094
normals[(j + vertex_ofs) * 3 + 1] = n.y;
1095
normals[(j + vertex_ofs) * 3 + 2] = n.z;
1096
uv_indices[j + vertex_ofs] = Pair<int, int>(i, j);
1097
}
1098
1099
PackedInt32Array rindices = arrays[Mesh::ARRAY_INDEX];
1100
int ic = rindices.size();
1101
1102
float eps = 1.19209290e-7F; // Taken from xatlas.h
1103
if (ic == 0) {
1104
for (int j = 0; j < vc / 3; j++) {
1105
Vector3 p0 = transform.xform(rvertices[j * 3 + 0]);
1106
Vector3 p1 = transform.xform(rvertices[j * 3 + 1]);
1107
Vector3 p2 = transform.xform(rvertices[j * 3 + 2]);
1108
1109
if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
1110
continue;
1111
}
1112
1113
indices.push_back(vertex_ofs + j * 3 + 0);
1114
indices.push_back(vertex_ofs + j * 3 + 1);
1115
indices.push_back(vertex_ofs + j * 3 + 2);
1116
}
1117
1118
} else {
1119
for (int j = 0; j < ic / 3; j++) {
1120
ERR_FAIL_INDEX_V(rindices[j * 3 + 0], rvertices.size(), ERR_INVALID_DATA);
1121
ERR_FAIL_INDEX_V(rindices[j * 3 + 1], rvertices.size(), ERR_INVALID_DATA);
1122
ERR_FAIL_INDEX_V(rindices[j * 3 + 2], rvertices.size(), ERR_INVALID_DATA);
1123
Vector3 p0 = transform.xform(rvertices[rindices[j * 3 + 0]]);
1124
Vector3 p1 = transform.xform(rvertices[rindices[j * 3 + 1]]);
1125
Vector3 p2 = transform.xform(rvertices[rindices[j * 3 + 2]]);
1126
1127
if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
1128
continue;
1129
}
1130
1131
indices.push_back(vertex_ofs + rindices[j * 3 + 0]);
1132
indices.push_back(vertex_ofs + rindices[j * 3 + 1]);
1133
indices.push_back(vertex_ofs + rindices[j * 3 + 2]);
1134
}
1135
}
1136
1137
lightmap_surfaces.push_back(s);
1138
}
1139
1140
//unwrap
1141
1142
bool use_cache = true; // Used to request cache generation and to know if cache was used
1143
uint8_t *gen_cache;
1144
int gen_cache_size;
1145
float *gen_uvs;
1146
int *gen_vertices;
1147
int *gen_indices;
1148
int gen_vertex_count;
1149
int gen_index_count;
1150
int size_x;
1151
int size_y;
1152
1153
bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), indices.size(), p_src_cache.ptr(), &use_cache, &gen_cache, &gen_cache_size, &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y);
1154
1155
if (!ok) {
1156
return ERR_CANT_CREATE;
1157
}
1158
1159
//create surfacetools for each surface..
1160
LocalVector<Ref<SurfaceTool>> surfaces_tools;
1161
1162
for (int i = 0; i < lightmap_surfaces.size(); i++) {
1163
Ref<SurfaceTool> st;
1164
st.instantiate();
1165
st->set_skin_weight_count((lightmap_surfaces[i].format & Mesh::ARRAY_FLAG_USE_8_BONE_WEIGHTS) ? SurfaceTool::SKIN_8_WEIGHTS : SurfaceTool::SKIN_4_WEIGHTS);
1166
st->begin(Mesh::PRIMITIVE_TRIANGLES);
1167
st->set_material(lightmap_surfaces[i].material);
1168
st->set_meta("name", lightmap_surfaces[i].name);
1169
1170
for (int custom_i = 0; custom_i < RS::ARRAY_CUSTOM_COUNT; custom_i++) {
1171
st->set_custom_format(custom_i, (SurfaceTool::CustomFormat)((lightmap_surfaces[i].format >> custom_shift[custom_i]) & RS::ARRAY_FORMAT_CUSTOM_MASK));
1172
}
1173
surfaces_tools.push_back(st); //stay there
1174
}
1175
1176
//remove surfaces
1177
clear();
1178
1179
print_verbose("Mesh: Gen indices: " + itos(gen_index_count));
1180
1181
//go through all indices
1182
for (int i = 0; i < gen_index_count; i += 3) {
1183
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], (int)uv_indices.size(), ERR_BUG);
1184
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], (int)uv_indices.size(), ERR_BUG);
1185
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], (int)uv_indices.size(), ERR_BUG);
1186
1187
ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG);
1188
1189
int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first;
1190
1191
for (int j = 0; j < 3; j++) {
1192
SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second];
1193
1194
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_COLOR) {
1195
surfaces_tools[surface]->set_color(v.color);
1196
}
1197
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TEX_UV) {
1198
surfaces_tools[surface]->set_uv(v.uv);
1199
}
1200
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_NORMAL) {
1201
surfaces_tools[surface]->set_normal(v.normal);
1202
}
1203
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TANGENT) {
1204
Plane t;
1205
t.normal = v.tangent;
1206
t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1;
1207
surfaces_tools[surface]->set_tangent(t);
1208
}
1209
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_BONES) {
1210
surfaces_tools[surface]->set_bones(v.bones);
1211
}
1212
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_WEIGHTS) {
1213
surfaces_tools[surface]->set_weights(v.weights);
1214
}
1215
for (int custom_i = 0; custom_i < RS::ARRAY_CUSTOM_COUNT; custom_i++) {
1216
if ((lightmap_surfaces[surface].format >> custom_shift[custom_i]) & RS::ARRAY_FORMAT_CUSTOM_MASK) {
1217
surfaces_tools[surface]->set_custom(custom_i, v.custom[custom_i]);
1218
}
1219
}
1220
1221
Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]);
1222
surfaces_tools[surface]->set_uv2(uv2);
1223
1224
surfaces_tools[surface]->add_vertex(v.vertex);
1225
}
1226
}
1227
1228
//generate surfaces
1229
for (int i = 0; i < lightmap_surfaces.size(); i++) {
1230
Ref<SurfaceTool> &tool = surfaces_tools[i];
1231
tool->index();
1232
Array arrays = tool->commit_to_arrays();
1233
1234
uint64_t format = lightmap_surfaces[i].format;
1235
if (tool->get_skin_weight_count() == SurfaceTool::SKIN_8_WEIGHTS) {
1236
format |= RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
1237
} else {
1238
format &= ~RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
1239
}
1240
1241
add_surface(tool->get_primitive_type(), arrays, Array(), Dictionary(), tool->get_material(), tool->get_meta("name"), format);
1242
}
1243
1244
set_lightmap_size_hint(Size2(size_x, size_y));
1245
1246
if (gen_cache_size > 0) {
1247
r_dst_cache.resize(gen_cache_size);
1248
memcpy(r_dst_cache.ptrw(), gen_cache, gen_cache_size);
1249
memfree(gen_cache);
1250
}
1251
1252
if (!use_cache) {
1253
// Cache was not used, free the buffers
1254
memfree(gen_vertices);
1255
memfree(gen_indices);
1256
memfree(gen_uvs);
1257
}
1258
1259
return OK;
1260
}
1261
1262
void ImporterMesh::set_lightmap_size_hint(const Size2i &p_size) {
1263
lightmap_size_hint = p_size;
1264
}
1265
1266
Size2i ImporterMesh::get_lightmap_size_hint() const {
1267
return lightmap_size_hint;
1268
}
1269
1270
void ImporterMesh::_bind_methods() {
1271
ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &ImporterMesh::add_blend_shape);
1272
ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &ImporterMesh::get_blend_shape_count);
1273
ClassDB::bind_method(D_METHOD("get_blend_shape_name", "blend_shape_idx"), &ImporterMesh::get_blend_shape_name);
1274
1275
ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &ImporterMesh::set_blend_shape_mode);
1276
ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &ImporterMesh::get_blend_shape_mode);
1277
1278
ClassDB::bind_method(D_METHOD("add_surface", "primitive", "arrays", "blend_shapes", "lods", "material", "name", "flags"), &ImporterMesh::add_surface, DEFVAL(TypedArray<Array>()), DEFVAL(Dictionary()), DEFVAL(Ref<Material>()), DEFVAL(String()), DEFVAL(0));
1279
1280
ClassDB::bind_method(D_METHOD("get_surface_count"), &ImporterMesh::get_surface_count);
1281
ClassDB::bind_method(D_METHOD("get_surface_primitive_type", "surface_idx"), &ImporterMesh::get_surface_primitive_type);
1282
ClassDB::bind_method(D_METHOD("get_surface_name", "surface_idx"), &ImporterMesh::get_surface_name);
1283
ClassDB::bind_method(D_METHOD("get_surface_arrays", "surface_idx"), &ImporterMesh::get_surface_arrays);
1284
ClassDB::bind_method(D_METHOD("get_surface_blend_shape_arrays", "surface_idx", "blend_shape_idx"), &ImporterMesh::get_surface_blend_shape_arrays);
1285
ClassDB::bind_method(D_METHOD("get_surface_lod_count", "surface_idx"), &ImporterMesh::get_surface_lod_count);
1286
ClassDB::bind_method(D_METHOD("get_surface_lod_size", "surface_idx", "lod_idx"), &ImporterMesh::get_surface_lod_size);
1287
ClassDB::bind_method(D_METHOD("get_surface_lod_indices", "surface_idx", "lod_idx"), &ImporterMesh::get_surface_lod_indices);
1288
ClassDB::bind_method(D_METHOD("get_surface_material", "surface_idx"), &ImporterMesh::get_surface_material);
1289
ClassDB::bind_method(D_METHOD("get_surface_format", "surface_idx"), &ImporterMesh::get_surface_format);
1290
1291
ClassDB::bind_method(D_METHOD("set_surface_name", "surface_idx", "name"), &ImporterMesh::set_surface_name);
1292
ClassDB::bind_method(D_METHOD("set_surface_material", "surface_idx", "material"), &ImporterMesh::set_surface_material);
1293
1294
ClassDB::bind_method(D_METHOD("generate_lods", "normal_merge_angle", "normal_split_angle", "bone_transform_array"), &ImporterMesh::_generate_lods_bind);
1295
ClassDB::bind_method(D_METHOD("get_mesh", "base_mesh"), &ImporterMesh::get_mesh, DEFVAL(Ref<ArrayMesh>()));
1296
ClassDB::bind_static_method("ImporterMesh", D_METHOD("from_mesh", "mesh"), &ImporterMesh::from_mesh);
1297
ClassDB::bind_method(D_METHOD("clear"), &ImporterMesh::clear);
1298
1299
ClassDB::bind_method(D_METHOD("_set_data", "data"), &ImporterMesh::_set_data);
1300
ClassDB::bind_method(D_METHOD("_get_data"), &ImporterMesh::_get_data);
1301
1302
ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &ImporterMesh::set_lightmap_size_hint);
1303
ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &ImporterMesh::get_lightmap_size_hint);
1304
1305
ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_data", "_get_data");
1306
}
1307
1308