Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/embree/common/math/affinespace.h
9912 views
1
// Copyright 2009-2021 Intel Corporation
2
// SPDX-License-Identifier: Apache-2.0
3
4
#pragma once
5
6
#include "linearspace2.h"
7
#include "linearspace3.h"
8
#include "quaternion.h"
9
#include "bbox.h"
10
#include "vec4.h"
11
12
namespace embree
13
{
14
#define VectorT typename L::Vector
15
#define ScalarT typename L::Vector::Scalar
16
17
////////////////////////////////////////////////////////////////////////////////
18
// Affine Space
19
////////////////////////////////////////////////////////////////////////////////
20
21
template<typename L>
22
struct AffineSpaceT
23
{
24
L l; /*< linear part of affine space */
25
VectorT p; /*< affine part of affine space */
26
27
////////////////////////////////////////////////////////////////////////////////
28
// Constructors, Assignment, Cast, Copy Operations
29
////////////////////////////////////////////////////////////////////////////////
30
31
__forceinline AffineSpaceT ( ) { }
32
__forceinline AffineSpaceT ( const AffineSpaceT& other ) { l = other.l; p = other.p; }
33
__forceinline AffineSpaceT ( const L & other ) { l = other ; p = VectorT(zero); }
34
__forceinline AffineSpaceT& operator=( const AffineSpaceT& other ) { l = other.l; p = other.p; return *this; }
35
36
__forceinline AffineSpaceT( const VectorT& vx, const VectorT& vy, const VectorT& vz, const VectorT& p ) : l(vx,vy,vz), p(p) {}
37
__forceinline AffineSpaceT( const L& l, const VectorT& p ) : l(l), p(p) {}
38
39
template<typename L1> __forceinline AffineSpaceT( const AffineSpaceT<L1>& s ) : l(s.l), p(s.p) {}
40
41
////////////////////////////////////////////////////////////////////////////////
42
// Constants
43
////////////////////////////////////////////////////////////////////////////////
44
45
__forceinline AffineSpaceT( ZeroTy ) : l(zero), p(zero) {}
46
__forceinline AffineSpaceT( OneTy ) : l(one), p(zero) {}
47
48
/*! return matrix for scaling */
49
static __forceinline AffineSpaceT scale(const VectorT& s) { return L::scale(s); }
50
51
/*! return matrix for translation */
52
static __forceinline AffineSpaceT translate(const VectorT& p) { return AffineSpaceT(one,p); }
53
54
/*! return matrix for rotation, only in 2D */
55
static __forceinline AffineSpaceT rotate(const ScalarT& r) { return L::rotate(r); }
56
57
/*! return matrix for rotation around arbitrary point (2D) or axis (3D) */
58
static __forceinline AffineSpaceT rotate(const VectorT& u, const ScalarT& r) { return L::rotate(u,r); }
59
60
/*! return matrix for rotation around arbitrary axis and point, only in 3D */
61
static __forceinline AffineSpaceT rotate(const VectorT& p, const VectorT& u, const ScalarT& r) { return translate(+p) * rotate(u,r) * translate(-p); }
62
63
/*! return matrix for looking at given point, only in 3D */
64
static __forceinline AffineSpaceT lookat(const VectorT& eye, const VectorT& point, const VectorT& up) {
65
VectorT Z = normalize(point-eye);
66
VectorT U = normalize(cross(up,Z));
67
VectorT V = normalize(cross(Z,U));
68
return AffineSpaceT(L(U,V,Z),eye);
69
}
70
71
};
72
73
// template specialization to get correct identity matrix for type AffineSpace3fa
74
template<>
75
__forceinline AffineSpaceT<LinearSpace3ff>::AffineSpaceT( OneTy ) : l(one), p(0.f, 0.f, 0.f, 1.f) {}
76
77
////////////////////////////////////////////////////////////////////////////////
78
// Unary Operators
79
////////////////////////////////////////////////////////////////////////////////
80
81
template<typename L> __forceinline AffineSpaceT<L> operator -( const AffineSpaceT<L>& a ) { return AffineSpaceT<L>(-a.l,-a.p); }
82
template<typename L> __forceinline AffineSpaceT<L> operator +( const AffineSpaceT<L>& a ) { return AffineSpaceT<L>(+a.l,+a.p); }
83
template<typename L> __forceinline AffineSpaceT<L> rcp( const AffineSpaceT<L>& a ) { L il = rcp(a.l); return AffineSpaceT<L>(il,-(il*a.p)); }
84
85
////////////////////////////////////////////////////////////////////////////////
86
// Binary Operators
87
////////////////////////////////////////////////////////////////////////////////
88
89
template<typename L> __forceinline const AffineSpaceT<L> operator +( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a.l+b.l,a.p+b.p); }
90
template<typename L> __forceinline const AffineSpaceT<L> operator -( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a.l-b.l,a.p-b.p); }
91
92
template<typename L> __forceinline const AffineSpaceT<L> operator *( const ScalarT & a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a*b.l,a*b.p); }
93
template<typename L> __forceinline const AffineSpaceT<L> operator *( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a.l*b.l,a.l*b.p+a.p); }
94
template<typename L> __forceinline const AffineSpaceT<L> operator /( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a * rcp(b); }
95
template<typename L> __forceinline const AffineSpaceT<L> operator /( const AffineSpaceT<L>& a, const ScalarT & b ) { return a * rcp(b); }
96
97
template<typename L> __forceinline AffineSpaceT<L>& operator *=( AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a = a * b; }
98
template<typename L> __forceinline AffineSpaceT<L>& operator *=( AffineSpaceT<L>& a, const ScalarT & b ) { return a = a * b; }
99
template<typename L> __forceinline AffineSpaceT<L>& operator /=( AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a = a / b; }
100
template<typename L> __forceinline AffineSpaceT<L>& operator /=( AffineSpaceT<L>& a, const ScalarT & b ) { return a = a / b; }
101
102
template<typename L> __forceinline VectorT xfmPoint (const AffineSpaceT<L>& m, const VectorT& p) { return madd(VectorT(p.x),m.l.vx,madd(VectorT(p.y),m.l.vy,madd(VectorT(p.z),m.l.vz,m.p))); }
103
template<typename L> __forceinline VectorT xfmVector(const AffineSpaceT<L>& m, const VectorT& v) { return xfmVector(m.l,v); }
104
template<typename L> __forceinline VectorT xfmNormal(const AffineSpaceT<L>& m, const VectorT& n) { return xfmNormal(m.l,n); }
105
106
__forceinline const BBox<Vec3fa> xfmBounds(const AffineSpaceT<LinearSpace3<Vec3fa> >& m, const BBox<Vec3fa>& b)
107
{
108
BBox3fa dst = empty;
109
const Vec3fa p0(b.lower.x,b.lower.y,b.lower.z); dst.extend(xfmPoint(m,p0));
110
const Vec3fa p1(b.lower.x,b.lower.y,b.upper.z); dst.extend(xfmPoint(m,p1));
111
const Vec3fa p2(b.lower.x,b.upper.y,b.lower.z); dst.extend(xfmPoint(m,p2));
112
const Vec3fa p3(b.lower.x,b.upper.y,b.upper.z); dst.extend(xfmPoint(m,p3));
113
const Vec3fa p4(b.upper.x,b.lower.y,b.lower.z); dst.extend(xfmPoint(m,p4));
114
const Vec3fa p5(b.upper.x,b.lower.y,b.upper.z); dst.extend(xfmPoint(m,p5));
115
const Vec3fa p6(b.upper.x,b.upper.y,b.lower.z); dst.extend(xfmPoint(m,p6));
116
const Vec3fa p7(b.upper.x,b.upper.y,b.upper.z); dst.extend(xfmPoint(m,p7));
117
return dst;
118
}
119
120
////////////////////////////////////////////////////////////////////////////////
121
/// Comparison Operators
122
////////////////////////////////////////////////////////////////////////////////
123
124
template<typename L> __forceinline bool operator ==( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a.l == b.l && a.p == b.p; }
125
template<typename L> __forceinline bool operator !=( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a.l != b.l || a.p != b.p; }
126
127
////////////////////////////////////////////////////////////////////////////////
128
/// Select
129
////////////////////////////////////////////////////////////////////////////////
130
131
template<typename L> __forceinline AffineSpaceT<L> select ( const typename L::Vector::Scalar::Bool& s, const AffineSpaceT<L>& t, const AffineSpaceT<L>& f ) {
132
return AffineSpaceT<L>(select(s,t.l,f.l),select(s,t.p,f.p));
133
}
134
135
////////////////////////////////////////////////////////////////////////////////
136
// Output Operators
137
////////////////////////////////////////////////////////////////////////////////
138
139
template<typename L> static embree_ostream operator<<(embree_ostream cout, const AffineSpaceT<L>& m) {
140
return cout << "{ l = " << m.l << ", p = " << m.p << " }";
141
}
142
143
////////////////////////////////////////////////////////////////////////////////
144
// Template Instantiations
145
////////////////////////////////////////////////////////////////////////////////
146
147
typedef AffineSpaceT<LinearSpace2f> AffineSpace2f;
148
typedef AffineSpaceT<LinearSpace3f> AffineSpace3f;
149
typedef AffineSpaceT<LinearSpace3fa> AffineSpace3fa;
150
typedef AffineSpaceT<LinearSpace3fx> AffineSpace3fx;
151
typedef AffineSpaceT<LinearSpace3ff> AffineSpace3ff;
152
typedef AffineSpaceT<Quaternion3f > OrthonormalSpace3f;
153
154
template<int N> using AffineSpace3vf = AffineSpaceT<LinearSpace3<Vec3<vfloat<N>>>>;
155
typedef AffineSpaceT<LinearSpace3<Vec3<vfloat<4>>>> AffineSpace3vf4;
156
typedef AffineSpaceT<LinearSpace3<Vec3<vfloat<8>>>> AffineSpace3vf8;
157
typedef AffineSpaceT<LinearSpace3<Vec3<vfloat<16>>>> AffineSpace3vf16;
158
159
template<int N> using AffineSpace3vff = AffineSpaceT<LinearSpace3<Vec4<vfloat<N>>>>;
160
typedef AffineSpaceT<LinearSpace3<Vec4<vfloat<4>>>> AffineSpace3vfa4;
161
typedef AffineSpaceT<LinearSpace3<Vec4<vfloat<8>>>> AffineSpace3vfa8;
162
typedef AffineSpaceT<LinearSpace3<Vec4<vfloat<16>>>> AffineSpace3vfa16;
163
164
//////////////////////////////////////////////////////////////////////////////
165
/// Interpolation
166
//////////////////////////////////////////////////////////////////////////////
167
template<typename T, typename R>
168
__forceinline AffineSpaceT<T> lerp(const AffineSpaceT<T>& M0,
169
const AffineSpaceT<T>& M1,
170
const R& t)
171
{
172
return AffineSpaceT<T>(lerp(M0.l,M1.l,t),lerp(M0.p,M1.p,t));
173
}
174
175
// slerp interprets the 16 floats of the matrix M = D * R * S as components of
176
// three matrizes (D, R, S) that are interpolated individually.
177
template<typename T> __forceinline AffineSpaceT<LinearSpace3<Vec3<T>>>
178
slerp(const AffineSpaceT<LinearSpace3<Vec4<T>>>& M0,
179
const AffineSpaceT<LinearSpace3<Vec4<T>>>& M1,
180
const T& t)
181
{
182
QuaternionT<T> q0(M0.p.w, M0.l.vx.w, M0.l.vy.w, M0.l.vz.w);
183
QuaternionT<T> q1(M1.p.w, M1.l.vx.w, M1.l.vy.w, M1.l.vz.w);
184
QuaternionT<T> q = slerp(q0, q1, t);
185
186
AffineSpaceT<LinearSpace3<Vec3<T>>> S = lerp(M0, M1, t);
187
AffineSpaceT<LinearSpace3<Vec3<T>>> D(one);
188
D.p.x = S.l.vx.y;
189
D.p.y = S.l.vx.z;
190
D.p.z = S.l.vy.z;
191
S.l.vx.y = 0;
192
S.l.vx.z = 0;
193
S.l.vy.z = 0;
194
195
AffineSpaceT<LinearSpace3<Vec3<T>>> R = LinearSpace3<Vec3<T>>(q);
196
return D * R * S;
197
}
198
199
// this is a specialized version for Vec3fa because that does
200
// not play along nicely with the other templated Vec3/Vec4 types
201
__forceinline AffineSpace3fa slerp(const AffineSpace3ff& M0,
202
const AffineSpace3ff& M1,
203
const float& t)
204
{
205
Quaternion3f q0(M0.p.w, M0.l.vx.w, M0.l.vy.w, M0.l.vz.w);
206
Quaternion3f q1(M1.p.w, M1.l.vx.w, M1.l.vy.w, M1.l.vz.w);
207
Quaternion3f q = slerp(q0, q1, t);
208
209
AffineSpace3fa S = lerp(M0, M1, t);
210
AffineSpace3fa D(one);
211
D.p.x = S.l.vx.y;
212
D.p.y = S.l.vx.z;
213
D.p.z = S.l.vy.z;
214
S.l.vx.y = 0;
215
S.l.vx.z = 0;
216
S.l.vy.z = 0;
217
218
AffineSpace3fa R = LinearSpace3fa(q);
219
return D * R * S;
220
}
221
222
__forceinline AffineSpace3fa quaternionDecompositionToAffineSpace(const AffineSpace3ff& qd)
223
{
224
// compute affine transform from quaternion decomposition
225
Quaternion3f q(qd.p.w, qd.l.vx.w, qd.l.vy.w, qd.l.vz.w);
226
AffineSpace3fa M = qd;
227
AffineSpace3fa D(one);
228
D.p.x = M.l.vx.y;
229
D.p.y = M.l.vx.z;
230
D.p.z = M.l.vy.z;
231
M.l.vx.y = 0;
232
M.l.vx.z = 0;
233
M.l.vy.z = 0;
234
AffineSpace3fa R = LinearSpace3fa(q);
235
return D * R * M;
236
}
237
238
__forceinline void quaternionDecomposition(const AffineSpace3ff& qd, Vec3fa& T, Quaternion3f& q, AffineSpace3fa& S)
239
{
240
q = Quaternion3f(qd.p.w, qd.l.vx.w, qd.l.vy.w, qd.l.vz.w);
241
S = qd;
242
T.x = qd.l.vx.y;
243
T.y = qd.l.vx.z;
244
T.z = qd.l.vy.z;
245
S.l.vx.y = 0;
246
S.l.vx.z = 0;
247
S.l.vy.z = 0;
248
}
249
250
__forceinline AffineSpace3fx quaternionDecomposition(Vec3fa const& T, Quaternion3f const& q, AffineSpace3fa const& S)
251
{
252
AffineSpace3ff M = S;
253
M.l.vx.w = q.i;
254
M.l.vy.w = q.j;
255
M.l.vz.w = q.k;
256
M.p.w = q.r;
257
M.l.vx.y = T.x;
258
M.l.vx.z = T.y;
259
M.l.vy.z = T.z;
260
return M;
261
}
262
263
struct __aligned(16) QuaternionDecomposition
264
{
265
float scale_x = 1.f;
266
float scale_y = 1.f;
267
float scale_z = 1.f;
268
float skew_xy = 0.f;
269
float skew_xz = 0.f;
270
float skew_yz = 0.f;
271
float shift_x = 0.f;
272
float shift_y = 0.f;
273
float shift_z = 0.f;
274
float quaternion_r = 1.f;
275
float quaternion_i = 0.f;
276
float quaternion_j = 0.f;
277
float quaternion_k = 0.f;
278
float translation_x = 0.f;
279
float translation_y = 0.f;
280
float translation_z = 0.f;
281
};
282
283
__forceinline QuaternionDecomposition quaternionDecomposition(AffineSpace3ff const& M)
284
{
285
QuaternionDecomposition qd;
286
qd.scale_x = M.l.vx.x;
287
qd.scale_y = M.l.vy.y;
288
qd.scale_z = M.l.vz.z;
289
qd.shift_x = M.p.x;
290
qd.shift_y = M.p.y;
291
qd.shift_z = M.p.z;
292
qd.translation_x = M.l.vx.y;
293
qd.translation_y = M.l.vx.z;
294
qd.translation_z = M.l.vy.z;
295
qd.skew_xy = M.l.vy.x;
296
qd.skew_xz = M.l.vz.x;
297
qd.skew_yz = M.l.vz.y;
298
qd.quaternion_r = M.p.w;
299
qd.quaternion_i = M.l.vx.w;
300
qd.quaternion_j = M.l.vy.w;
301
qd.quaternion_k = M.l.vz.w;
302
return qd;
303
}
304
305
////////////////////////////////////////////////////////////////////////////////
306
/*
307
* ! Template Specialization for 2D: return matrix for rotation around point
308
* (rotation around arbitrarty vector is not meaningful in 2D)
309
*/
310
template<> __forceinline
311
AffineSpace2f AffineSpace2f::rotate(const Vec2f& p, const float& r) {
312
return translate(+p)*AffineSpace2f(LinearSpace2f::rotate(r))*translate(-p);
313
}
314
315
////////////////////////////////////////////////////////////////////////////////
316
// Similarity Transform
317
//
318
// checks, if M is a similarity transformation, i.e if there exists a factor D
319
// such that for all x,y: distance(Mx, My) = D * distance(x, y)
320
////////////////////////////////////////////////////////////////////////////////
321
__forceinline bool similarityTransform(const AffineSpace3fa& M, float* D)
322
{
323
if (D) *D = 0.f;
324
if (abs(dot(M.l.vx, M.l.vy)) > 1e-5f) return false;
325
if (abs(dot(M.l.vx, M.l.vz)) > 1e-5f) return false;
326
if (abs(dot(M.l.vy, M.l.vz)) > 1e-5f) return false;
327
328
const float D_x = dot(M.l.vx, M.l.vx);
329
const float D_y = dot(M.l.vy, M.l.vy);
330
const float D_z = dot(M.l.vz, M.l.vz);
331
332
if (abs(D_x - D_y) > 1e-5f ||
333
abs(D_x - D_z) > 1e-5f ||
334
abs(D_y - D_z) > 1e-5f)
335
return false;
336
337
if (D) *D = sqrtf(D_x);
338
return true;
339
}
340
341
__forceinline void AffineSpace3fa_store_unaligned(const AffineSpace3fa &source, AffineSpace3fa* ptr)
342
{
343
Vec3fa::storeu(&ptr->l.vx, source.l.vx);
344
Vec3fa::storeu(&ptr->l.vy, source.l.vy);
345
Vec3fa::storeu(&ptr->l.vz, source.l.vz);
346
Vec3fa::storeu(&ptr->p, source.p);
347
}
348
349
__forceinline AffineSpace3fa AffineSpace3fa_load_unaligned(AffineSpace3fa* ptr)
350
{
351
AffineSpace3fa space;
352
space.l.vx = Vec3fa::loadu(&ptr->l.vx);
353
space.l.vy = Vec3fa::loadu(&ptr->l.vy);
354
space.l.vz = Vec3fa::loadu(&ptr->l.vz);
355
space.p = Vec3fa::loadu(&ptr->p);
356
return space;
357
}
358
359
#undef VectorT
360
#undef ScalarT
361
}
362
363