Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/astcenc/astcenc_partition_tables.cpp
9896 views
1
// SPDX-License-Identifier: Apache-2.0
2
// ----------------------------------------------------------------------------
3
// Copyright 2011-2023 Arm Limited
4
//
5
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
6
// use this file except in compliance with the License. You may obtain a copy
7
// of the License at:
8
//
9
// http://www.apache.org/licenses/LICENSE-2.0
10
//
11
// Unless required by applicable law or agreed to in writing, software
12
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14
// License for the specific language governing permissions and limitations
15
// under the License.
16
// ----------------------------------------------------------------------------
17
18
/**
19
* @brief Functions for generating partition tables on demand.
20
*/
21
22
#include "astcenc_internal.h"
23
24
/** @brief The number of 64-bit words needed to represent a canonical partition bit pattern. */
25
#define BIT_PATTERN_WORDS (((ASTCENC_BLOCK_MAX_TEXELS * 2) + 63) / 64)
26
27
/**
28
* @brief Generate a canonical representation of a partition pattern.
29
*
30
* The returned value stores two bits per texel, for up to 6x6x6 texels, where the two bits store
31
* the remapped texel index. Remapping ensures that we only match on the partition pattern,
32
* independent of the partition order generated by the hash.
33
*
34
* @param texel_count The number of texels in the block.
35
* @param partition_of_texel The partition assignments, in hash order.
36
* @param[out] bit_pattern The output bit pattern representation.
37
*/
38
static void generate_canonical_partitioning(
39
unsigned int texel_count,
40
const uint8_t* partition_of_texel,
41
uint64_t bit_pattern[BIT_PATTERN_WORDS]
42
) {
43
// Clear the pattern
44
for (unsigned int i = 0; i < BIT_PATTERN_WORDS; i++)
45
{
46
bit_pattern[i] = 0;
47
}
48
49
// Store a mapping to reorder the raw partitions so that the partitions are ordered such
50
// that the lowest texel index in partition N is smaller than the lowest texel index in
51
// partition N + 1.
52
int mapped_index[BLOCK_MAX_PARTITIONS];
53
int map_weight_count = 0;
54
55
for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++)
56
{
57
mapped_index[i] = -1;
58
}
59
60
for (unsigned int i = 0; i < texel_count; i++)
61
{
62
int index = partition_of_texel[i];
63
if (mapped_index[index] < 0)
64
{
65
mapped_index[index] = map_weight_count++;
66
}
67
68
uint64_t xlat_index = mapped_index[index];
69
bit_pattern[i >> 5] |= xlat_index << (2 * (i & 0x1F));
70
}
71
}
72
73
/**
74
* @brief Compare two canonical patterns to see if they are the same.
75
*
76
* @param part1 The first canonical bit pattern to check.
77
* @param part2 The second canonical bit pattern to check.
78
*
79
* @return @c true if the patterns are the same, @c false otherwise.
80
*/
81
static bool compare_canonical_partitionings(
82
const uint64_t part1[BIT_PATTERN_WORDS],
83
const uint64_t part2[BIT_PATTERN_WORDS]
84
) {
85
return (part1[0] == part2[0])
86
#if BIT_PATTERN_WORDS > 1
87
&& (part1[1] == part2[1])
88
#endif
89
#if BIT_PATTERN_WORDS > 2
90
&& (part1[2] == part2[2])
91
#endif
92
#if BIT_PATTERN_WORDS > 3
93
&& (part1[3] == part2[3])
94
#endif
95
#if BIT_PATTERN_WORDS > 4
96
&& (part1[4] == part2[4])
97
#endif
98
#if BIT_PATTERN_WORDS > 5
99
&& (part1[5] == part2[5])
100
#endif
101
#if BIT_PATTERN_WORDS > 6
102
&& (part1[6] == part2[6])
103
#endif
104
;
105
}
106
107
/**
108
* @brief Hash function used for procedural partition assignment.
109
*
110
* @param inp The hash seed.
111
*
112
* @return The hashed value.
113
*/
114
static uint32_t hash52(
115
uint32_t inp
116
) {
117
inp ^= inp >> 15;
118
119
// (2^4 + 1) * (2^7 + 1) * (2^17 - 1)
120
inp *= 0xEEDE0891;
121
inp ^= inp >> 5;
122
inp += inp << 16;
123
inp ^= inp >> 7;
124
inp ^= inp >> 3;
125
inp ^= inp << 6;
126
inp ^= inp >> 17;
127
return inp;
128
}
129
130
/**
131
* @brief Select texel assignment for a single coordinate.
132
*
133
* @param seed The seed - the partition index from the block.
134
* @param x The texel X coordinate in the block.
135
* @param y The texel Y coordinate in the block.
136
* @param z The texel Z coordinate in the block.
137
* @param partition_count The total partition count of this encoding.
138
* @param small_block @c true if the block has fewer than 32 texels.
139
*
140
* @return The assigned partition index for this texel.
141
*/
142
static uint8_t select_partition(
143
int seed,
144
int x,
145
int y,
146
int z,
147
int partition_count,
148
bool small_block
149
) {
150
// For small blocks bias the coordinates to get better distribution
151
if (small_block)
152
{
153
x <<= 1;
154
y <<= 1;
155
z <<= 1;
156
}
157
158
seed += (partition_count - 1) * 1024;
159
160
uint32_t rnum = hash52(seed);
161
162
uint8_t seed1 = rnum & 0xF;
163
uint8_t seed2 = (rnum >> 4) & 0xF;
164
uint8_t seed3 = (rnum >> 8) & 0xF;
165
uint8_t seed4 = (rnum >> 12) & 0xF;
166
uint8_t seed5 = (rnum >> 16) & 0xF;
167
uint8_t seed6 = (rnum >> 20) & 0xF;
168
uint8_t seed7 = (rnum >> 24) & 0xF;
169
uint8_t seed8 = (rnum >> 28) & 0xF;
170
uint8_t seed9 = (rnum >> 18) & 0xF;
171
uint8_t seed10 = (rnum >> 22) & 0xF;
172
uint8_t seed11 = (rnum >> 26) & 0xF;
173
uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF;
174
175
// Squaring all the seeds in order to bias their distribution towards lower values.
176
seed1 *= seed1;
177
seed2 *= seed2;
178
seed3 *= seed3;
179
seed4 *= seed4;
180
seed5 *= seed5;
181
seed6 *= seed6;
182
seed7 *= seed7;
183
seed8 *= seed8;
184
seed9 *= seed9;
185
seed10 *= seed10;
186
seed11 *= seed11;
187
seed12 *= seed12;
188
189
int sh1, sh2;
190
if (seed & 1)
191
{
192
sh1 = (seed & 2 ? 4 : 5);
193
sh2 = (partition_count == 3 ? 6 : 5);
194
}
195
else
196
{
197
sh1 = (partition_count == 3 ? 6 : 5);
198
sh2 = (seed & 2 ? 4 : 5);
199
}
200
201
int sh3 = (seed & 0x10) ? sh1 : sh2;
202
203
seed1 >>= sh1;
204
seed2 >>= sh2;
205
seed3 >>= sh1;
206
seed4 >>= sh2;
207
seed5 >>= sh1;
208
seed6 >>= sh2;
209
seed7 >>= sh1;
210
seed8 >>= sh2;
211
212
seed9 >>= sh3;
213
seed10 >>= sh3;
214
seed11 >>= sh3;
215
seed12 >>= sh3;
216
217
int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
218
int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
219
int c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
220
int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
221
222
// Apply the saw
223
a &= 0x3F;
224
b &= 0x3F;
225
c &= 0x3F;
226
d &= 0x3F;
227
228
// Remove some of the components if we are to output < 4 partitions.
229
if (partition_count <= 3)
230
{
231
d = 0;
232
}
233
234
if (partition_count <= 2)
235
{
236
c = 0;
237
}
238
239
if (partition_count <= 1)
240
{
241
b = 0;
242
}
243
244
uint8_t partition;
245
if (a >= b && a >= c && a >= d)
246
{
247
partition = 0;
248
}
249
else if (b >= c && b >= d)
250
{
251
partition = 1;
252
}
253
else if (c >= d)
254
{
255
partition = 2;
256
}
257
else
258
{
259
partition = 3;
260
}
261
262
return partition;
263
}
264
265
/**
266
* @brief Generate a single partition info structure.
267
*
268
* @param[out] bsd The block size information.
269
* @param partition_count The partition count of this partitioning.
270
* @param partition_index The partition index / seed of this partitioning.
271
* @param partition_remap_index The remapped partition index of this partitioning.
272
* @param[out] pi The partition info structure to populate.
273
*
274
* @return True if this is a useful partition index, False if we can skip it.
275
*/
276
static bool generate_one_partition_info_entry(
277
block_size_descriptor& bsd,
278
unsigned int partition_count,
279
unsigned int partition_index,
280
unsigned int partition_remap_index,
281
partition_info& pi
282
) {
283
int texels_per_block = bsd.texel_count;
284
bool small_block = texels_per_block < 32;
285
286
uint8_t *partition_of_texel = pi.partition_of_texel;
287
288
// Assign texels to partitions
289
int texel_idx = 0;
290
int counts[BLOCK_MAX_PARTITIONS] { 0 };
291
for (unsigned int z = 0; z < bsd.zdim; z++)
292
{
293
for (unsigned int y = 0; y < bsd.ydim; y++)
294
{
295
for (unsigned int x = 0; x < bsd.xdim; x++)
296
{
297
uint8_t part = select_partition(partition_index, x, y, z, partition_count, small_block);
298
pi.texels_of_partition[part][counts[part]++] = static_cast<uint8_t>(texel_idx++);
299
*partition_of_texel++ = part;
300
}
301
}
302
}
303
304
// Fill loop tail so we can overfetch later
305
for (unsigned int i = 0; i < partition_count; i++)
306
{
307
size_t ptex_count = counts[i];
308
size_t ptex_count_simd = round_up_to_simd_multiple_vla(ptex_count);
309
for (size_t j = ptex_count; j < ptex_count_simd; j++)
310
{
311
pi.texels_of_partition[i][j] = pi.texels_of_partition[i][ptex_count - 1];
312
}
313
}
314
315
// Populate the actual procedural partition count
316
if (counts[0] == 0)
317
{
318
pi.partition_count = 0;
319
}
320
else if (counts[1] == 0)
321
{
322
pi.partition_count = 1;
323
}
324
else if (counts[2] == 0)
325
{
326
pi.partition_count = 2;
327
}
328
else if (counts[3] == 0)
329
{
330
pi.partition_count = 3;
331
}
332
else
333
{
334
pi.partition_count = 4;
335
}
336
337
// Populate the partition index
338
pi.partition_index = static_cast<uint16_t>(partition_index);
339
340
// Populate the coverage bitmaps for 2/3/4 partitions
341
uint64_t* bitmaps { nullptr };
342
if (partition_count == 2)
343
{
344
bitmaps = bsd.coverage_bitmaps_2[partition_remap_index];
345
}
346
else if (partition_count == 3)
347
{
348
bitmaps = bsd.coverage_bitmaps_3[partition_remap_index];
349
}
350
else if (partition_count == 4)
351
{
352
bitmaps = bsd.coverage_bitmaps_4[partition_remap_index];
353
}
354
355
for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++)
356
{
357
pi.partition_texel_count[i] = static_cast<uint8_t>(counts[i]);
358
}
359
360
// Valid partitionings have texels in all of the requested partitions
361
bool valid = pi.partition_count == partition_count;
362
363
if (bitmaps)
364
{
365
// Populate the partition coverage bitmap
366
for (unsigned int i = 0; i < partition_count; i++)
367
{
368
bitmaps[i] = 0ULL;
369
}
370
371
unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS);
372
for (unsigned int i = 0; i < texels_to_process; i++)
373
{
374
unsigned int idx = bsd.kmeans_texels[i];
375
bitmaps[pi.partition_of_texel[idx]] |= 1ULL << i;
376
}
377
}
378
379
return valid;
380
}
381
382
static void build_partition_table_for_one_partition_count(
383
block_size_descriptor& bsd,
384
bool can_omit_partitionings,
385
unsigned int partition_count_cutoff,
386
unsigned int partition_count,
387
partition_info* ptab,
388
uint64_t* canonical_patterns
389
) {
390
unsigned int next_index = 0;
391
bsd.partitioning_count_selected[partition_count - 1] = 0;
392
bsd.partitioning_count_all[partition_count - 1] = 0;
393
394
// Skip tables larger than config max partition count if we can omit modes
395
if (can_omit_partitionings && (partition_count > partition_count_cutoff))
396
{
397
return;
398
}
399
400
// Iterate through twice
401
// - Pass 0: Keep selected partitionings
402
// - Pass 1: Keep non-selected partitionings (skip if in omit mode)
403
unsigned int max_iter = can_omit_partitionings ? 1 : 2;
404
405
// Tracker for things we built in the first iteration
406
uint8_t build[BLOCK_MAX_PARTITIONINGS] { 0 };
407
for (unsigned int x = 0; x < max_iter; x++)
408
{
409
for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONINGS; i++)
410
{
411
// Don't include things we built in the first pass
412
if ((x == 1) && build[i])
413
{
414
continue;
415
}
416
417
bool keep_useful = generate_one_partition_info_entry(bsd, partition_count, i, next_index, ptab[next_index]);
418
if ((x == 0) && !keep_useful)
419
{
420
continue;
421
}
422
423
generate_canonical_partitioning(bsd.texel_count, ptab[next_index].partition_of_texel, canonical_patterns + next_index * BIT_PATTERN_WORDS);
424
bool keep_canonical = true;
425
for (unsigned int j = 0; j < next_index; j++)
426
{
427
bool match = compare_canonical_partitionings(canonical_patterns + next_index * BIT_PATTERN_WORDS, canonical_patterns + j * BIT_PATTERN_WORDS);
428
if (match)
429
{
430
keep_canonical = false;
431
break;
432
}
433
}
434
435
if (keep_useful && keep_canonical)
436
{
437
if (x == 0)
438
{
439
bsd.partitioning_packed_index[partition_count - 2][i] = static_cast<uint16_t>(next_index);
440
bsd.partitioning_count_selected[partition_count - 1]++;
441
bsd.partitioning_count_all[partition_count - 1]++;
442
build[i] = 1;
443
next_index++;
444
}
445
}
446
else
447
{
448
if (x == 1)
449
{
450
bsd.partitioning_packed_index[partition_count - 2][i] = static_cast<uint16_t>(next_index);
451
bsd.partitioning_count_all[partition_count - 1]++;
452
next_index++;
453
}
454
}
455
}
456
}
457
}
458
459
/* See header for documentation. */
460
void init_partition_tables(
461
block_size_descriptor& bsd,
462
bool can_omit_partitionings,
463
unsigned int partition_count_cutoff
464
) {
465
partition_info* par_tab2 = bsd.partitionings;
466
partition_info* par_tab3 = par_tab2 + BLOCK_MAX_PARTITIONINGS;
467
partition_info* par_tab4 = par_tab3 + BLOCK_MAX_PARTITIONINGS;
468
partition_info* par_tab1 = par_tab4 + BLOCK_MAX_PARTITIONINGS;
469
470
generate_one_partition_info_entry(bsd, 1, 0, 0, *par_tab1);
471
bsd.partitioning_count_selected[0] = 1;
472
bsd.partitioning_count_all[0] = 1;
473
474
uint64_t* canonical_patterns = new uint64_t[BLOCK_MAX_PARTITIONINGS * BIT_PATTERN_WORDS];
475
476
build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 2, par_tab2, canonical_patterns);
477
build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 3, par_tab3, canonical_patterns);
478
build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 4, par_tab4, canonical_patterns);
479
480
delete[] canonical_patterns;
481
}
482
483