Path: blob/master/thirdparty/basis_universal/encoder/basisu_miniz.h
9904 views
/* miniz.c v1.15 - deflate/inflate, zlib-subset, ZIP reading/writing/appending, PNG writing1Implements RFC 1950: http://www.ietf.org/rfc/rfc1950.txt and RFC 1951: http://www.ietf.org/rfc/rfc1951.txt23Forked from the public domain/unlicense version at: https://code.google.com/archive/p/miniz/45Copyright (C) 2019-2024 Binomial LLC. All Rights Reserved.67Licensed under the Apache License, Version 2.0 (the "License");8you may not use this file except in compliance with the License.9You may obtain a copy of the License at1011http://www.apache.org/licenses/LICENSE-2.01213Unless required by applicable law or agreed to in writing, software14distributed under the License is distributed on an "AS IS" BASIS,15WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.16See the License for the specific language governing permissions and17limitations under the License.18*/1920#ifndef MINIZ_HEADER_INCLUDED21#define MINIZ_HEADER_INCLUDED2223#include <stdlib.h>2425// Defines to completely disable specific portions of miniz.c:26// If all macros here are defined the only functionality remaining will be CRC-32, adler-32, tinfl, and tdefl.2728// Define MINIZ_NO_STDIO to disable all usage and any functions which rely on stdio for file I/O.29//#define MINIZ_NO_STDIO3031// If MINIZ_NO_TIME is specified then the ZIP archive functions will not be able to get the current time, or32// get/set file times, and the C run-time funcs that get/set times won't be called.33// The current downside is the times written to your archives will be from 1979.34//#define MINIZ_NO_TIME3536// Define MINIZ_NO_ARCHIVE_APIS to disable all ZIP archive API's.37//#define MINIZ_NO_ARCHIVE_APIS3839// Define MINIZ_NO_ARCHIVE_APIS to disable all writing related ZIP archive API's.40//#define MINIZ_NO_ARCHIVE_WRITING_APIS4142// Define MINIZ_NO_ZLIB_APIS to remove all ZLIB-style compression/decompression API's.43//#define MINIZ_NO_ZLIB_APIS4445// Define MINIZ_NO_ZLIB_COMPATIBLE_NAME to disable zlib names, to prevent conflicts against stock zlib.46//#define MINIZ_NO_ZLIB_COMPATIBLE_NAMES4748// Define MINIZ_NO_MALLOC to disable all calls to malloc, free, and realloc.49// Note if MINIZ_NO_MALLOC is defined then the user must always provide custom user alloc/free/realloc50// callbacks to the zlib and archive API's, and a few stand-alone helper API's which don't provide custom user51// functions (such as tdefl_compress_mem_to_heap() and tinfl_decompress_mem_to_heap()) won't work.52//#define MINIZ_NO_MALLOC5354#if defined(__TINYC__) && (defined(__linux) || defined(__linux__))55// TODO: Work around "error: include file 'sys\utime.h' when compiling with tcc on Linux56#define MINIZ_NO_TIME57#endif5859#if !defined(MINIZ_NO_TIME) && !defined(MINIZ_NO_ARCHIVE_APIS)60#include <time.h>61#endif6263#if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || defined(__i386) || defined(__i486__) || defined(__i486) || defined(i386) || defined(__ia64__) || defined(__x86_64__)64// MINIZ_X86_OR_X64_CPU is only used to help set the below macros.65#define MINIZ_X86_OR_X64_CPU 166#endif6768#if (__BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__) || MINIZ_X86_OR_X64_CPU69// Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian.70#define MINIZ_LITTLE_ENDIAN 171#endif7273#if MINIZ_X86_OR_X64_CPU74// Set MINIZ_USE_UNALIGNED_LOADS_AND_STORES to 1 on CPU's that permit efficient integer loads and stores from unaligned addresses.75#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 176#endif7778// Using unaligned loads and stores causes errors when using UBSan. Jam it off.79#if defined(__has_feature)80#if __has_feature(undefined_behavior_sanitizer)81#undef MINIZ_USE_UNALIGNED_LOADS_AND_STORES82#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 083#endif84#endif8586#if defined(_M_X64) || defined(_WIN64) || defined(__MINGW64__) || defined(_LP64) || defined(__LP64__) || defined(__ia64__) || defined(__x86_64__)87// Set MINIZ_HAS_64BIT_REGISTERS to 1 if operations on 64-bit integers are reasonably fast (and don't involve compiler generated calls to helper functions).88#define MINIZ_HAS_64BIT_REGISTERS 189#endif9091namespace buminiz {9293// ------------------- zlib-style API Definitions.9495// For more compatibility with zlib, miniz.c uses unsigned long for some parameters/struct members. Beware: mz_ulong can be either 32 or 64-bits!96typedef unsigned long mz_ulong;9798// mz_free() internally uses the MZ_FREE() macro (which by default calls free() unless you've modified the MZ_MALLOC macro) to release a block allocated from the heap.99void mz_free(void *p);100101#define MZ_ADLER32_INIT (1)102// mz_adler32() returns the initial adler-32 value to use when called with ptr==NULL.103mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len);104105#define MZ_CRC32_INIT (0)106// mz_crc32() returns the initial CRC-32 value to use when called with ptr==NULL.107mz_ulong mz_crc32(mz_ulong crc, const unsigned char *ptr, size_t buf_len);108109// Compression strategies.110enum { MZ_DEFAULT_STRATEGY = 0, MZ_FILTERED = 1, MZ_HUFFMAN_ONLY = 2, MZ_RLE = 3, MZ_FIXED = 4 };111112// Method113#define MZ_DEFLATED 8114115#ifndef MINIZ_NO_ZLIB_APIS116117// Heap allocation callbacks.118// Note that mz_alloc_func parameter types purpsosely differ from zlib's: items/size is size_t, not unsigned long.119typedef void *(*mz_alloc_func)(void *opaque, size_t items, size_t size);120typedef void (*mz_free_func)(void *opaque, void *address);121typedef void *(*mz_realloc_func)(void *opaque, void *address, size_t items, size_t size);122123#define MZ_VERSION "9.1.15"124#define MZ_VERNUM 0x91F0125#define MZ_VER_MAJOR 9126#define MZ_VER_MINOR 1127#define MZ_VER_REVISION 15128#define MZ_VER_SUBREVISION 0129130// Flush values. For typical usage you only need MZ_NO_FLUSH and MZ_FINISH. The other values are for advanced use (refer to the zlib docs).131enum { MZ_NO_FLUSH = 0, MZ_PARTIAL_FLUSH = 1, MZ_SYNC_FLUSH = 2, MZ_FULL_FLUSH = 3, MZ_FINISH = 4, MZ_BLOCK = 5 };132133// Return status codes. MZ_PARAM_ERROR is non-standard.134enum { MZ_OK = 0, MZ_STREAM_END = 1, MZ_NEED_DICT = 2, MZ_ERRNO = -1, MZ_STREAM_ERROR = -2, MZ_DATA_ERROR = -3, MZ_MEM_ERROR = -4, MZ_BUF_ERROR = -5, MZ_VERSION_ERROR = -6, MZ_PARAM_ERROR = -10000 };135136// Compression levels: 0-9 are the standard zlib-style levels, 10 is best possible compression (not zlib compatible, and may be very slow), MZ_DEFAULT_COMPRESSION=MZ_DEFAULT_LEVEL.137enum { MZ_NO_COMPRESSION = 0, MZ_BEST_SPEED = 1, MZ_BEST_COMPRESSION = 9, MZ_UBER_COMPRESSION = 10, MZ_DEFAULT_LEVEL = 6, MZ_DEFAULT_COMPRESSION = -1 };138139// Window bits140#define MZ_DEFAULT_WINDOW_BITS 15141142struct mz_internal_state;143144// Compression/decompression stream struct.145typedef struct mz_stream_s146{147const unsigned char *next_in; // pointer to next byte to read148unsigned int avail_in; // number of bytes available at next_in149mz_ulong total_in; // total number of bytes consumed so far150151unsigned char *next_out; // pointer to next byte to write152unsigned int avail_out; // number of bytes that can be written to next_out153mz_ulong total_out; // total number of bytes produced so far154155char *msg; // error msg (unused)156struct mz_internal_state *state; // internal state, allocated by zalloc/zfree157158mz_alloc_func zalloc; // optional heap allocation function (defaults to malloc)159mz_free_func zfree; // optional heap free function (defaults to free)160void *opaque; // heap alloc function user pointer161162int data_type; // data_type (unused)163mz_ulong adler; // adler32 of the source or uncompressed data164mz_ulong reserved; // not used165} mz_stream;166167typedef mz_stream *mz_streamp;168169// Returns the version string of miniz.c.170const char *mz_version(void);171172// mz_deflateInit() initializes a compressor with default options:173// Parameters:174// pStream must point to an initialized mz_stream struct.175// level must be between [MZ_NO_COMPRESSION, MZ_BEST_COMPRESSION].176// level 1 enables a specially optimized compression function that's been optimized purely for performance, not ratio.177// (This special func. is currently only enabled when MINIZ_USE_UNALIGNED_LOADS_AND_STORES and MINIZ_LITTLE_ENDIAN are defined.)178// Return values:179// MZ_OK on success.180// MZ_STREAM_ERROR if the stream is bogus.181// MZ_PARAM_ERROR if the input parameters are bogus.182// MZ_MEM_ERROR on out of memory.183int mz_deflateInit(mz_streamp pStream, int level);184185// mz_deflateInit2() is like mz_deflate(), except with more control:186// Additional parameters:187// method must be MZ_DEFLATED188// window_bits must be MZ_DEFAULT_WINDOW_BITS (to wrap the deflate stream with zlib header/adler-32 footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate/no header or footer)189// mem_level must be between [1, 9] (it's checked but ignored by miniz.c)190int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits, int mem_level, int strategy);191192// Quickly resets a compressor without having to reallocate anything. Same as calling mz_deflateEnd() followed by mz_deflateInit()/mz_deflateInit2().193int mz_deflateReset(mz_streamp pStream);194195// mz_deflate() compresses the input to output, consuming as much of the input and producing as much output as possible.196// Parameters:197// pStream is the stream to read from and write to. You must initialize/update the next_in, avail_in, next_out, and avail_out members.198// flush may be MZ_NO_FLUSH, MZ_PARTIAL_FLUSH/MZ_SYNC_FLUSH, MZ_FULL_FLUSH, or MZ_FINISH.199// Return values:200// MZ_OK on success (when flushing, or if more input is needed but not available, and/or there's more output to be written but the output buffer is full).201// MZ_STREAM_END if all input has been consumed and all output bytes have been written. Don't call mz_deflate() on the stream anymore.202// MZ_STREAM_ERROR if the stream is bogus.203// MZ_PARAM_ERROR if one of the parameters is invalid.204// MZ_BUF_ERROR if no forward progress is possible because the input and/or output buffers are empty. (Fill up the input buffer or free up some output space and try again.)205int mz_deflate(mz_streamp pStream, int flush);206207// mz_deflateEnd() deinitializes a compressor:208// Return values:209// MZ_OK on success.210// MZ_STREAM_ERROR if the stream is bogus.211int mz_deflateEnd(mz_streamp pStream);212213// mz_deflateBound() returns a (very) conservative upper bound on the amount of data that could be generated by deflate(), assuming flush is set to only MZ_NO_FLUSH or MZ_FINISH.214mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len);215216// Single-call compression functions mz_compress() and mz_compress2():217// Returns MZ_OK on success, or one of the error codes from mz_deflate() on failure.218int mz_compress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len);219int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len, int level);220221// mz_compressBound() returns a (very) conservative upper bound on the amount of data that could be generated by calling mz_compress().222mz_ulong mz_compressBound(mz_ulong source_len);223224// Initializes a decompressor.225int mz_inflateInit(mz_streamp pStream);226227// mz_inflateInit2() is like mz_inflateInit() with an additional option that controls the window size and whether or not the stream has been wrapped with a zlib header/footer:228// window_bits must be MZ_DEFAULT_WINDOW_BITS (to parse zlib header/footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate).229int mz_inflateInit2(mz_streamp pStream, int window_bits);230231// Decompresses the input stream to the output, consuming only as much of the input as needed, and writing as much to the output as possible.232// Parameters:233// pStream is the stream to read from and write to. You must initialize/update the next_in, avail_in, next_out, and avail_out members.234// flush may be MZ_NO_FLUSH, MZ_SYNC_FLUSH, or MZ_FINISH.235// On the first call, if flush is MZ_FINISH it's assumed the input and output buffers are both sized large enough to decompress the entire stream in a single call (this is slightly faster).236// MZ_FINISH implies that there are no more source bytes available beside what's already in the input buffer, and that the output buffer is large enough to hold the rest of the decompressed data.237// Return values:238// MZ_OK on success. Either more input is needed but not available, and/or there's more output to be written but the output buffer is full.239// MZ_STREAM_END if all needed input has been consumed and all output bytes have been written. For zlib streams, the adler-32 of the decompressed data has also been verified.240// MZ_STREAM_ERROR if the stream is bogus.241// MZ_DATA_ERROR if the deflate stream is invalid.242// MZ_PARAM_ERROR if one of the parameters is invalid.243// MZ_BUF_ERROR if no forward progress is possible because the input buffer is empty but the inflater needs more input to continue, or if the output buffer is not large enough. Call mz_inflate() again244// with more input data, or with more room in the output buffer (except when using single call decompression, described above).245int mz_inflate(mz_streamp pStream, int flush);246int mz_inflate2(mz_streamp pStream, int flush, int adler32_checking);247248// Deinitializes a decompressor.249int mz_inflateEnd(mz_streamp pStream);250251// Single-call decompression.252// Returns MZ_OK on success, or one of the error codes from mz_inflate() on failure.253int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len);254255// Returns a string description of the specified error code, or NULL if the error code is invalid.256const char *mz_error(int err);257258// Redefine zlib-compatible names to miniz equivalents, so miniz.c can be used as a drop-in replacement for the subset of zlib that miniz.c supports.259// Define MINIZ_NO_ZLIB_COMPATIBLE_NAMES to disable zlib-compatibility if you use zlib in the same project.260#ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES261typedef unsigned char Byte;262typedef unsigned int uInt;263typedef mz_ulong uLong;264typedef Byte Bytef;265typedef uInt uIntf;266typedef char charf;267typedef int intf;268typedef void *voidpf;269typedef uLong uLongf;270typedef void *voidp;271typedef void *const voidpc;272#define Z_NULL 0273#define Z_NO_FLUSH MZ_NO_FLUSH274#define Z_PARTIAL_FLUSH MZ_PARTIAL_FLUSH275#define Z_SYNC_FLUSH MZ_SYNC_FLUSH276#define Z_FULL_FLUSH MZ_FULL_FLUSH277#define Z_FINISH MZ_FINISH278#define Z_BLOCK MZ_BLOCK279#define Z_OK MZ_OK280#define Z_STREAM_END MZ_STREAM_END281#define Z_NEED_DICT MZ_NEED_DICT282#define Z_ERRNO MZ_ERRNO283#define Z_STREAM_ERROR MZ_STREAM_ERROR284#define Z_DATA_ERROR MZ_DATA_ERROR285#define Z_MEM_ERROR MZ_MEM_ERROR286#define Z_BUF_ERROR MZ_BUF_ERROR287#define Z_VERSION_ERROR MZ_VERSION_ERROR288#define Z_PARAM_ERROR MZ_PARAM_ERROR289#define Z_NO_COMPRESSION MZ_NO_COMPRESSION290#define Z_BEST_SPEED MZ_BEST_SPEED291#define Z_BEST_COMPRESSION MZ_BEST_COMPRESSION292#define Z_DEFAULT_COMPRESSION MZ_DEFAULT_COMPRESSION293#define Z_DEFAULT_STRATEGY MZ_DEFAULT_STRATEGY294#define Z_FILTERED MZ_FILTERED295#define Z_HUFFMAN_ONLY MZ_HUFFMAN_ONLY296#define Z_RLE MZ_RLE297#define Z_FIXED MZ_FIXED298#define Z_DEFLATED MZ_DEFLATED299#define Z_DEFAULT_WINDOW_BITS MZ_DEFAULT_WINDOW_BITS300#define alloc_func mz_alloc_func301#define free_func mz_free_func302#define internal_state mz_internal_state303#define z_stream mz_stream304#define deflateInit mz_deflateInit305#define deflateInit2 mz_deflateInit2306#define deflateReset mz_deflateReset307#define deflate mz_deflate308#define deflateEnd mz_deflateEnd309#define deflateBound mz_deflateBound310#define compress mz_compress311#define compress2 mz_compress2312#define compressBound mz_compressBound313#define inflateInit mz_inflateInit314#define inflateInit2 mz_inflateInit2315#define inflate mz_inflate316#define inflateEnd mz_inflateEnd317#define uncompress mz_uncompress318#define crc32 mz_crc32319#define adler32 mz_adler32320#define MAX_WBITS 15321#define MAX_MEM_LEVEL 9322#define zError mz_error323#define ZLIB_VERSION MZ_VERSION324#define ZLIB_VERNUM MZ_VERNUM325#define ZLIB_VER_MAJOR MZ_VER_MAJOR326#define ZLIB_VER_MINOR MZ_VER_MINOR327#define ZLIB_VER_REVISION MZ_VER_REVISION328#define ZLIB_VER_SUBREVISION MZ_VER_SUBREVISION329#define zlibVersion mz_version330#define zlib_version mz_version()331#endif // #ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES332333#endif // MINIZ_NO_ZLIB_APIS334335// ------------------- Types and macros336337typedef unsigned char mz_uint8;338typedef signed short mz_int16;339typedef unsigned short mz_uint16;340typedef unsigned int mz_uint32;341typedef unsigned int mz_uint;342typedef long long mz_int64;343typedef unsigned long long mz_uint64;344typedef int mz_bool;345346#define MZ_FALSE (0)347#define MZ_TRUE (1)348349// An attempt to work around MSVC's spammy "warning C4127: conditional expression is constant" message.350#ifdef _MSC_VER351#define MZ_MACRO_END while (0, 0)352#else353#define MZ_MACRO_END while (0)354#endif355356// ------------------- Low-level Decompression API Definitions357358// Decompression flags used by tinfl_decompress().359// TINFL_FLAG_PARSE_ZLIB_HEADER: If set, the input has a valid zlib header and ends with an adler32 checksum (it's a valid zlib stream). Otherwise, the input is a raw deflate stream.360// TINFL_FLAG_HAS_MORE_INPUT: If set, there are more input bytes available beyond the end of the supplied input buffer. If clear, the input buffer contains all remaining input.361// TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: If set, the output buffer is large enough to hold the entire decompressed stream. If clear, the output buffer is at least the size of the dictionary (typically 32KB).362// TINFL_FLAG_COMPUTE_ADLER32: Force adler-32 checksum computation of the decompressed bytes.363enum364{365TINFL_FLAG_PARSE_ZLIB_HEADER = 1,366TINFL_FLAG_HAS_MORE_INPUT = 2,367TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF = 4,368TINFL_FLAG_COMPUTE_ADLER32 = 8369};370371// High level decompression functions:372// tinfl_decompress_mem_to_heap() decompresses a block in memory to a heap block allocated via malloc().373// On entry:374// pSrc_buf, src_buf_len: Pointer and size of the Deflate or zlib source data to decompress.375// On return:376// Function returns a pointer to the decompressed data, or NULL on failure.377// *pOut_len will be set to the decompressed data's size, which could be larger than src_buf_len on uncompressible data.378// The caller must call mz_free() on the returned block when it's no longer needed.379void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags);380381// tinfl_decompress_mem_to_mem() decompresses a block in memory to another block in memory.382// Returns TINFL_DECOMPRESS_MEM_TO_MEM_FAILED on failure, or the number of bytes written on success.383#define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED ((size_t)(-1))384size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags);385386// tinfl_decompress_mem_to_callback() decompresses a block in memory to an internal 32KB buffer, and a user provided callback function will be called to flush the buffer.387// Returns 1 on success or 0 on failure.388typedef int (*tinfl_put_buf_func_ptr)(const void* pBuf, int len, void *pUser);389int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags);390391struct tinfl_decompressor_tag; typedef struct tinfl_decompressor_tag tinfl_decompressor;392393// Max size of LZ dictionary.394#define TINFL_LZ_DICT_SIZE 32768395396// Return status.397typedef enum398{399TINFL_STATUS_BAD_PARAM = -3,400TINFL_STATUS_ADLER32_MISMATCH = -2,401TINFL_STATUS_FAILED = -1,402TINFL_STATUS_DONE = 0,403TINFL_STATUS_NEEDS_MORE_INPUT = 1,404TINFL_STATUS_HAS_MORE_OUTPUT = 2405} tinfl_status;406407// Initializes the decompressor to its initial state.408#define tinfl_init(r) do { (r)->m_state = 0; } MZ_MACRO_END409#define tinfl_get_adler32(r) (r)->m_check_adler32410411// Main low-level decompressor coroutine function. This is the only function actually needed for decompression. All the other functions are just high-level helpers for improved usability.412// This is a universal API, i.e. it can be used as a building block to build any desired higher level decompression API. In the limit case, it can be called once per every byte input or output.413tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags);414415// Internal/private bits follow.416enum417{418TINFL_MAX_HUFF_TABLES = 3, TINFL_MAX_HUFF_SYMBOLS_0 = 288, TINFL_MAX_HUFF_SYMBOLS_1 = 32, TINFL_MAX_HUFF_SYMBOLS_2 = 19,419TINFL_FAST_LOOKUP_BITS = 10, TINFL_FAST_LOOKUP_SIZE = 1 << TINFL_FAST_LOOKUP_BITS420};421422typedef struct423{424mz_uint8 m_code_size[TINFL_MAX_HUFF_SYMBOLS_0];425mz_int16 m_look_up[TINFL_FAST_LOOKUP_SIZE], m_tree[TINFL_MAX_HUFF_SYMBOLS_0 * 2];426} tinfl_huff_table;427428#if MINIZ_HAS_64BIT_REGISTERS429#define TINFL_USE_64BIT_BITBUF 1430#endif431432#if TINFL_USE_64BIT_BITBUF433typedef mz_uint64 tinfl_bit_buf_t;434#define TINFL_BITBUF_SIZE (64)435#else436typedef mz_uint32 tinfl_bit_buf_t;437#define TINFL_BITBUF_SIZE (32)438#endif439440struct tinfl_decompressor_tag441{442mz_uint32 m_state, m_num_bits, m_zhdr0, m_zhdr1, m_z_adler32, m_final, m_type, m_check_adler32, m_dist, m_counter, m_num_extra, m_table_sizes[TINFL_MAX_HUFF_TABLES];443tinfl_bit_buf_t m_bit_buf;444size_t m_dist_from_out_buf_start;445tinfl_huff_table m_tables[TINFL_MAX_HUFF_TABLES];446mz_uint8 m_raw_header[4], m_len_codes[TINFL_MAX_HUFF_SYMBOLS_0 + TINFL_MAX_HUFF_SYMBOLS_1 + 137];447};448449// ------------------- Low-level Compression API Definitions450451// Set TDEFL_LESS_MEMORY to 1 to use less memory (compression will be slightly slower, and raw/dynamic blocks will be output more frequently).452#define TDEFL_LESS_MEMORY 0453454// tdefl_init() compression flags logically OR'd together (low 12 bits contain the max. number of probes per dictionary search):455// TDEFL_DEFAULT_MAX_PROBES: The compressor defaults to 128 dictionary probes per dictionary search. 0=Huffman only, 1=Huffman+LZ (fastest/crap compression), 4095=Huffman+LZ (slowest/best compression).456enum457{458TDEFL_HUFFMAN_ONLY = 0, TDEFL_DEFAULT_MAX_PROBES = 128, TDEFL_MAX_PROBES_MASK = 0xFFF459};460461// TDEFL_WRITE_ZLIB_HEADER: If set, the compressor outputs a zlib header before the deflate data, and the Adler-32 of the source data at the end. Otherwise, you'll get raw deflate data.462// TDEFL_COMPUTE_ADLER32: Always compute the adler-32 of the input data (even when not writing zlib headers).463// TDEFL_GREEDY_PARSING_FLAG: Set to use faster greedy parsing, instead of more efficient lazy parsing.464// TDEFL_NONDETERMINISTIC_PARSING_FLAG: Enable to decrease the compressor's initialization time to the minimum, but the output may vary from run to run given the same input (depending on the contents of memory).465// TDEFL_RLE_MATCHES: Only look for RLE matches (matches with a distance of 1)466// TDEFL_FILTER_MATCHES: Discards matches <= 5 chars if enabled.467// TDEFL_FORCE_ALL_STATIC_BLOCKS: Disable usage of optimized Huffman tables.468// TDEFL_FORCE_ALL_RAW_BLOCKS: Only use raw (uncompressed) deflate blocks.469// The low 12 bits are reserved to control the max # of hash probes per dictionary lookup (see TDEFL_MAX_PROBES_MASK).470enum471{472TDEFL_WRITE_ZLIB_HEADER = 0x01000,473TDEFL_COMPUTE_ADLER32 = 0x02000,474TDEFL_GREEDY_PARSING_FLAG = 0x04000,475TDEFL_NONDETERMINISTIC_PARSING_FLAG = 0x08000,476TDEFL_RLE_MATCHES = 0x10000,477TDEFL_FILTER_MATCHES = 0x20000,478TDEFL_FORCE_ALL_STATIC_BLOCKS = 0x40000,479TDEFL_FORCE_ALL_RAW_BLOCKS = 0x80000480};481482// High level compression functions:483// tdefl_compress_mem_to_heap() compresses a block in memory to a heap block allocated via malloc().484// On entry:485// pSrc_buf, src_buf_len: Pointer and size of source block to compress.486// flags: The max match finder probes (default is 128) logically OR'd against the above flags. Higher probes are slower but improve compression.487// On return:488// Function returns a pointer to the compressed data, or NULL on failure.489// *pOut_len will be set to the compressed data's size, which could be larger than src_buf_len on uncompressible data.490// The caller must free() the returned block when it's no longer needed.491void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags);492493// tdefl_compress_mem_to_mem() compresses a block in memory to another block in memory.494// Returns 0 on failure.495size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags);496497// Compresses an image to a compressed PNG file in memory.498// On entry:499// pImage, w, h, and num_chans describe the image to compress. num_chans may be 1, 2, 3, or 4.500// The image pitch in bytes per scanline will be w*num_chans. The leftmost pixel on the top scanline is stored first in memory.501// level may range from [0,10], use MZ_NO_COMPRESSION, MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc. or a decent default is MZ_DEFAULT_LEVEL502// If flip is true, the image will be flipped on the Y axis (useful for OpenGL apps).503// On return:504// Function returns a pointer to the compressed data, or NULL on failure.505// *pLen_out will be set to the size of the PNG image file.506// The caller must mz_free() the returned heap block (which will typically be larger than *pLen_out) when it's no longer needed.507void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w, int h, int num_chans, size_t *pLen_out, mz_uint level, mz_bool flip);508void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h, int num_chans, size_t *pLen_out);509510// Output stream interface. The compressor uses this interface to write compressed data. It'll typically be called TDEFL_OUT_BUF_SIZE at a time.511typedef mz_bool (*tdefl_put_buf_func_ptr)(const void* pBuf, int len, void *pUser);512513// tdefl_compress_mem_to_output() compresses a block to an output stream. The above helpers use this function internally.514mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags);515516enum { TDEFL_MAX_HUFF_TABLES = 3, TDEFL_MAX_HUFF_SYMBOLS_0 = 288, TDEFL_MAX_HUFF_SYMBOLS_1 = 32, TDEFL_MAX_HUFF_SYMBOLS_2 = 19, TDEFL_LZ_DICT_SIZE = 32768, TDEFL_LZ_DICT_SIZE_MASK = TDEFL_LZ_DICT_SIZE - 1, TDEFL_MIN_MATCH_LEN = 3, TDEFL_MAX_MATCH_LEN = 258 };517518// TDEFL_OUT_BUF_SIZE MUST be large enough to hold a single entire compressed output block (using static/fixed Huffman codes).519#if TDEFL_LESS_MEMORY520enum { TDEFL_LZ_CODE_BUF_SIZE = 24 * 1024, TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13 ) / 10, TDEFL_MAX_HUFF_SYMBOLS = 288, TDEFL_LZ_HASH_BITS = 12, TDEFL_LEVEL1_HASH_SIZE_MASK = 4095, TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3, TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS };521#else522enum { TDEFL_LZ_CODE_BUF_SIZE = 64 * 1024, TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13 ) / 10, TDEFL_MAX_HUFF_SYMBOLS = 288, TDEFL_LZ_HASH_BITS = 15, TDEFL_LEVEL1_HASH_SIZE_MASK = 4095, TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3, TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS };523#endif524525// The low-level tdefl functions below may be used directly if the above helper functions aren't flexible enough. The low-level functions don't make any heap allocations, unlike the above helper functions.526typedef enum527{528TDEFL_STATUS_BAD_PARAM = -2,529TDEFL_STATUS_PUT_BUF_FAILED = -1,530TDEFL_STATUS_OKAY = 0,531TDEFL_STATUS_DONE = 1,532} tdefl_status;533534// Must map to MZ_NO_FLUSH, MZ_SYNC_FLUSH, etc. enums535typedef enum536{537TDEFL_NO_FLUSH = 0,538TDEFL_SYNC_FLUSH = 2,539TDEFL_FULL_FLUSH = 3,540TDEFL_FINISH = 4541} tdefl_flush;542543// tdefl's compression state structure.544typedef struct545{546tdefl_put_buf_func_ptr m_pPut_buf_func;547void *m_pPut_buf_user;548mz_uint m_flags, m_max_probes[2];549int m_greedy_parsing;550mz_uint m_adler32, m_lookahead_pos, m_lookahead_size, m_dict_size;551mz_uint8 *m_pLZ_code_buf, *m_pLZ_flags, *m_pOutput_buf, *m_pOutput_buf_end;552mz_uint m_num_flags_left, m_total_lz_bytes, m_lz_code_buf_dict_pos, m_bits_in, m_bit_buffer;553mz_uint m_saved_match_dist, m_saved_match_len, m_saved_lit, m_output_flush_ofs, m_output_flush_remaining, m_finished, m_block_index, m_wants_to_finish;554tdefl_status m_prev_return_status;555const void *m_pIn_buf;556void *m_pOut_buf;557size_t *m_pIn_buf_size, *m_pOut_buf_size;558tdefl_flush m_flush;559const mz_uint8 *m_pSrc;560size_t m_src_buf_left, m_out_buf_ofs;561mz_uint8 m_dict[TDEFL_LZ_DICT_SIZE + TDEFL_MAX_MATCH_LEN - 1];562mz_uint16 m_huff_count[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];563mz_uint16 m_huff_codes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];564mz_uint8 m_huff_code_sizes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];565mz_uint8 m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE];566mz_uint16 m_next[TDEFL_LZ_DICT_SIZE];567mz_uint16 m_hash[TDEFL_LZ_HASH_SIZE];568mz_uint8 m_output_buf[TDEFL_OUT_BUF_SIZE];569} tdefl_compressor;570571// Initializes the compressor.572// There is no corresponding deinit() function because the tdefl API's do not dynamically allocate memory.573// pBut_buf_func: If NULL, output data will be supplied to the specified callback. In this case, the user should call the tdefl_compress_buffer() API for compression.574// If pBut_buf_func is NULL the user should always call the tdefl_compress() API.575// flags: See the above enums (TDEFL_HUFFMAN_ONLY, TDEFL_WRITE_ZLIB_HEADER, etc.)576tdefl_status tdefl_init(tdefl_compressor *d, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags);577578// Compresses a block of data, consuming as much of the specified input buffer as possible, and writing as much compressed data to the specified output buffer as possible.579tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf, size_t *pIn_buf_size, void *pOut_buf, size_t *pOut_buf_size, tdefl_flush flush);580581// tdefl_compress_buffer() is only usable when the tdefl_init() is called with a non-NULL tdefl_put_buf_func_ptr.582// tdefl_compress_buffer() always consumes the entire input buffer.583tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf, size_t in_buf_size, tdefl_flush flush);584585tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d);586mz_uint32 tdefl_get_adler32(tdefl_compressor *d);587588// Can't use tdefl_create_comp_flags_from_zip_params if MINIZ_NO_ZLIB_APIS isn't defined, because it uses some of its macros.589#ifndef MINIZ_NO_ZLIB_APIS590// Create tdefl_compress() flags given zlib-style compression parameters.591// level may range from [0,10] (where 10 is absolute max compression, but may be much slower on some files)592// window_bits may be -15 (raw deflate) or 15 (zlib)593// strategy may be either MZ_DEFAULT_STRATEGY, MZ_FILTERED, MZ_HUFFMAN_ONLY, MZ_RLE, or MZ_FIXED594mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits, int strategy);595#endif // #ifndef MINIZ_NO_ZLIB_APIS596597} // namespace buminiz598599#endif // MINIZ_HEADER_INCLUDED600601// ------------------- End of Header: Implementation follows. (If you only want the header, define MINIZ_HEADER_FILE_ONLY.)602603#ifndef MINIZ_HEADER_FILE_ONLY604605#include <string.h>606#include <assert.h>607608namespace buminiz {609610typedef unsigned char mz_validate_uint16[sizeof(mz_uint16)==2 ? 1 : -1];611typedef unsigned char mz_validate_uint32[sizeof(mz_uint32)==4 ? 1 : -1];612typedef unsigned char mz_validate_uint64[sizeof(mz_uint64)==8 ? 1 : -1];613614#define MZ_ASSERT(x) assert(x)615616#ifdef MINIZ_NO_MALLOC617#define MZ_MALLOC(x) NULL618#define MZ_FREE(x) (void)x, ((void)0)619#define MZ_REALLOC(p, x) NULL620#else621#define MZ_MALLOC(x) malloc(x)622#define MZ_FREE(x) free(x)623#define MZ_REALLOC(p, x) realloc(p, x)624#endif625626#define MZ_MAX(a,b) (((a)>(b))?(a):(b))627#define MZ_MIN(a,b) (((a)<(b))?(a):(b))628#define MZ_CLEAR_OBJ(obj) memset(&(obj), 0, sizeof(obj))629630#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN631#define MZ_READ_LE16(p) *((const mz_uint16 *)(p))632#define MZ_READ_LE32(p) *((const mz_uint32 *)(p))633#else634#define MZ_READ_LE16(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U))635#define MZ_READ_LE32(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U) | ((mz_uint32)(((const mz_uint8 *)(p))[2]) << 16U) | ((mz_uint32)(((const mz_uint8 *)(p))[3]) << 24U))636#endif637638#ifdef _MSC_VER639#define MZ_FORCEINLINE __forceinline640#elif defined(__GNUC__)641#define MZ_FORCEINLINE inline __attribute__((__always_inline__))642#else643#define MZ_FORCEINLINE inline644#endif645646// ------------------- zlib-style API's647648mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len)649{650mz_uint32 i, s1 = (mz_uint32)(adler & 0xffff), s2 = (mz_uint32)(adler >> 16); size_t block_len = buf_len % 5552;651if (!ptr) return MZ_ADLER32_INIT;652while (buf_len) {653for (i = 0; i + 7 < block_len; i += 8, ptr += 8) {654s1 += ptr[0], s2 += s1; s1 += ptr[1], s2 += s1; s1 += ptr[2], s2 += s1; s1 += ptr[3], s2 += s1;655s1 += ptr[4], s2 += s1; s1 += ptr[5], s2 += s1; s1 += ptr[6], s2 += s1; s1 += ptr[7], s2 += s1;656}657for ( ; i < block_len; ++i) s1 += *ptr++, s2 += s1;658s1 %= 65521U, s2 %= 65521U; buf_len -= block_len; block_len = 5552;659}660return (s2 << 16) + s1;661}662663// Karl Malbrain's compact CRC-32. See "A compact CCITT crc16 and crc32 C implementation that balances processor cache usage against speed": http://www.geocities.com/malbrain/664mz_ulong mz_crc32(mz_ulong crc, const mz_uint8 *ptr, size_t buf_len)665{666static const mz_uint32 s_crc32[16] = { 0, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,6670xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c };668mz_uint32 crcu32 = (mz_uint32)crc;669if (!ptr) return MZ_CRC32_INIT;670crcu32 = ~crcu32; while (buf_len--) { mz_uint8 b = *ptr++; crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b & 0xF)]; crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b >> 4)]; }671return ~crcu32;672}673674void mz_free(void *p)675{676MZ_FREE(p);677}678679#ifndef MINIZ_NO_ZLIB_APIS680681static void *def_alloc_func(void *opaque, size_t items, size_t size) { (void)opaque, (void)items, (void)size; return MZ_MALLOC(items * size); }682static void def_free_func(void *opaque, void *address) { (void)opaque, (void)address; MZ_FREE(address); }683//static void *def_realloc_func(void *opaque, void *address, size_t items, size_t size) { (void)opaque, (void)address, (void)items, (void)size; return MZ_REALLOC(address, items * size); }684685const char *mz_version(void)686{687return MZ_VERSION;688}689690int mz_deflateInit(mz_streamp pStream, int level)691{692return mz_deflateInit2(pStream, level, MZ_DEFLATED, MZ_DEFAULT_WINDOW_BITS, 9, MZ_DEFAULT_STRATEGY);693}694695int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits, int mem_level, int strategy)696{697tdefl_compressor *pComp;698mz_uint comp_flags = TDEFL_COMPUTE_ADLER32 | tdefl_create_comp_flags_from_zip_params(level, window_bits, strategy);699700if (!pStream) return MZ_STREAM_ERROR;701if ((method != MZ_DEFLATED) || ((mem_level < 1) || (mem_level > 9)) || ((window_bits != MZ_DEFAULT_WINDOW_BITS) && (-window_bits != MZ_DEFAULT_WINDOW_BITS))) return MZ_PARAM_ERROR;702703pStream->data_type = 0;704pStream->adler = MZ_ADLER32_INIT;705pStream->msg = NULL;706pStream->reserved = 0;707pStream->total_in = 0;708pStream->total_out = 0;709if (!pStream->zalloc) pStream->zalloc = def_alloc_func;710if (!pStream->zfree) pStream->zfree = def_free_func;711712pComp = (tdefl_compressor *)pStream->zalloc(pStream->opaque, 1, sizeof(tdefl_compressor));713if (!pComp)714return MZ_MEM_ERROR;715716pStream->state = (struct mz_internal_state *)pComp;717718if (tdefl_init(pComp, NULL, NULL, comp_flags) != TDEFL_STATUS_OKAY)719{720mz_deflateEnd(pStream);721return MZ_PARAM_ERROR;722}723724return MZ_OK;725}726727int mz_deflateReset(mz_streamp pStream)728{729if ((!pStream) || (!pStream->state) || (!pStream->zalloc) || (!pStream->zfree)) return MZ_STREAM_ERROR;730pStream->total_in = pStream->total_out = 0;731tdefl_init((tdefl_compressor*)pStream->state, NULL, NULL, ((tdefl_compressor*)pStream->state)->m_flags);732return MZ_OK;733}734735int mz_deflate(mz_streamp pStream, int flush)736{737size_t in_bytes, out_bytes;738mz_ulong orig_total_in, orig_total_out;739int mz_status = MZ_OK;740741if ((!pStream) || (!pStream->state) || (flush < 0) || (flush > MZ_FINISH) || (!pStream->next_out)) return MZ_STREAM_ERROR;742if (!pStream->avail_out) return MZ_BUF_ERROR;743744if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH;745746if (((tdefl_compressor*)pStream->state)->m_prev_return_status == TDEFL_STATUS_DONE)747return (flush == MZ_FINISH) ? MZ_STREAM_END : MZ_BUF_ERROR;748749orig_total_in = pStream->total_in; orig_total_out = pStream->total_out;750for ( ; ; )751{752tdefl_status defl_status;753in_bytes = pStream->avail_in; out_bytes = pStream->avail_out;754755defl_status = tdefl_compress((tdefl_compressor*)pStream->state, pStream->next_in, &in_bytes, pStream->next_out, &out_bytes, (tdefl_flush)flush);756pStream->next_in += (mz_uint)in_bytes; pStream->avail_in -= (mz_uint)in_bytes;757pStream->total_in += (mz_uint)in_bytes; pStream->adler = tdefl_get_adler32((tdefl_compressor*)pStream->state);758759pStream->next_out += (mz_uint)out_bytes; pStream->avail_out -= (mz_uint)out_bytes;760pStream->total_out += (mz_uint)out_bytes;761762if (defl_status < 0)763{764mz_status = MZ_STREAM_ERROR;765break;766}767else if (defl_status == TDEFL_STATUS_DONE)768{769mz_status = MZ_STREAM_END;770break;771}772else if (!pStream->avail_out)773break;774else if ((!pStream->avail_in) && (flush != MZ_FINISH))775{776if ((flush) || (pStream->total_in != orig_total_in) || (pStream->total_out != orig_total_out))777break;778return MZ_BUF_ERROR; // Can't make forward progress without some input.779}780}781return mz_status;782}783784int mz_deflateEnd(mz_streamp pStream)785{786if (!pStream) return MZ_STREAM_ERROR;787if (pStream->state)788{789pStream->zfree(pStream->opaque, pStream->state);790pStream->state = NULL;791}792return MZ_OK;793}794795mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len)796{797(void)pStream;798// This is really over conservative. (And lame, but it's actually pretty tricky to compute a true upper bound given the way tdefl's blocking works.)799mz_uint64 a = 128ULL + (source_len * 110ULL) / 100ULL;800mz_uint64 b = 128ULL + (mz_uint64)source_len + ((source_len / (31 * 1024)) + 1ULL) * 5ULL;801802mz_uint64 t = MZ_MAX(a, b);803if (((mz_ulong)t) != t)804t = (mz_ulong)(-1);805806return (mz_ulong)t;807}808809int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len, int level)810{811int status;812mz_stream stream;813memset(&stream, 0, sizeof(stream));814815// In case mz_ulong is 64-bits (argh I hate longs).816if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR;817818stream.next_in = pSource;819stream.avail_in = (mz_uint32)source_len;820stream.next_out = pDest;821stream.avail_out = (mz_uint32)*pDest_len;822823status = mz_deflateInit(&stream, level);824if (status != MZ_OK) return status;825826status = mz_deflate(&stream, MZ_FINISH);827if (status != MZ_STREAM_END)828{829mz_deflateEnd(&stream);830return (status == MZ_OK) ? MZ_BUF_ERROR : status;831}832833*pDest_len = stream.total_out;834return mz_deflateEnd(&stream);835}836837int mz_compress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len)838{839return mz_compress2(pDest, pDest_len, pSource, source_len, MZ_DEFAULT_COMPRESSION);840}841842mz_ulong mz_compressBound(mz_ulong source_len)843{844return mz_deflateBound(NULL, source_len);845}846847typedef struct848{849tinfl_decompressor m_decomp;850mz_uint m_dict_ofs, m_dict_avail, m_first_call, m_has_flushed; int m_window_bits;851mz_uint8 m_dict[TINFL_LZ_DICT_SIZE];852tinfl_status m_last_status;853} inflate_state;854855int mz_inflateInit2(mz_streamp pStream, int window_bits)856{857inflate_state *pDecomp;858if (!pStream) return MZ_STREAM_ERROR;859if ((window_bits != MZ_DEFAULT_WINDOW_BITS) && (-window_bits != MZ_DEFAULT_WINDOW_BITS)) return MZ_PARAM_ERROR;860861pStream->data_type = 0;862pStream->adler = 0;863pStream->msg = NULL;864pStream->total_in = 0;865pStream->total_out = 0;866pStream->reserved = 0;867if (!pStream->zalloc) pStream->zalloc = def_alloc_func;868if (!pStream->zfree) pStream->zfree = def_free_func;869870pDecomp = (inflate_state*)pStream->zalloc(pStream->opaque, 1, sizeof(inflate_state));871if (!pDecomp) return MZ_MEM_ERROR;872873pStream->state = (struct mz_internal_state *)pDecomp;874875tinfl_init(&pDecomp->m_decomp);876pDecomp->m_dict_ofs = 0;877pDecomp->m_dict_avail = 0;878pDecomp->m_last_status = TINFL_STATUS_NEEDS_MORE_INPUT;879pDecomp->m_first_call = 1;880pDecomp->m_has_flushed = 0;881pDecomp->m_window_bits = window_bits;882883return MZ_OK;884}885886int mz_inflateInit(mz_streamp pStream)887{888return mz_inflateInit2(pStream, MZ_DEFAULT_WINDOW_BITS);889}890891int mz_inflate2(mz_streamp pStream, int flush, int adler32_checking)892{893inflate_state* pState;894mz_uint n, first_call, decomp_flags = adler32_checking ? TINFL_FLAG_COMPUTE_ADLER32 : 0;895size_t in_bytes, out_bytes, orig_avail_in;896tinfl_status status;897898if ((!pStream) || (!pStream->state)) return MZ_STREAM_ERROR;899if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH;900if ((flush) && (flush != MZ_SYNC_FLUSH) && (flush != MZ_FINISH)) return MZ_STREAM_ERROR;901902pState = (inflate_state*)pStream->state;903if (pState->m_window_bits > 0) decomp_flags |= TINFL_FLAG_PARSE_ZLIB_HEADER;904orig_avail_in = pStream->avail_in;905906first_call = pState->m_first_call; pState->m_first_call = 0;907if (pState->m_last_status < 0) return MZ_DATA_ERROR;908909if (pState->m_has_flushed && (flush != MZ_FINISH)) return MZ_STREAM_ERROR;910pState->m_has_flushed |= (flush == MZ_FINISH);911912if ((flush == MZ_FINISH) && (first_call))913{914// MZ_FINISH on the first call implies that the input and output buffers are large enough to hold the entire compressed/decompressed file.915decomp_flags |= TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;916in_bytes = pStream->avail_in; out_bytes = pStream->avail_out;917status = tinfl_decompress(&pState->m_decomp, pStream->next_in, &in_bytes, pStream->next_out, pStream->next_out, &out_bytes, decomp_flags);918pState->m_last_status = status;919pStream->next_in += (mz_uint)in_bytes; pStream->avail_in -= (mz_uint)in_bytes; pStream->total_in += (mz_uint)in_bytes;920pStream->adler = tinfl_get_adler32(&pState->m_decomp);921pStream->next_out += (mz_uint)out_bytes; pStream->avail_out -= (mz_uint)out_bytes; pStream->total_out += (mz_uint)out_bytes;922923if (status < 0)924return MZ_DATA_ERROR;925else if (status != TINFL_STATUS_DONE)926{927pState->m_last_status = TINFL_STATUS_FAILED;928return MZ_BUF_ERROR;929}930return MZ_STREAM_END;931}932// flush != MZ_FINISH then we must assume there's more input.933if (flush != MZ_FINISH) decomp_flags |= TINFL_FLAG_HAS_MORE_INPUT;934935if (pState->m_dict_avail)936{937n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);938memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);939pStream->next_out += n; pStream->avail_out -= n; pStream->total_out += n;940pState->m_dict_avail -= n; pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);941return ((pState->m_last_status == TINFL_STATUS_DONE) && (!pState->m_dict_avail)) ? MZ_STREAM_END : MZ_OK;942}943944for ( ; ; )945{946in_bytes = pStream->avail_in;947out_bytes = TINFL_LZ_DICT_SIZE - pState->m_dict_ofs;948949status = tinfl_decompress(&pState->m_decomp, pStream->next_in, &in_bytes, pState->m_dict, pState->m_dict + pState->m_dict_ofs, &out_bytes, decomp_flags);950pState->m_last_status = status;951952pStream->next_in += (mz_uint)in_bytes; pStream->avail_in -= (mz_uint)in_bytes;953pStream->total_in += (mz_uint)in_bytes; pStream->adler = tinfl_get_adler32(&pState->m_decomp);954955pState->m_dict_avail = (mz_uint)out_bytes;956957n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);958memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);959pStream->next_out += n; pStream->avail_out -= n; pStream->total_out += n;960pState->m_dict_avail -= n; pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);961962if (status < 0)963return MZ_DATA_ERROR; // Stream is corrupted (there could be some uncompressed data left in the output dictionary - oh well).964else if ((status == TINFL_STATUS_NEEDS_MORE_INPUT) && (!orig_avail_in))965return MZ_BUF_ERROR; // Signal caller that we can't make forward progress without supplying more input or by setting flush to MZ_FINISH.966else if (flush == MZ_FINISH)967{968// The output buffer MUST be large to hold the remaining uncompressed data when flush==MZ_FINISH.969if (status == TINFL_STATUS_DONE)970return pState->m_dict_avail ? MZ_BUF_ERROR : MZ_STREAM_END;971// status here must be TINFL_STATUS_HAS_MORE_OUTPUT, which means there's at least 1 more byte on the way. If there's no more room left in the output buffer then something is wrong.972else if (!pStream->avail_out)973return MZ_BUF_ERROR;974}975else if ((status == TINFL_STATUS_DONE) || (!pStream->avail_in) || (!pStream->avail_out) || (pState->m_dict_avail))976break;977}978979return ((status == TINFL_STATUS_DONE) && (!pState->m_dict_avail)) ? MZ_STREAM_END : MZ_OK;980}981982int mz_inflate(mz_streamp pStream, int flush)983{984return mz_inflate2(pStream, flush, MZ_TRUE);985}986987int mz_inflateEnd(mz_streamp pStream)988{989if (!pStream)990return MZ_STREAM_ERROR;991if (pStream->state)992{993pStream->zfree(pStream->opaque, pStream->state);994pStream->state = NULL;995}996return MZ_OK;997}998999int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len)1000{1001mz_stream stream;1002int status;1003memset(&stream, 0, sizeof(stream));10041005// In case mz_ulong is 64-bits (argh I hate longs).1006if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR;10071008stream.next_in = pSource;1009stream.avail_in = (mz_uint32)source_len;1010stream.next_out = pDest;1011stream.avail_out = (mz_uint32)*pDest_len;10121013status = mz_inflateInit(&stream);1014if (status != MZ_OK)1015return status;10161017status = mz_inflate(&stream, MZ_FINISH);1018if (status != MZ_STREAM_END)1019{1020mz_inflateEnd(&stream);1021return ((status == MZ_BUF_ERROR) && (!stream.avail_in)) ? MZ_DATA_ERROR : status;1022}1023*pDest_len = stream.total_out;10241025return mz_inflateEnd(&stream);1026}10271028const char *mz_error(int err)1029{1030static struct { int m_err; const char *m_pDesc; } s_error_descs[] =1031{1032{ MZ_OK, "" }, { MZ_STREAM_END, "stream end" }, { MZ_NEED_DICT, "need dictionary" }, { MZ_ERRNO, "file error" }, { MZ_STREAM_ERROR, "stream error" },1033{ MZ_DATA_ERROR, "data error" }, { MZ_MEM_ERROR, "out of memory" }, { MZ_BUF_ERROR, "buf error" }, { MZ_VERSION_ERROR, "version error" }, { MZ_PARAM_ERROR, "parameter error" }1034};1035mz_uint i; for (i = 0; i < sizeof(s_error_descs) / sizeof(s_error_descs[0]); ++i) if (s_error_descs[i].m_err == err) return s_error_descs[i].m_pDesc;1036return NULL;1037}10381039#endif //MINIZ_NO_ZLIB_APIS10401041// ------------------- Low-level Decompression (completely independent from all compression API's)10421043#define TINFL_MEMCPY(d, s, l) memcpy(d, s, l)1044#define TINFL_MEMSET(p, c, l) memset(p, c, l)10451046#define TINFL_CR_BEGIN switch(r->m_state) { case 0:1047#define TINFL_CR_RETURN(state_index, result) do { status = result; r->m_state = state_index; goto common_exit; case state_index:; } MZ_MACRO_END1048#define TINFL_CR_RETURN_FOREVER(state_index, result) do { for ( ; ; ) { TINFL_CR_RETURN(state_index, result); } } MZ_MACRO_END1049#define TINFL_CR_FINISH }10501051// TODO: If the caller has indicated that there's no more input, and we attempt to read beyond the input buf, then something is wrong with the input because the inflator never1052// reads ahead more than it needs to. Currently TINFL_GET_BYTE() pads the end of the stream with 0's in this scenario.1053#define TINFL_GET_BYTE(state_index, c) do { \1054if (pIn_buf_cur >= pIn_buf_end) { \1055for ( ; ; ) { \1056if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { \1057TINFL_CR_RETURN(state_index, TINFL_STATUS_NEEDS_MORE_INPUT); \1058if (pIn_buf_cur < pIn_buf_end) { \1059c = *pIn_buf_cur++; \1060break; \1061} \1062} else { \1063c = 0; \1064break; \1065} \1066} \1067} else c = *pIn_buf_cur++; } MZ_MACRO_END10681069#define TINFL_NEED_BITS(state_index, n) do { mz_uint c; TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; } while (num_bits < (mz_uint)(n))1070#define TINFL_SKIP_BITS(state_index, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END1071#define TINFL_GET_BITS(state_index, b, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } b = bit_buf & ((1 << (n)) - 1); bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END10721073// TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes remaining in the input buffer falls below 2.1074// It reads just enough bytes from the input stream that are needed to decode the next Huffman code (and absolutely no more). It works by trying to fully decode a1075// Huffman code by using whatever bits are currently present in the bit buffer. If this fails, it reads another byte, and tries again until it succeeds or until the1076// bit buffer contains >=15 bits (deflate's max. Huffman code size).1077#define TINFL_HUFF_BITBUF_FILL(state_index, pHuff) \1078do { \1079temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \1080if (temp >= 0) { \1081code_len = temp >> 9; \1082if ((code_len) && (num_bits >= code_len)) \1083break; \1084} else if (num_bits > TINFL_FAST_LOOKUP_BITS) { \1085code_len = TINFL_FAST_LOOKUP_BITS; \1086do { \1087temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \1088} while ((temp < 0) && (num_bits >= (code_len + 1))); if (temp >= 0) break; \1089} TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; \1090} while (num_bits < 15);10911092// TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex than you would initially expect because the zlib API expects the decompressor to never read1093// beyond the final byte of the deflate stream. (In other words, when this macro wants to read another byte from the input, it REALLY needs another byte in order to fully1094// decode the next Huffman code.) Handling this properly is particularly important on raw deflate (non-zlib) streams, which aren't followed by a byte aligned adler-32.1095// The slow path is only executed at the very end of the input buffer.1096#define TINFL_HUFF_DECODE(state_index, sym, pHuff) do { \1097int temp; mz_uint code_len, c; \1098if (num_bits < 15) { \1099if ((pIn_buf_end - pIn_buf_cur) < 2) { \1100TINFL_HUFF_BITBUF_FILL(state_index, pHuff); \1101} else { \1102bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) | (((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8)); pIn_buf_cur += 2; num_bits += 16; \1103} \1104} \1105if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) \1106code_len = temp >> 9, temp &= 511; \1107else { \1108code_len = TINFL_FAST_LOOKUP_BITS; do { temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; } while (temp < 0); \1109} sym = temp; bit_buf >>= code_len; num_bits -= code_len; } MZ_MACRO_END11101111tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags)1112{1113static const int s_length_base[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 };1114static const int s_length_extra[31]= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 };1115static const int s_dist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0};1116static const int s_dist_extra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};1117static const mz_uint8 s_length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };1118static const int s_min_table_sizes[3] = { 257, 1, 4 };11191120tinfl_status status = TINFL_STATUS_FAILED; mz_uint32 num_bits, dist, counter, num_extra; tinfl_bit_buf_t bit_buf;1121const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end = pIn_buf_next + *pIn_buf_size;1122mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end = pOut_buf_next + *pOut_buf_size;1123size_t out_buf_size_mask = (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) ? (size_t)-1 : ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1, dist_from_out_buf_start;11241125// Ensure the output buffer's size is a power of 2, unless the output buffer is large enough to hold the entire output file (in which case it doesn't matter).1126if (((out_buf_size_mask + 1) & out_buf_size_mask) || (pOut_buf_next < pOut_buf_start)) { *pIn_buf_size = *pOut_buf_size = 0; return TINFL_STATUS_BAD_PARAM; }11271128num_bits = r->m_num_bits; bit_buf = r->m_bit_buf; dist = r->m_dist; counter = r->m_counter; num_extra = r->m_num_extra; dist_from_out_buf_start = r->m_dist_from_out_buf_start;1129TINFL_CR_BEGIN11301131bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0; r->m_z_adler32 = r->m_check_adler32 = 1;1132if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER)1133{1134TINFL_GET_BYTE(1, r->m_zhdr0); TINFL_GET_BYTE(2, r->m_zhdr1);1135counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) || (r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8));1136if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) || ((out_buf_size_mask + 1) < (size_t)(1ULL << (8U + (r->m_zhdr0 >> 4)))));1137if (counter) { TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED); }1138}11391140do1141{1142TINFL_GET_BITS(3, r->m_final, 3); r->m_type = r->m_final >> 1;1143if (r->m_type == 0)1144{1145TINFL_SKIP_BITS(5, num_bits & 7);1146for (counter = 0; counter < 4; ++counter) { if (num_bits) TINFL_GET_BITS(6, r->m_raw_header[counter], 8); else TINFL_GET_BYTE(7, r->m_raw_header[counter]); }1147if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) != (mz_uint)(0xFFFF ^ (r->m_raw_header[2] | (r->m_raw_header[3] << 8)))) { TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED); }1148while ((counter) && (num_bits))1149{1150TINFL_GET_BITS(51, dist, 8);1151while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT); }1152*pOut_buf_cur++ = (mz_uint8)dist;1153counter--;1154}1155while (counter)1156{1157size_t n; while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT); }1158while (pIn_buf_cur >= pIn_buf_end)1159{1160if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT)1161{1162TINFL_CR_RETURN(38, TINFL_STATUS_NEEDS_MORE_INPUT);1163}1164else1165{1166TINFL_CR_RETURN_FOREVER(40, TINFL_STATUS_FAILED);1167}1168}1169n = MZ_MIN(MZ_MIN((size_t)(pOut_buf_end - pOut_buf_cur), (size_t)(pIn_buf_end - pIn_buf_cur)), counter);1170TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n); pIn_buf_cur += n; pOut_buf_cur += n; counter -= (mz_uint)n;1171}1172}1173else if (r->m_type == 3)1174{1175TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED);1176}1177else1178{1179if (r->m_type == 1)1180{1181mz_uint8 *p = r->m_tables[0].m_code_size; mz_uint i;1182r->m_table_sizes[0] = 288; r->m_table_sizes[1] = 32; TINFL_MEMSET(r->m_tables[1].m_code_size, 5, 32);1183for ( i = 0; i <= 143; ++i) *p++ = 8; for ( ; i <= 255; ++i) *p++ = 9; for ( ; i <= 279; ++i) *p++ = 7; for ( ; i <= 287; ++i) *p++ = 8;1184}1185else1186{1187for (counter = 0; counter < 3; counter++) { TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04"[counter]); r->m_table_sizes[counter] += s_min_table_sizes[counter]; }1188MZ_CLEAR_OBJ(r->m_tables[2].m_code_size); for (counter = 0; counter < r->m_table_sizes[2]; counter++) { mz_uint s; TINFL_GET_BITS(14, s, 3); r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (mz_uint8)s; }1189r->m_table_sizes[2] = 19;1190}1191for ( ; (int)r->m_type >= 0; r->m_type--)1192{1193int tree_next, tree_cur; tinfl_huff_table *pTable;1194mz_uint i, j, used_syms, total, sym_index, next_code[17], total_syms[16]; pTable = &r->m_tables[r->m_type]; MZ_CLEAR_OBJ(total_syms); MZ_CLEAR_OBJ(pTable->m_look_up); MZ_CLEAR_OBJ(pTable->m_tree);1195for (i = 0; i < r->m_table_sizes[r->m_type]; ++i) total_syms[pTable->m_code_size[i]]++;1196used_syms = 0, total = 0; next_code[0] = next_code[1] = 0;1197for (i = 1; i <= 15; ++i) { used_syms += total_syms[i]; next_code[i + 1] = (total = ((total + total_syms[i]) << 1)); }1198if ((65536 != total) && (used_syms > 1))1199{1200TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED);1201}1202for (tree_next = -1, sym_index = 0; sym_index < r->m_table_sizes[r->m_type]; ++sym_index)1203{1204mz_uint rev_code = 0, l, cur_code, code_size = pTable->m_code_size[sym_index]; if (!code_size) continue;1205cur_code = next_code[code_size]++; for (l = code_size; l > 0; l--, cur_code >>= 1) rev_code = (rev_code << 1) | (cur_code & 1);1206if (code_size <= TINFL_FAST_LOOKUP_BITS) { mz_int16 k = (mz_int16)((code_size << 9) | sym_index); while (rev_code < TINFL_FAST_LOOKUP_SIZE) { pTable->m_look_up[rev_code] = k; rev_code += (1 << code_size); } continue; }1207if (0 == (tree_cur = pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)])) { pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] = (mz_int16)tree_next; tree_cur = tree_next; tree_next -= 2; }1208rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1);1209for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--)1210{1211tree_cur -= ((rev_code >>= 1) & 1);1212if (!pTable->m_tree[-tree_cur - 1]) { pTable->m_tree[-tree_cur - 1] = (mz_int16)tree_next; tree_cur = tree_next; tree_next -= 2; } else tree_cur = pTable->m_tree[-tree_cur - 1];1213}1214tree_cur -= ((rev_code >>= 1) & 1); pTable->m_tree[-tree_cur - 1] = (mz_int16)sym_index;1215}1216if (r->m_type == 2)1217{1218for (counter = 0; counter < (r->m_table_sizes[0] + r->m_table_sizes[1]); )1219{1220mz_uint s; TINFL_HUFF_DECODE(16, dist, &r->m_tables[2]); if (dist < 16) { r->m_len_codes[counter++] = (mz_uint8)dist; continue; }1221if ((dist == 16) && (!counter))1222{1223TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED);1224}1225num_extra = "\02\03\07"[dist - 16]; TINFL_GET_BITS(18, s, num_extra); s += "\03\03\013"[dist - 16];1226TINFL_MEMSET(r->m_len_codes + counter, (dist == 16) ? r->m_len_codes[counter - 1] : 0, s); counter += s;1227}1228if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter)1229{1230TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED);1231}1232TINFL_MEMCPY(r->m_tables[0].m_code_size, r->m_len_codes, r->m_table_sizes[0]); TINFL_MEMCPY(r->m_tables[1].m_code_size, r->m_len_codes + r->m_table_sizes[0], r->m_table_sizes[1]);1233}1234}1235for ( ; ; )1236{1237mz_uint8 *pSrc;1238for ( ; ; )1239{1240if (((pIn_buf_end - pIn_buf_cur) < 4) || ((pOut_buf_end - pOut_buf_cur) < 2))1241{1242TINFL_HUFF_DECODE(23, counter, &r->m_tables[0]);1243if (counter >= 256)1244break;1245while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT); }1246*pOut_buf_cur++ = (mz_uint8)counter;1247}1248else1249{1250int sym2; mz_uint code_len;1251#if TINFL_USE_64BIT_BITBUF1252if (num_bits < 30) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE32(pIn_buf_cur)) << num_bits); pIn_buf_cur += 4; num_bits += 32; }1253#else1254if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; }1255#endif1256if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0)1257code_len = sym2 >> 9;1258else1259{1260code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0);1261}1262counter = sym2; bit_buf >>= code_len; num_bits -= code_len;1263if (counter & 256)1264break;12651266#if !TINFL_USE_64BIT_BITBUF1267if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; }1268#endif1269if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0)1270code_len = sym2 >> 9;1271else1272{1273code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0);1274}1275bit_buf >>= code_len; num_bits -= code_len;12761277pOut_buf_cur[0] = (mz_uint8)counter;1278if (sym2 & 256)1279{1280pOut_buf_cur++;1281counter = sym2;1282break;1283}1284pOut_buf_cur[1] = (mz_uint8)sym2;1285pOut_buf_cur += 2;1286}1287}1288if ((counter &= 511) == 256) break;12891290num_extra = s_length_extra[counter - 257]; counter = s_length_base[counter - 257];1291if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(25, extra_bits, num_extra); counter += extra_bits; }12921293TINFL_HUFF_DECODE(26, dist, &r->m_tables[1]);1294num_extra = s_dist_extra[dist]; dist = s_dist_base[dist];1295if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(27, extra_bits, num_extra); dist += extra_bits; }12961297dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start;1298if ((dist > dist_from_out_buf_start) && (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))1299{1300TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED);1301}13021303pSrc = pOut_buf_start + ((dist_from_out_buf_start - dist) & out_buf_size_mask);13041305if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end)1306{1307while (counter--)1308{1309while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT); }1310*pOut_buf_cur++ = pOut_buf_start[(dist_from_out_buf_start++ - dist) & out_buf_size_mask];1311}1312continue;1313}1314#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES1315else if ((counter >= 9) && (counter <= dist))1316{1317const mz_uint8 *pSrc_end = pSrc + (counter & ~7);1318do1319{1320((mz_uint32 *)pOut_buf_cur)[0] = ((const mz_uint32 *)pSrc)[0];1321((mz_uint32 *)pOut_buf_cur)[1] = ((const mz_uint32 *)pSrc)[1];1322pOut_buf_cur += 8;1323} while ((pSrc += 8) < pSrc_end);1324if ((counter &= 7) < 3)1325{1326if (counter)1327{1328pOut_buf_cur[0] = pSrc[0];1329if (counter > 1)1330pOut_buf_cur[1] = pSrc[1];1331pOut_buf_cur += counter;1332}1333continue;1334}1335}1336#endif1337do1338{1339pOut_buf_cur[0] = pSrc[0];1340pOut_buf_cur[1] = pSrc[1];1341pOut_buf_cur[2] = pSrc[2];1342pOut_buf_cur += 3; pSrc += 3;1343} while ((int)(counter -= 3) > 2);1344if ((int)counter > 0)1345{1346pOut_buf_cur[0] = pSrc[0];1347if ((int)counter > 1)1348pOut_buf_cur[1] = pSrc[1];1349pOut_buf_cur += counter;1350}1351}1352}1353} while (!(r->m_final & 1));1354if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER)1355{1356TINFL_SKIP_BITS(32, num_bits & 7); for (counter = 0; counter < 4; ++counter) { mz_uint s; if (num_bits) TINFL_GET_BITS(41, s, 8); else TINFL_GET_BYTE(42, s); r->m_z_adler32 = (r->m_z_adler32 << 8) | s; }1357}1358TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE);1359TINFL_CR_FINISH13601361common_exit:1362r->m_num_bits = num_bits; r->m_bit_buf = bit_buf; r->m_dist = dist; r->m_counter = counter; r->m_num_extra = num_extra; r->m_dist_from_out_buf_start = dist_from_out_buf_start;1363*pIn_buf_size = pIn_buf_cur - pIn_buf_next; *pOut_buf_size = pOut_buf_cur - pOut_buf_next;1364//if ((decomp_flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) && (status >= 0))1365if ((decomp_flags & TINFL_FLAG_COMPUTE_ADLER32) && (status >= 0))1366{1367const mz_uint8 *ptr = pOut_buf_next; size_t buf_len = *pOut_buf_size;1368mz_uint32 i, s1 = r->m_check_adler32 & 0xffff, s2 = r->m_check_adler32 >> 16; size_t block_len = buf_len % 5552;1369while (buf_len)1370{1371for (i = 0; i + 7 < block_len; i += 8, ptr += 8)1372{1373s1 += ptr[0], s2 += s1; s1 += ptr[1], s2 += s1; s1 += ptr[2], s2 += s1; s1 += ptr[3], s2 += s1;1374s1 += ptr[4], s2 += s1; s1 += ptr[5], s2 += s1; s1 += ptr[6], s2 += s1; s1 += ptr[7], s2 += s1;1375}1376for ( ; i < block_len; ++i) s1 += *ptr++, s2 += s1;1377s1 %= 65521U, s2 %= 65521U; buf_len -= block_len; block_len = 5552;1378}1379r->m_check_adler32 = (s2 << 16) + s1;1380if ((status == TINFL_STATUS_DONE) && (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) && (r->m_check_adler32 != r->m_z_adler32))1381status = TINFL_STATUS_ADLER32_MISMATCH;1382}1383return status;1384}13851386// Higher level helper functions.1387void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags)1388{1389tinfl_decompressor decomp; void *pBuf = NULL, *pNew_buf; size_t src_buf_ofs = 0, out_buf_capacity = 0;1390*pOut_len = 0;1391tinfl_init(&decomp);1392for ( ; ; )1393{1394size_t src_buf_size = src_buf_len - src_buf_ofs, dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity;1395tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8*)pSrc_buf + src_buf_ofs, &src_buf_size, (mz_uint8*)pBuf, pBuf ? (mz_uint8*)pBuf + *pOut_len : NULL, &dst_buf_size,1396(flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);1397if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT))1398{1399MZ_FREE(pBuf); *pOut_len = 0; return NULL;1400}1401src_buf_ofs += src_buf_size;1402*pOut_len += dst_buf_size;1403if (status == TINFL_STATUS_DONE) break;1404new_out_buf_capacity = out_buf_capacity * 2; if (new_out_buf_capacity < 128) new_out_buf_capacity = 128;1405pNew_buf = MZ_REALLOC(pBuf, new_out_buf_capacity);1406if (!pNew_buf)1407{1408MZ_FREE(pBuf); *pOut_len = 0; return NULL;1409}1410pBuf = pNew_buf; out_buf_capacity = new_out_buf_capacity;1411}1412return pBuf;1413}14141415size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags)1416{1417tinfl_decompressor decomp; tinfl_status status; tinfl_init(&decomp);1418status = tinfl_decompress(&decomp, (const mz_uint8*)pSrc_buf, &src_buf_len, (mz_uint8*)pOut_buf, (mz_uint8*)pOut_buf, &out_buf_len, (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);1419return (status != TINFL_STATUS_DONE) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED : out_buf_len;1420}14211422int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags)1423{1424int result = 0;1425tinfl_decompressor decomp;1426mz_uint8 *pDict = (mz_uint8*)MZ_MALLOC(TINFL_LZ_DICT_SIZE); size_t in_buf_ofs = 0, dict_ofs = 0;1427if (!pDict)1428return TINFL_STATUS_FAILED;1429tinfl_init(&decomp);1430for ( ; ; )1431{1432size_t in_buf_size = *pIn_buf_size - in_buf_ofs, dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs;1433tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8*)pIn_buf + in_buf_ofs, &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size,1434(flags & ~(TINFL_FLAG_HAS_MORE_INPUT | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)));1435in_buf_ofs += in_buf_size;1436if ((dst_buf_size) && (!(*pPut_buf_func)(pDict + dict_ofs, (int)dst_buf_size, pPut_buf_user)))1437break;1438if (status != TINFL_STATUS_HAS_MORE_OUTPUT)1439{1440result = (status == TINFL_STATUS_DONE);1441break;1442}1443dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1);1444}1445MZ_FREE(pDict);1446*pIn_buf_size = in_buf_ofs;1447return result;1448}14491450// ------------------- Low-level Compression (independent from all decompression API's)14511452// Purposely making these tables static for faster init and thread safety.1453static const mz_uint16 s_tdefl_len_sym[256] = {1454257,258,259,260,261,262,263,264,265,265,266,266,267,267,268,268,269,269,269,269,270,270,270,270,271,271,271,271,272,272,272,272,1455273,273,273,273,273,273,273,273,274,274,274,274,274,274,274,274,275,275,275,275,275,275,275,275,276,276,276,276,276,276,276,276,1456277,277,277,277,277,277,277,277,277,277,277,277,277,277,277,277,278,278,278,278,278,278,278,278,278,278,278,278,278,278,278,278,1457279,279,279,279,279,279,279,279,279,279,279,279,279,279,279,279,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,1458281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,1459282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,1460283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,1461284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,285 };14621463static const mz_uint8 s_tdefl_len_extra[256] = {14640,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,14654,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,14665,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,14675,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,0 };14681469static const mz_uint8 s_tdefl_small_dist_sym[512] = {14700,1,2,3,4,4,5,5,6,6,6,6,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,147111,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,147213,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14,147314,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,147414,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,147515,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,147616,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,147716,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,147816,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,17,17,17,17,17,17,147917,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,148017,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,148117,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17 };14821483static const mz_uint8 s_tdefl_small_dist_extra[512] = {14840,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,14855,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,14866,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,14876,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,14887,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,14897,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,14907,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,14917,7,7,7,7,7,7,7 };14921493static const mz_uint8 s_tdefl_large_dist_sym[128] = {14940,0,18,19,20,20,21,21,22,22,22,22,23,23,23,23,24,24,24,24,24,24,24,24,25,25,25,25,25,25,25,25,26,26,26,26,26,26,26,26,26,26,26,26,149526,26,26,26,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,149628,28,28,28,28,28,28,28,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29 };14971498static const mz_uint8 s_tdefl_large_dist_extra[128] = {14990,0,8,8,9,9,9,9,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,150012,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,150113,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13 };15021503// Radix sorts tdefl_sym_freq[] array by 16-bit key m_key. Returns ptr to sorted values.1504typedef struct { mz_uint16 m_key, m_sym_index; } tdefl_sym_freq;1505static tdefl_sym_freq* tdefl_radix_sort_syms(mz_uint num_syms, tdefl_sym_freq* pSyms0, tdefl_sym_freq* pSyms1)1506{1507mz_uint32 total_passes = 2, pass_shift, pass, i, hist[256 * 2]; tdefl_sym_freq* pCur_syms = pSyms0, *pNew_syms = pSyms1; MZ_CLEAR_OBJ(hist);1508for (i = 0; i < num_syms; i++) { mz_uint freq = pSyms0[i].m_key; hist[freq & 0xFF]++; hist[256 + ((freq >> 8) & 0xFF)]++; }1509while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) total_passes--;1510for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8)1511{1512const mz_uint32* pHist = &hist[pass << 8];1513mz_uint offsets[256], cur_ofs = 0;1514for (i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; }1515for (i = 0; i < num_syms; i++) pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i];1516{ tdefl_sym_freq* t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t; }1517}1518return pCur_syms;1519}15201521// tdefl_calculate_minimum_redundancy() originally written by: Alistair Moffat, [email protected], Jyrki Katajainen, [email protected], November 1996.1522static void tdefl_calculate_minimum_redundancy(tdefl_sym_freq *A, int n)1523{1524int root, leaf, next, avbl, used, dpth;1525if (n==0) return; else if (n==1) { A[0].m_key = 1; return; }1526A[0].m_key += A[1].m_key; root = 0; leaf = 2;1527for (next=1; next < n-1; next++)1528{1529if (leaf>=n || A[root].m_key<A[leaf].m_key) { A[next].m_key = A[root].m_key; A[root++].m_key = (mz_uint16)next; } else A[next].m_key = A[leaf++].m_key;1530if (leaf>=n || (root<next && A[root].m_key<A[leaf].m_key)) { A[next].m_key = (mz_uint16)(A[next].m_key + A[root].m_key); A[root++].m_key = (mz_uint16)next; } else A[next].m_key = (mz_uint16)(A[next].m_key + A[leaf++].m_key);1531}1532A[n-2].m_key = 0; for (next=n-3; next>=0; next--) A[next].m_key = A[A[next].m_key].m_key+1;1533avbl = 1; used = dpth = 0; root = n-2; next = n-1;1534while (avbl>0)1535{1536while (root>=0 && (int)A[root].m_key==dpth) { used++; root--; }1537while (avbl>used) { A[next--].m_key = (mz_uint16)(dpth); avbl--; }1538avbl = 2*used; dpth++; used = 0;1539}1540}15411542// Limits canonical Huffman code table's max code size.1543enum { TDEFL_MAX_SUPPORTED_HUFF_CODESIZE = 32 };1544static void tdefl_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size)1545{1546int i; mz_uint32 total = 0; if (code_list_len <= 1) return;1547for (i = max_code_size + 1; i <= TDEFL_MAX_SUPPORTED_HUFF_CODESIZE; i++) pNum_codes[max_code_size] += pNum_codes[i];1548for (i = max_code_size; i > 0; i--) total += (((mz_uint32)pNum_codes[i]) << (max_code_size - i));1549while (total != (1UL << max_code_size))1550{1551pNum_codes[max_code_size]--;1552for (i = max_code_size - 1; i > 0; i--) if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; }1553total--;1554}1555}15561557static void tdefl_optimize_huffman_table(tdefl_compressor *d, int table_num, int table_len, int code_size_limit, int static_table)1558{1559int i, j, l, num_codes[1 + TDEFL_MAX_SUPPORTED_HUFF_CODESIZE]; mz_uint next_code[TDEFL_MAX_SUPPORTED_HUFF_CODESIZE + 1]; MZ_CLEAR_OBJ(num_codes);1560if (static_table)1561{1562for (i = 0; i < table_len; i++) num_codes[d->m_huff_code_sizes[table_num][i]]++;1563}1564else1565{1566tdefl_sym_freq syms0[TDEFL_MAX_HUFF_SYMBOLS], syms1[TDEFL_MAX_HUFF_SYMBOLS], *pSyms;1567int num_used_syms = 0;1568const mz_uint16 *pSym_count = &d->m_huff_count[table_num][0];1569for (i = 0; i < table_len; i++) if (pSym_count[i]) { syms0[num_used_syms].m_key = (mz_uint16)pSym_count[i]; syms0[num_used_syms++].m_sym_index = (mz_uint16)i; }15701571pSyms = tdefl_radix_sort_syms(num_used_syms, syms0, syms1); tdefl_calculate_minimum_redundancy(pSyms, num_used_syms);15721573for (i = 0; i < num_used_syms; i++) num_codes[pSyms[i].m_key]++;15741575tdefl_huffman_enforce_max_code_size(num_codes, num_used_syms, code_size_limit);15761577MZ_CLEAR_OBJ(d->m_huff_code_sizes[table_num]); MZ_CLEAR_OBJ(d->m_huff_codes[table_num]);1578for (i = 1, j = num_used_syms; i <= code_size_limit; i++)1579for (l = num_codes[i]; l > 0; l--) d->m_huff_code_sizes[table_num][pSyms[--j].m_sym_index] = (mz_uint8)(i);1580}15811582next_code[1] = 0; for (j = 0, i = 2; i <= code_size_limit; i++) next_code[i] = j = ((j + num_codes[i - 1]) << 1);15831584for (i = 0; i < table_len; i++)1585{1586mz_uint rev_code = 0, code, code_size; if ((code_size = d->m_huff_code_sizes[table_num][i]) == 0) continue;1587code = next_code[code_size]++; for (l = code_size; l > 0; l--, code >>= 1) rev_code = (rev_code << 1) | (code & 1);1588d->m_huff_codes[table_num][i] = (mz_uint16)rev_code;1589}1590}15911592#define TDEFL_PUT_BITS(b, l) do { \1593mz_uint bits = b; mz_uint len = l; MZ_ASSERT(bits <= ((1U << len) - 1U)); \1594d->m_bit_buffer |= (bits << d->m_bits_in); d->m_bits_in += len; \1595while (d->m_bits_in >= 8) { \1596if (d->m_pOutput_buf < d->m_pOutput_buf_end) \1597*d->m_pOutput_buf++ = (mz_uint8)(d->m_bit_buffer); \1598d->m_bit_buffer >>= 8; \1599d->m_bits_in -= 8; \1600} \1601} MZ_MACRO_END16021603#define TDEFL_RLE_PREV_CODE_SIZE() { if (rle_repeat_count) { \1604if (rle_repeat_count < 3) { \1605d->m_huff_count[2][prev_code_size] = (mz_uint16)(d->m_huff_count[2][prev_code_size] + rle_repeat_count); \1606while (rle_repeat_count--) packed_code_sizes[num_packed_code_sizes++] = prev_code_size; \1607} else { \1608d->m_huff_count[2][16] = (mz_uint16)(d->m_huff_count[2][16] + 1); packed_code_sizes[num_packed_code_sizes++] = 16; packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_repeat_count - 3); \1609} rle_repeat_count = 0; } }16101611#define TDEFL_RLE_ZERO_CODE_SIZE() { if (rle_z_count) { \1612if (rle_z_count < 3) { \1613d->m_huff_count[2][0] = (mz_uint16)(d->m_huff_count[2][0] + rle_z_count); while (rle_z_count--) packed_code_sizes[num_packed_code_sizes++] = 0; \1614} else if (rle_z_count <= 10) { \1615d->m_huff_count[2][17] = (mz_uint16)(d->m_huff_count[2][17] + 1); packed_code_sizes[num_packed_code_sizes++] = 17; packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_z_count - 3); \1616} else { \1617d->m_huff_count[2][18] = (mz_uint16)(d->m_huff_count[2][18] + 1); packed_code_sizes[num_packed_code_sizes++] = 18; packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_z_count - 11); \1618} rle_z_count = 0; } }16191620static mz_uint8 s_tdefl_packed_code_size_syms_swizzle[] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };16211622static void tdefl_start_dynamic_block(tdefl_compressor *d)1623{1624int num_lit_codes, num_dist_codes, num_bit_lengths; mz_uint i, total_code_sizes_to_pack, num_packed_code_sizes, rle_z_count, rle_repeat_count, packed_code_sizes_index;1625mz_uint8 code_sizes_to_pack[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], packed_code_sizes[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], prev_code_size = 0xFF;16261627d->m_huff_count[0][256] = 1;16281629tdefl_optimize_huffman_table(d, 0, TDEFL_MAX_HUFF_SYMBOLS_0, 15, MZ_FALSE);1630tdefl_optimize_huffman_table(d, 1, TDEFL_MAX_HUFF_SYMBOLS_1, 15, MZ_FALSE);16311632for (num_lit_codes = 286; num_lit_codes > 257; num_lit_codes--) if (d->m_huff_code_sizes[0][num_lit_codes - 1]) break;1633for (num_dist_codes = 30; num_dist_codes > 1; num_dist_codes--) if (d->m_huff_code_sizes[1][num_dist_codes - 1]) break;16341635memcpy(code_sizes_to_pack, &d->m_huff_code_sizes[0][0], num_lit_codes);1636memcpy(code_sizes_to_pack + num_lit_codes, &d->m_huff_code_sizes[1][0], num_dist_codes);1637total_code_sizes_to_pack = num_lit_codes + num_dist_codes; num_packed_code_sizes = 0; rle_z_count = 0; rle_repeat_count = 0;16381639memset(&d->m_huff_count[2][0], 0, sizeof(d->m_huff_count[2][0]) * TDEFL_MAX_HUFF_SYMBOLS_2);1640for (i = 0; i < total_code_sizes_to_pack; i++)1641{1642mz_uint8 code_size = code_sizes_to_pack[i];1643if (!code_size)1644{1645TDEFL_RLE_PREV_CODE_SIZE();1646if (++rle_z_count == 138) { TDEFL_RLE_ZERO_CODE_SIZE(); }1647}1648else1649{1650TDEFL_RLE_ZERO_CODE_SIZE();1651if (code_size != prev_code_size)1652{1653TDEFL_RLE_PREV_CODE_SIZE();1654d->m_huff_count[2][code_size] = (mz_uint16)(d->m_huff_count[2][code_size] + 1); packed_code_sizes[num_packed_code_sizes++] = code_size;1655}1656else if (++rle_repeat_count == 6)1657{1658TDEFL_RLE_PREV_CODE_SIZE();1659}1660}1661prev_code_size = code_size;1662}1663if (rle_repeat_count) { TDEFL_RLE_PREV_CODE_SIZE(); } else { TDEFL_RLE_ZERO_CODE_SIZE(); }16641665tdefl_optimize_huffman_table(d, 2, TDEFL_MAX_HUFF_SYMBOLS_2, 7, MZ_FALSE);16661667TDEFL_PUT_BITS(2, 2);16681669TDEFL_PUT_BITS(num_lit_codes - 257, 5);1670TDEFL_PUT_BITS(num_dist_codes - 1, 5);16711672for (num_bit_lengths = 18; num_bit_lengths >= 0; num_bit_lengths--) if (d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[num_bit_lengths]]) break;1673num_bit_lengths = MZ_MAX(4, (num_bit_lengths + 1)); TDEFL_PUT_BITS(num_bit_lengths - 4, 4);1674for (i = 0; (int)i < num_bit_lengths; i++) TDEFL_PUT_BITS(d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[i]], 3);16751676for (packed_code_sizes_index = 0; packed_code_sizes_index < num_packed_code_sizes; )1677{1678mz_uint code = packed_code_sizes[packed_code_sizes_index++]; MZ_ASSERT(code < TDEFL_MAX_HUFF_SYMBOLS_2);1679TDEFL_PUT_BITS(d->m_huff_codes[2][code], d->m_huff_code_sizes[2][code]);1680if (code >= 16) TDEFL_PUT_BITS(packed_code_sizes[packed_code_sizes_index++], "\02\03\07"[code - 16]);1681}1682}16831684static void tdefl_start_static_block(tdefl_compressor *d)1685{1686mz_uint i;1687mz_uint8 *p = &d->m_huff_code_sizes[0][0];16881689for (i = 0; i <= 143; ++i) *p++ = 8;1690for ( ; i <= 255; ++i) *p++ = 9;1691for ( ; i <= 279; ++i) *p++ = 7;1692for ( ; i <= 287; ++i) *p++ = 8;16931694memset(d->m_huff_code_sizes[1], 5, 32);16951696tdefl_optimize_huffman_table(d, 0, 288, 15, MZ_TRUE);1697tdefl_optimize_huffman_table(d, 1, 32, 15, MZ_TRUE);16981699TDEFL_PUT_BITS(1, 2);1700}17011702static const mz_uint mz_bitmasks[17] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF };17031704#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && MINIZ_HAS_64BIT_REGISTERS1705static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d)1706{1707mz_uint flags;1708mz_uint8 *pLZ_codes;1709mz_uint8 *pOutput_buf = d->m_pOutput_buf;1710mz_uint8 *pLZ_code_buf_end = d->m_pLZ_code_buf;1711mz_uint64 bit_buffer = d->m_bit_buffer;1712mz_uint bits_in = d->m_bits_in;17131714#define TDEFL_PUT_BITS_FAST(b, l) { bit_buffer |= (((mz_uint64)(b)) << bits_in); bits_in += (l); }17151716flags = 1;1717for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < pLZ_code_buf_end; flags >>= 1)1718{1719if (flags == 1)1720flags = *pLZ_codes++ | 0x100;17211722if (flags & 1)1723{1724mz_uint s0, s1, n0, n1, sym, num_extra_bits;1725mz_uint match_len = pLZ_codes[0], match_dist = *(const mz_uint16 *)(pLZ_codes + 1); pLZ_codes += 3;17261727MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);1728TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);1729TDEFL_PUT_BITS_FAST(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], s_tdefl_len_extra[match_len]);17301731// This sequence coaxes MSVC into using cmov's vs. jmp's.1732s0 = s_tdefl_small_dist_sym[match_dist & 511];1733n0 = s_tdefl_small_dist_extra[match_dist & 511];1734s1 = s_tdefl_large_dist_sym[match_dist >> 8];1735n1 = s_tdefl_large_dist_extra[match_dist >> 8];1736sym = (match_dist < 512) ? s0 : s1;1737num_extra_bits = (match_dist < 512) ? n0 : n1;17381739MZ_ASSERT(d->m_huff_code_sizes[1][sym]);1740TDEFL_PUT_BITS_FAST(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]);1741TDEFL_PUT_BITS_FAST(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits);1742}1743else1744{1745mz_uint lit = *pLZ_codes++;1746MZ_ASSERT(d->m_huff_code_sizes[0][lit]);1747TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);17481749if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end))1750{1751flags >>= 1;1752lit = *pLZ_codes++;1753MZ_ASSERT(d->m_huff_code_sizes[0][lit]);1754TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);17551756if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end))1757{1758flags >>= 1;1759lit = *pLZ_codes++;1760MZ_ASSERT(d->m_huff_code_sizes[0][lit]);1761TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);1762}1763}1764}17651766if (pOutput_buf >= d->m_pOutput_buf_end)1767return MZ_FALSE;17681769*(mz_uint64*)pOutput_buf = bit_buffer;1770pOutput_buf += (bits_in >> 3);1771bit_buffer >>= (bits_in & ~7);1772bits_in &= 7;1773}17741775#undef TDEFL_PUT_BITS_FAST17761777d->m_pOutput_buf = pOutput_buf;1778d->m_bits_in = 0;1779d->m_bit_buffer = 0;17801781while (bits_in)1782{1783mz_uint32 n = MZ_MIN(bits_in, 16);1784TDEFL_PUT_BITS((mz_uint)bit_buffer & mz_bitmasks[n], n);1785bit_buffer >>= n;1786bits_in -= n;1787}17881789TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]);17901791return (d->m_pOutput_buf < d->m_pOutput_buf_end);1792}1793#else1794static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d)1795{1796mz_uint flags;1797mz_uint8 *pLZ_codes;17981799flags = 1;1800for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < d->m_pLZ_code_buf; flags >>= 1)1801{1802if (flags == 1)1803flags = *pLZ_codes++ | 0x100;1804if (flags & 1)1805{1806mz_uint sym, num_extra_bits;1807mz_uint match_len = pLZ_codes[0], match_dist = (pLZ_codes[1] | (pLZ_codes[2] << 8)); pLZ_codes += 3;18081809MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);1810TDEFL_PUT_BITS(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);1811TDEFL_PUT_BITS(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], s_tdefl_len_extra[match_len]);18121813if (match_dist < 512)1814{1815sym = s_tdefl_small_dist_sym[match_dist]; num_extra_bits = s_tdefl_small_dist_extra[match_dist];1816}1817else1818{1819sym = s_tdefl_large_dist_sym[match_dist >> 8]; num_extra_bits = s_tdefl_large_dist_extra[match_dist >> 8];1820}1821MZ_ASSERT(d->m_huff_code_sizes[1][sym]);1822TDEFL_PUT_BITS(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]);1823TDEFL_PUT_BITS(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits);1824}1825else1826{1827mz_uint lit = *pLZ_codes++;1828MZ_ASSERT(d->m_huff_code_sizes[0][lit]);1829TDEFL_PUT_BITS(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);1830}1831}18321833TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]);18341835return (d->m_pOutput_buf < d->m_pOutput_buf_end);1836}1837#endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && MINIZ_HAS_64BIT_REGISTERS18381839static mz_bool tdefl_compress_block(tdefl_compressor *d, mz_bool static_block)1840{1841if (static_block)1842tdefl_start_static_block(d);1843else1844tdefl_start_dynamic_block(d);1845return tdefl_compress_lz_codes(d);1846}18471848static int tdefl_flush_block(tdefl_compressor *d, int flush)1849{1850mz_uint saved_bit_buf, saved_bits_in;1851mz_uint8 *pSaved_output_buf;1852mz_bool comp_block_succeeded = MZ_FALSE;1853int n, use_raw_block = ((d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS) != 0) && (d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size;1854mz_uint8 *pOutput_buf_start = ((d->m_pPut_buf_func == NULL) && ((*d->m_pOut_buf_size - d->m_out_buf_ofs) >= TDEFL_OUT_BUF_SIZE)) ? ((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs) : d->m_output_buf;18551856d->m_pOutput_buf = pOutput_buf_start;1857d->m_pOutput_buf_end = d->m_pOutput_buf + TDEFL_OUT_BUF_SIZE - 16;18581859MZ_ASSERT(!d->m_output_flush_remaining);1860d->m_output_flush_ofs = 0;1861d->m_output_flush_remaining = 0;18621863*d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> d->m_num_flags_left);1864d->m_pLZ_code_buf -= (d->m_num_flags_left == 8);18651866if ((d->m_flags & TDEFL_WRITE_ZLIB_HEADER) && (!d->m_block_index))1867{1868TDEFL_PUT_BITS(0x78, 8); TDEFL_PUT_BITS(0x01, 8);1869}18701871TDEFL_PUT_BITS(flush == TDEFL_FINISH, 1);18721873pSaved_output_buf = d->m_pOutput_buf; saved_bit_buf = d->m_bit_buffer; saved_bits_in = d->m_bits_in;18741875if (!use_raw_block)1876comp_block_succeeded = tdefl_compress_block(d, (d->m_flags & TDEFL_FORCE_ALL_STATIC_BLOCKS) || (d->m_total_lz_bytes < 48));18771878// If the block gets expanded, forget the current contents of the output buffer and send a raw block instead.1879if ( ((use_raw_block) || ((d->m_total_lz_bytes) && ((d->m_pOutput_buf - pSaved_output_buf + 1U) >= d->m_total_lz_bytes))) &&1880((d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size) )1881{1882mz_uint i; d->m_pOutput_buf = pSaved_output_buf; d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;1883TDEFL_PUT_BITS(0, 2);1884if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); }1885for (i = 2; i; --i, d->m_total_lz_bytes ^= 0xFFFF)1886{1887TDEFL_PUT_BITS(d->m_total_lz_bytes & 0xFFFF, 16);1888}1889for (i = 0; i < d->m_total_lz_bytes; ++i)1890{1891TDEFL_PUT_BITS(d->m_dict[(d->m_lz_code_buf_dict_pos + i) & TDEFL_LZ_DICT_SIZE_MASK], 8);1892}1893}1894// Check for the extremely unlikely (if not impossible) case of the compressed block not fitting into the output buffer when using dynamic codes.1895else if (!comp_block_succeeded)1896{1897d->m_pOutput_buf = pSaved_output_buf; d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;1898tdefl_compress_block(d, MZ_TRUE);1899}19001901if (flush)1902{1903if (flush == TDEFL_FINISH)1904{1905if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); }1906if (d->m_flags & TDEFL_WRITE_ZLIB_HEADER) { mz_uint i, a = d->m_adler32; for (i = 0; i < 4; i++) { TDEFL_PUT_BITS((a >> 24) & 0xFF, 8); a <<= 8; } }1907}1908else1909{1910mz_uint i, z = 0; TDEFL_PUT_BITS(0, 3); if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); } for (i = 2; i; --i, z ^= 0xFFFF) { TDEFL_PUT_BITS(z & 0xFFFF, 16); }1911}1912}19131914MZ_ASSERT(d->m_pOutput_buf < d->m_pOutput_buf_end);19151916memset(&d->m_huff_count[0][0], 0, sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0);1917memset(&d->m_huff_count[1][0], 0, sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1);19181919d->m_pLZ_code_buf = d->m_lz_code_buf + 1; d->m_pLZ_flags = d->m_lz_code_buf; d->m_num_flags_left = 8; d->m_lz_code_buf_dict_pos += d->m_total_lz_bytes; d->m_total_lz_bytes = 0; d->m_block_index++;19201921if ((n = (int)(d->m_pOutput_buf - pOutput_buf_start)) != 0)1922{1923if (d->m_pPut_buf_func)1924{1925*d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;1926if (!(*d->m_pPut_buf_func)(d->m_output_buf, n, d->m_pPut_buf_user))1927return (d->m_prev_return_status = TDEFL_STATUS_PUT_BUF_FAILED);1928}1929else if (pOutput_buf_start == d->m_output_buf)1930{1931int bytes_to_copy = (int)MZ_MIN((size_t)n, (size_t)(*d->m_pOut_buf_size - d->m_out_buf_ofs));1932memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf, bytes_to_copy);1933d->m_out_buf_ofs += bytes_to_copy;1934if ((n -= bytes_to_copy) != 0)1935{1936d->m_output_flush_ofs = bytes_to_copy;1937d->m_output_flush_remaining = n;1938}1939}1940else1941{1942d->m_out_buf_ofs += n;1943}1944}19451946return d->m_output_flush_remaining;1947}19481949#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES1950#define TDEFL_READ_UNALIGNED_WORD(p) *(const mz_uint16*)(p)1951static MZ_FORCEINLINE void tdefl_find_match(tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len)1952{1953mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, match_len = *pMatch_len, probe_pos = pos, next_probe_pos, probe_len;1954mz_uint num_probes_left = d->m_max_probes[match_len >= 32];1955const mz_uint16 *s = (const mz_uint16*)(d->m_dict + pos), *p, *q;1956mz_uint16 c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]), s01 = TDEFL_READ_UNALIGNED_WORD(s);1957MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); if (max_match_len <= match_len) return;1958for ( ; ; )1959{1960for ( ; ; )1961{1962if (--num_probes_left == 0) return;1963#define TDEFL_PROBE \1964next_probe_pos = d->m_next[probe_pos]; \1965if ((!next_probe_pos) || ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) return; \1966probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \1967if (TDEFL_READ_UNALIGNED_WORD(&d->m_dict[probe_pos + match_len - 1]) == c01) break;1968TDEFL_PROBE; TDEFL_PROBE; TDEFL_PROBE;1969}1970if (!dist) break; q = (const mz_uint16*)(d->m_dict + probe_pos); if (TDEFL_READ_UNALIGNED_WORD(q) != s01) continue; p = s; probe_len = 32;1971do { } while ( (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&1972(TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (--probe_len > 0) );1973if (!probe_len)1974{1975*pMatch_dist = dist; *pMatch_len = MZ_MIN(max_match_len, (mz_uint)TDEFL_MAX_MATCH_LEN); break;1976}1977else if ((probe_len = ((mz_uint)(p - s) * 2) + (mz_uint)(*(const mz_uint8*)p == *(const mz_uint8*)q)) > match_len)1978{1979*pMatch_dist = dist; if ((*pMatch_len = match_len = MZ_MIN(max_match_len, probe_len)) == max_match_len) break;1980c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]);1981}1982}1983}1984#else1985static MZ_FORCEINLINE void tdefl_find_match(tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len)1986{1987mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, match_len = *pMatch_len, probe_pos = pos, next_probe_pos, probe_len;1988mz_uint num_probes_left = d->m_max_probes[match_len >= 32];1989const mz_uint8 *s = d->m_dict + pos, *p, *q;1990mz_uint8 c0 = d->m_dict[pos + match_len], c1 = d->m_dict[pos + match_len - 1];1991MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); if (max_match_len <= match_len) return;1992for ( ; ; )1993{1994for ( ; ; )1995{1996if (--num_probes_left == 0) return;1997#define TDEFL_PROBE \1998next_probe_pos = d->m_next[probe_pos]; \1999if ((!next_probe_pos) || ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) return; \2000probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \2001if ((d->m_dict[probe_pos + match_len] == c0) && (d->m_dict[probe_pos + match_len - 1] == c1)) break;2002TDEFL_PROBE; TDEFL_PROBE; TDEFL_PROBE;2003}2004if (!dist) break; p = s; q = d->m_dict + probe_pos; for (probe_len = 0; probe_len < max_match_len; probe_len++) if (*p++ != *q++) break;2005if (probe_len > match_len)2006{2007*pMatch_dist = dist; if ((*pMatch_len = match_len = probe_len) == max_match_len) return;2008c0 = d->m_dict[pos + match_len]; c1 = d->m_dict[pos + match_len - 1];2009}2010}2011}2012#endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES20132014#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN2015static mz_bool tdefl_compress_fast(tdefl_compressor *d)2016{2017// Faster, minimally featured LZRW1-style match+parse loop with better register utilization. Intended for applications where raw throughput is valued more highly than ratio.2018mz_uint lookahead_pos = d->m_lookahead_pos, lookahead_size = d->m_lookahead_size, dict_size = d->m_dict_size, total_lz_bytes = d->m_total_lz_bytes, num_flags_left = d->m_num_flags_left;2019mz_uint8 *pLZ_code_buf = d->m_pLZ_code_buf, *pLZ_flags = d->m_pLZ_flags;2020mz_uint cur_pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;20212022while ((d->m_src_buf_left) || ((d->m_flush) && (lookahead_size)))2023{2024const mz_uint TDEFL_COMP_FAST_LOOKAHEAD_SIZE = 4096;2025mz_uint dst_pos = (lookahead_pos + lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK;2026mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(d->m_src_buf_left, TDEFL_COMP_FAST_LOOKAHEAD_SIZE - lookahead_size);2027d->m_src_buf_left -= num_bytes_to_process;2028lookahead_size += num_bytes_to_process;20292030while (num_bytes_to_process)2031{2032mz_uint32 n = MZ_MIN(TDEFL_LZ_DICT_SIZE - dst_pos, num_bytes_to_process);2033memcpy(d->m_dict + dst_pos, d->m_pSrc, n);2034if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))2035memcpy(d->m_dict + TDEFL_LZ_DICT_SIZE + dst_pos, d->m_pSrc, MZ_MIN(n, (TDEFL_MAX_MATCH_LEN - 1) - dst_pos));2036d->m_pSrc += n;2037dst_pos = (dst_pos + n) & TDEFL_LZ_DICT_SIZE_MASK;2038num_bytes_to_process -= n;2039}20402041dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - lookahead_size, dict_size);2042if ((!d->m_flush) && (lookahead_size < TDEFL_COMP_FAST_LOOKAHEAD_SIZE)) break;20432044while (lookahead_size >= 4)2045{2046mz_uint cur_match_dist, cur_match_len = 1;2047mz_uint8 *pCur_dict = d->m_dict + cur_pos;2048mz_uint first_trigram = (*(const mz_uint32 *)pCur_dict) & 0xFFFFFF;2049mz_uint hash = (first_trigram ^ (first_trigram >> (24 - (TDEFL_LZ_HASH_BITS - 8)))) & TDEFL_LEVEL1_HASH_SIZE_MASK;2050mz_uint probe_pos = d->m_hash[hash];2051d->m_hash[hash] = (mz_uint16)lookahead_pos;20522053if (((cur_match_dist = (mz_uint16)(lookahead_pos - probe_pos)) <= dict_size) && ((*(const mz_uint32 *)(d->m_dict + (probe_pos &= TDEFL_LZ_DICT_SIZE_MASK)) & 0xFFFFFF) == first_trigram))2054{2055const mz_uint16 *p = (const mz_uint16 *)pCur_dict;2056const mz_uint16 *q = (const mz_uint16 *)(d->m_dict + probe_pos);2057mz_uint32 probe_len = 32;2058do { } while ( (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&2059(TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (--probe_len > 0) );2060cur_match_len = ((mz_uint)(p - (const mz_uint16 *)pCur_dict) * 2) + (mz_uint)(*(const mz_uint8 *)p == *(const mz_uint8 *)q);2061if (!probe_len)2062cur_match_len = cur_match_dist ? TDEFL_MAX_MATCH_LEN : 0;20632064if ((cur_match_len < TDEFL_MIN_MATCH_LEN) || ((cur_match_len == TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 8U*1024U)))2065{2066cur_match_len = 1;2067*pLZ_code_buf++ = (mz_uint8)first_trigram;2068*pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);2069d->m_huff_count[0][(mz_uint8)first_trigram]++;2070}2071else2072{2073mz_uint32 s0, s1;2074cur_match_len = MZ_MIN(cur_match_len, lookahead_size);20752076MZ_ASSERT((cur_match_len >= TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 1) && (cur_match_dist <= TDEFL_LZ_DICT_SIZE));20772078cur_match_dist--;20792080pLZ_code_buf[0] = (mz_uint8)(cur_match_len - TDEFL_MIN_MATCH_LEN);2081*(mz_uint16 *)(&pLZ_code_buf[1]) = (mz_uint16)cur_match_dist;2082pLZ_code_buf += 3;2083*pLZ_flags = (mz_uint8)((*pLZ_flags >> 1) | 0x80);20842085s0 = s_tdefl_small_dist_sym[cur_match_dist & 511];2086s1 = s_tdefl_large_dist_sym[cur_match_dist >> 8];2087d->m_huff_count[1][(cur_match_dist < 512) ? s0 : s1]++;20882089d->m_huff_count[0][s_tdefl_len_sym[cur_match_len - TDEFL_MIN_MATCH_LEN]]++;2090}2091}2092else2093{2094*pLZ_code_buf++ = (mz_uint8)first_trigram;2095*pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);2096d->m_huff_count[0][(mz_uint8)first_trigram]++;2097}20982099if (--num_flags_left == 0) { num_flags_left = 8; pLZ_flags = pLZ_code_buf++; }21002101total_lz_bytes += cur_match_len;2102lookahead_pos += cur_match_len;2103dict_size = MZ_MIN(dict_size + cur_match_len, (mz_uint)TDEFL_LZ_DICT_SIZE);2104cur_pos = (cur_pos + cur_match_len) & TDEFL_LZ_DICT_SIZE_MASK;2105MZ_ASSERT(lookahead_size >= cur_match_len);2106lookahead_size -= cur_match_len;21072108if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8])2109{2110int n;2111d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size;2112d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left;2113if ((n = tdefl_flush_block(d, 0)) != 0)2114return (n < 0) ? MZ_FALSE : MZ_TRUE;2115total_lz_bytes = d->m_total_lz_bytes; pLZ_code_buf = d->m_pLZ_code_buf; pLZ_flags = d->m_pLZ_flags; num_flags_left = d->m_num_flags_left;2116}2117}21182119while (lookahead_size)2120{2121mz_uint8 lit = d->m_dict[cur_pos];21222123total_lz_bytes++;2124*pLZ_code_buf++ = lit;2125*pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);2126if (--num_flags_left == 0) { num_flags_left = 8; pLZ_flags = pLZ_code_buf++; }21272128d->m_huff_count[0][lit]++;21292130lookahead_pos++;2131dict_size = MZ_MIN(dict_size + 1, (mz_uint)TDEFL_LZ_DICT_SIZE);2132cur_pos = (cur_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK;2133lookahead_size--;21342135if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8])2136{2137int n;2138d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size;2139d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left;2140if ((n = tdefl_flush_block(d, 0)) != 0)2141return (n < 0) ? MZ_FALSE : MZ_TRUE;2142total_lz_bytes = d->m_total_lz_bytes; pLZ_code_buf = d->m_pLZ_code_buf; pLZ_flags = d->m_pLZ_flags; num_flags_left = d->m_num_flags_left;2143}2144}2145}21462147d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size;2148d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left;2149return MZ_TRUE;2150}2151#endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN21522153static MZ_FORCEINLINE void tdefl_record_literal(tdefl_compressor *d, mz_uint8 lit)2154{2155d->m_total_lz_bytes++;2156*d->m_pLZ_code_buf++ = lit;2157*d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> 1); if (--d->m_num_flags_left == 0) { d->m_num_flags_left = 8; d->m_pLZ_flags = d->m_pLZ_code_buf++; }2158d->m_huff_count[0][lit]++;2159}21602161static MZ_FORCEINLINE void tdefl_record_match(tdefl_compressor *d, mz_uint match_len, mz_uint match_dist)2162{2163mz_uint32 s0, s1;21642165MZ_ASSERT((match_len >= TDEFL_MIN_MATCH_LEN) && (match_dist >= 1) && (match_dist <= TDEFL_LZ_DICT_SIZE));21662167d->m_total_lz_bytes += match_len;21682169d->m_pLZ_code_buf[0] = (mz_uint8)(match_len - TDEFL_MIN_MATCH_LEN);21702171match_dist -= 1;2172d->m_pLZ_code_buf[1] = (mz_uint8)(match_dist & 0xFF);2173d->m_pLZ_code_buf[2] = (mz_uint8)(match_dist >> 8); d->m_pLZ_code_buf += 3;21742175*d->m_pLZ_flags = (mz_uint8)((*d->m_pLZ_flags >> 1) | 0x80); if (--d->m_num_flags_left == 0) { d->m_num_flags_left = 8; d->m_pLZ_flags = d->m_pLZ_code_buf++; }21762177s0 = s_tdefl_small_dist_sym[match_dist & 511]; s1 = s_tdefl_large_dist_sym[(match_dist >> 8) & 127];2178d->m_huff_count[1][(match_dist < 512) ? s0 : s1]++;21792180if (match_len >= TDEFL_MIN_MATCH_LEN) d->m_huff_count[0][s_tdefl_len_sym[match_len - TDEFL_MIN_MATCH_LEN]]++;2181}21822183static mz_bool tdefl_compress_normal(tdefl_compressor *d)2184{2185const mz_uint8 *pSrc = d->m_pSrc; size_t src_buf_left = d->m_src_buf_left;2186tdefl_flush flush = d->m_flush;21872188while ((src_buf_left) || ((flush) && (d->m_lookahead_size)))2189{2190mz_uint len_to_move, cur_match_dist, cur_match_len, cur_pos;2191// Update dictionary and hash chains. Keeps the lookahead size equal to TDEFL_MAX_MATCH_LEN.2192if ((d->m_lookahead_size + d->m_dict_size) >= (TDEFL_MIN_MATCH_LEN - 1))2193{2194mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK, ins_pos = d->m_lookahead_pos + d->m_lookahead_size - 2;2195mz_uint hash = (d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] << TDEFL_LZ_HASH_SHIFT) ^ d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK];2196mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(src_buf_left, TDEFL_MAX_MATCH_LEN - d->m_lookahead_size);2197const mz_uint8 *pSrc_end = pSrc + num_bytes_to_process;2198src_buf_left -= num_bytes_to_process;2199d->m_lookahead_size += num_bytes_to_process;2200while (pSrc != pSrc_end)2201{2202mz_uint8 c = *pSrc++; d->m_dict[dst_pos] = c; if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;2203hash = ((hash << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1);2204d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; d->m_hash[hash] = (mz_uint16)(ins_pos);2205dst_pos = (dst_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK; ins_pos++;2206}2207}2208else2209{2210while ((src_buf_left) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN))2211{2212mz_uint8 c = *pSrc++;2213mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK;2214src_buf_left--;2215d->m_dict[dst_pos] = c;2216if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))2217d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;2218if ((++d->m_lookahead_size + d->m_dict_size) >= TDEFL_MIN_MATCH_LEN)2219{2220mz_uint ins_pos = d->m_lookahead_pos + (d->m_lookahead_size - 1) - 2;2221mz_uint hash = ((d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] << (TDEFL_LZ_HASH_SHIFT * 2)) ^ (d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK] << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1);2222d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; d->m_hash[hash] = (mz_uint16)(ins_pos);2223}2224}2225}2226d->m_dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - d->m_lookahead_size, d->m_dict_size);2227if ((!flush) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN))2228break;22292230// Simple lazy/greedy parsing state machine.2231len_to_move = 1; cur_match_dist = 0; cur_match_len = d->m_saved_match_len ? d->m_saved_match_len : (TDEFL_MIN_MATCH_LEN - 1); cur_pos = d->m_lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;2232if (d->m_flags & (TDEFL_RLE_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS))2233{2234if ((d->m_dict_size) && (!(d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS)))2235{2236mz_uint8 c = d->m_dict[(cur_pos - 1) & TDEFL_LZ_DICT_SIZE_MASK];2237cur_match_len = 0; while (cur_match_len < d->m_lookahead_size) { if (d->m_dict[cur_pos + cur_match_len] != c) break; cur_match_len++; }2238if (cur_match_len < TDEFL_MIN_MATCH_LEN) cur_match_len = 0; else cur_match_dist = 1;2239}2240}2241else2242{2243tdefl_find_match(d, d->m_lookahead_pos, d->m_dict_size, d->m_lookahead_size, &cur_match_dist, &cur_match_len);2244}2245if (((cur_match_len == TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 8U*1024U)) || (cur_pos == cur_match_dist) || ((d->m_flags & TDEFL_FILTER_MATCHES) && (cur_match_len <= 5)))2246{2247cur_match_dist = cur_match_len = 0;2248}2249if (d->m_saved_match_len)2250{2251if (cur_match_len > d->m_saved_match_len)2252{2253tdefl_record_literal(d, (mz_uint8)d->m_saved_lit);2254if (cur_match_len >= 128)2255{2256tdefl_record_match(d, cur_match_len, cur_match_dist);2257d->m_saved_match_len = 0; len_to_move = cur_match_len;2258}2259else2260{2261d->m_saved_lit = d->m_dict[cur_pos]; d->m_saved_match_dist = cur_match_dist; d->m_saved_match_len = cur_match_len;2262}2263}2264else2265{2266tdefl_record_match(d, d->m_saved_match_len, d->m_saved_match_dist);2267len_to_move = d->m_saved_match_len - 1; d->m_saved_match_len = 0;2268}2269}2270else if (!cur_match_dist)2271tdefl_record_literal(d, d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]);2272else if ((d->m_greedy_parsing) || (d->m_flags & TDEFL_RLE_MATCHES) || (cur_match_len >= 128))2273{2274tdefl_record_match(d, cur_match_len, cur_match_dist);2275len_to_move = cur_match_len;2276}2277else2278{2279d->m_saved_lit = d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]; d->m_saved_match_dist = cur_match_dist; d->m_saved_match_len = cur_match_len;2280}2281// Move the lookahead forward by len_to_move bytes.2282d->m_lookahead_pos += len_to_move;2283MZ_ASSERT(d->m_lookahead_size >= len_to_move);2284d->m_lookahead_size -= len_to_move;2285d->m_dict_size = MZ_MIN(d->m_dict_size + len_to_move, (mz_uint)TDEFL_LZ_DICT_SIZE);2286// Check if it's time to flush the current LZ codes to the internal output buffer.2287if ( (d->m_pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) ||2288( (d->m_total_lz_bytes > 31*1024) && (((((mz_uint)(d->m_pLZ_code_buf - d->m_lz_code_buf) * 115) >> 7) >= d->m_total_lz_bytes) || (d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS))) )2289{2290int n;2291d->m_pSrc = pSrc; d->m_src_buf_left = src_buf_left;2292if ((n = tdefl_flush_block(d, 0)) != 0)2293return (n < 0) ? MZ_FALSE : MZ_TRUE;2294}2295}22962297d->m_pSrc = pSrc; d->m_src_buf_left = src_buf_left;2298return MZ_TRUE;2299}23002301static tdefl_status tdefl_flush_output_buffer(tdefl_compressor *d)2302{2303if (d->m_pIn_buf_size)2304{2305*d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;2306}23072308if (d->m_pOut_buf_size)2309{2310size_t n = MZ_MIN(*d->m_pOut_buf_size - d->m_out_buf_ofs, d->m_output_flush_remaining);2311memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf + d->m_output_flush_ofs, n);2312d->m_output_flush_ofs += (mz_uint)n;2313d->m_output_flush_remaining -= (mz_uint)n;2314d->m_out_buf_ofs += n;23152316*d->m_pOut_buf_size = d->m_out_buf_ofs;2317}23182319return (d->m_finished && !d->m_output_flush_remaining) ? TDEFL_STATUS_DONE : TDEFL_STATUS_OKAY;2320}23212322tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf, size_t *pIn_buf_size, void *pOut_buf, size_t *pOut_buf_size, tdefl_flush flush)2323{2324if (!d)2325{2326if (pIn_buf_size) *pIn_buf_size = 0;2327if (pOut_buf_size) *pOut_buf_size = 0;2328return TDEFL_STATUS_BAD_PARAM;2329}23302331d->m_pIn_buf = pIn_buf; d->m_pIn_buf_size = pIn_buf_size;2332d->m_pOut_buf = pOut_buf; d->m_pOut_buf_size = pOut_buf_size;2333d->m_pSrc = (const mz_uint8 *)(pIn_buf); d->m_src_buf_left = pIn_buf_size ? *pIn_buf_size : 0;2334d->m_out_buf_ofs = 0;2335d->m_flush = flush;23362337if ( ((d->m_pPut_buf_func != NULL) == ((pOut_buf != NULL) || (pOut_buf_size != NULL))) || (d->m_prev_return_status != TDEFL_STATUS_OKAY) ||2338(d->m_wants_to_finish && (flush != TDEFL_FINISH)) || (pIn_buf_size && *pIn_buf_size && !pIn_buf) || (pOut_buf_size && *pOut_buf_size && !pOut_buf) )2339{2340if (pIn_buf_size) *pIn_buf_size = 0;2341if (pOut_buf_size) *pOut_buf_size = 0;2342return (d->m_prev_return_status = TDEFL_STATUS_BAD_PARAM);2343}2344d->m_wants_to_finish |= (flush == TDEFL_FINISH);23452346if ((d->m_output_flush_remaining) || (d->m_finished))2347return (d->m_prev_return_status = tdefl_flush_output_buffer(d));23482349#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN2350if (((d->m_flags & TDEFL_MAX_PROBES_MASK) == 1) &&2351((d->m_flags & TDEFL_GREEDY_PARSING_FLAG) != 0) &&2352((d->m_flags & (TDEFL_FILTER_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS | TDEFL_RLE_MATCHES)) == 0))2353{2354if (!tdefl_compress_fast(d))2355return d->m_prev_return_status;2356}2357else2358#endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN2359{2360if (!tdefl_compress_normal(d))2361return d->m_prev_return_status;2362}23632364if ((d->m_flags & (TDEFL_WRITE_ZLIB_HEADER | TDEFL_COMPUTE_ADLER32)) && (pIn_buf))2365d->m_adler32 = (mz_uint32)mz_adler32(d->m_adler32, (const mz_uint8 *)pIn_buf, d->m_pSrc - (const mz_uint8 *)pIn_buf);23662367if ((flush) && (!d->m_lookahead_size) && (!d->m_src_buf_left) && (!d->m_output_flush_remaining))2368{2369if (tdefl_flush_block(d, flush) < 0)2370return d->m_prev_return_status;2371d->m_finished = (flush == TDEFL_FINISH);2372if (flush == TDEFL_FULL_FLUSH) { MZ_CLEAR_OBJ(d->m_hash); MZ_CLEAR_OBJ(d->m_next); d->m_dict_size = 0; }2373}23742375return (d->m_prev_return_status = tdefl_flush_output_buffer(d));2376}23772378tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf, size_t in_buf_size, tdefl_flush flush)2379{2380MZ_ASSERT(d->m_pPut_buf_func); return tdefl_compress(d, pIn_buf, &in_buf_size, NULL, NULL, flush);2381}23822383tdefl_status tdefl_init(tdefl_compressor *d, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags)2384{2385d->m_pPut_buf_func = pPut_buf_func; d->m_pPut_buf_user = pPut_buf_user;2386d->m_flags = (mz_uint)(flags); d->m_max_probes[0] = 1 + ((flags & 0xFFF) + 2) / 3; d->m_greedy_parsing = (flags & TDEFL_GREEDY_PARSING_FLAG) != 0;2387d->m_max_probes[1] = 1 + (((flags & 0xFFF) >> 2) + 2) / 3;2388if (!(flags & TDEFL_NONDETERMINISTIC_PARSING_FLAG)) MZ_CLEAR_OBJ(d->m_hash);2389d->m_lookahead_pos = d->m_lookahead_size = d->m_dict_size = d->m_total_lz_bytes = d->m_lz_code_buf_dict_pos = d->m_bits_in = 0;2390d->m_output_flush_ofs = d->m_output_flush_remaining = d->m_finished = d->m_block_index = d->m_bit_buffer = d->m_wants_to_finish = 0;2391d->m_pLZ_code_buf = d->m_lz_code_buf + 1; d->m_pLZ_flags = d->m_lz_code_buf; d->m_num_flags_left = 8;2392d->m_pOutput_buf = d->m_output_buf; d->m_pOutput_buf_end = d->m_output_buf; d->m_prev_return_status = TDEFL_STATUS_OKAY;2393d->m_saved_match_dist = d->m_saved_match_len = d->m_saved_lit = 0; d->m_adler32 = 1;2394d->m_pIn_buf = NULL; d->m_pOut_buf = NULL;2395d->m_pIn_buf_size = NULL; d->m_pOut_buf_size = NULL;2396d->m_flush = TDEFL_NO_FLUSH; d->m_pSrc = NULL; d->m_src_buf_left = 0; d->m_out_buf_ofs = 0;2397memset(&d->m_huff_count[0][0], 0, sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0);2398memset(&d->m_huff_count[1][0], 0, sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1);2399return TDEFL_STATUS_OKAY;2400}24012402tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d)2403{2404return d->m_prev_return_status;2405}24062407mz_uint32 tdefl_get_adler32(tdefl_compressor *d)2408{2409return d->m_adler32;2410}24112412mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags)2413{2414tdefl_compressor *pComp; mz_bool succeeded; if (((buf_len) && (!pBuf)) || (!pPut_buf_func)) return MZ_FALSE;2415pComp = (tdefl_compressor*)MZ_MALLOC(sizeof(tdefl_compressor)); if (!pComp) return MZ_FALSE;2416succeeded = (tdefl_init(pComp, pPut_buf_func, pPut_buf_user, flags) == TDEFL_STATUS_OKAY);2417succeeded = succeeded && (tdefl_compress_buffer(pComp, pBuf, buf_len, TDEFL_FINISH) == TDEFL_STATUS_DONE);2418MZ_FREE(pComp); return succeeded;2419}24202421typedef struct2422{2423size_t m_size, m_capacity;2424mz_uint8 *m_pBuf;2425mz_bool m_expandable;2426} tdefl_output_buffer;24272428static mz_bool tdefl_output_buffer_putter(const void *pBuf, int len, void *pUser)2429{2430tdefl_output_buffer *p = (tdefl_output_buffer *)pUser;2431size_t new_size = p->m_size + len;2432if (new_size > p->m_capacity)2433{2434size_t new_capacity = p->m_capacity; mz_uint8 *pNew_buf; if (!p->m_expandable) return MZ_FALSE;2435do { new_capacity = MZ_MAX(128U, new_capacity << 1U); } while (new_size > new_capacity);2436pNew_buf = (mz_uint8*)MZ_REALLOC(p->m_pBuf, new_capacity); if (!pNew_buf) return MZ_FALSE;2437p->m_pBuf = pNew_buf; p->m_capacity = new_capacity;2438}2439memcpy((mz_uint8*)p->m_pBuf + p->m_size, pBuf, len); p->m_size = new_size;2440return MZ_TRUE;2441}24422443void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags)2444{2445tdefl_output_buffer out_buf; MZ_CLEAR_OBJ(out_buf);2446if (!pOut_len) return MZ_FALSE; else *pOut_len = 0;2447out_buf.m_expandable = MZ_TRUE;2448if (!tdefl_compress_mem_to_output(pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags)) return NULL;2449*pOut_len = out_buf.m_size; return out_buf.m_pBuf;2450}24512452size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags)2453{2454tdefl_output_buffer out_buf; MZ_CLEAR_OBJ(out_buf);2455if (!pOut_buf) return 0;2456out_buf.m_pBuf = (mz_uint8*)pOut_buf; out_buf.m_capacity = out_buf_len;2457if (!tdefl_compress_mem_to_output(pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags)) return 0;2458return out_buf.m_size;2459}24602461#ifndef MINIZ_NO_ZLIB_APIS2462static const mz_uint s_tdefl_num_probes[11] = { 0, 1, 6, 32, 16, 32, 128, 256, 512, 768, 1500 };24632464// level may actually range from [0,10] (10 is a "hidden" max level, where we want a bit more compression and it's fine if throughput to fall off a cliff on some files).2465mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits, int strategy)2466{2467mz_uint comp_flags = s_tdefl_num_probes[(level >= 0) ? MZ_MIN(10, level) : MZ_DEFAULT_LEVEL] | ((level <= 3) ? TDEFL_GREEDY_PARSING_FLAG : 0);2468if (window_bits > 0) comp_flags |= TDEFL_WRITE_ZLIB_HEADER;24692470if (!level) comp_flags |= TDEFL_FORCE_ALL_RAW_BLOCKS;2471else if (strategy == MZ_FILTERED) comp_flags |= TDEFL_FILTER_MATCHES;2472else if (strategy == MZ_HUFFMAN_ONLY) comp_flags &= ~TDEFL_MAX_PROBES_MASK;2473else if (strategy == MZ_FIXED) comp_flags |= TDEFL_FORCE_ALL_STATIC_BLOCKS;2474else if (strategy == MZ_RLE) comp_flags |= TDEFL_RLE_MATCHES;24752476return comp_flags;2477}2478#endif //MINIZ_NO_ZLIB_APIS24792480#ifdef _MSC_VER2481#pragma warning (push)2482#pragma warning (disable:4204) // nonstandard extension used : non-constant aggregate initializer (also supported by GNU C and C99, so no big deal)2483#endif24842485// Simple PNG writer function by Alex Evans, 2011. Released into the public domain: https://gist.github.com/908299, more context at2486// http://altdevblogaday.org/2011/04/06/a-smaller-jpg-encoder/.2487// This is actually a modification of Alex's original code so PNG files generated by this function pass pngcheck.2488void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w, int h, int num_chans, size_t *pLen_out, mz_uint level, mz_bool flip)2489{2490// Using a local copy of this array here in case MINIZ_NO_ZLIB_APIS was defined.2491static const mz_uint s_tdefl_png_num_probes[11] = { 0, 1, 6, 32, 16, 32, 128, 256, 512, 768, 1500 };2492tdefl_compressor *pComp = (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor)); tdefl_output_buffer out_buf; int i, bpl = w * num_chans, y, z; mz_uint32 c; *pLen_out = 0;2493if (!pComp) return NULL;2494MZ_CLEAR_OBJ(out_buf); out_buf.m_expandable = MZ_TRUE; out_buf.m_capacity = 57+MZ_MAX(64, (1+bpl)*h); if (NULL == (out_buf.m_pBuf = (mz_uint8*)MZ_MALLOC(out_buf.m_capacity))) { MZ_FREE(pComp); return NULL; }2495// write dummy header2496for (z = 41; z; --z) tdefl_output_buffer_putter(&z, 1, &out_buf);2497// compress image data2498tdefl_init(pComp, tdefl_output_buffer_putter, &out_buf, s_tdefl_png_num_probes[MZ_MIN(10, level)] | TDEFL_WRITE_ZLIB_HEADER | (level <= 3 ? TDEFL_GREEDY_PARSING_FLAG : 0));2499for (y = 0; y < h; ++y) { tdefl_compress_buffer(pComp, &z, 1, TDEFL_NO_FLUSH); tdefl_compress_buffer(pComp, (mz_uint8*)pImage + (flip ? (h - 1 - y) : y) * bpl, bpl, TDEFL_NO_FLUSH); }2500if (tdefl_compress_buffer(pComp, NULL, 0, TDEFL_FINISH) != TDEFL_STATUS_DONE) { MZ_FREE(pComp); MZ_FREE(out_buf.m_pBuf); return NULL; }2501// write real header2502*pLen_out = out_buf.m_size-41;2503{2504static const mz_uint8 chans[] = {0x00, 0x00, 0x04, 0x02, 0x06};2505mz_uint8 pnghdr[41]={0x89,0x50,0x4e,0x47,0x0d,0x0a,0x1a,0x0a,0x00,0x00,0x00,0x0d,0x49,0x48,0x44,0x52,25060,0,(mz_uint8)(w>>8),(mz_uint8)w,0,0,(mz_uint8)(h>>8),(mz_uint8)h,8,chans[num_chans],0,0,0,0,0,0,0,2507(mz_uint8)(*pLen_out>>24),(mz_uint8)(*pLen_out>>16),(mz_uint8)(*pLen_out>>8),(mz_uint8)*pLen_out,0x49,0x44,0x41,0x54};2508c=(mz_uint32)mz_crc32(MZ_CRC32_INIT,pnghdr+12,17); for (i=0; i<4; ++i, c<<=8) ((mz_uint8*)(pnghdr+29))[i]=(mz_uint8)(c>>24);2509memcpy(out_buf.m_pBuf, pnghdr, 41);2510}2511// write footer (IDAT CRC-32, followed by IEND chunk)2512if (!tdefl_output_buffer_putter("\0\0\0\0\0\0\0\0\x49\x45\x4e\x44\xae\x42\x60\x82", 16, &out_buf)) { *pLen_out = 0; MZ_FREE(pComp); MZ_FREE(out_buf.m_pBuf); return NULL; }2513c = (mz_uint32)mz_crc32(MZ_CRC32_INIT,out_buf.m_pBuf+41-4, *pLen_out+4); for (i=0; i<4; ++i, c<<=8) (out_buf.m_pBuf+out_buf.m_size-16)[i] = (mz_uint8)(c >> 24);2514// compute final size of file, grab compressed data buffer and return2515*pLen_out += 57; MZ_FREE(pComp); return out_buf.m_pBuf;2516}2517void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h, int num_chans, size_t *pLen_out)2518{2519// Level 6 corresponds to TDEFL_DEFAULT_MAX_PROBES or MZ_DEFAULT_LEVEL (but we can't depend on MZ_DEFAULT_LEVEL being available in case the zlib API's where #defined out)2520return tdefl_write_image_to_png_file_in_memory_ex(pImage, w, h, num_chans, pLen_out, 6, MZ_FALSE);2521}25222523#ifdef _MSC_VER2524#pragma warning (pop)2525#endif25262527} // namespace buminiz25282529#endif // MINIZ_HEADER_FILE_ONLY2530253125322533