Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
godotengine
GitHub Repository: godotengine/godot
Path: blob/master/thirdparty/embree/kernels/subdiv/bspline_curve.h
9913 views
1
// Copyright 2009-2021 Intel Corporation
2
// SPDX-License-Identifier: Apache-2.0
3
4
#pragma once
5
6
#include "../common/default.h"
7
#include "bezier_curve.h"
8
9
namespace embree
10
{
11
class BSplineBasis
12
{
13
public:
14
15
template<typename T>
16
static __forceinline Vec4<T> eval(const T& u)
17
{
18
const T t = u;
19
const T s = T(1.0f) - u;
20
const T n0 = s*s*s;
21
const T n1 = (4.0f*(s*s*s)+(t*t*t)) + (12.0f*((s*t)*s) + 6.0f*((t*s)*t));
22
const T n2 = (4.0f*(t*t*t)+(s*s*s)) + (12.0f*((t*s)*t) + 6.0f*((s*t)*s));
23
const T n3 = t*t*t;
24
return T(1.0f/6.0f)*Vec4<T>(n0,n1,n2,n3);
25
}
26
27
template<typename T>
28
static __forceinline Vec4<T> derivative(const T& u)
29
{
30
const T t = u;
31
const T s = 1.0f - u;
32
const T n0 = -s*s;
33
const T n1 = -t*t - 4.0f*(t*s);
34
const T n2 = s*s + 4.0f*(s*t);
35
const T n3 = t*t;
36
return T(0.5f)*Vec4<T>(n0,n1,n2,n3);
37
}
38
39
template<typename T>
40
static __forceinline Vec4<T> derivative2(const T& u)
41
{
42
const T t = u;
43
const T s = 1.0f - u;
44
const T n0 = s;
45
const T n1 = t - 2.0f*s;
46
const T n2 = s - 2.0f*t;
47
const T n3 = t;
48
return Vec4<T>(n0,n1,n2,n3);
49
}
50
};
51
52
struct PrecomputedBSplineBasis
53
{
54
enum { N = 16 };
55
public:
56
PrecomputedBSplineBasis() {}
57
PrecomputedBSplineBasis(int shift);
58
59
/* basis for bspline evaluation */
60
public:
61
float c0[N+1][N+1];
62
float c1[N+1][N+1];
63
float c2[N+1][N+1];
64
float c3[N+1][N+1];
65
66
/* basis for bspline derivative evaluation */
67
public:
68
float d0[N+1][N+1];
69
float d1[N+1][N+1];
70
float d2[N+1][N+1];
71
float d3[N+1][N+1];
72
};
73
extern PrecomputedBSplineBasis bspline_basis0;
74
extern PrecomputedBSplineBasis bspline_basis1;
75
76
template<typename Vertex>
77
struct BSplineCurveT
78
{
79
Vertex v0,v1,v2,v3;
80
81
__forceinline BSplineCurveT() {}
82
83
__forceinline BSplineCurveT(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3)
84
: v0(v0), v1(v1), v2(v2), v3(v3) {}
85
86
__forceinline Vertex begin() const {
87
return madd(1.0f/6.0f,v0,madd(2.0f/3.0f,v1,1.0f/6.0f*v2));
88
}
89
90
__forceinline Vertex end() const {
91
return madd(1.0f/6.0f,v1,madd(2.0f/3.0f,v2,1.0f/6.0f*v3));
92
}
93
94
__forceinline Vertex center() const {
95
return 0.25f*(v0+v1+v2+v3);
96
}
97
98
__forceinline BBox<Vertex> bounds() const {
99
return merge(BBox<Vertex>(v0),BBox<Vertex>(v1),BBox<Vertex>(v2),BBox<Vertex>(v3));
100
}
101
102
__forceinline friend BSplineCurveT operator -( const BSplineCurveT& a, const Vertex& b ) {
103
return BSplineCurveT(a.v0-b,a.v1-b,a.v2-b,a.v3-b);
104
}
105
106
__forceinline BSplineCurveT<Vec3ff> xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const
107
{
108
const Vec3ff q0(xfmVector(space,(Vec3fa)v0-p), v0.w);
109
const Vec3ff q1(xfmVector(space,(Vec3fa)v1-p), v1.w);
110
const Vec3ff q2(xfmVector(space,(Vec3fa)v2-p), v2.w);
111
const Vec3ff q3(xfmVector(space,(Vec3fa)v3-p), v3.w);
112
return BSplineCurveT<Vec3ff>(q0,q1,q2,q3);
113
}
114
115
__forceinline Vertex eval(const float t) const
116
{
117
const Vec4<float> b = BSplineBasis::eval(t);
118
return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
119
}
120
121
__forceinline Vertex eval_du(const float t) const
122
{
123
const Vec4<float> b = BSplineBasis::derivative(t);
124
return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
125
}
126
127
__forceinline Vertex eval_dudu(const float t) const
128
{
129
const Vec4<float> b = BSplineBasis::derivative2(t);
130
return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
131
}
132
133
__forceinline void eval(const float t, Vertex& p, Vertex& dp) const
134
{
135
p = eval(t);
136
dp = eval_du(t);
137
}
138
139
__forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const
140
{
141
p = eval(t);
142
dp = eval_du(t);
143
ddp = eval_dudu(t);
144
}
145
146
template<int M>
147
__forceinline Vec4vf<M> veval(const vfloat<M>& t) const
148
{
149
const Vec4vf<M> b = BSplineBasis::eval(t);
150
return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
151
}
152
153
template<int M>
154
__forceinline Vec4vf<M> veval_du(const vfloat<M>& t) const
155
{
156
const Vec4vf<M> b = BSplineBasis::derivative(t);
157
return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
158
}
159
160
template<int M>
161
__forceinline Vec4vf<M> veval_dudu(const vfloat<M>& t) const
162
{
163
const Vec4vf<M> b = BSplineBasis::derivative2(t);
164
return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
165
}
166
167
template<int M>
168
__forceinline void veval(const vfloat<M>& t, Vec4vf<M>& p, Vec4vf<M>& dp) const
169
{
170
p = veval<M>(t);
171
dp = veval_du<M>(t);
172
}
173
174
template<int M>
175
__forceinline Vec4vf<M> eval0(const int ofs, const int size) const
176
{
177
assert(size <= PrecomputedBSplineBasis::N);
178
assert(ofs <= size);
179
return madd(vfloat<M>::loadu(&bspline_basis0.c0[size][ofs]), Vec4vf<M>(v0),
180
madd(vfloat<M>::loadu(&bspline_basis0.c1[size][ofs]), Vec4vf<M>(v1),
181
madd(vfloat<M>::loadu(&bspline_basis0.c2[size][ofs]), Vec4vf<M>(v2),
182
vfloat<M>::loadu(&bspline_basis0.c3[size][ofs]) * Vec4vf<M>(v3))));
183
}
184
185
template<int M>
186
__forceinline Vec4vf<M> eval1(const int ofs, const int size) const
187
{
188
assert(size <= PrecomputedBSplineBasis::N);
189
assert(ofs <= size);
190
return madd(vfloat<M>::loadu(&bspline_basis1.c0[size][ofs]), Vec4vf<M>(v0),
191
madd(vfloat<M>::loadu(&bspline_basis1.c1[size][ofs]), Vec4vf<M>(v1),
192
madd(vfloat<M>::loadu(&bspline_basis1.c2[size][ofs]), Vec4vf<M>(v2),
193
vfloat<M>::loadu(&bspline_basis1.c3[size][ofs]) * Vec4vf<M>(v3))));
194
}
195
196
template<int M>
197
__forceinline Vec4vf<M> derivative0(const int ofs, const int size) const
198
{
199
assert(size <= PrecomputedBSplineBasis::N);
200
assert(ofs <= size);
201
return madd(vfloat<M>::loadu(&bspline_basis0.d0[size][ofs]), Vec4vf<M>(v0),
202
madd(vfloat<M>::loadu(&bspline_basis0.d1[size][ofs]), Vec4vf<M>(v1),
203
madd(vfloat<M>::loadu(&bspline_basis0.d2[size][ofs]), Vec4vf<M>(v2),
204
vfloat<M>::loadu(&bspline_basis0.d3[size][ofs]) * Vec4vf<M>(v3))));
205
}
206
207
template<int M>
208
__forceinline Vec4vf<M> derivative1(const int ofs, const int size) const
209
{
210
assert(size <= PrecomputedBSplineBasis::N);
211
assert(ofs <= size);
212
return madd(vfloat<M>::loadu(&bspline_basis1.d0[size][ofs]), Vec4vf<M>(v0),
213
madd(vfloat<M>::loadu(&bspline_basis1.d1[size][ofs]), Vec4vf<M>(v1),
214
madd(vfloat<M>::loadu(&bspline_basis1.d2[size][ofs]), Vec4vf<M>(v2),
215
vfloat<M>::loadu(&bspline_basis1.d3[size][ofs]) * Vec4vf<M>(v3))));
216
}
217
218
/* calculates bounds of bspline curve geometry */
219
__forceinline BBox3fa accurateRoundBounds() const
220
{
221
const int N = 7;
222
const float scale = 1.0f/(3.0f*(N-1));
223
Vec4vfx pl(pos_inf), pu(neg_inf);
224
for (int i=0; i<=N; i+=VSIZEX)
225
{
226
vintx vi = vintx(i)+vintx(step);
227
vboolx valid = vi <= vintx(N);
228
const Vec4vfx p = eval0<VSIZEX>(i,N);
229
const Vec4vfx dp = derivative0<VSIZEX>(i,N);
230
const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero));
231
const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero));
232
pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min
233
pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min
234
}
235
const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
236
const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
237
const float r_min = reduce_min(pl.w);
238
const float r_max = reduce_max(pu.w);
239
const Vec3fa upper_r = Vec3fa(max(abs(r_min),abs(r_max)));
240
return enlarge(BBox3fa(lower,upper),upper_r);
241
}
242
243
/* calculates bounds when tessellated into N line segments */
244
__forceinline BBox3fa accurateFlatBounds(int N) const
245
{
246
if (likely(N == 4))
247
{
248
const Vec4vf4 pi = eval0<4>(0,4);
249
const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z));
250
const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z));
251
const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w)));
252
const Vec3ff pe = end();
253
return enlarge(BBox3fa(min(lower,pe),max(upper,pe)),max(upper_r,Vec3fa(abs(pe.w))));
254
}
255
else
256
{
257
Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f);
258
for (int i=0; i<=N; i+=VSIZEX)
259
{
260
vboolx valid = vintx(i)+vintx(step) <= vintx(N);
261
const Vec4vfx pi = eval0<VSIZEX>(i,N);
262
263
pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min
264
pl.y = select(valid,min(pl.y,pi.y),pl.y);
265
pl.z = select(valid,min(pl.z,pi.z),pl.z);
266
267
pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min
268
pu.y = select(valid,max(pu.y,pi.y),pu.y);
269
pu.z = select(valid,max(pu.z,pi.z),pu.z);
270
271
ru = select(valid,max(ru,abs(pi.w)),ru);
272
}
273
const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
274
const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
275
const Vec3fa upper_r(reduce_max(ru));
276
return enlarge(BBox3fa(lower,upper),upper_r);
277
}
278
}
279
280
friend __forceinline embree_ostream operator<<(embree_ostream cout, const BSplineCurveT& curve) {
281
return cout << "BSplineCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }";
282
}
283
};
284
285
template<typename Vertex>
286
__forceinline void convert(const BezierCurveT<Vertex>& icurve, BezierCurveT<Vertex>& ocurve) {
287
ocurve = icurve;
288
}
289
290
template<typename Vertex>
291
__forceinline void convert(const BSplineCurveT<Vertex>& icurve, BSplineCurveT<Vertex>& ocurve) {
292
ocurve = icurve;
293
}
294
295
template<typename Vertex>
296
__forceinline void convert(const BezierCurveT<Vertex>& icurve, BSplineCurveT<Vertex>& ocurve)
297
{
298
const Vertex v0 = madd(6.0f,icurve.v0,madd(-7.0f,icurve.v1,2.0f*icurve.v2));
299
const Vertex v1 = msub(2.0f,icurve.v1,icurve.v2);
300
const Vertex v2 = msub(2.0f,icurve.v2,icurve.v1);
301
const Vertex v3 = madd(2.0f,icurve.v1,madd(-7.0f,icurve.v2,6.0f*icurve.v3));
302
ocurve = BSplineCurveT<Vertex>(v0,v1,v2,v3);
303
}
304
305
template<typename Vertex>
306
__forceinline void convert(const BSplineCurveT<Vertex>& icurve, BezierCurveT<Vertex>& ocurve)
307
{
308
const Vertex v0 = madd(1.0f/6.0f,icurve.v0,madd(2.0f/3.0f,icurve.v1,1.0f/6.0f*icurve.v2));
309
const Vertex v1 = madd(2.0f/3.0f,icurve.v1,1.0f/3.0f*icurve.v2);
310
const Vertex v2 = madd(1.0f/3.0f,icurve.v1,2.0f/3.0f*icurve.v2);
311
const Vertex v3 = madd(1.0f/6.0f,icurve.v1,madd(2.0f/3.0f,icurve.v2,1.0f/6.0f*icurve.v3));
312
ocurve = BezierCurveT<Vertex>(v0,v1,v2,v3);
313
}
314
315
template<typename CurveGeometry>
316
__forceinline BSplineCurveT<Vec3ff> enlargeRadiusToMinWidth(const RayQueryContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const BSplineCurveT<Vec3ff>& curve)
317
{
318
return BSplineCurveT<Vec3ff>(enlargeRadiusToMinWidth(context,geom,ray_org,curve.v0),
319
enlargeRadiusToMinWidth(context,geom,ray_org,curve.v1),
320
enlargeRadiusToMinWidth(context,geom,ray_org,curve.v2),
321
enlargeRadiusToMinWidth(context,geom,ray_org,curve.v3));
322
}
323
324
typedef BSplineCurveT<Vec3fa> BSplineCurve3fa;
325
}
326
327
328