Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/embree/kernels/builders/heuristic_timesplit_array.h
9912 views
1
// Copyright 2009-2021 Intel Corporation
2
// SPDX-License-Identifier: Apache-2.0
3
4
#pragma once
5
6
#include "../builders/primref_mb.h"
7
#include "../../common/algorithms/parallel_filter.h"
8
9
#define MBLUR_TIME_SPLIT_THRESHOLD 1.25f
10
11
namespace embree
12
{
13
namespace isa
14
{
15
/*! Performs standard object binning */
16
template<typename PrimRefMB, typename RecalculatePrimRef, size_t BINS>
17
struct HeuristicMBlurTemporalSplit
18
{
19
typedef BinSplit<MBLUR_NUM_OBJECT_BINS> Split;
20
typedef mvector<PrimRefMB>* PrimRefVector;
21
typedef typename PrimRefMB::BBox BBox;
22
23
static const size_t PARALLEL_THRESHOLD = 3 * 1024;
24
static const size_t PARALLEL_FIND_BLOCK_SIZE = 1024;
25
static const size_t PARALLEL_PARTITION_BLOCK_SIZE = 128;
26
27
HeuristicMBlurTemporalSplit (MemoryMonitorInterface* device, const RecalculatePrimRef& recalculatePrimRef)
28
: device(device), recalculatePrimRef(recalculatePrimRef) {}
29
30
struct TemporalBinInfo
31
{
32
__forceinline TemporalBinInfo () {
33
}
34
35
__forceinline TemporalBinInfo (EmptyTy)
36
{
37
for (size_t i=0; i<BINS-1; i++)
38
{
39
count0[i] = count1[i] = 0;
40
bounds0[i] = bounds1[i] = empty;
41
}
42
}
43
44
void bin(const PrimRefMB* prims, size_t begin, size_t end, BBox1f time_range, const SetMB& set, const RecalculatePrimRef& recalculatePrimRef)
45
{
46
for (int b=0; b<BINS-1; b++)
47
{
48
const float t = float(b+1)/float(BINS);
49
const float ct = lerp(time_range.lower,time_range.upper,t);
50
const float center_time = set.align_time(ct);
51
if (center_time <= time_range.lower) continue;
52
if (center_time >= time_range.upper) continue;
53
const BBox1f dt0(time_range.lower,center_time);
54
const BBox1f dt1(center_time,time_range.upper);
55
56
/* find linear bounds for both time segments */
57
for (size_t i=begin; i<end; i++)
58
{
59
if (prims[i].time_range_overlap(dt0))
60
{
61
const LBBox3fa bn0 = recalculatePrimRef.linearBounds(prims[i],dt0);
62
#if MBLUR_BIN_LBBOX
63
bounds0[b].extend(bn0);
64
#else
65
bounds0[b].extend(bn0.interpolate(0.5f));
66
#endif
67
count0[b] += prims[i].timeSegmentRange(dt0).size();
68
}
69
70
if (prims[i].time_range_overlap(dt1))
71
{
72
const LBBox3fa bn1 = recalculatePrimRef.linearBounds(prims[i],dt1);
73
#if MBLUR_BIN_LBBOX
74
bounds1[b].extend(bn1);
75
#else
76
bounds1[b].extend(bn1.interpolate(0.5f));
77
#endif
78
count1[b] += prims[i].timeSegmentRange(dt1).size();
79
}
80
}
81
}
82
}
83
84
__forceinline void bin_parallel(const PrimRefMB* prims, size_t begin, size_t end, size_t blockSize, size_t parallelThreshold, BBox1f time_range, const SetMB& set, const RecalculatePrimRef& recalculatePrimRef)
85
{
86
if (likely(end-begin < parallelThreshold)) {
87
bin(prims,begin,end,time_range,set,recalculatePrimRef);
88
}
89
else
90
{
91
auto bin = [&](const range<size_t>& r) -> TemporalBinInfo {
92
TemporalBinInfo binner(empty); binner.bin(prims, r.begin(), r.end(), time_range, set, recalculatePrimRef); return binner;
93
};
94
*this = parallel_reduce(begin,end,blockSize,TemporalBinInfo(empty),bin,merge2);
95
}
96
}
97
98
/*! merges in other binning information */
99
__forceinline void merge (const TemporalBinInfo& other)
100
{
101
for (size_t i=0; i<BINS-1; i++)
102
{
103
count0[i] += other.count0[i];
104
count1[i] += other.count1[i];
105
bounds0[i].extend(other.bounds0[i]);
106
bounds1[i].extend(other.bounds1[i]);
107
}
108
}
109
110
static __forceinline const TemporalBinInfo merge2(const TemporalBinInfo& a, const TemporalBinInfo& b) {
111
TemporalBinInfo r = a; r.merge(b); return r;
112
}
113
114
Split best(int logBlockSize, BBox1f time_range, const SetMB& set)
115
{
116
float bestSAH = inf;
117
float bestPos = 0.0f;
118
for (int b=0; b<BINS-1; b++)
119
{
120
float t = float(b+1)/float(BINS);
121
float ct = lerp(time_range.lower,time_range.upper,t);
122
const float center_time = set.align_time(ct);
123
if (center_time <= time_range.lower) continue;
124
if (center_time >= time_range.upper) continue;
125
const BBox1f dt0(time_range.lower,center_time);
126
const BBox1f dt1(center_time,time_range.upper);
127
128
/* calculate sah */
129
const size_t lCount = (count0[b]+(size_t(1) << logBlockSize)-1) >> int(logBlockSize);
130
const size_t rCount = (count1[b]+(size_t(1) << logBlockSize)-1) >> int(logBlockSize);
131
float sah0 = expectedApproxHalfArea(bounds0[b])*float(lCount)*dt0.size();
132
float sah1 = expectedApproxHalfArea(bounds1[b])*float(rCount)*dt1.size();
133
if (unlikely(lCount == 0)) sah0 = 0.0f; // happens for initial splits when objects not alive over entire shutter time
134
if (unlikely(rCount == 0)) sah1 = 0.0f;
135
const float sah = sah0+sah1;
136
if (sah < bestSAH) {
137
bestSAH = sah;
138
bestPos = center_time;
139
}
140
}
141
return Split(bestSAH*MBLUR_TIME_SPLIT_THRESHOLD,(unsigned)Split::SPLIT_TEMPORAL,0,bestPos);
142
}
143
144
public:
145
size_t count0[BINS-1];
146
size_t count1[BINS-1];
147
BBox bounds0[BINS-1];
148
BBox bounds1[BINS-1];
149
};
150
151
/*! finds the best split */
152
const Split find(const SetMB& set, const size_t logBlockSize)
153
{
154
assert(set.size() > 0);
155
TemporalBinInfo binner(empty);
156
binner.bin_parallel(set.prims->data(),set.begin(),set.end(),PARALLEL_FIND_BLOCK_SIZE,PARALLEL_THRESHOLD,set.time_range,set,recalculatePrimRef);
157
Split tsplit = binner.best((int)logBlockSize,set.time_range,set);
158
if (!tsplit.valid()) tsplit.data = Split::SPLIT_FALLBACK; // use fallback split
159
return tsplit;
160
}
161
162
__forceinline std::unique_ptr<mvector<PrimRefMB>> split(const Split& tsplit, const SetMB& set, SetMB& lset, SetMB& rset)
163
{
164
assert(tsplit.sah != float(inf));
165
assert(tsplit.fpos > set.time_range.lower);
166
assert(tsplit.fpos < set.time_range.upper);
167
168
float center_time = tsplit.fpos;
169
const BBox1f time_range0(set.time_range.lower,center_time);
170
const BBox1f time_range1(center_time,set.time_range.upper);
171
mvector<PrimRefMB>& prims = *set.prims;
172
173
/* calculate primrefs for first time range */
174
std::unique_ptr<mvector<PrimRefMB>> new_vector(new mvector<PrimRefMB>(device, set.size()));
175
PrimRefVector lprims = new_vector.get();
176
177
auto reduction_func0 = [&] (const range<size_t>& r) {
178
PrimInfoMB pinfo = empty;
179
for (size_t i=r.begin(); i<r.end(); i++)
180
{
181
if (likely(prims[i].time_range_overlap(time_range0)))
182
{
183
const PrimRefMB& prim = recalculatePrimRef(prims[i],time_range0);
184
(*lprims)[i-set.begin()] = prim;
185
pinfo.add_primref(prim);
186
}
187
else
188
{
189
(*lprims)[i-set.begin()] = prims[i];
190
}
191
}
192
return pinfo;
193
};
194
PrimInfoMB linfo = parallel_reduce(set.object_range,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD,PrimInfoMB(empty),reduction_func0,PrimInfoMB::merge2);
195
196
/* primrefs for first time range are in lprims[0 .. set.size()) */
197
/* some primitives may need to be filtered out */
198
if (linfo.size() != set.size())
199
linfo.object_range._end = parallel_filter(lprims->data(), size_t(0), set.size(), size_t(1024),
200
[&](const PrimRefMB& prim) { return prim.time_range_overlap(time_range0); });
201
202
lset = SetMB(linfo,lprims,time_range0);
203
204
/* calculate primrefs for second time range */
205
auto reduction_func1 = [&] (const range<size_t>& r) {
206
PrimInfoMB pinfo = empty;
207
for (size_t i=r.begin(); i<r.end(); i++)
208
{
209
if (likely(prims[i].time_range_overlap(time_range1)))
210
{
211
const PrimRefMB& prim = recalculatePrimRef(prims[i],time_range1);
212
prims[i] = prim;
213
pinfo.add_primref(prim);
214
}
215
}
216
return pinfo;
217
};
218
PrimInfoMB rinfo = parallel_reduce(set.object_range,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD,PrimInfoMB(empty),reduction_func1,PrimInfoMB::merge2);
219
rinfo.object_range = range<size_t>(set.begin(), set.begin() + rinfo.size());
220
221
/* primrefs for second time range are in prims[set.begin() .. set.end()) */
222
/* some primitives may need to be filtered out */
223
if (rinfo.size() != set.size())
224
rinfo.object_range._end = parallel_filter(prims.data(), set.begin(), set.end(), size_t(1024),
225
[&](const PrimRefMB& prim) { return prim.time_range_overlap(time_range1); });
226
227
rset = SetMB(rinfo,&prims,time_range1);
228
229
return new_vector;
230
}
231
232
private:
233
MemoryMonitorInterface* device; // device to report memory usage to
234
const RecalculatePrimRef recalculatePrimRef;
235
};
236
}
237
}
238
239