Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/basis_universal/encoder/3rdparty/android_astc_decomp.cpp
9906 views
1
// File: android_astc_decomp.cpp
2
3
/*-------------------------------------------------------------------------
4
* drawElements Quality Program Tester Core
5
* ----------------------------------------
6
*
7
* Copyright 2016 The Android Open Source Project
8
*
9
* Licensed under the Apache License, Version 2.0 (the "License");
10
* you may not use this file except in compliance with the License.
11
* You may obtain a copy of the License at
12
*
13
* http://www.apache.org/licenses/LICENSE-2.0
14
*
15
* Unless required by applicable law or agreed to in writing, software
16
* distributed under the License is distributed on an "AS IS" BASIS,
17
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
* See the License for the specific language governing permissions and
19
* limitations under the License.
20
*
21
* rg: Removed external dependencies, minor fix to decompress() so it converts non-sRGB
22
* output to 8-bits correctly. I've compared this decoder's output
23
* vs. astc-codec with random inputs.
24
*
25
*//*!
26
* \file
27
* \brief ASTC Utilities.
28
*//*--------------------------------------------------------------------*/
29
#include "android_astc_decomp.h"
30
#include <assert.h>
31
#include <algorithm>
32
#include <fenv.h>
33
#include <math.h>
34
35
#define DE_LENGTH_OF_ARRAY(x) (sizeof(x)/sizeof(x[0]))
36
#define DE_UNREF(x) (void)x
37
38
typedef uint8_t deUint8;
39
typedef int8_t deInt8;
40
typedef uint32_t deUint32;
41
typedef int32_t deInt32;
42
typedef uint16_t deUint16;
43
typedef int16_t deInt16;
44
typedef int64_t deInt64;
45
typedef uint64_t deUint64;
46
47
#define DE_ASSERT assert
48
49
#ifdef _MSC_VER
50
#pragma warning (disable:4505) // unreferenced local function has been removed
51
#elif defined(__GNUC__)
52
#pragma GCC diagnostic push
53
#pragma GCC diagnostic ignored "-Wunused-function"
54
#endif
55
56
namespace basisu_astc
57
{
58
template <typename S> inline S maximum(S a, S b) { return (a > b) ? a : b; }
59
template <typename S> inline S maximum(S a, S b, S c) { return maximum(maximum(a, b), c); }
60
template <typename S> inline S maximum(S a, S b, S c, S d) { return maximum(maximum(maximum(a, b), c), d); }
61
62
static bool inBounds(int v, int l, int h)
63
{
64
return (v >= l) && (v < h);
65
}
66
67
static bool inRange(int v, int l, int h)
68
{
69
return (v >= l) && (v <= h);
70
}
71
72
template<typename T>
73
static inline T max(T a, T b)
74
{
75
return (a > b) ? a : b;
76
}
77
78
template<typename T>
79
static inline T min(T a, T b)
80
{
81
return (a < b) ? a : b;
82
}
83
84
template<typename T>
85
static inline T clamp(T a, T l, T h)
86
{
87
if (a < l)
88
return l;
89
else if (a > h)
90
return h;
91
return a;
92
}
93
94
struct UVec4
95
{
96
uint32_t m_c[4];
97
98
UVec4()
99
{
100
m_c[0] = 0;
101
m_c[1] = 0;
102
m_c[2] = 0;
103
m_c[3] = 0;
104
}
105
106
UVec4(uint32_t x, uint32_t y, uint32_t z, uint32_t w)
107
{
108
m_c[0] = x;
109
m_c[1] = y;
110
m_c[2] = z;
111
m_c[3] = w;
112
}
113
114
uint32_t x() const { return m_c[0]; }
115
uint32_t y() const { return m_c[1]; }
116
uint32_t z() const { return m_c[2]; }
117
uint32_t w() const { return m_c[3]; }
118
119
uint32_t& x() { return m_c[0]; }
120
uint32_t& y() { return m_c[1]; }
121
uint32_t& z() { return m_c[2]; }
122
uint32_t& w() { return m_c[3]; }
123
124
uint32_t operator[] (uint32_t idx) const { assert(idx < 4); return m_c[idx]; }
125
uint32_t& operator[] (uint32_t idx) { assert(idx < 4); return m_c[idx]; }
126
};
127
128
struct IVec4
129
{
130
int32_t m_c[4];
131
132
IVec4()
133
{
134
m_c[0] = 0;
135
m_c[1] = 0;
136
m_c[2] = 0;
137
m_c[3] = 0;
138
}
139
140
IVec4(int32_t x, int32_t y, int32_t z, int32_t w)
141
{
142
m_c[0] = x;
143
m_c[1] = y;
144
m_c[2] = z;
145
m_c[3] = w;
146
}
147
148
int32_t x() const { return m_c[0]; }
149
int32_t y() const { return m_c[1]; }
150
int32_t z() const { return m_c[2]; }
151
int32_t w() const { return m_c[3]; }
152
153
int32_t& x() { return m_c[0]; }
154
int32_t& y() { return m_c[1]; }
155
int32_t& z() { return m_c[2]; }
156
int32_t& w() { return m_c[3]; }
157
158
UVec4 asUint() const
159
{
160
return UVec4(maximum(0, m_c[0]), maximum(0, m_c[1]), maximum(0, m_c[2]), maximum(0, m_c[3]));
161
}
162
163
int32_t operator[] (uint32_t idx) const { assert(idx < 4); return m_c[idx]; }
164
int32_t& operator[] (uint32_t idx) { assert(idx < 4); return m_c[idx]; }
165
};
166
167
struct IVec3
168
{
169
int32_t m_c[3];
170
171
IVec3()
172
{
173
m_c[0] = 0;
174
m_c[1] = 0;
175
m_c[2] = 0;
176
}
177
178
IVec3(int32_t x, int32_t y, int32_t z)
179
{
180
m_c[0] = x;
181
m_c[1] = y;
182
m_c[2] = z;
183
}
184
185
int32_t x() const { return m_c[0]; }
186
int32_t y() const { return m_c[1]; }
187
int32_t z() const { return m_c[2]; }
188
189
int32_t& x() { return m_c[0]; }
190
int32_t& y() { return m_c[1]; }
191
int32_t& z() { return m_c[2]; }
192
193
int32_t operator[] (uint32_t idx) const { assert(idx < 3); return m_c[idx]; }
194
int32_t& operator[] (uint32_t idx) { assert(idx < 3); return m_c[idx]; }
195
};
196
197
static uint32_t deDivRoundUp32(uint32_t a, uint32_t b)
198
{
199
return (a + b - 1) / b;
200
}
201
202
static bool deInBounds32(uint32_t v, uint32_t l, uint32_t h)
203
{
204
return (v >= l) && (v < h);
205
}
206
207
namespace astc
208
{
209
210
using std::vector;
211
212
namespace
213
{
214
215
// Common utilities
216
enum
217
{
218
MAX_BLOCK_WIDTH = 12,
219
MAX_BLOCK_HEIGHT = 12
220
};
221
222
inline deUint32 getBit (deUint32 src, int ndx)
223
{
224
DE_ASSERT(basisu_astc::inBounds(ndx, 0, 32));
225
return (src >> ndx) & 1;
226
}
227
228
inline deUint32 getBits (deUint32 src, int low, int high)
229
{
230
const int numBits = (high-low) + 1;
231
DE_ASSERT(basisu_astc::inRange(numBits, 1, 32));
232
233
if (numBits < 32)
234
return (deUint32)((src >> low) & ((1u<<numBits)-1));
235
else
236
return (deUint32)((src >> low) & 0xFFFFFFFFu);
237
}
238
239
inline bool isBitSet (deUint32 src, int ndx)
240
{
241
return getBit(src, ndx) != 0;
242
}
243
244
inline deUint32 reverseBits (deUint32 src, int numBits)
245
{
246
DE_ASSERT(basisu_astc::inRange(numBits, 0, 32));
247
248
deUint32 result = 0;
249
for (int i = 0; i < numBits; i++)
250
result |= ((src >> i) & 1) << (numBits-1-i);
251
252
return result;
253
}
254
255
inline deUint32 bitReplicationScale (deUint32 src, int numSrcBits, int numDstBits)
256
{
257
DE_ASSERT(numSrcBits <= numDstBits);
258
DE_ASSERT((src & ((1<<numSrcBits)-1)) == src);
259
260
deUint32 dst = 0;
261
for (int shift = numDstBits-numSrcBits; shift > -numSrcBits; shift -= numSrcBits)
262
dst |= (shift >= 0) ? (src << shift) : (src >> -shift);
263
264
return dst;
265
}
266
267
inline deInt32 signExtend (deInt32 src, int numSrcBits)
268
{
269
DE_ASSERT(basisu_astc::inRange(numSrcBits, 2, 31));
270
271
const bool negative = (src & (1 << (numSrcBits-1))) != 0;
272
return src | (negative ? ~((1 << numSrcBits) - 1) : 0);
273
}
274
275
typedef uint16_t deFloat16;
276
277
inline bool isFloat16InfOrNan (deFloat16 v)
278
{
279
return getBits(v, 10, 14) == 31;
280
}
281
282
float deFloat16To32(deFloat16 val16)
283
{
284
deUint32 sign;
285
deUint32 expotent;
286
deUint32 mantissa;
287
288
union
289
{
290
float f;
291
deUint32 u;
292
} x;
293
294
x.u = 0u;
295
296
sign = ((deUint32)val16 >> 15u) & 0x00000001u;
297
expotent = ((deUint32)val16 >> 10u) & 0x0000001fu;
298
mantissa = (deUint32)val16 & 0x000003ffu;
299
300
if (expotent == 0u)
301
{
302
if (mantissa == 0u)
303
{
304
/* +/- 0 */
305
x.u = sign << 31u;
306
return x.f;
307
}
308
else
309
{
310
/* Denormalized, normalize it. */
311
312
while (!(mantissa & 0x00000400u))
313
{
314
mantissa <<= 1u;
315
expotent -= 1u;
316
}
317
318
expotent += 1u;
319
mantissa &= ~0x00000400u;
320
}
321
}
322
else if (expotent == 31u)
323
{
324
if (mantissa == 0u)
325
{
326
/* +/- InF */
327
x.u = (sign << 31u) | 0x7f800000u;
328
return x.f;
329
}
330
else
331
{
332
/* +/- NaN */
333
x.u = (sign << 31u) | 0x7f800000u | (mantissa << 13u);
334
return x.f;
335
}
336
}
337
338
expotent = expotent + (127u - 15u);
339
mantissa = mantissa << 13u;
340
341
x.u = (sign << 31u) | (expotent << 23u) | mantissa;
342
return x.f;
343
}
344
345
enum ISEMode
346
{
347
ISEMODE_TRIT = 0,
348
ISEMODE_QUINT,
349
ISEMODE_PLAIN_BIT,
350
ISEMODE_LAST
351
};
352
353
struct ISEParams
354
{
355
ISEMode mode;
356
int numBits;
357
ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {}
358
};
359
360
inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues)
361
{
362
switch (iseParams.mode)
363
{
364
case ISEMODE_TRIT: return deDivRoundUp32(numValues*8, 5) + numValues*iseParams.numBits;
365
case ISEMODE_QUINT: return deDivRoundUp32(numValues*7, 3) + numValues*iseParams.numBits;
366
case ISEMODE_PLAIN_BIT: return numValues*iseParams.numBits;
367
default:
368
DE_ASSERT(false);
369
return -1;
370
}
371
}
372
373
ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence)
374
{
375
int curBitsForTritMode = 6;
376
int curBitsForQuintMode = 5;
377
int curBitsForPlainBitMode = 8;
378
379
while (true)
380
{
381
DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0);
382
const int tritRange = (curBitsForTritMode > 0) ? (3 << curBitsForTritMode) - 1 : -1;
383
const int quintRange = (curBitsForQuintMode > 0) ? (5 << curBitsForQuintMode) - 1 : -1;
384
const int plainBitRange = (curBitsForPlainBitMode > 0) ? (1 << curBitsForPlainBitMode) - 1 : -1;
385
const int maxRange = basisu_astc::max(basisu_astc::max(tritRange, quintRange), plainBitRange);
386
387
if (maxRange == tritRange)
388
{
389
const ISEParams params(ISEMODE_TRIT, curBitsForTritMode);
390
391
if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
392
return ISEParams(ISEMODE_TRIT, curBitsForTritMode);
393
394
curBitsForTritMode--;
395
}
396
else if (maxRange == quintRange)
397
{
398
const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode);
399
400
if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
401
return ISEParams(ISEMODE_QUINT, curBitsForQuintMode);
402
403
curBitsForQuintMode--;
404
}
405
else
406
{
407
const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
408
DE_ASSERT(maxRange == plainBitRange);
409
410
if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
411
return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
412
413
curBitsForPlainBitMode--;
414
}
415
}
416
}
417
418
inline int computeNumColorEndpointValues (deUint32 endpointMode)
419
{
420
DE_ASSERT(endpointMode < 16);
421
return (endpointMode/4 + 1) * 2;
422
}
423
424
// Decompression utilities
425
enum DecompressResult
426
{
427
DECOMPRESS_RESULT_VALID_BLOCK = 0, //!< Decompressed valid block
428
DECOMPRESS_RESULT_ERROR, //!< Encountered error while decompressing, error color written
429
DECOMPRESS_RESULT_LAST
430
};
431
432
// A helper for getting bits from a 128-bit block.
433
class Block128
434
{
435
private:
436
typedef deUint64 Word;
437
438
enum
439
{
440
WORD_BYTES = sizeof(Word),
441
WORD_BITS = 8*WORD_BYTES,
442
NUM_WORDS = 128 / WORD_BITS
443
};
444
//DE_STATIC_ASSERT(128 % WORD_BITS == 0);
445
446
public:
447
Block128 (const deUint8* src)
448
{
449
for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
450
{
451
m_words[wordNdx] = 0;
452
for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
453
m_words[wordNdx] |= (Word)src[wordNdx*WORD_BYTES + byteNdx] << (8*byteNdx);
454
}
455
}
456
457
deUint32 getBit (int ndx) const
458
{
459
DE_ASSERT(basisu_astc::inBounds(ndx, 0, 128));
460
return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1;
461
}
462
463
deUint32 getBits (int low, int high) const
464
{
465
DE_ASSERT(basisu_astc::inBounds(low, 0, 128));
466
DE_ASSERT(basisu_astc::inBounds(high, 0, 128));
467
DE_ASSERT(basisu_astc::inRange(high-low+1, 0, 32));
468
469
if (high-low+1 == 0)
470
return 0;
471
472
const int word0Ndx = low / WORD_BITS;
473
const int word1Ndx = high / WORD_BITS;
474
// \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big.
475
if (word0Ndx == word1Ndx)
476
return (deUint32)((m_words[word0Ndx] & ((((Word)1 << high%WORD_BITS << 1) - 1))) >> ((Word)low % WORD_BITS));
477
else
478
{
479
DE_ASSERT(word1Ndx == word0Ndx + 1);
480
return (deUint32)(m_words[word0Ndx] >> (low%WORD_BITS)) |
481
(deUint32)((m_words[word1Ndx] & (((Word)1 << high%WORD_BITS << 1) - 1)) << (high-low - high%WORD_BITS));
482
}
483
}
484
485
bool isBitSet (int ndx) const
486
{
487
DE_ASSERT(basisu_astc::inBounds(ndx, 0, 128));
488
return getBit(ndx) != 0;
489
}
490
491
private:
492
Word m_words[NUM_WORDS];
493
};
494
495
// A helper for sequential access into a Block128.
496
class BitAccessStream
497
{
498
public:
499
BitAccessStream (const Block128& src, int startNdxInSrc, int length, bool forward)
500
: m_src (src)
501
, m_startNdxInSrc (startNdxInSrc)
502
, m_length (length)
503
, m_forward (forward)
504
, m_ndx (0)
505
{
506
}
507
508
// Get the next num bits. Bits at positions greater than or equal to m_length are zeros.
509
deUint32 getNext (int num)
510
{
511
if (num == 0 || m_ndx >= m_length)
512
return 0;
513
const int end = m_ndx + num;
514
const int numBitsFromSrc = basisu_astc::max(0, basisu_astc::min(m_length, end) - m_ndx);
515
const int low = m_ndx;
516
const int high = m_ndx + numBitsFromSrc - 1;
517
518
m_ndx += num;
519
520
return m_forward ? m_src.getBits(m_startNdxInSrc + low, m_startNdxInSrc + high)
521
: reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc);
522
}
523
524
private:
525
const Block128& m_src;
526
const int m_startNdxInSrc;
527
const int m_length;
528
const bool m_forward;
529
int m_ndx;
530
};
531
532
struct ISEDecodedResult
533
{
534
deUint32 m;
535
deUint32 tq; //!< Trit or quint value, depending on ISE mode.
536
deUint32 v;
537
};
538
539
// Data from an ASTC block's "block mode" part (i.e. bits [0,10]).
540
struct ASTCBlockMode
541
{
542
bool isError;
543
// \note Following fields only relevant if !isError.
544
bool isVoidExtent;
545
// \note Following fields only relevant if !isVoidExtent.
546
bool isDualPlane;
547
int weightGridWidth;
548
int weightGridHeight;
549
ISEParams weightISEParams;
550
551
ASTCBlockMode (void)
552
: isError (true)
553
, isVoidExtent (true)
554
, isDualPlane (true)
555
, weightGridWidth (-1)
556
, weightGridHeight (-1)
557
, weightISEParams (ISEMODE_LAST, -1)
558
{
559
}
560
};
561
562
inline int computeNumWeights (const ASTCBlockMode& mode)
563
{
564
return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1);
565
}
566
567
struct ColorEndpointPair
568
{
569
UVec4 e0;
570
UVec4 e1;
571
};
572
573
struct TexelWeightPair
574
{
575
deUint32 w[2];
576
};
577
578
ASTCBlockMode getASTCBlockMode (deUint32 blockModeData)
579
{
580
ASTCBlockMode blockMode;
581
blockMode.isError = true; // \note Set to false later, if not error.
582
blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc;
583
if (!blockMode.isVoidExtent)
584
{
585
if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || getBits(blockModeData, 0, 3) == 0)
586
return blockMode; // Invalid ("reserved").
587
588
deUint32 r = (deUint32)-1; // \note Set in the following branches.
589
590
if (getBits(blockModeData, 0, 1) == 0)
591
{
592
const deUint32 r0 = getBit(blockModeData, 4);
593
const deUint32 r1 = getBit(blockModeData, 2);
594
const deUint32 r2 = getBit(blockModeData, 3);
595
const deUint32 i78 = getBits(blockModeData, 7, 8);
596
597
r = (r2 << 2) | (r1 << 1) | (r0 << 0);
598
599
if (i78 == 3)
600
{
601
const bool i5 = isBitSet(blockModeData, 5);
602
blockMode.weightGridWidth = i5 ? 10 : 6;
603
blockMode.weightGridHeight = i5 ? 6 : 10;
604
}
605
else
606
{
607
const deUint32 a = getBits(blockModeData, 5, 6);
608
609
switch (i78)
610
{
611
case 0: blockMode.weightGridWidth = 12; blockMode.weightGridHeight = a + 2; break;
612
case 1: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = 12; break;
613
case 2: blockMode.weightGridWidth = a + 6; blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6; break;
614
default: DE_ASSERT(false);
615
}
616
}
617
}
618
else
619
{
620
const deUint32 r0 = getBit(blockModeData, 4);
621
const deUint32 r1 = getBit(blockModeData, 0);
622
const deUint32 r2 = getBit(blockModeData, 1);
623
const deUint32 i23 = getBits(blockModeData, 2, 3);
624
const deUint32 a = getBits(blockModeData, 5, 6);
625
626
r = (r2 << 2) | (r1 << 1) | (r0 << 0);
627
if (i23 == 3)
628
{
629
const deUint32 b = getBit(blockModeData, 7);
630
const bool i8 = isBitSet(blockModeData, 8);
631
blockMode.weightGridWidth = i8 ? b+2 : a+2;
632
blockMode.weightGridHeight = i8 ? a+2 : b+6;
633
}
634
else
635
{
636
const deUint32 b = getBits(blockModeData, 7, 8);
637
switch (i23)
638
{
639
case 0: blockMode.weightGridWidth = b + 4; blockMode.weightGridHeight = a + 2; break;
640
case 1: blockMode.weightGridWidth = b + 8; blockMode.weightGridHeight = a + 2; break;
641
case 2: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = b + 8; break;
642
default: DE_ASSERT(false);
643
}
644
}
645
}
646
647
const bool zeroDH = getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2;
648
const bool h = zeroDH ? 0 : isBitSet(blockModeData, 9);
649
blockMode.isDualPlane = zeroDH ? 0 : isBitSet(blockModeData, 10);
650
651
{
652
ISEMode& m = blockMode.weightISEParams.mode;
653
int& b = blockMode.weightISEParams.numBits;
654
m = ISEMODE_PLAIN_BIT;
655
b = 0;
656
if (h)
657
{
658
switch (r)
659
{
660
case 2: m = ISEMODE_QUINT; b = 1; break;
661
case 3: m = ISEMODE_TRIT; b = 2; break;
662
case 4: b = 4; break;
663
case 5: m = ISEMODE_QUINT; b = 2; break;
664
case 6: m = ISEMODE_TRIT; b = 3; break;
665
case 7: b = 5; break;
666
default: DE_ASSERT(false);
667
}
668
}
669
else
670
{
671
switch (r)
672
{
673
case 2: b = 1; break;
674
case 3: m = ISEMODE_TRIT; break;
675
case 4: b = 2; break;
676
case 5: m = ISEMODE_QUINT; break;
677
case 6: m = ISEMODE_TRIT; b = 1; break;
678
case 7: b = 3; break;
679
default: DE_ASSERT(false);
680
}
681
}
682
}
683
}
684
685
blockMode.isError = false;
686
return blockMode;
687
}
688
689
inline void setASTCErrorColorBlock (void* dst, int blockWidth, int blockHeight, bool isSRGB)
690
{
691
if (isSRGB)
692
{
693
deUint8* const dstU = (deUint8*)dst;
694
for (int i = 0; i < blockWidth*blockHeight; i++)
695
{
696
dstU[4*i + 0] = 0xff;
697
dstU[4*i + 1] = 0;
698
dstU[4*i + 2] = 0xff;
699
dstU[4*i + 3] = 0xff;
700
}
701
}
702
else
703
{
704
float* const dstF = (float*)dst;
705
for (int i = 0; i < blockWidth*blockHeight; i++)
706
{
707
dstF[4*i + 0] = 1.0f;
708
dstF[4*i + 1] = 0.0f;
709
dstF[4*i + 2] = 1.0f;
710
dstF[4*i + 3] = 1.0f;
711
}
712
}
713
}
714
715
DecompressResult decodeVoidExtentBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode)
716
{
717
const deUint32 minSExtent = blockData.getBits(12, 24);
718
const deUint32 maxSExtent = blockData.getBits(25, 37);
719
const deUint32 minTExtent = blockData.getBits(38, 50);
720
const deUint32 maxTExtent = blockData.getBits(51, 63);
721
const bool allExtentsAllOnes = (minSExtent == 0x1fff) && (maxSExtent == 0x1fff) && (minTExtent == 0x1fff) && (maxTExtent == 0x1fff);
722
const bool isHDRBlock = blockData.isBitSet(9);
723
724
if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent)))
725
{
726
setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
727
return DECOMPRESS_RESULT_ERROR;
728
}
729
730
const deUint32 rgba[4] =
731
{
732
blockData.getBits(64, 79),
733
blockData.getBits(80, 95),
734
blockData.getBits(96, 111),
735
blockData.getBits(112, 127)
736
};
737
738
if (isSRGB)
739
{
740
deUint8* const dstU = (deUint8*)dst;
741
for (int i = 0; i < blockWidth * blockHeight; i++)
742
{
743
for (int c = 0; c < 4; c++)
744
dstU[i * 4 + c] = (deUint8)((rgba[c] & 0xff00) >> 8);
745
}
746
}
747
else
748
{
749
float* const dstF = (float*)dst;
750
751
if (isHDRBlock)
752
{
753
for (int c = 0; c < 4; c++)
754
{
755
if (isFloat16InfOrNan((deFloat16)rgba[c]))
756
{
757
//throw InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture (behavior undefined by ASTC specification)");
758
setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
759
return DECOMPRESS_RESULT_ERROR;
760
}
761
}
762
763
for (int i = 0; i < blockWidth * blockHeight; i++)
764
{
765
for (int c = 0; c < 4; c++)
766
dstF[i * 4 + c] = deFloat16To32((deFloat16)rgba[c]);
767
}
768
}
769
else
770
{
771
for (int i = 0; i < blockWidth * blockHeight; i++)
772
{
773
for (int c = 0; c < 4; c++)
774
dstF[i * 4 + c] = (rgba[c] == 65535) ? 1.0f : ((float)rgba[c] / 65536.0f);
775
}
776
}
777
}
778
779
return DECOMPRESS_RESULT_VALID_BLOCK;
780
}
781
782
void decodeColorEndpointModes (deUint32* endpointModesDst, const Block128& blockData, int numPartitions, int extraCemBitsStart)
783
{
784
if (numPartitions == 1)
785
endpointModesDst[0] = blockData.getBits(13, 16);
786
else
787
{
788
const deUint32 highLevelSelector = blockData.getBits(23, 24);
789
790
if (highLevelSelector == 0)
791
{
792
const deUint32 mode = blockData.getBits(25, 28);
793
794
for (int i = 0; i < numPartitions; i++)
795
endpointModesDst[i] = mode;
796
}
797
else
798
{
799
for (int partNdx = 0; partNdx < numPartitions; partNdx++)
800
{
801
const deUint32 cemClass = highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1);
802
const deUint32 lowBit0Ndx = numPartitions + 2*partNdx;
803
const deUint32 lowBit1Ndx = numPartitions + 2*partNdx + 1;
804
const deUint32 lowBit0 = blockData.getBit(lowBit0Ndx < 4 ? 25+lowBit0Ndx : extraCemBitsStart+lowBit0Ndx-4);
805
const deUint32 lowBit1 = blockData.getBit(lowBit1Ndx < 4 ? 25+lowBit1Ndx : extraCemBitsStart+lowBit1Ndx-4);
806
807
endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0;
808
}
809
}
810
}
811
}
812
813
int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions)
814
{
815
int result = 0;
816
817
for (int i = 0; i < numPartitions; i++)
818
result += computeNumColorEndpointValues(endpointModes[i]);
819
820
return result;
821
}
822
823
void decodeISETritBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
824
{
825
DE_ASSERT(basisu_astc::inRange(numValues, 1, 5));
826
827
deUint32 m[5];
828
m[0] = data.getNext(numBits);
829
deUint32 T01 = data.getNext(2);
830
m[1] = data.getNext(numBits);
831
deUint32 T23 = data.getNext(2);
832
m[2] = data.getNext(numBits);
833
deUint32 T4 = data.getNext(1);
834
m[3] = data.getNext(numBits);
835
deUint32 T56 = data.getNext(2);
836
m[4] = data.getNext(numBits);
837
deUint32 T7 = data.getNext(1);
838
839
#ifndef __EMSCRIPTEN__
840
#ifdef __GNUC__
841
#pragma GCC diagnostic push
842
#pragma GCC diagnostic ignored "-Wimplicit-fallthrough="
843
#endif
844
#endif
845
switch (numValues)
846
{
847
// \note Fall-throughs.
848
case 1: T23 = 0;
849
case 2: T4 = 0;
850
case 3: T56 = 0;
851
case 4: T7 = 0;
852
case 5: break;
853
default:
854
DE_ASSERT(false);
855
}
856
#ifndef __EMSCRIPTEN__
857
#ifdef __GNUC__
858
#pragma GCC diagnostic pop
859
#endif
860
#endif
861
862
const deUint32 T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0);
863
864
static const deUint32 tritsFromT[256][5] =
865
{
866
{ 0,0,0,0,0 }, { 1,0,0,0,0 }, { 2,0,0,0,0 }, { 0,0,2,0,0 }, { 0,1,0,0,0 }, { 1,1,0,0,0 }, { 2,1,0,0,0 }, { 1,0,2,0,0 }, { 0,2,0,0,0 }, { 1,2,0,0,0 }, { 2,2,0,0,0 }, { 2,0,2,0,0 }, { 0,2,2,0,0 }, { 1,2,2,0,0 }, { 2,2,2,0,0 }, { 2,0,2,0,0 },
867
{ 0,0,1,0,0 }, { 1,0,1,0,0 }, { 2,0,1,0,0 }, { 0,1,2,0,0 }, { 0,1,1,0,0 }, { 1,1,1,0,0 }, { 2,1,1,0,0 }, { 1,1,2,0,0 }, { 0,2,1,0,0 }, { 1,2,1,0,0 }, { 2,2,1,0,0 }, { 2,1,2,0,0 }, { 0,0,0,2,2 }, { 1,0,0,2,2 }, { 2,0,0,2,2 }, { 0,0,2,2,2 },
868
{ 0,0,0,1,0 }, { 1,0,0,1,0 }, { 2,0,0,1,0 }, { 0,0,2,1,0 }, { 0,1,0,1,0 }, { 1,1,0,1,0 }, { 2,1,0,1,0 }, { 1,0,2,1,0 }, { 0,2,0,1,0 }, { 1,2,0,1,0 }, { 2,2,0,1,0 }, { 2,0,2,1,0 }, { 0,2,2,1,0 }, { 1,2,2,1,0 }, { 2,2,2,1,0 }, { 2,0,2,1,0 },
869
{ 0,0,1,1,0 }, { 1,0,1,1,0 }, { 2,0,1,1,0 }, { 0,1,2,1,0 }, { 0,1,1,1,0 }, { 1,1,1,1,0 }, { 2,1,1,1,0 }, { 1,1,2,1,0 }, { 0,2,1,1,0 }, { 1,2,1,1,0 }, { 2,2,1,1,0 }, { 2,1,2,1,0 }, { 0,1,0,2,2 }, { 1,1,0,2,2 }, { 2,1,0,2,2 }, { 1,0,2,2,2 },
870
{ 0,0,0,2,0 }, { 1,0,0,2,0 }, { 2,0,0,2,0 }, { 0,0,2,2,0 }, { 0,1,0,2,0 }, { 1,1,0,2,0 }, { 2,1,0,2,0 }, { 1,0,2,2,0 }, { 0,2,0,2,0 }, { 1,2,0,2,0 }, { 2,2,0,2,0 }, { 2,0,2,2,0 }, { 0,2,2,2,0 }, { 1,2,2,2,0 }, { 2,2,2,2,0 }, { 2,0,2,2,0 },
871
{ 0,0,1,2,0 }, { 1,0,1,2,0 }, { 2,0,1,2,0 }, { 0,1,2,2,0 }, { 0,1,1,2,0 }, { 1,1,1,2,0 }, { 2,1,1,2,0 }, { 1,1,2,2,0 }, { 0,2,1,2,0 }, { 1,2,1,2,0 }, { 2,2,1,2,0 }, { 2,1,2,2,0 }, { 0,2,0,2,2 }, { 1,2,0,2,2 }, { 2,2,0,2,2 }, { 2,0,2,2,2 },
872
{ 0,0,0,0,2 }, { 1,0,0,0,2 }, { 2,0,0,0,2 }, { 0,0,2,0,2 }, { 0,1,0,0,2 }, { 1,1,0,0,2 }, { 2,1,0,0,2 }, { 1,0,2,0,2 }, { 0,2,0,0,2 }, { 1,2,0,0,2 }, { 2,2,0,0,2 }, { 2,0,2,0,2 }, { 0,2,2,0,2 }, { 1,2,2,0,2 }, { 2,2,2,0,2 }, { 2,0,2,0,2 },
873
{ 0,0,1,0,2 }, { 1,0,1,0,2 }, { 2,0,1,0,2 }, { 0,1,2,0,2 }, { 0,1,1,0,2 }, { 1,1,1,0,2 }, { 2,1,1,0,2 }, { 1,1,2,0,2 }, { 0,2,1,0,2 }, { 1,2,1,0,2 }, { 2,2,1,0,2 }, { 2,1,2,0,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,0,2,2,2 },
874
{ 0,0,0,0,1 }, { 1,0,0,0,1 }, { 2,0,0,0,1 }, { 0,0,2,0,1 }, { 0,1,0,0,1 }, { 1,1,0,0,1 }, { 2,1,0,0,1 }, { 1,0,2,0,1 }, { 0,2,0,0,1 }, { 1,2,0,0,1 }, { 2,2,0,0,1 }, { 2,0,2,0,1 }, { 0,2,2,0,1 }, { 1,2,2,0,1 }, { 2,2,2,0,1 }, { 2,0,2,0,1 },
875
{ 0,0,1,0,1 }, { 1,0,1,0,1 }, { 2,0,1,0,1 }, { 0,1,2,0,1 }, { 0,1,1,0,1 }, { 1,1,1,0,1 }, { 2,1,1,0,1 }, { 1,1,2,0,1 }, { 0,2,1,0,1 }, { 1,2,1,0,1 }, { 2,2,1,0,1 }, { 2,1,2,0,1 }, { 0,0,1,2,2 }, { 1,0,1,2,2 }, { 2,0,1,2,2 }, { 0,1,2,2,2 },
876
{ 0,0,0,1,1 }, { 1,0,0,1,1 }, { 2,0,0,1,1 }, { 0,0,2,1,1 }, { 0,1,0,1,1 }, { 1,1,0,1,1 }, { 2,1,0,1,1 }, { 1,0,2,1,1 }, { 0,2,0,1,1 }, { 1,2,0,1,1 }, { 2,2,0,1,1 }, { 2,0,2,1,1 }, { 0,2,2,1,1 }, { 1,2,2,1,1 }, { 2,2,2,1,1 }, { 2,0,2,1,1 },
877
{ 0,0,1,1,1 }, { 1,0,1,1,1 }, { 2,0,1,1,1 }, { 0,1,2,1,1 }, { 0,1,1,1,1 }, { 1,1,1,1,1 }, { 2,1,1,1,1 }, { 1,1,2,1,1 }, { 0,2,1,1,1 }, { 1,2,1,1,1 }, { 2,2,1,1,1 }, { 2,1,2,1,1 }, { 0,1,1,2,2 }, { 1,1,1,2,2 }, { 2,1,1,2,2 }, { 1,1,2,2,2 },
878
{ 0,0,0,2,1 }, { 1,0,0,2,1 }, { 2,0,0,2,1 }, { 0,0,2,2,1 }, { 0,1,0,2,1 }, { 1,1,0,2,1 }, { 2,1,0,2,1 }, { 1,0,2,2,1 }, { 0,2,0,2,1 }, { 1,2,0,2,1 }, { 2,2,0,2,1 }, { 2,0,2,2,1 }, { 0,2,2,2,1 }, { 1,2,2,2,1 }, { 2,2,2,2,1 }, { 2,0,2,2,1 },
879
{ 0,0,1,2,1 }, { 1,0,1,2,1 }, { 2,0,1,2,1 }, { 0,1,2,2,1 }, { 0,1,1,2,1 }, { 1,1,1,2,1 }, { 2,1,1,2,1 }, { 1,1,2,2,1 }, { 0,2,1,2,1 }, { 1,2,1,2,1 }, { 2,2,1,2,1 }, { 2,1,2,2,1 }, { 0,2,1,2,2 }, { 1,2,1,2,2 }, { 2,2,1,2,2 }, { 2,1,2,2,2 },
880
{ 0,0,0,1,2 }, { 1,0,0,1,2 }, { 2,0,0,1,2 }, { 0,0,2,1,2 }, { 0,1,0,1,2 }, { 1,1,0,1,2 }, { 2,1,0,1,2 }, { 1,0,2,1,2 }, { 0,2,0,1,2 }, { 1,2,0,1,2 }, { 2,2,0,1,2 }, { 2,0,2,1,2 }, { 0,2,2,1,2 }, { 1,2,2,1,2 }, { 2,2,2,1,2 }, { 2,0,2,1,2 },
881
{ 0,0,1,1,2 }, { 1,0,1,1,2 }, { 2,0,1,1,2 }, { 0,1,2,1,2 }, { 0,1,1,1,2 }, { 1,1,1,1,2 }, { 2,1,1,1,2 }, { 1,1,2,1,2 }, { 0,2,1,1,2 }, { 1,2,1,1,2 }, { 2,2,1,1,2 }, { 2,1,2,1,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,1,2,2,2 }
882
};
883
884
const deUint32 (& trits)[5] = tritsFromT[T];
885
for (int i = 0; i < numValues; i++)
886
{
887
dst[i].m = m[i];
888
dst[i].tq = trits[i];
889
dst[i].v = (trits[i] << numBits) + m[i];
890
}
891
}
892
893
void decodeISEQuintBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
894
{
895
DE_ASSERT(basisu_astc::inRange(numValues, 1, 3));
896
897
deUint32 m[3];
898
m[0] = data.getNext(numBits);
899
deUint32 Q012 = data.getNext(3);
900
m[1] = data.getNext(numBits);
901
deUint32 Q34 = data.getNext(2);
902
m[2] = data.getNext(numBits);
903
deUint32 Q56 = data.getNext(2);
904
905
#ifndef __EMSCRIPTEN__
906
#ifdef __GNUC__
907
#pragma GCC diagnostic push
908
#pragma GCC diagnostic ignored "-Wimplicit-fallthrough="
909
#endif
910
#endif
911
switch (numValues)
912
{
913
// \note Fall-throughs.
914
case 1: Q34 = 0;
915
case 2: Q56 = 0;
916
case 3: break;
917
default:
918
DE_ASSERT(false);
919
}
920
#ifndef __EMSCRIPTEN__
921
#ifdef __GNUC__
922
#pragma GCC diagnostic pop
923
#endif
924
#endif
925
926
const deUint32 Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0);
927
928
static const deUint32 quintsFromQ[256][3] =
929
{
930
{ 0,0,0 }, { 1,0,0 }, { 2,0,0 }, { 3,0,0 }, { 4,0,0 }, { 0,4,0 }, { 4,4,0 }, { 4,4,4 }, { 0,1,0 }, { 1,1,0 }, { 2,1,0 }, { 3,1,0 }, { 4,1,0 }, { 1,4,0 }, { 4,4,1 }, { 4,4,4 },
931
{ 0,2,0 }, { 1,2,0 }, { 2,2,0 }, { 3,2,0 }, { 4,2,0 }, { 2,4,0 }, { 4,4,2 }, { 4,4,4 }, { 0,3,0 }, { 1,3,0 }, { 2,3,0 }, { 3,3,0 }, { 4,3,0 }, { 3,4,0 }, { 4,4,3 }, { 4,4,4 },
932
{ 0,0,1 }, { 1,0,1 }, { 2,0,1 }, { 3,0,1 }, { 4,0,1 }, { 0,4,1 }, { 4,0,4 }, { 0,4,4 }, { 0,1,1 }, { 1,1,1 }, { 2,1,1 }, { 3,1,1 }, { 4,1,1 }, { 1,4,1 }, { 4,1,4 }, { 1,4,4 },
933
{ 0,2,1 }, { 1,2,1 }, { 2,2,1 }, { 3,2,1 }, { 4,2,1 }, { 2,4,1 }, { 4,2,4 }, { 2,4,4 }, { 0,3,1 }, { 1,3,1 }, { 2,3,1 }, { 3,3,1 }, { 4,3,1 }, { 3,4,1 }, { 4,3,4 }, { 3,4,4 },
934
{ 0,0,2 }, { 1,0,2 }, { 2,0,2 }, { 3,0,2 }, { 4,0,2 }, { 0,4,2 }, { 2,0,4 }, { 3,0,4 }, { 0,1,2 }, { 1,1,2 }, { 2,1,2 }, { 3,1,2 }, { 4,1,2 }, { 1,4,2 }, { 2,1,4 }, { 3,1,4 },
935
{ 0,2,2 }, { 1,2,2 }, { 2,2,2 }, { 3,2,2 }, { 4,2,2 }, { 2,4,2 }, { 2,2,4 }, { 3,2,4 }, { 0,3,2 }, { 1,3,2 }, { 2,3,2 }, { 3,3,2 }, { 4,3,2 }, { 3,4,2 }, { 2,3,4 }, { 3,3,4 },
936
{ 0,0,3 }, { 1,0,3 }, { 2,0,3 }, { 3,0,3 }, { 4,0,3 }, { 0,4,3 }, { 0,0,4 }, { 1,0,4 }, { 0,1,3 }, { 1,1,3 }, { 2,1,3 }, { 3,1,3 }, { 4,1,3 }, { 1,4,3 }, { 0,1,4 }, { 1,1,4 },
937
{ 0,2,3 }, { 1,2,3 }, { 2,2,3 }, { 3,2,3 }, { 4,2,3 }, { 2,4,3 }, { 0,2,4 }, { 1,2,4 }, { 0,3,3 }, { 1,3,3 }, { 2,3,3 }, { 3,3,3 }, { 4,3,3 }, { 3,4,3 }, { 0,3,4 }, { 1,3,4 }
938
};
939
940
const deUint32 (& quints)[3] = quintsFromQ[Q];
941
for (int i = 0; i < numValues; i++)
942
{
943
dst[i].m = m[i];
944
dst[i].tq = quints[i];
945
dst[i].v = (quints[i] << numBits) + m[i];
946
}
947
}
948
949
inline void decodeISEBitBlock (ISEDecodedResult* dst, BitAccessStream& data, int numBits)
950
{
951
dst[0].m = data.getNext(numBits);
952
dst[0].v = dst[0].m;
953
}
954
955
void decodeISE (ISEDecodedResult* dst, int numValues, BitAccessStream& data, const ISEParams& params)
956
{
957
if (params.mode == ISEMODE_TRIT)
958
{
959
const int numBlocks = deDivRoundUp32(numValues, 5);
960
for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
961
{
962
const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
963
decodeISETritBlock(&dst[5*blockNdx], numValuesInBlock, data, params.numBits);
964
}
965
}
966
else if (params.mode == ISEMODE_QUINT)
967
{
968
const int numBlocks = deDivRoundUp32(numValues, 3);
969
for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
970
{
971
const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
972
decodeISEQuintBlock(&dst[3*blockNdx], numValuesInBlock, data, params.numBits);
973
}
974
}
975
else
976
{
977
DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
978
for (int i = 0; i < numValues; i++)
979
decodeISEBitBlock(&dst[i], data, params.numBits);
980
}
981
}
982
983
void unquantizeColorEndpoints (deUint32* dst, const ISEDecodedResult* iseResults, int numEndpoints, const ISEParams& iseParams)
984
{
985
if ((iseParams.mode == ISEMODE_TRIT) || (iseParams.mode == ISEMODE_QUINT))
986
{
987
const int rangeCase = iseParams.numBits*2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1);
988
DE_ASSERT(basisu_astc::inRange(rangeCase, 0, 10));
989
990
static const deUint32 Ca[11] = { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 };
991
const deUint32 C = Ca[rangeCase];
992
993
for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
994
{
995
const deUint32 a = getBit(iseResults[endpointNdx].m, 0);
996
const deUint32 b = getBit(iseResults[endpointNdx].m, 1);
997
const deUint32 c = getBit(iseResults[endpointNdx].m, 2);
998
const deUint32 d = getBit(iseResults[endpointNdx].m, 3);
999
const deUint32 e = getBit(iseResults[endpointNdx].m, 4);
1000
const deUint32 f = getBit(iseResults[endpointNdx].m, 5);
1001
const deUint32 A = (a == 0) ? 0 : (1<<9)-1;
1002
1003
const deUint32 B = (rangeCase == 0) ? 0
1004
: (rangeCase == 1) ? 0
1005
: (rangeCase == 2) ? ((b << 8) | (b << 4) | (b << 2) | (b << 1))
1006
: (rangeCase == 3) ? ((b << 8) | (b << 3) | (b << 2))
1007
: (rangeCase == 4) ? ((c << 8) | (b << 7) | (c << 3) | (b << 2) | (c << 1) | (b << 0))
1008
: (rangeCase == 5) ? ((c << 8) | (b << 7) | (c << 2) | (b << 1) | (c << 0))
1009
: (rangeCase == 6) ? ((d << 8) | (c << 7) | (b << 6) | (d << 2) | (c << 1) | (b << 0))
1010
: (rangeCase == 7) ? ((d << 8) | (c << 7) | (b << 6) | (d << 1) | (c << 0))
1011
: (rangeCase == 8) ? ((e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 1) | (d << 0))
1012
: (rangeCase == 9) ? ((e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 0))
1013
: (rangeCase == 10) ? ((f << 8) | (e << 7) | (d << 6) | (c << 5) | (b << 4) | (f << 0))
1014
: (deUint32)-1;
1015
1016
DE_ASSERT(B != (deUint32)-1);
1017
dst[endpointNdx] = (((iseResults[endpointNdx].tq*C + B) ^ A) >> 2) | (A & 0x80);
1018
}
1019
}
1020
else
1021
{
1022
DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
1023
for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
1024
dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8);
1025
}
1026
}
1027
1028
inline void bitTransferSigned (deInt32& a, deInt32& b)
1029
{
1030
b >>= 1;
1031
b |= a & 0x80;
1032
a >>= 1;
1033
a &= 0x3f;
1034
if (isBitSet(a, 5))
1035
a -= 0x40;
1036
}
1037
1038
inline UVec4 clampedRGBA (const IVec4& rgba)
1039
{
1040
return UVec4(basisu_astc::clamp(rgba.x(), 0, 0xff),
1041
basisu_astc::clamp(rgba.y(), 0, 0xff),
1042
basisu_astc::clamp(rgba.z(), 0, 0xff),
1043
basisu_astc::clamp(rgba.w(), 0, 0xff));
1044
}
1045
1046
inline IVec4 blueContract (int r, int g, int b, int a)
1047
{
1048
return IVec4((r+b)>>1, (g+b)>>1, b, a);
1049
}
1050
1051
inline bool isColorEndpointModeHDR (deUint32 mode)
1052
{
1053
return (mode == 2) ||
1054
(mode == 3) ||
1055
(mode == 7) ||
1056
(mode == 11) ||
1057
(mode == 14) ||
1058
(mode == 15);
1059
}
1060
1061
void decodeHDREndpointMode7 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3)
1062
{
1063
const deUint32 m10 = getBit(v1, 7) | (getBit(v2, 7) << 1);
1064
const deUint32 m23 = getBits(v0, 6, 7);
1065
1066
const deUint32 majComp = (m10 != 3) ? m10
1067
: (m23 != 3) ? m23
1068
: 0;
1069
1070
const deUint32 mode = (m10 != 3) ? m23
1071
: (m23 != 3) ? 4
1072
: 5;
1073
1074
deInt32 red = (deInt32)getBits(v0, 0, 5);
1075
deInt32 green = (deInt32)getBits(v1, 0, 4);
1076
deInt32 blue = (deInt32)getBits(v2, 0, 4);
1077
deInt32 scale = (deInt32)getBits(v3, 0, 4);
1078
1079
{
1080
#define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
1081
#define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5, V6,S6) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); SHOR(V6,S6,x6); } while (false)
1082
1083
const deUint32 x0 = getBit(v1, 6);
1084
const deUint32 x1 = getBit(v1, 5);
1085
const deUint32 x2 = getBit(v2, 6);
1086
const deUint32 x3 = getBit(v2, 5);
1087
const deUint32 x4 = getBit(v3, 7);
1088
const deUint32 x5 = getBit(v3, 6);
1089
const deUint32 x6 = getBit(v3, 5);
1090
1091
deInt32& R = red;
1092
deInt32& G = green;
1093
deInt32& B = blue;
1094
deInt32& S = scale;
1095
1096
switch (mode)
1097
{
1098
case 0: ASSIGN_X_BITS(R,9, R,8, R,7, R,10, R,6, S,6, S,5); break;
1099
case 1: ASSIGN_X_BITS(R,8, G,5, R,7, B,5, R,6, R,10, R,9); break;
1100
case 2: ASSIGN_X_BITS(R,9, R,8, R,7, R,6, S,7, S,6, S,5); break;
1101
case 3: ASSIGN_X_BITS(R,8, G,5, R,7, B,5, R,6, S,6, S,5); break;
1102
case 4: ASSIGN_X_BITS(G,6, G,5, B,6, B,5, R,6, R,7, S,5); break;
1103
case 5: ASSIGN_X_BITS(G,6, G,5, B,6, B,5, R,6, S,6, S,5); break;
1104
default:
1105
DE_ASSERT(false);
1106
}
1107
#undef ASSIGN_X_BITS
1108
#undef SHOR
1109
}
1110
1111
static const int shiftAmounts[] = { 1, 1, 2, 3, 4, 5 };
1112
DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts));
1113
1114
red <<= shiftAmounts[mode];
1115
green <<= shiftAmounts[mode];
1116
blue <<= shiftAmounts[mode];
1117
scale <<= shiftAmounts[mode];
1118
1119
if (mode != 5)
1120
{
1121
green = red - green;
1122
blue = red - blue;
1123
}
1124
1125
if (majComp == 1)
1126
std::swap(red, green);
1127
else if (majComp == 2)
1128
std::swap(red, blue);
1129
1130
e0 = UVec4(basisu_astc::clamp(red - scale, 0, 0xfff),
1131
basisu_astc::clamp(green - scale, 0, 0xfff),
1132
basisu_astc::clamp(blue - scale, 0, 0xfff),
1133
0x780);
1134
1135
e1 = UVec4(basisu_astc::clamp(red, 0, 0xfff),
1136
basisu_astc::clamp(green, 0, 0xfff),
1137
basisu_astc::clamp(blue, 0, 0xfff),
1138
0x780);
1139
}
1140
1141
void decodeHDREndpointMode11 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5)
1142
{
1143
const deUint32 major = (getBit(v5, 7) << 1) | getBit(v4, 7);
1144
1145
if (major == 3)
1146
{
1147
e0 = UVec4(v0<<4, v2<<4, getBits(v4,0,6)<<5, 0x780);
1148
e1 = UVec4(v1<<4, v3<<4, getBits(v5,0,6)<<5, 0x780);
1149
}
1150
else
1151
{
1152
const deUint32 mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7);
1153
1154
deInt32 a = (deInt32)((getBit(v1, 6) << 8) | v0);
1155
deInt32 c = (deInt32)(getBits(v1, 0, 5));
1156
deInt32 b0 = (deInt32)(getBits(v2, 0, 5));
1157
deInt32 b1 = (deInt32)(getBits(v3, 0, 5));
1158
deInt32 d0 = (deInt32)(getBits(v4, 0, 4));
1159
deInt32 d1 = (deInt32)(getBits(v5, 0, 4));
1160
1161
{
1162
#define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
1163
#define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); } while (false)
1164
const deUint32 x0 = getBit(v2, 6);
1165
const deUint32 x1 = getBit(v3, 6);
1166
const deUint32 x2 = getBit(v4, 6);
1167
const deUint32 x3 = getBit(v5, 6);
1168
const deUint32 x4 = getBit(v4, 5);
1169
const deUint32 x5 = getBit(v5, 5);
1170
1171
switch (mode)
1172
{
1173
case 0: ASSIGN_X_BITS(b0,6, b1,6, d0,6, d1,6, d0,5, d1,5); break;
1174
case 1: ASSIGN_X_BITS(b0,6, b1,6, b0,7, b1,7, d0,5, d1,5); break;
1175
case 2: ASSIGN_X_BITS(a,9, c,6, d0,6, d1,6, d0,5, d1,5); break;
1176
case 3: ASSIGN_X_BITS(b0,6, b1,6, a,9, c,6, d0,5, d1,5); break;
1177
case 4: ASSIGN_X_BITS(b0,6, b1,6, b0,7, b1,7, a,9, a,10); break;
1178
case 5: ASSIGN_X_BITS(a,9, a,10, c,7, c,6, d0,5, d1,5); break;
1179
case 6: ASSIGN_X_BITS(b0,6, b1,6, a,11, c,6, a,9, a,10); break;
1180
case 7: ASSIGN_X_BITS(a,9, a,10, a,11, c,6, d0,5, d1,5); break;
1181
default:
1182
DE_ASSERT(false);
1183
}
1184
#undef ASSIGN_X_BITS
1185
#undef SHOR
1186
}
1187
1188
static const int numDBits[] = { 7, 6, 7, 6, 5, 6, 5, 6 };
1189
DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits));
1190
d0 = signExtend(d0, numDBits[mode]);
1191
d1 = signExtend(d1, numDBits[mode]);
1192
1193
const int shiftAmount = (mode >> 1) ^ 3;
1194
a = (uint32_t)a << shiftAmount;
1195
c = (uint32_t)c << shiftAmount;
1196
b0 = (uint32_t)b0 << shiftAmount;
1197
b1 = (uint32_t)b1 << shiftAmount;
1198
d0 = (uint32_t)d0 << shiftAmount;
1199
d1 = (uint32_t)d1 << shiftAmount;
1200
1201
e0 = UVec4(basisu_astc::clamp(a-c, 0, 0xfff), basisu_astc::clamp(a-b0-c-d0, 0, 0xfff), basisu_astc::clamp(a-b1-c-d1, 0, 0xfff), 0x780);
1202
e1 = UVec4(basisu_astc::clamp(a, 0, 0xfff), basisu_astc::clamp(a-b0, 0, 0xfff), basisu_astc::clamp(a-b1, 0, 0xfff), 0x780);
1203
1204
if (major == 1)
1205
{
1206
std::swap(e0.x(), e0.y());
1207
std::swap(e1.x(), e1.y());
1208
}
1209
else if (major == 2)
1210
{
1211
std::swap(e0.x(), e0.z());
1212
std::swap(e1.x(), e1.z());
1213
}
1214
}
1215
}
1216
1217
void decodeHDREndpointMode15(UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5, deUint32 v6In, deUint32 v7In)
1218
{
1219
decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5);
1220
1221
const deUint32 mode = (getBit(v7In, 7) << 1) | getBit(v6In, 7);
1222
deInt32 v6 = (deInt32)getBits(v6In, 0, 6);
1223
deInt32 v7 = (deInt32)getBits(v7In, 0, 6);
1224
1225
if (mode == 3)
1226
{
1227
e0.w() = v6 << 5;
1228
e1.w() = v7 << 5;
1229
}
1230
else
1231
{
1232
v6 |= (v7 << (mode+1)) & 0x780;
1233
v7 &= (0x3f >> mode);
1234
v7 ^= 0x20 >> mode;
1235
v7 -= 0x20 >> mode;
1236
v6 <<= 4-mode;
1237
v7 <<= 4-mode;
1238
v7 += v6;
1239
v7 = basisu_astc::clamp(v7, 0, 0xfff);
1240
e0.w() = v6;
1241
e1.w() = v7;
1242
}
1243
}
1244
1245
void decodeColorEndpoints (ColorEndpointPair* dst, const deUint32* unquantizedEndpoints, const deUint32* endpointModes, int numPartitions)
1246
{
1247
int unquantizedNdx = 0;
1248
1249
for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++)
1250
{
1251
const deUint32 endpointMode = endpointModes[partitionNdx];
1252
const deUint32* v = &unquantizedEndpoints[unquantizedNdx];
1253
1254
UVec4& e0 = dst[partitionNdx].e0;
1255
UVec4& e1 = dst[partitionNdx].e1;
1256
unquantizedNdx += computeNumColorEndpointValues(endpointMode);
1257
1258
switch (endpointMode)
1259
{
1260
case 0:
1261
{
1262
e0 = UVec4(v[0], v[0], v[0], 0xff);
1263
e1 = UVec4(v[1], v[1], v[1], 0xff);
1264
break;
1265
}
1266
case 1:
1267
{
1268
const deUint32 L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6);
1269
const deUint32 L1 = basisu_astc::min(0xffu, L0 + getBits(v[1], 0, 5));
1270
e0 = UVec4(L0, L0, L0, 0xff);
1271
e1 = UVec4(L1, L1, L1, 0xff);
1272
break;
1273
}
1274
case 2:
1275
{
1276
const deUint32 v1Gr = v[1] >= v[0];
1277
const deUint32 y0 = v1Gr ? v[0]<<4 : (v[1]<<4) + 8;
1278
const deUint32 y1 = v1Gr ? v[1]<<4 : (v[0]<<4) - 8;
1279
e0 = UVec4(y0, y0, y0, 0x780);
1280
e1 = UVec4(y1, y1, y1, 0x780);
1281
break;
1282
}
1283
case 3:
1284
{
1285
const bool m = isBitSet(v[0], 7);
1286
const deUint32 y0 = m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2)
1287
: (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1);
1288
const deUint32 d = m ? getBits(v[1], 0, 4) << 2
1289
: getBits(v[1], 0, 3) << 1;
1290
const deUint32 y1 = basisu_astc::min(0xfffu, y0+d);
1291
e0 = UVec4(y0, y0, y0, 0x780);
1292
e1 = UVec4(y1, y1, y1, 0x780);
1293
break;
1294
}
1295
case 4:
1296
{
1297
e0 = UVec4(v[0], v[0], v[0], v[2]);
1298
e1 = UVec4(v[1], v[1], v[1], v[3]);
1299
break;
1300
}
1301
case 5:
1302
{
1303
deInt32 v0 = (deInt32)v[0];
1304
deInt32 v1 = (deInt32)v[1];
1305
deInt32 v2 = (deInt32)v[2];
1306
deInt32 v3 = (deInt32)v[3];
1307
bitTransferSigned(v1, v0);
1308
bitTransferSigned(v3, v2);
1309
e0 = clampedRGBA(IVec4(v0, v0, v0, v2));
1310
e1 = clampedRGBA(IVec4(v0+v1, v0+v1, v0+v1, v2+v3));
1311
break;
1312
}
1313
case 6:
1314
e0 = UVec4((v[0]*v[3]) >> 8, (v[1]*v[3]) >> 8, (v[2]*v[3]) >> 8, 0xff);
1315
e1 = UVec4(v[0], v[1], v[2], 0xff);
1316
break;
1317
case 7:
1318
decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]);
1319
break;
1320
case 8:
1321
{
1322
if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
1323
{
1324
e0 = UVec4(v[0], v[2], v[4], 0xff);
1325
e1 = UVec4(v[1], v[3], v[5], 0xff);
1326
}
1327
else
1328
{
1329
e0 = blueContract(v[1], v[3], v[5], 0xff).asUint();
1330
e1 = blueContract(v[0], v[2], v[4], 0xff).asUint();
1331
}
1332
break;
1333
}
1334
case 9:
1335
{
1336
deInt32 v0 = (deInt32)v[0];
1337
deInt32 v1 = (deInt32)v[1];
1338
deInt32 v2 = (deInt32)v[2];
1339
deInt32 v3 = (deInt32)v[3];
1340
deInt32 v4 = (deInt32)v[4];
1341
deInt32 v5 = (deInt32)v[5];
1342
bitTransferSigned(v1, v0);
1343
bitTransferSigned(v3, v2);
1344
bitTransferSigned(v5, v4);
1345
if (v1+v3+v5 >= 0)
1346
{
1347
e0 = clampedRGBA(IVec4(v0, v2, v4, 0xff));
1348
e1 = clampedRGBA(IVec4(v0+v1, v2+v3, v4+v5, 0xff));
1349
}
1350
else
1351
{
1352
e0 = clampedRGBA(blueContract(v0+v1, v2+v3, v4+v5, 0xff));
1353
e1 = clampedRGBA(blueContract(v0, v2, v4, 0xff));
1354
}
1355
break;
1356
}
1357
case 10:
1358
{
1359
e0 = UVec4((v[0]*v[3]) >> 8, (v[1]*v[3]) >> 8, (v[2]*v[3]) >> 8, v[4]);
1360
e1 = UVec4(v[0], v[1], v[2], v[5]);
1361
break;
1362
}
1363
case 11:
1364
{
1365
decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
1366
break;
1367
}
1368
case 12:
1369
{
1370
if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4])
1371
{
1372
e0 = UVec4(v[0], v[2], v[4], v[6]);
1373
e1 = UVec4(v[1], v[3], v[5], v[7]);
1374
}
1375
else
1376
{
1377
e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7]));
1378
e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6]));
1379
}
1380
break;
1381
}
1382
case 13:
1383
{
1384
deInt32 v0 = (deInt32)v[0];
1385
deInt32 v1 = (deInt32)v[1];
1386
deInt32 v2 = (deInt32)v[2];
1387
deInt32 v3 = (deInt32)v[3];
1388
deInt32 v4 = (deInt32)v[4];
1389
deInt32 v5 = (deInt32)v[5];
1390
deInt32 v6 = (deInt32)v[6];
1391
deInt32 v7 = (deInt32)v[7];
1392
bitTransferSigned(v1, v0);
1393
bitTransferSigned(v3, v2);
1394
bitTransferSigned(v5, v4);
1395
bitTransferSigned(v7, v6);
1396
if (v1+v3+v5 >= 0)
1397
{
1398
e0 = clampedRGBA(IVec4(v0, v2, v4, v6));
1399
e1 = clampedRGBA(IVec4(v0+v1, v2+v3, v4+v5, v6+v7));
1400
}
1401
else
1402
{
1403
e0 = clampedRGBA(blueContract(v0+v1, v2+v3, v4+v5, v6+v7));
1404
e1 = clampedRGBA(blueContract(v0, v2, v4, v6));
1405
}
1406
break;
1407
}
1408
case 14:
1409
decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
1410
e0.w() = v[6];
1411
e1.w() = v[7];
1412
break;
1413
case 15:
1414
{
1415
decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
1416
break;
1417
}
1418
default:
1419
DE_ASSERT(false);
1420
}
1421
}
1422
}
1423
1424
void computeColorEndpoints (ColorEndpointPair* dst, const Block128& blockData, const deUint32* endpointModes, int numPartitions, int numColorEndpointValues, const ISEParams& iseParams, int numBitsAvailable)
1425
{
1426
const int colorEndpointDataStart = (numPartitions == 1) ? 17 : 29;
1427
ISEDecodedResult colorEndpointData[18];
1428
1429
{
1430
BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true);
1431
decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams);
1432
}
1433
1434
{
1435
deUint32 unquantizedEndpoints[18];
1436
unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams);
1437
decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions);
1438
}
1439
}
1440
1441
void unquantizeWeights (deUint32 dst[64], const ISEDecodedResult* weightGrid, const ASTCBlockMode& blockMode)
1442
{
1443
const int numWeights = computeNumWeights(blockMode);
1444
const ISEParams& iseParams = blockMode.weightISEParams;
1445
1446
if ((iseParams.mode == ISEMODE_TRIT) || (iseParams.mode == ISEMODE_QUINT))
1447
{
1448
const int rangeCase = iseParams.numBits*2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0);
1449
1450
if ((rangeCase == 0) || (rangeCase == 1))
1451
{
1452
static const deUint32 map0[3] = { 0, 32, 63 };
1453
static const deUint32 map1[5] = { 0, 16, 32, 47, 63 };
1454
const deUint32* const map = (rangeCase == 0) ? &map0[0] : &map1[0];
1455
1456
for (int i = 0; i < numWeights; i++)
1457
{
1458
DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u));
1459
dst[i] = map[weightGrid[i].v];
1460
}
1461
}
1462
else
1463
{
1464
DE_ASSERT(rangeCase <= 6);
1465
static const deUint32 Ca[5] = { 50, 28, 23, 13, 11 };
1466
const deUint32 C = Ca[rangeCase-2];
1467
1468
for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1469
{
1470
const deUint32 a = getBit(weightGrid[weightNdx].m, 0);
1471
const deUint32 b = getBit(weightGrid[weightNdx].m, 1);
1472
const deUint32 c = getBit(weightGrid[weightNdx].m, 2);
1473
1474
const deUint32 A = (a == 0) ? 0 : (1<<7)-1;
1475
const deUint32 B = (rangeCase == 2) ? 0
1476
: (rangeCase == 3) ? 0
1477
: (rangeCase == 4) ? (b << 6) | (b << 2) | (b << 0)
1478
: (rangeCase == 5) ? (b << 6) | (b << 1)
1479
: (rangeCase == 6) ? (c << 6) | (b << 5) | (c << 1) | (b << 0)
1480
: (deUint32)-1;
1481
1482
dst[weightNdx] = (((weightGrid[weightNdx].tq*C + B) ^ A) >> 2) | (A & 0x20);
1483
}
1484
}
1485
}
1486
else
1487
{
1488
DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
1489
for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1490
dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6);
1491
}
1492
1493
for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1494
dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0;
1495
1496
// Initialize nonexistent weights to poison values
1497
for (int weightNdx = numWeights; weightNdx < 64; weightNdx++)
1498
dst[weightNdx] = ~0u;
1499
}
1500
1501
void interpolateWeights (TexelWeightPair* dst, const deUint32 (&unquantizedWeights) [64], int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
1502
{
1503
const int numWeightsPerTexel = blockMode.isDualPlane ? 2 : 1;
1504
const deUint32 scaleX = (1024 + blockWidth/2) / (blockWidth-1);
1505
const deUint32 scaleY = (1024 + blockHeight/2) / (blockHeight-1);
1506
DE_ASSERT(blockMode.weightGridWidth*blockMode.weightGridHeight*numWeightsPerTexel <= (int)DE_LENGTH_OF_ARRAY(unquantizedWeights));
1507
1508
for (int texelY = 0; texelY < blockHeight; texelY++)
1509
{
1510
for (int texelX = 0; texelX < blockWidth; texelX++)
1511
{
1512
const deUint32 gX = (scaleX*texelX*(blockMode.weightGridWidth-1) + 32) >> 6;
1513
const deUint32 gY = (scaleY*texelY*(blockMode.weightGridHeight-1) + 32) >> 6;
1514
const deUint32 jX = gX >> 4;
1515
const deUint32 jY = gY >> 4;
1516
const deUint32 fX = gX & 0xf;
1517
const deUint32 fY = gY & 0xf;
1518
const deUint32 w11 = (fX*fY + 8) >> 4;
1519
const deUint32 w10 = fY - w11;
1520
const deUint32 w01 = fX - w11;
1521
const deUint32 w00 = 16 - fX - fY + w11;
1522
const deUint32 i00 = jY*blockMode.weightGridWidth + jX;
1523
const deUint32 i01 = i00 + 1;
1524
const deUint32 i10 = i00 + blockMode.weightGridWidth;
1525
const deUint32 i11 = i00 + blockMode.weightGridWidth + 1;
1526
1527
// These addresses can be out of bounds, but respective weights will be 0 then.
1528
DE_ASSERT(deInBounds32(i00, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w00 == 0);
1529
DE_ASSERT(deInBounds32(i01, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w01 == 0);
1530
DE_ASSERT(deInBounds32(i10, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w10 == 0);
1531
DE_ASSERT(deInBounds32(i11, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w11 == 0);
1532
1533
for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++)
1534
{
1535
// & 0x3f clamps address to bounds of unquantizedWeights
1536
const deUint32 p00 = unquantizedWeights[(i00 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1537
const deUint32 p01 = unquantizedWeights[(i01 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1538
const deUint32 p10 = unquantizedWeights[(i10 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1539
const deUint32 p11 = unquantizedWeights[(i11 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1540
1541
dst[texelY*blockWidth + texelX].w[texelWeightNdx] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
1542
}
1543
}
1544
}
1545
}
1546
1547
void computeTexelWeights (TexelWeightPair* dst, const Block128& blockData, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
1548
{
1549
ISEDecodedResult weightGrid[64];
1550
1551
{
1552
BitAccessStream dataStream(blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false);
1553
decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams);
1554
}
1555
1556
{
1557
deUint32 unquantizedWeights[64];
1558
unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode);
1559
1560
interpolateWeights(dst, unquantizedWeights, blockWidth, blockHeight, blockMode);
1561
}
1562
}
1563
1564
inline deUint32 hash52 (deUint32 v)
1565
{
1566
deUint32 p = v;
1567
p ^= p >> 15; p -= p << 17; p += p << 7; p += p << 4;
1568
p ^= p >> 5; p += p << 16; p ^= p >> 7; p ^= p >> 3;
1569
p ^= p << 6; p ^= p >> 17;
1570
return p;
1571
}
1572
1573
int computeTexelPartition (deUint32 seedIn, deUint32 xIn, deUint32 yIn, deUint32 zIn, int numPartitions, bool smallBlock)
1574
{
1575
DE_ASSERT(zIn == 0);
1576
1577
const deUint32 x = smallBlock ? xIn << 1 : xIn;
1578
const deUint32 y = smallBlock ? yIn << 1 : yIn;
1579
const deUint32 z = smallBlock ? zIn << 1 : zIn;
1580
const deUint32 seed = seedIn + 1024*(numPartitions-1);
1581
const deUint32 rnum = hash52(seed);
1582
1583
deUint8 seed1 = (deUint8)( rnum & 0xf);
1584
deUint8 seed2 = (deUint8)((rnum >> 4) & 0xf);
1585
deUint8 seed3 = (deUint8)((rnum >> 8) & 0xf);
1586
deUint8 seed4 = (deUint8)((rnum >> 12) & 0xf);
1587
deUint8 seed5 = (deUint8)((rnum >> 16) & 0xf);
1588
deUint8 seed6 = (deUint8)((rnum >> 20) & 0xf);
1589
deUint8 seed7 = (deUint8)((rnum >> 24) & 0xf);
1590
deUint8 seed8 = (deUint8)((rnum >> 28) & 0xf);
1591
deUint8 seed9 = (deUint8)((rnum >> 18) & 0xf);
1592
deUint8 seed10 = (deUint8)((rnum >> 22) & 0xf);
1593
deUint8 seed11 = (deUint8)((rnum >> 26) & 0xf);
1594
deUint8 seed12 = (deUint8)(((rnum >> 30) | (rnum << 2)) & 0xf);
1595
1596
seed1 = (deUint8)(seed1 * seed1 );
1597
seed2 = (deUint8)(seed2 * seed2 );
1598
seed3 = (deUint8)(seed3 * seed3 );
1599
seed4 = (deUint8)(seed4 * seed4 );
1600
seed5 = (deUint8)(seed5 * seed5 );
1601
seed6 = (deUint8)(seed6 * seed6 );
1602
seed7 = (deUint8)(seed7 * seed7 );
1603
seed8 = (deUint8)(seed8 * seed8 );
1604
seed9 = (deUint8)(seed9 * seed9 );
1605
seed10 = (deUint8)(seed10 * seed10);
1606
seed11 = (deUint8)(seed11 * seed11);
1607
seed12 = (deUint8)(seed12 * seed12);
1608
1609
const int shA = (seed & 2) != 0 ? 4 : 5;
1610
const int shB = numPartitions == 3 ? 6 : 5;
1611
const int sh1 = (seed & 1) != 0 ? shA : shB;
1612
const int sh2 = (seed & 1) != 0 ? shB : shA;
1613
const int sh3 = (seed & 0x10) != 0 ? sh1 : sh2;
1614
1615
seed1 = (deUint8)(seed1 >> sh1);
1616
seed2 = (deUint8)(seed2 >> sh2);
1617
seed3 = (deUint8)(seed3 >> sh1);
1618
seed4 = (deUint8)(seed4 >> sh2);
1619
seed5 = (deUint8)(seed5 >> sh1);
1620
seed6 = (deUint8)(seed6 >> sh2);
1621
seed7 = (deUint8)(seed7 >> sh1);
1622
seed8 = (deUint8)(seed8 >> sh2);
1623
seed9 = (deUint8)(seed9 >> sh3);
1624
seed10 = (deUint8)(seed10 >> sh3);
1625
seed11 = (deUint8)(seed11 >> sh3);
1626
seed12 = (deUint8)(seed12 >> sh3);
1627
1628
const int a = 0x3f & (seed1*x + seed2*y + seed11*z + (rnum >> 14));
1629
const int b = 0x3f & (seed3*x + seed4*y + seed12*z + (rnum >> 10));
1630
const int c = (numPartitions >= 3) ? 0x3f & (seed5*x + seed6*y + seed9*z + (rnum >> 6)) : 0;
1631
const int d = (numPartitions >= 4) ? 0x3f & (seed7*x + seed8*y + seed10*z + (rnum >> 2)) : 0;
1632
1633
return (a >= b && a >= c && a >= d) ? 0
1634
: (b >= c && b >= d) ? 1
1635
: (c >= d) ? 2
1636
: 3;
1637
}
1638
1639
DecompressResult setTexelColors (void* dst, ColorEndpointPair* colorEndpoints, TexelWeightPair* texelWeights, int ccs, deUint32 partitionIndexSeed,
1640
int numPartitions, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode, const deUint32* colorEndpointModes)
1641
{
1642
const bool smallBlock = blockWidth*blockHeight < 31;
1643
DecompressResult result = DECOMPRESS_RESULT_VALID_BLOCK;
1644
bool isHDREndpoint[4];
1645
1646
for (int i = 0; i < numPartitions; i++)
1647
{
1648
isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]);
1649
}
1650
1651
for (int texelY = 0; texelY < blockHeight; texelY++)
1652
{
1653
for (int texelX = 0; texelX < blockWidth; texelX++)
1654
{
1655
const int texelNdx = texelY * blockWidth + texelX;
1656
const int colorEndpointNdx = (numPartitions == 1) ? 0 : computeTexelPartition(partitionIndexSeed, texelX, texelY, 0, numPartitions, smallBlock);
1657
1658
DE_ASSERT(colorEndpointNdx < numPartitions);
1659
const UVec4& e0 = colorEndpoints[colorEndpointNdx].e0;
1660
const UVec4& e1 = colorEndpoints[colorEndpointNdx].e1;
1661
const TexelWeightPair& weight = texelWeights[texelNdx];
1662
1663
if (isLDRMode && isHDREndpoint[colorEndpointNdx])
1664
{
1665
if (isSRGB)
1666
{
1667
((deUint8*)dst)[texelNdx * 4 + 0] = 0xff;
1668
((deUint8*)dst)[texelNdx * 4 + 1] = 0;
1669
((deUint8*)dst)[texelNdx * 4 + 2] = 0xff;
1670
((deUint8*)dst)[texelNdx * 4 + 3] = 0xff;
1671
}
1672
else
1673
{
1674
((float*)dst)[texelNdx * 4 + 0] = 1.0f;
1675
((float*)dst)[texelNdx * 4 + 1] = 0;
1676
((float*)dst)[texelNdx * 4 + 2] = 1.0f;
1677
((float*)dst)[texelNdx * 4 + 3] = 1.0f;
1678
}
1679
result = DECOMPRESS_RESULT_ERROR;
1680
}
1681
else
1682
{
1683
for (int channelNdx = 0; channelNdx < 4; channelNdx++)
1684
{
1685
if (!isHDREndpoint[colorEndpointNdx] || (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == 14)) // \note Alpha for mode 14 is treated the same as LDR.
1686
{
1687
const deUint32 c0 = (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]);
1688
const deUint32 c1 = (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]);
1689
const deUint32 w = weight.w[ccs == channelNdx ? 1 : 0];
1690
const deUint32 c = (c0 * (64 - w) + c1 * w + 32) / 64;
1691
1692
if (isSRGB)
1693
((deUint8*)dst)[texelNdx * 4 + channelNdx] = (deUint8)((c & 0xff00) >> 8);
1694
else
1695
((float*)dst)[texelNdx * 4 + channelNdx] = (c == 65535) ? 1.0f : (float)c / 65536.0f;
1696
}
1697
else
1698
{
1699
DE_ASSERT(!isSRGB);
1700
//DE_STATIC_ASSERT((basisu_astc::meta::TypesSame<deFloat16, deUint16>::Value));
1701
1702
const deUint32 c0 = e0[channelNdx] << 4;
1703
const deUint32 c1 = e1[channelNdx] << 4;
1704
const deUint32 w = weight.w[(ccs == channelNdx) ? 1 : 0];
1705
const deUint32 c = (c0 * (64 - w) + c1 * w + 32) / 64;
1706
const deUint32 e = getBits(c, 11, 15);
1707
const deUint32 m = getBits(c, 0, 10);
1708
const deUint32 mt = (m < 512) ? (3 * m)
1709
: (m >= 1536) ? (5 * m - 2048)
1710
: (4 * m - 512);
1711
1712
const deFloat16 cf = (deFloat16)((e << 10) + (mt >> 3));
1713
1714
((float*)dst)[texelNdx * 4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf);
1715
}
1716
1717
} // channelNdx
1718
}
1719
} // texelX
1720
} // texelY
1721
1722
return result;
1723
}
1724
1725
DecompressResult decompressBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDR)
1726
{
1727
DE_ASSERT(isLDR || !isSRGB);
1728
1729
// Decode block mode.
1730
const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10));
1731
1732
// Check for block mode errors.
1733
if (blockMode.isError)
1734
{
1735
setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1736
return DECOMPRESS_RESULT_ERROR;
1737
}
1738
1739
// Separate path for void-extent.
1740
if (blockMode.isVoidExtent)
1741
return decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR);
1742
1743
// Compute weight grid values.
1744
const int numWeights = computeNumWeights(blockMode);
1745
const int numWeightDataBits = computeNumRequiredBits(blockMode.weightISEParams, numWeights);
1746
const int numPartitions = (int)blockData.getBits(11, 12) + 1;
1747
1748
// Check for errors in weight grid, partition and dual-plane parameters.
1749
if ((numWeights > 64) ||
1750
(numWeightDataBits > 96) ||
1751
(numWeightDataBits < 24) ||
1752
(blockMode.weightGridWidth > blockWidth) ||
1753
(blockMode.weightGridHeight > blockHeight) ||
1754
((numPartitions == 4) && blockMode.isDualPlane))
1755
{
1756
setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1757
return DECOMPRESS_RESULT_ERROR;
1758
}
1759
1760
// Compute number of bits available for color endpoint data.
1761
const bool isSingleUniqueCem = (numPartitions == 1) || (blockData.getBits(23, 24) == 0);
1762
1763
const int numConfigDataBits = ((numPartitions == 1) ? 17 : isSingleUniqueCem ? 29 : 25 + 3*numPartitions) +
1764
(blockMode.isDualPlane ? 2 : 0);
1765
1766
const int numBitsForColorEndpoints = 128 - numWeightDataBits - numConfigDataBits;
1767
1768
const int extraCemBitsStart = 127 - numWeightDataBits - (isSingleUniqueCem ? -1
1769
: (numPartitions == 4) ? 7
1770
: (numPartitions == 3) ? 4
1771
: (numPartitions == 2) ? 1
1772
: 0);
1773
1774
// Decode color endpoint modes.
1775
deUint32 colorEndpointModes[4];
1776
decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart);
1777
const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions);
1778
1779
// Check for errors in color endpoint value count.
1780
if ((numColorEndpointValues > 18) || (numBitsForColorEndpoints < (int)deDivRoundUp32(13*numColorEndpointValues, 5)))
1781
{
1782
setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1783
return DECOMPRESS_RESULT_ERROR;
1784
}
1785
1786
// Compute color endpoints.
1787
ColorEndpointPair colorEndpoints[4];
1788
computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues,
1789
computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), numBitsForColorEndpoints);
1790
1791
// Compute texel weights.
1792
TexelWeightPair texelWeights[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT];
1793
computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode);
1794
1795
// Set texel colors.
1796
const int ccs = blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart-2, extraCemBitsStart-1) : -1;
1797
const deUint32 partitionIndexSeed = (numPartitions > 1) ? blockData.getBits(13, 22) : (deUint32)-1;
1798
1799
return setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, blockHeight, isSRGB, isLDR, &colorEndpointModes[0]);
1800
}
1801
1802
// Returns -1 on error, 0 if LDR, 1 if HDR
1803
int isHDR(const Block128& blockData, int blockWidth, int blockHeight)
1804
{
1805
// Decode block mode.
1806
const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10));
1807
1808
// Check for block mode errors.
1809
if (blockMode.isError)
1810
return -1;
1811
1812
// Separate path for void-extent.
1813
if (blockMode.isVoidExtent)
1814
{
1815
const bool isHDRBlock = blockData.isBitSet(9);
1816
return isHDRBlock ? 1 : 0;
1817
}
1818
1819
// Compute weight grid values.
1820
const int numWeights = computeNumWeights(blockMode);
1821
const int numWeightDataBits = computeNumRequiredBits(blockMode.weightISEParams, numWeights);
1822
const int numPartitions = (int)blockData.getBits(11, 12) + 1;
1823
1824
// Check for errors in weight grid, partition and dual-plane parameters.
1825
if ((numWeights > 64) ||
1826
(numWeightDataBits > 96) ||
1827
(numWeightDataBits < 24) ||
1828
(blockMode.weightGridWidth > blockWidth) ||
1829
(blockMode.weightGridHeight > blockHeight) ||
1830
((numPartitions == 4) && blockMode.isDualPlane))
1831
{
1832
return -1;
1833
}
1834
1835
// Compute number of bits available for color endpoint data.
1836
const bool isSingleUniqueCem = (numPartitions == 1) || (blockData.getBits(23, 24) == 0);
1837
1838
const int extraCemBitsStart = 127 - numWeightDataBits - (isSingleUniqueCem ? -1
1839
: (numPartitions == 4) ? 7
1840
: (numPartitions == 3) ? 4
1841
: (numPartitions == 2) ? 1
1842
: 0);
1843
1844
// Decode color endpoint modes.
1845
deUint32 colorEndpointModes[4];
1846
decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart);
1847
1848
for (int i = 0; i < numPartitions; i++)
1849
{
1850
if (isColorEndpointModeHDR(colorEndpointModes[i]))
1851
return 1;
1852
}
1853
1854
return 0;
1855
}
1856
1857
typedef uint16_t half_float;
1858
1859
half_float float_to_half(float val, bool toward_zero)
1860
{
1861
union { float f; int32_t i; uint32_t u; } fi = { val };
1862
const int flt_m = fi.i & 0x7FFFFF, flt_e = (fi.i >> 23) & 0xFF, flt_s = (fi.i >> 31) & 0x1;
1863
int s = flt_s, e = 0, m = 0;
1864
1865
// inf/NaN
1866
if (flt_e == 0xff)
1867
{
1868
e = 31;
1869
if (flt_m != 0) // NaN
1870
m = 1;
1871
}
1872
// not zero or denormal
1873
else if (flt_e != 0)
1874
{
1875
int new_exp = flt_e - 127;
1876
if (new_exp > 15)
1877
e = 31;
1878
else if (new_exp < -14)
1879
{
1880
if (toward_zero)
1881
m = (int)truncf((1 << 24) * fabsf(fi.f));
1882
else
1883
m = lrintf((1 << 24) * fabsf(fi.f));
1884
}
1885
else
1886
{
1887
e = new_exp + 15;
1888
if (toward_zero)
1889
m = (int)truncf((float)flt_m * (1.0f / (float)(1 << 13)));
1890
else
1891
m = lrintf((float)flt_m * (1.0f / (float)(1 << 13)));
1892
}
1893
}
1894
1895
assert((0 <= m) && (m <= 1024));
1896
if (m == 1024)
1897
{
1898
e++;
1899
m = 0;
1900
}
1901
1902
assert((s >= 0) && (s <= 1));
1903
assert((e >= 0) && (e <= 31));
1904
assert((m >= 0) && (m <= 1023));
1905
1906
half_float result = (half_float)((s << 15) | (e << 10) | m);
1907
return result;
1908
}
1909
1910
float half_to_float(half_float hval)
1911
{
1912
union { float f; uint32_t u; } x = { 0 };
1913
1914
uint32_t s = ((uint32_t)hval >> 15) & 1;
1915
uint32_t e = ((uint32_t)hval >> 10) & 0x1F;
1916
uint32_t m = (uint32_t)hval & 0x3FF;
1917
1918
if (!e)
1919
{
1920
if (!m)
1921
{
1922
// +- 0
1923
x.u = s << 31;
1924
return x.f;
1925
}
1926
else
1927
{
1928
// denormalized
1929
while (!(m & 0x00000400))
1930
{
1931
m <<= 1;
1932
--e;
1933
}
1934
1935
++e;
1936
m &= ~0x00000400;
1937
}
1938
}
1939
else if (e == 31)
1940
{
1941
if (m == 0)
1942
{
1943
// +/- INF
1944
x.u = (s << 31) | 0x7f800000;
1945
return x.f;
1946
}
1947
else
1948
{
1949
// +/- NaN
1950
x.u = (s << 31) | 0x7f800000 | (m << 13);
1951
return x.f;
1952
}
1953
}
1954
1955
e = e + (127 - 15);
1956
m = m << 13;
1957
1958
assert(s <= 1);
1959
assert(m <= 0x7FFFFF);
1960
assert(e <= 255);
1961
1962
x.u = m | (e << 23) | (s << 31);
1963
return x.f;
1964
}
1965
1966
} // anonymous
1967
1968
// See https://registry.khronos.org/DataFormat/specs/1.3/dataformat.1.3.inline.html#_hdr_endpoint_decoding
1969
static void convert_to_half_prec(uint32_t n, float* pVals)
1970
{
1971
#if 0
1972
const int prev_dir = fesetround(FE_TOWARDZERO);
1973
1974
for (uint32_t i = 0; i < n; i++)
1975
pVals[i] = half_to_float(float_to_half(pVals[i]));
1976
1977
fesetround(prev_dir);
1978
1979
for (uint32_t i = 0; i < n; i++)
1980
{
1981
assert(pVals[i] == half_to_float(float_to_half(pVals[i], true)));
1982
}
1983
#else
1984
// This ensures the values are rounded towards zero as half floats.
1985
for (uint32_t i = 0; i < n; i++)
1986
{
1987
pVals[i] = half_to_float(float_to_half(pVals[i], true));
1988
}
1989
#endif
1990
}
1991
1992
bool decompress_ldr(uint8_t *pDst, const uint8_t * data, bool isSRGB, int blockWidth, int blockHeight)
1993
{
1994
float linear[MAX_BLOCK_WIDTH * MAX_BLOCK_HEIGHT * 4];
1995
1996
const Block128 blockData(data);
1997
1998
// isSRGB is true, this writes uint8_t's. Otherwise it writes floats.
1999
if (decompressBlock(isSRGB ? (void*)pDst : (void*)&linear[0], blockData, blockWidth, blockHeight, isSRGB, true) != DECOMPRESS_RESULT_VALID_BLOCK)
2000
{
2001
return false;
2002
}
2003
2004
if (!isSRGB)
2005
{
2006
// Convert the floats to 8-bits with rounding.
2007
int pix = 0;
2008
for (int i = 0; i < blockHeight; i++)
2009
{
2010
for (int j = 0; j < blockWidth; j++, pix++)
2011
{
2012
pDst[4 * pix + 0] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 0] * 65536.0f + .5f), 0, 65535) >> 8);
2013
pDst[4 * pix + 1] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 1] * 65536.0f + .5f), 0, 65535) >> 8);
2014
pDst[4 * pix + 2] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 2] * 65536.0f + .5f), 0, 65535) >> 8);
2015
pDst[4 * pix + 3] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 3] * 65536.0f + .5f), 0, 65535) >> 8);
2016
}
2017
}
2018
}
2019
2020
return true;
2021
}
2022
2023
bool decompress_hdr(float* pDstRGBA, const uint8_t* data, int blockWidth, int blockHeight)
2024
{
2025
const Block128 blockData(data);
2026
2027
if (decompressBlock(pDstRGBA, blockData, blockWidth, blockHeight, false, false) != DECOMPRESS_RESULT_VALID_BLOCK)
2028
{
2029
return false;
2030
}
2031
2032
convert_to_half_prec(blockWidth * blockHeight * 4, pDstRGBA);
2033
2034
return true;
2035
}
2036
2037
bool is_hdr(const uint8_t* data, int blockWidth, int blockHeight, bool &is_hdr)
2038
{
2039
is_hdr = false;
2040
2041
const Block128 blockData(data);
2042
2043
int status = isHDR(blockData, blockWidth, blockHeight);
2044
if (status < 0)
2045
{
2046
return false;
2047
}
2048
2049
is_hdr = (status == 1);
2050
2051
return true;
2052
}
2053
2054
} // astc
2055
2056
} // basisu_astc
2057
2058
#if defined(__GNUC__)
2059
#pragma GCC diagnostic pop
2060
#endif
2061
2062